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Abstract
We would like to have highly useful robots which can richly perceive their world, se-
mantically distinguish its fine details, and physically interact with it sufficiently for useful
robotic manipulation. This is hard to achieve with previous methods: prior work has not
equipped robots with the scalable ability to understand the dense visual state of their varied
environments. The limitations have both been in the state representations used, and how
to acquire them without significant human labeling effort. In this thesis we present work
that leverages self-supervision, particularly via a mix of geometrical computer vision, deep
visual learning, and robotic systems, to scalably produce dense visual inferences of the
world state. These methods either enable robots to teach themselves dense visual models
without human supervision, or they act as a large multiplying factor on the value of in-
formation provided by humans. Specifically, we develop a pipeline for providing ground
truth labels of visual data in cluttered and multi-object scenes, we introduce the novel ap-
plication of dense visual object descriptors to robotic manipulation and provide a fully
robot-supervised pipeline to acquire them, and we leverage this dense visual understanding
to efficiently learn new manipulation skills through imitation. With real robot hardware
we demonstrate contact-rich tasks manipulating household objects, including generalizing
across a class of objects, manipulating deformable objects, and manipulating a textureless
symmetrical object, all with closed-loop, real-time vision-based manipulation policies.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

A nice motivational insight for this thesis work comes from Geoff Hinton: “The brain has

about 1014 synapses and we only live for about 109 seconds. So we have a lot more param-

eters than data. This motivates the idea that we must do a lot of unsupervised learning since

the perceptual input (including proprioception) is the only place we can get 105 dimensions

of constraint per second.”1 We view this comment as particularly relevant to the challenges

of robotic manipulation and computer vision “in the wild”. We would like robots, for exam-

ple, to be able to inspect arbitrary scenes of objects and complete arbitrary tasks with them.

Yet from the firehose of raw perception data, for example 2.8× 107 dimensions per second

for just a medium-resolution camera2, it is challenging to provide enough constraints with

just manual specification or sparse rewards.

In this thesis our primary interest is in how to scalably enable robots to acquire percep-

tual knowledge useful for robotic manipulation. This leads us to naturally ask: what type

of perceptual knowledge is useful, and how can it scalably be acquired? In this thesis we

address both of these, questioning both the representations that are used, and how to ac-

quire them. We aim to enable robots to efficiently supervise their perceptual inputs entirely

by themselves, or to leverage self-supervision in order to make the most out of minimal

human input. The benefits of this perceptual self-supervision may be interpreted in various

ways: on the one hand, it may provide the ability to lift raw data into regimes in which

1November 7, 2014, Reddit A.M.A., https://www.reddit.com/r/MachineLearning/
comments/2lmo0l/ama_geoffrey_hinton/

2640 width pixels *480 height pixels* 3 color channels * 30 Hz
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explicit geometrical planning can thrive, and alternatively, perceptual self-supervision can

be thought of as a type of multi-task learning providing a sizable source of otherwise inac-

cessible supervision.

To address our goal, we leverage the structure of robotic 3D perception data and a

variety of tools including multi-view geometry, new object representations, deep visual

models, general-purpose grasping pipelines, and robot learning from demonstration. One

of the main contributions of this thesis is in introducing dense visual description of objects

as a representation useful for manipulation (Dense Object Nets [1]), and in showing that

this representation can be fully autonomously acquired without human input. Another area

of contribution is a method to provide ground-truth labels of 6DOF object poses in cluttered

scenes (LabelFusion [2]), which does require human input but does so in a highly efficient

manner due to dense 3D-based labeling. Finally, we demonstrate using self-supervised

correspondence learning to efficiently learn visuomotor policies from demonstrations of

manipulation tasks.

Problem Statement

This thesis places primary importance on robotic visual learning being both dense and scal-

able. Perhaps the best way to appreciate our definition of dense is by analogy and contrast

(Figure 1-1) with a different domain area which was a focus of the first half of my PhD: ob-

stacle avoidance for autonomous vehicles in static environments. For this task, perceiving

the dense state of the environment is not strictly necessary. In obstacle avoidance, the pri-

mary goal is to not touch anything, and it is sufficient to have conservative approximations

of free space [3], without ever perceiving, for example, large portions of fine geometric

detail, or distinguishing semantics.

For the applications of focus for this thesis, however, the detail at dense resolution is

critical. In this thesis we take a broad view of the definition of dense to refer to all types

of understanding at approximately the millimeter-scale of what is relevant to the physics

of robot fingers. This includes both the geometry of the world’s objects, but also what

this geometry is. For some tasks, robots may need to understand the explicit semantics of

objects in cluttered environments (“this is a drill”), and for other tasks we may need robots

12



(a) (b)

(c) (d)

Figure 1-1: The lack of necessity for dense visual understanding in some tasks, and the need in others. The
comparison between (a) and (b) is adapted from Bachrach [4] who nicely observes: “Two corridors with very
different geometry, but similar feasible trajectories. For planning purposes, there is no reason to expend effort
modeling all of the intricacies of the tree trunks and branches.” In contrast, the task of cleaning up a kitchen
requires considerable understanding of the difference in intricacies between (c) and (d). Image sources in
appendix.

to be able to densely correspond the fine structure of objects (“grab this part of the object

and put it on top of that part of the other object“). In some of our work, dense is used as it

is commonly in the computer vision literature for 2D images, which means “every pixel”,

but the term also applies to 3D representations, as in dense 3D reconstructions.

In addition to robotic manipulation, there are many other applications of computer vi-

sion “in the wild” for which this type of dense visual understanding is useful. Automated

computer vision systems such as those that enable automatic-checkout grocery stores (i.e.,

Amazon Go) require semantic understanding of considerable density. In augmented reality,

dense understanding is critical for virtual-physical interactions (i.e., a virtual person sitting

down in a real-world chair), and occlusions of virtual agents. For autonomous navigation,

beyond just the static obstacle avoidance problem, agents may benefit from densely under-

standing the environment in order to leverage priors on, for example, its layout beyond the

sensor horizon [5]. Additionally, in dynamic environments for autonomous cars it’s highly

useful to identify all bicyclists, pedestrians, and cars with their 3D locations and semantic

13



classes in order to increase the prediction accuracy of their behavior.3

The second primary robotic vision property of interest in this thesis is scalability, which

concerns whether the desired perception knowledge is actually attainable at large scale. In

other words, “how do we actually get the data”? The key underlying factor determining

scalability is how much cost (human time, computation time, hardware cost, etc.) is re-

quired in order to provide the requisite data. It is probably unattainable, for example, to

have precise 3D mesh models of every object a general-purpose manipulation robot would

interact with, particularly in a world full of shape variation, deformable objects, granular

media, and fluids.

In a recent review, Mason [6] gives a careful definition of manipulation as: “manipula-

tion refers to an agent’s control of its environment through selective contact”. As depicted

in Figure 1-2, a core current challenge in robotic manipulation is in enabling manipulation

of arbitrary scenes of objects, rather than controlled environments with pre-known object

configurations. Accordingly, the primary problem this thesis addresses is how to enable

robots to perceptually understand arbitrary scenes of objects in order to inform the choice

of selective contact.

1.1 Contributions

This thesis develops novel contributions in robotic dense visual learning, including in in-

troducing dense visual object representations to robotic manipulation, in self-supervised

systems to scalably acquire data for dense visual understanding, and in leveraging self-

supervised vision to increase the ability to accomplish complex tasks demonstrated by hu-

mans.

In particular, in Chapter 2 we develop a pipeline to rapidly generate ground truth labels

for RGBD data of cluttered scenes, which researchers can use to build their own datasets

that include pixelwise labels and 6DOF poses of multi-object data with occlusions, with

the only hardware requirement being the RGBD sensor itself. To demonstrate the useful-

3Note: in this application, perhaps centimeter-scale or pixel-scale is sufficient, but still, it is a fine-scale
visual understanding, and the world scale relevant to fast-moving cars is much larger than the world scale
immediately relevant to a manipulation robot.
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Robots that can:
• Clean kitchens
• Make sandwiches
• Do the dishes
• Etc. 

Environment:

• Heavily 
controlled 
airspace

• Track with no 
other cars or 
obstacles

• Objects in 
precisely pre-
known 
configurations

Environment:

• Uncontrolled 
environments

• Uncontrolled 
city streets with 
other cars, 
bikes, 
pedestrians

• Uncontrolled 
environments 
with objects in 
unknown 
configurations

Figure 1-2: A primary challenge for robotic manipulation is in moving from controlled environments to
increasingly uncontrolled environments, similar to the comparison of moving from commercial planes and
subways to modern autonomous drones and cars.

ness of this pipeline we generated the largest known RGBD dataset with object-pose labels

(352,000 labeled images, 1,000,000+ object instances) in only a few days. In Chapter 3 we

introduce dense descriptors as a representation useful for robotic manipulation. We also

show that self-supervised dense visual descriptor learning can be applied to a wide variety

of potentially non-rigid objects and classes (47 objects so far, including 3 distinct classes),

can be learned quickly (approximately 20 minutes), and can enable new manipulation tasks.

In example tasks we grasp specific points on objects across potentially deformed configu-

rations, do so with object instance-specificity in clutter, or transfer specific grasps across

objects in a class. We also contribute novel techniques to enable multi-object distinct dense

descriptors, and show that by modifying the loss function and sampling procedure, we can

either acquire descriptors which generalize across classes of objects, or descriptors that are

distinct for each object instance. In Chapter 4, we develop a new formulation for improved

correspondence localization. Finally, in Chapter 5, we leverage self-supervised correspon-

dence learning to improve visual imitation learning, and improve the sample efficiency and

precision with which robots can imitate manipulation skills.
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AI Level Definition
∅ below the level of an average human toddler
I at or above the level of the average human toddler
II at or above the level of the average human adult
III above the world’s best human expert

Figure 1-3: A simple scale for categorizing the level of artificial intelligence (AI level) for a given task. The
scale compares skill on a task to three levels of human skill: average toddler, average adult, and world expert
human.

1.2 Motivation

We would like to have friendly robots be able to do labor-intensive things for us like clean

the kitchen, make us a sandwich, do the dishes, or help the elderly with daily manipulation

tasks. It should come as no surprise to anyone, however, that we don’t have C-3PO or

Baymax robots walking around in anybody’s homes that are generally capable of these

types of tasks.

Remarkable progress, however, has been made in the last few years in related domains

of other artificial agents: we now have autonomous cars that are capable of navigating

some degree of regular traffic in mapped areas, autonomous drones that are capable of nav-

igating in fully unstructured environments and are available for purchase by consumers,

humanoid robots that can perform backflips, and artificial agents that are capable of beat-

ing the world’s best human player in the game of Go. One qualitative way (Table 1-3) to

analyze the intelligence level for these different AI systems is by a simple metric: how do

these systems compare in their capabilities to the skill levels of average human toddlers, av-

erage human adults, and the world’s best human expert? These artificial agents exhibit high

levels of mastery, in large parts comparable or better than human adults at these respective

tasks (Table 1-4).

Why, then, are artificial agents still at approximately toddler level or below in visual

scene understanding and robot manipulation? This thesis aims to increase our understand-

ing of the inherent challenges and provide tools that increase the skill level of autonomous

systems at these tasks.

A set of primary challenges though with the route of bringing perception information

into the right state for dense visual understanding and robot manipulation is: what even

16



Task AI
Level Metric Explanation

Repeatedly welding
a known pattern III Speed and accuracy

Robot arms have been capable of
superhuman repeated precise patterns since
at least the 1980s.

Playing the game of
Go III Rules of Go AlphaGo beat Lee Sedol in 2016.

Piloting a drone in
unstructured
environments

II or
III

Safe (obstacle-free)
and fast navigation

A commercially-available Skydio drone is
easily superior to the average human at
navigating a drone. The world’s best FPV
(first-person-view) pilots probably still win
in gracefulness and speed, even if they are
riskier.

Piloting a car in
urban environments I or II Safe navigation on

streets

There is no doubt that a modern
autonomous car is safer than a human
toddler, so above level ∅. For large parts of
the autonomous driving problem, arguably
autonomous cars are above average human
level (level II), although some challenges
remain (highly robust perception, other
driver behavior prediction, etc.).

Bipedal walking on
unstructured terrain

∅ or I
or II

Ability to not fall and
gracefully navigate
difficult terrain

Modern Boston Dynamics robots can do
some highly dynamics skills more
gracefully than average humans (like
backflips), and have been shown to handle a
wide variety of terrains, although once
children learn to walk they are formidable.

Visual scene
understanding ∅ or I

Ability to answer
questions asked by a
human of a scene

While image classification is
“super-human” on a static dataset like
ImageNet, we do not have computer vision
systems capable of answering arbitrary
questions like, “why is the human standing
under the umbrella?”, so below level II.

Manipulating
arbitrary objects in
unstructured
environments

∅ or I

Ability to be
presented a new
object and
accomplish an
arbitrary
manipulation task

The average adult can easily tie a shoe, open
a book, hang a mug on a rack, etc, so below
level II.

Figure 1-4: Respective levels of intelligence of existing AI systems as measured by the simple scale (Table
1-3).
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is the right state of the world, and how should it be acquired? This question may inspire

a variety of responses from the research community. An easily stated and often preferred

answer has been to have the 6DOF pose of each object instance in the world (with this

pose referring to a pre-known 3D mesh model), but this raises scalability concerns, and

doesn’t apply to deformable objects. Additionally, once we involve occlusions and de-

formable objects, we must accept the world may not be fully observable. Note that a partial

view of a rigid object may be enough to infer its state, but for deformable objects, often

“self-occlusions” (one part of the object occluding another part) prevent full observability,

since for example we can not see the bottom of a clumped-up towel. Another challenge is

that many details of the environment are not relevant to tasks, but some of the fine detail

matters – for example, to zip open a backpack, the small zipper handle of the backpack

must be manipulated. To compare again with research challenges for other robotics plat-

forms, these types of challenges (partial observability, and a small proportion of state that

is task-critical) are prevalent as well in other primary unsolved challenges – for example,

for autonomous vehicles to ideally model the behavior of other cars on the road, the mental

state of those drivers is both very task-relevant, and not fully observable. For the three

robot domains of autonomous cars, autonomous drones, and legged robots, these domains

are all centered around mobility, and the primary problem is to navigate the world safely

and avoid obstacles. Coarse approximations of the world state may still be viable for plan-

ning – for example, all obstacles can be inflated without estimating fine geometric detail.

The primary contract in autonomous mobility, for the most part, is to not hit anything. In

robot manipulation, in contrast, the goal is to actually change the state of the world, and

fine geometric detail does matter, at least in the places where the robot makes contact with

the environment.

Also, as robot manipulation skills become more sophisticated, I expect the communi-

cation of goals to the robot to increasingly be a bottleneck. The complexity of possible

different goals to communicate is worth emphasizing in contrast to autonomous naviga-

tion robots — while mobility platforms may need to handle some level of variability in

the tasks they are asked to perform (“take me here”, “go there”, etc), these are essentially

three-dimensional goal states. In robot manipulation the variability of the possible tasks
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are enormous. Even just putting a deformable object into a specific 3D configuration is

an infinite-dimensional goal state (although probably approximated sufficiently well with

a modest number of dimensions), and real useful manipulation problems often involve the

combinatorial complexity of many different objects interacting. One route to shortcutting

the challenge of communicating goals is to specify goals to the robot through demonstra-

tion. Indeed, Learning from Demonstration (LfD) has been a long-studied area of research

in robotics and related fields. In the final chapter of this thesis, we take an LfD approach to

teaching robot manipulation skills.

1.3 Related Work

There is a broad array of related work to this thesis. Rather than have repeated sections

of related work, in this section I will briefly comment on the overall body of work in the

literature that relates to this thesis, and highlight where additional detail can be found within

each chapter.

This thesis largely sits between the worlds of computer vision and robotic manipula-

tion, and these two worlds are intimately related in their origins. Although what we might

consider the study of computer vision to hark back to at least early studies of perspective

vision by Da Vinci, the first known work using digital computers to actually perform the

analysis of image pixels was Lawrence Roberts’ 1963 MIT PhD thesis [7], which started

the study of what we affectionately know as “Blocks World” [8]. As nicely summarized

by Steve Seitz 4, this study inspired for example the 1970 MIT “copy-demo” by Patrick

Winston and colleagues 5, which used the computer vision principles from Roberts’ Blocks

World to manipulate blocks with a robot arm. Seitz highlights that a key takeaway from the

MIT copy-demo was that the task of reliably finding edges in images proved to be a pri-

mary challenge. This helped spawn a significant amount of research focus in the computer

vision field in edge detection, providing us with well-known results such as Canny Edge

4Steve Seitz. "3D Computer Vision: Past, Present, and Future" - February 2012, on YouTube.
5Although I could not find any published formal description of this demo, an informal description of the

event can be found online, for example at https://people.csail.mit.edu/bkph/phw_copy_
demo.shtml
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Detection [9]. This process, of having a perceptual representation in mind, testing it out

with real robot hardware and discovering what the real challenges are, and then investing

new research into those challenges, is a fruitful process. It is also useful to return to the

representation itself (in this case, blocks) and question what are its fundamental limitations.

A few broad trends in computer vision have had an enormous impact on this thesis.

For one, the decades-long development of modern geometrical computer vision including

visual Simultaneous Localization and Mapping (SLAM) has underpinned each and every

chapter in this thesis. Comprehensive reviews of these topics can be abundantly found,

for example [10, 11]. Additionally underpinning each chapter in this thesis has been the

maturation of deep learning [12]. While geometrical computer vison and deep learning

have each impacted huge swaths of research in perception, the overlap between them is of

particular interest in this thesis. Additionally, and perhaps more uniquely related, is our

interest in dense vision: dense SLAM, dense correspondence, and dense deep learning.

Dense SLAM in real-time has been made possible by systems like KinectFusion [13], and

dense correspondence across scenes was introduced by Liu et al. [14]. Within deep learn-

ing, there are many different tasks that we might consider “dense” – any task that involves

a prediction for every pixel. This includes pixelwise semantic or instance segmentation,

and video prediction. We are especially interested in methods which learn dense corre-

spondence, i.e. with deep dense descriptor models [15, 16]. We provide a review of works

in correspondence in Chapter 4.

A central theme of this thesis is in robots teaching themselves about vision. There

have been many inspiring works in self-supervision as a theme to train visual systems

[17]. In Chapter 2’s related work we review a variety of systems that have demonstrated

automating the labeling of certain types of perceptual representations. A special type of a

robot teaching itself about vision is a robot that actually interacts with the world via its own

actions, and through this interaction learns more about the world. Primary examples of this

type of paradigm are works that self-supervise video prediction models [18, 19] which can

then be used to accomplish robot manipulation tasks. In Chapter 3, since our robot can

autonomously reorient objects in order to continue its correspondence learning process,

our work also fits into this category of interactive perception. We review additional types
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of robots actively teaching themselves perception in Chapter 3, and for a more extensive

review of interactive perception we refer the reader to Bohg et al. [20].

In the final chapter of this thesis, we interact with an additional body of work in the

literature, namely that of Imitation Learning and Learning from Demonstration (LfD). We

refer the reader to existing reviews of imitation learning in robotics [21–23], and focus our

review of related work on visual imitation methods [24–26]. Chapter 5 reviews these works

in more detail.
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Chapter 2

LabelFusion: A Pipeline for Generating

Ground Truth Labels for Real RGBD

Data of Cluttered Scenes

2.1 Introduction

Advances in neural network architectures for deep learning have made significant impacts

on perception for robotic manipulation tasks. State of the art networks are able to produce

high quality pixelwise segmentations of RGB images, which can be used as a key com-

ponent for 6DOF object pose estimation in cluttered environments [27, 28]. However for

a network to be useful in practice it must be fine tuned on labeled scenes of the specific

objects targeted by the manipulation task, and these networks can require tens to hundreds

of thousands of labeled training examples to achieve adequate performance. To acquire

sufficient data for each specific robotics application using once-per-image human labeling

would be prohibitive, either in time or money. While some work has investigated closing

the gap with simulated data [29–32], our method can scale to these magnitudes with real

data.

In this chapter we tackle this problem by developing an open-source pipeline that vastly

reduces the amount of human annotation time needed to produce labeled RGBD datasets for
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training image segmentation neural networks. The pipeline produces ground truth segmen-

tations and ground truth 6DOF poses for multiple objects in scenes with clutter, occlusions,

and varied lighting conditions. The key components of the pipeline are: leveraging dense

RGBD reconstruction to fuse together RGBD images taken from a variety of viewpoints,

labeling with ICP-assisted fitting of object meshes, and automatically rendering labels us-

ing projected object meshes. These techniques allow us to label once per scene, with each

scene containing thousands of images, rather than having to annotate images individually.

This reduces human annotation time by several orders of magnitude over traditional tech-

niques. We optimize our pipeline to both collect many views of a scene and to collect many

scenes with varied object arrangements. Our goal is to enable manipulation researchers and

practitioners to generate customized datasets, which for example can be used to train any of

the available state-of-the-art image segmentation neural network architectures. Using this

method we have collected over 1,000,000 labeled object instances in multi-object scenes,

with only a few days of data collection and without using any crowd sourcing platforms for

human annotation.

Our primary contribution is the pipeline to rapidly generate labeled data, which re-

searchers can use to build their own datasets, with the only hardware requirement being

the RGBD sensor itself. We also have made available our own dataset, which is the largest

available RGBD dataset with object-pose labels (352,000 labeled images, 1,000,000+ ob-

ject instances). Additionally, we contribute a number of empirical results concerning the

use of large datasets for practical deep-learning-based pixelwise segmentation of manipulation-

relevant scenes in clutter – specifically, we empirically quantify the generalization value of

varying aspects of the training data: (i) multi-object vs single object scenes, (ii) the number

of background environments, and (iii) the number of views per scene.

2.2 Related Work

We review three areas of related work. First, we review pipelines for generating labeled

RGBD data. Second, we review applications of this type of labeled data to 6DOF object

pose estimation in the context of robotic manipulation tasks. Third, we review work related
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to our empirical evaluations, concerning questions of scale and generalization for practical

learning in robotics-relevant contexts.

2.2.1 Methods for Generating Labeled RGBD Datasets

Rather than evaluate RGBD datasets based on the specific dataset they provide, we evaluate

the methods used to generate them, and how well they scale. Firman [33] provides an

extensive overview of over 100 available RGBD datasets. Only a few of the methods

used are capable of generating labels for 6DOF object poses, and none of these associated

datasets also provide per-pixel labeling of objects. One of the most related methods to

ours is that used to create the T-LESS dataset [34], which contains approximately 49K

RGBD images of textureless objects labeled with the 6DOF pose of each object. Compared

to our approach, [34] requires highly calibrated data collection equipment. They employ

fiducials for camera pose tracking which limits the ability of their method to operate in

arbitrary environments. Additionally the alignment of the object models to the pointcloud

is a completely manual process with no algorithmic assistance. Similarly, [27] describes a

high-precision motion-capture-based approach, which does have the benefit of generating

high-fidelity ground-truth pose, but its ability to scale to large scale data generation is

limited by: the confines of the motion capture studio, motion capture markers on objects

interfering with the data collection, and time-intensive setup for each object.

Although the approach is not capable of generating the 6 DOF poses of objects, a rel-

evant method for per-pixel labeling is described in [28]. They employ an automated data

collection pipeline in which the key idea is to use background subtraction. Two images are

taken with the camera at the exact same location – in the first, no object is present, while it

is in the second. Background subtraction automatically yields a pixelwise segmentation of

the object. Using this approach they generate 130,000 labeled images for their 39 objects.

As a pixelwise labeling method, there are a few drawbacks to this approach. The first is

that in order to apply the background subtraction method, they only have a single object

present in each scene. In particular there are no training images with occlusions. They

could in theory extend their method to support multi-object scenes by adding objects to the
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scene one-by-one, but this presents practical challenges. Secondly the approach requires

an accurately calibrated robot arm to move the camera in a repeatable way. A benefit of the

method, however, is that it does enable pixelwise labeling of even deformable objects.

The SceneNN [35] and ScanNet [36] data generation pipelines share some features

with our method. They both use an RGBD sensor to produce a dense 3D reconstruction

and then perform annotations in 3D. However, since SceneNN and ScanNet are focused

on producing datasets for RGDB scene understanding tasks, the type of annotation that

is needed is quite different. In particular their methods provide pixelwise segmenation

into generic object classes (floor, wall, couch etc.). Neither SceneNN or ScaneNet have

gometric models for the specific objects in a scene and thus cannot provide 6DOF object

poses. Whereas ScanNet and SceneNN focus on producing datasets for benchmarking

scene understanding algorithms, we provide a pipeline to enable rapid generation labeled

data for your particular application and object set.

2.2.2 Object-Specific Pose Estimation in Clutter for Robotic Manipu-

lation

There have been a wide variety of methods to estimate object poses for manipulation. A

challenge is object specificity. [27] and [28] are both state of the art pipelines for esti-

mating object poses from RGBD images in clutter – both approaches use RGB pixelwise

segmentation neural networks (trained on their datasets described in the previous section)

to crop point clouds which are then fed into ICP-based algorithms to estimate object poses

by registering against prior known meshes. Another approach is to directly learn pose esti-

mation [37]. The upcoming SIXD Challenge 2017 [38] will provide a comparison of state

of the art methods for 6DOF pose estimation on a common dataset. The challenge dataset

contains RGBD images annotated with ground truth 6DOF object poses. This is exactly

the type of data produced by our pipeline and we aim aim to submit our dataset to the 2018

challenge. There is also a trend in manipulation research to bypass object pose estimation

and work directly with the raw sensor data [39–41]. Making these methods object-specific

in clutter could be aided by using the pipeline presented here to train segmentation net-
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works.

2.2.3 Empirical Evaluations of Data Requirements for Image Segmen-

tation Generalization

While the research community is more familiar with the scale and variety of data needed

for images in the style of ImageNet [42], the type of visual data that robots have avail-

able is much different than ImageNet-style images. Additionally, higher object specificity

may be desired. In robotics contexts, there has been recent work in trying to identify data

requirements for achieving practical performance for deep visual models trained on sim-

ulation data [29–32], and specifically augmenting small datasets of real data with large

datasets of simulation data [29–32]. We do not know of prior studies that have performed

generalization experiments with the scale of real data used here.

2.3 Data Generation Pipeline

One of the main contributions of this chapter is an efficient pipeline for generating labeled

RGBD training data. The steps of the pipeline are described in the following sections:

RGBD data collection, dense 3D reconstruction, object mesh generation, human assisted

annotation, and rendering of labeled images.

2.3.1 RGBD Data Collection

A feature of our approach is that the RGBD sensor can either be mounted on an automated

arm, as in Figure (2-1a), or the the RGBD sensor can simply be hand-carried. The benefit

of the former option is a reduced human workload, while the benefit of the latter option is

that no sophisticated equipment (i.e. motion capture, external markers, heavy robot arm)

is required, enabling data collection in a wide variety of environments. We captured 112

scenes using the handheld approach. For the remaining 26 scenes we mounted the sensor

on a Kuka IIWA, as shown in Figure (2-1a). The IIWA was programmed to perform a

scanning pattern in both orientation and azimuth. Note that the arm-automated method
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(a) (b) (c)

(d) (e)
(f)

Figure 2-1: Overview of the data generation pipeline. (a) Xtion RGBD sensor mounted on Kuka IIWA arm
for raw data collection. (b) RGBD data processed by ElasticFusion into reconstructed pointcloud. (c) User
annotation tool that allows for easy alignment using 3 clicks. User clicks are shown as red and blue spheres.
The transform mapping the red spheres to the green spheres is then the user specified guess. (d) Cropped
pointcloud coming from user specified pose estimate is shown in green. The mesh model shown in grey is
then finely aligned using ICP on the cropped pointcloud and starting from the user provided guess. (e) All
the aligned meshes shown in reconstructed pointcloud. (f) The aligned meshes are rendered as masks in the
RGB image, producing pixelwise labeled RGBD images for each view.

does not require one to know the transform between the robot and the camera; everything

is done in camera frame. Our typical logs averaged 120 seconds in duration with data

captured at 30Hz by the Asus Xtion Pro.

2.3.2 Dense 3D Reconstruction

The next step is to extract a dense 3D reconstruction of the scene, shown in Figure (2-1b),

from the raw RGBD data. For this step we used the open source implementation of Elastic-

Fusion [43] with the default parameter settings, which runs in realtime on our desktop with

an NVIDIA GTX 1080 GPU. ElasticFusion also provides camera pose tracking relative

to the local reconstruction frame, a fact that we take advantage of when rendering labeled

images. Reconstruction performance can be affected by the amount of geometric features

and RGB texture in the scene. Most natural indoor scenes provide sufficient texture, but
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large, flat surfaces with no RGB or depth texture can occasionally incur failure modes.

Our pipeline is designed in a modular fashion so that any 3D reconstruction method that

provides camera pose tracking can be used in place of ElasticFusion.

2.3.3 Object Mesh Generation

A pre-processing step for the pipeline is to obtain meshes for each object. Once obtained,

meshes speed annotation by enabling alignment of the mesh model rather than manually

intensive pixelwise segmentation of the 3D reconstruction. Using meshes necessitates rigid

objects, but imposes no other restrictions on the objects themselves. We tested several

different mesh construction techniques when building our dataset. In total there are twelve

objects. Four object meshes were generated using an Artec Space Spider handheld scanner.

One object was scanned using Next Engine turntable scanner. For the four objects which

are part of the YCB dataset [44] we used the provided meshes. One of our objects, a

tissue box, was modeled using primitive box geometry. In addition our pipeline provides a

volumetric meshing method using the VTK implementation of [45] that operates directly

on the data already produced by ElasticFusion. Finally, there exist several relatively low

cost all-in-one solutions [46], [47], [48] which use RGBD sensors such as the Asus Xtion,

Intel RealSense R300 and Occipital Structure Sensor, to generate object meshes. The only

requirement is that the mesh be sufficiently high quality to enable the ICP based alignment

(see section 2.3.4). RGB textures of meshes are not necessary.

2.3.4 Human Assisted Annotation

One of the key contributions of the chapter is in reducing the amount of human annotation

time needed to generate labeled per-pixel and pose data of objects in clutter. We evaluated

several global registration methods [49–51] to try to automatically align our known objects

to the 3D reconstruction but none of them came close to providing satisfactory results. This

is due to a variety of reasons, but a principle one is that many scene points didn’t belong to

any of the objects.

To circumvent this problem we developed a novel user interface that utilizes human
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input to assist traditional registration techniques. The user interface was developed using

Director [52], a robotics interface and visualization framework. Typically the objects of

interest are on a table or another flat surface – if so, a single click from the user segments

out the table. The user identifies each object in the scene and then selects the corresponding

mesh from the mesh library. They then perform a 3-click-based initialization of the object

pose. Our insight for the alignment stage was that if the user provides a rough initial

pose for the object, then traditional ICP-based techniques can successfully provide the fine

alignment. The human provides the rough initial alignment by clicking three points on

the object in the reconstructed pointcloud, and then clicking roughly the same three points

in the object mesh, see Figure (2-1c). The transform that best aligns the 3 model points,

shown in red, with the three scene points, shown in blue, in a least squares sense is found

using the vtkLandmarkTransform function. The resulting transform then specifies an initial

alignment of the object mesh to the scene, and a cropped pointcloud is taken from the points

within 1cm of the roughly aligned model, as shown in green in Figure (2-1d). Finally, we

perform ICP to align this cropped pointcloud to the model, using the rough aligment of the

model as the initial seed. In practice this results in very good alignments even for cluttered

scenes such as Figure (2-1e).

The entire human annotation process takes approximately 30 seconds per object. This

is much faster than aligning the full object meshes by hand without using the 3-click tech-

nique which can take several minutes per object and results in less accurate object poses.

We also compared our method with human labeling (polygon-drawing) each image, and

found intersection over union (IoU) above 80%, with approximately four orders of magni-

tude less human effort per image (supplementary figures on our website).

2.3.5 Rendering of Labeled Images and Object Poses

After the human annotation step of Section 2.3.4, the rest of the pipeline is automated.

Given the previous steps it is easy to generate per-pixel object labels by projecting the 3D

object poses back into the 2D RGB images. Since our reconstruction method, ElasticFu-

sion, provides camera poses relative to the local reconstruction frame, and we have already
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aligned our object models to the reconstructed pointcloud, we also have object poses in

each camera frame, for each image frame in the log. Given object poses in camera frame it

is easy to get the pixelwise labels by projecting the object meshes into the rendered images.

An RGB image with projected object meshes is displayed in Figure (2-1f).

2.3.6 Discussion

As compared to existing methods such as [27,34,53] our method requires no sophisticated

calibration, works for arbitrary rigid objects in general environments, and requires only 30

seconds of human annotation time per object per scene. Since the human annotation is

done on the full 3D reconstruction, one labeling effort automatically labels thousands of

RGBD images of the same scene from different viewpoints.

2.4 Results

We first analyze the effectiveness of the LabelFusion data generation pipeline (Section

2.4.1). We then use data generated from our pipeline to perform practical empirical ex-

periments to quantify the generalization value of different aspects of training data (Section

2.4.2).

(a) (b) 

(c) (d) (e) 

Figure 2-2: Examples of labeled data generated by our pipeline: (a) heavily cluttered multi-object, (b) low
light conditions, (c) motion blur, (d) distance from object, (e) 25 different environments. All of these scenes
were collected by hand-carrying the RGBD sensor.
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# objects 12
# distinct scenes 105 single/double object

33 with 6+ objects
# unique object instances aligned 339
avg duration of single scene 120 seconds, 3600 RGBD frames
# labeled RGBD frames 352,000
# labeled object instances 1,000,000+

Table 2.1: Dataset Description

2.4.1 Evaluation of Data Generation Pipeline

LabelFusion has the capability to rapidly produce large amounts of labeled data, with min-

imal human annotation time. In total we generated over 352,000 labeled RGBD images,

of which over 200,000 were generated in approximately one day by two people. Because

many of our images are multi- object, this amounts to over 1,000,000 labeled object in-

stances. Detailed statistics are provided in Table 2.1. The pipeline is open-source and in-

tended for use. We were able to create training data in a wide variety of scenarios; examples

are provided in Figure 2-2. In particular, we highlight the wide diversity of environments

enabled by hand-carried data collection, the wide variety of lighting conditions, and the

heavy clutter both of backgrounds and of multi-labeled object scenes.

Figure 2-3: Time required for each step of pipeline.
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Figure 2-4: Example segmentation performance (alpha-blended with RGB image) of network (𝑒) on a multi-
object test scene.

For scaling to large scale data collection, the time required to generate data is critical.

Our pipeline is highly automated and most components run at approximately real-time, as

shown in Figure 2-3. The amount of human time required is approximately 30 seconds

per object per scene, which for a typical single-object scene is less than real-time. Post-

processing runtime is several times greater than real-time, but is easily parallelizable – in

practice, a small cluster of 2-4 modern desktop machines (quad-core Intel i7 and Nvidia

GTX 900 series or higher) can be made to post-process the data from a single sensor at

real-time rates. With a reasonable amount of resources (one to two people and a handful of

computers), it would be possible to keep up with the real-time rate of the sensor (generating

labeled data at 30 Hz).

2.4.2 Empirical Evaluations: How Much Data Is Needed For Practi-

cal Object-Specific Segmentation?

With the capability to rapidly generate a vast sum of labeled real RGBD data, questions

of “how much data is needed?” and “which types of data are most valuable?” are ac-

cessible. We explore practical generalization performance while varying three axes of the

training data: (i) whether the training set includes multi-object scenes with occlusions or

only single-object scenes, (ii) the number of background environments, and (iii) the num-

ber of views used per scene. For each, we train a state-of-the-art ResNet segmentation

network [54] with different subsets of training data, and evaluate each network’s general-

ization performance on common test sets. Further experimental details are provided in our

supplementary material; due to space constraints we can only summarize results here.

First, we investigate whether there is a benefit of using training data with heavily

occluded and cluttered multi-object scenes, compared to training with only single-object

scenes. Although they encounter difficulties with heavy occlusions in multi-object scenes,

[28] uses purely single-object scenes for training. We trained five different networks to

enable comparison of segmentation performance on novel scenes (different placements of

the objects) for a single background environment. Results of segmentation performance
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Figure 2-5: Comparisons of training on single-object vs. multi-object scenes and testing on single-object
(left) and multi-object (right) scenes.

on novel scenes (measured using the mean IoU, intersection over union, per object) show

an advantage given multi-object occluded scenes (𝑏) compared to single-object scenes (𝑎)

(Figure 2-5, right). In particular, the average IoU per object increases 190% given training

set (𝑏) instead of (𝑎) in Figure 2-5, right, even though (𝑏) has strictly less labeled pixels than

(𝑎), due to occlusions. This implies that the value of the multi-object training data is more

valuable per pixel than the single-object training data. When the same amount of scenes

for the single-object scenes are used to train a network with multi-object scenes (𝑑), the

increase in IoU performance averaged across objects is 369%. Once the network has been

trained on 18 multi-object scenes (𝑑), an additional 18 single-object training scenes have

no noticeable effect on multi-object generalization (𝑒). For generalization performance on

single-object scenes (Figure 2-5, left), this effect is not observed; single-object training

scenes are sufficient for IoU performance above 60%.

Second, we ask: how does the performance curve grow as more and more training

data is added from different background environments? To test this, we train different

networks respectively on 1, 2, 5, 10, 25, and 50 scenes each labeled with a single drill

object. The smaller datasets are subsets of the larger datasets; this directly allows us to

measure the value of providing more data. The test set is comprised of 11 background

environments which none of the networks have seen. We observe a steady increase in

segmentation performance that is approximately logarithmic with the number of training

scene backgrounds used (Figure 2-7, left). We also took our multi-object networks trained

on a single background and tested them on the 11 novel environments with the drill. We

observe an advantage of the multi-object training data with occlusions over the single-
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18 single- 
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(b) 
3 multi- 
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(c) 
(a) + (b) 

(d) 
18 multi- 

object scenes 
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(a) + (d) 
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Figure 2-6: Comparison of segmentation performance on novel multi-object test scenes. Networks are either
trained on (a) single object scenes only, (b,d), multi-object test scenes only, or a mixture (c,e).

Figure 2-7: (left) Generalization performance as a function of the number of environments provided at
training time, for a set of six networks trained on 50 different scenes or some subset ({1, 2, 5, 10, 25}) of
those scenes. (right) Performance on the same test set of unknown scenes, but measured for the 5 training
configurations for the multi-object, single-environment-only setup described previously.

object training data in generalizing to novel background environments (Figure 2-7, right).

Third, we investigate whether 30 Hz data is necessary, or whether significantly less data

suffices (Figure 2-9). We perform experiments with downsampling the effective sensor rate

both for robot-arm-mounted multi-object single-background training set (𝑒), and the hand-

carried many-environments dataset with either 10 or 50 scenes. For each, we train four

different networks, where one has all data available and the others have downsampled data

at respectively 0.03, 0.3, and 3 Hz. We observe a monotonic increase in segmentation

performance as the effective sensor rate is increased, but with heavily diminished returns

after 0.3 Hz for the slower robot-arm-mounted data (∼0.03 m/s camera motion velocity).

The hand-carried data (∼0.05 - 0.17 m/s) shows more gains with higher rates.
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Figure 2-8: Comparison of segmentation performance on novel background environments. Networks were
trained on {1, 2, 5, 10, 25, 50} background environments.

(36 scenes) 

Robot-arm-mounted data (~0.03 m/s avg. velocity) 
Tested on same background  

Hand-carried data (~0.05 - 0.17 m/s avg. velocity) 
Tested on novel backgrounds  

Figure 2-9: Pixelwise segmentation performance as a function of the number of views per scene, reduced by
downsampling the native 30 Hz sensor to {0.03, 0.3, 3.0.} Hz.
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2.5 Conclusion

This chapter introduces LabelFusion, our pipeline for efficiently generating RGBD data

annotated with per-pixel labels and ground truth object poses. Specifically only a few

minutes of human time are required for labeling a scene containing thousands of RGBD

images. LabelFusion is open source and available for community use, and we also supply

an example dataset generated by our pipeline [55].

The capability to produce a large, labeled dataset enabled us to answer several ques-

tions related to the type and quantity of training data needed for practical deep learning

segmentation networks in a robotic manipulation context. Specifically we found that net-

works trained on multi-object scenes performed significantly better than those trained on

single object scenes, both on novel multi-object scenes with the same background, and on

single-object scenes with new backgrounds. Increasing the variety of backgrounds in the

training data for single-object scenes also improved generalization performance for new

backgrounds, with approximately 50 different backgrounds breaking into above-50% IoU

on entirely novel scenes. Our recommendation is to focus on multi-object data collection

in a variety of backgrounds for the most gains in generalization performance.

We hope that our pipeline lowers the barrier to entry for using deep learning approaches

for perception in support of robotic manipulation tasks by reducing the amount of human

time needed to generate vast quantities of labeled data for your specific environment and

set of objects. It is also our hope that our analysis of segmentation network performance

provides guidance on the type and quantity of data that needs to be collected to achieve

desired levels of generalization performance.

Chapter Acknoweldgement

This chapter was joint work with Pat Marion, Lucas Manuelli, and Russ Tedrake. We

thank Matthew O’Kelly for his guidance with segmentation networks and manuscript feed-

back. We also thank Allison Fastman and Sammy Creasey of Toyota Research Institute

for their help with hardware, including object scanning and robot arm automation. David

37



Johnson of Draper Laboratory and Shuran Song of Princeton University provided valuable

input on training. We are grateful we were able to use the robot arm testing facility from

Toyota Research Institute. This work was supported by the Air Force/Lincoln Laboratory

award no. 7000374874, by the Defense Advanced Research Projects Agency via Air Force

Research Laboratory award FA8750-12-1-0321, and by NSF Contract IIS-1427050. The

views expressed are not endorsed by the sponsors.

38



Chapter 3

Dense Object Nets: Learning Dense

Visual Object Descriptors By and For

Robotic Manipulation

3.1 Introduction

What is the right object representation for manipulation? We would like robots to visually

perceive scenes and learn an understanding of the objects in them that (i) is task-agnostic

and can be used as a building block for a variety of manipulation tasks, (ii) is generally

applicable to both rigid and non-rigid objects, (iii) takes advantage of the strong priors

provided by 3D vision, and (iv) is entirely learned from self-supervision. This is hard to

achieve with previous methods: much recent work in grasping does not extend to grasp-

ing specific objects or other tasks, whereas task-specific learning may require many trials to

generalize well across object configurations or other tasks. In this chapter we present Dense

Object Nets, which build on recent developments in self-supervised dense descriptor learn-

ing, as a consistent object representation for visual understanding and manipulation. We

demonstrate they can be trained quickly (approximately 20 minutes) for a wide variety of

previously unseen and potentially non-rigid objects. We additionally present novel contri-

butions to enable multi-object descriptor learning, and show that by modifying our training
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procedure, we can either acquire descriptors which generalize across classes of objects,

or descriptors that are distinct for each object instance. Finally, we demonstrate the novel

application of learned dense descriptors to robotic manipulation. We demonstrate grasp-

ing of specific points on an object across potentially deformed object configurations, and

demonstrate using class general descriptors to transfer specific grasps across objects in a

class.

While task-specific reinforcement learning can achieve impressively dexterous skills for

a given specific task [39], it is unclear which is the best route to efficiently achieving many

different tasks. Other recent work [40, 41] can provide very general grasping functionality

but does not address specificity. Achieving specificity, the ability to accomplish specific

tasks with specific objects, may require solving the data association problem. At a coarse

level the task of identifying individual objects to manipulate can be solved by instance

segmentation, as demonstrated in the Amazon Robotics Challenge (ARC) [56, 57] or [58].

Whole-object-level segmentation, however, does not provide any information on the rich

structure of the objects themselves, and hence may not be an appropriate representation

for solving more complex tasks. While not previously applied to the robotic manipulation

domain, recent work has demonstrated advances in learning dense pixel level data asso-

ciation [15, 16], including self-supervision from raw RGBD data [16], which inspired our

present work.

In this chapter, we propose and demonstrate using dense visual description as a rep-

resentation for robotic manipulation. We demonstrate the first autonomous system that

can entirely self-supervise to learn consistent dense visual representations of objects, and

the first system we know of that is capable of performing the manipulation demonstra-

tions we provide. Specifically, with no human supervision during training, our system can

grasp specific locations on deformable objects, grasp semantically corresponding locations

on instances in a class, and grasp specific locations on specific instances in clutter. To-

wards this goal, we also provide practical contributions to dense visual descriptor learning

with general computer vision applications outside of robotic manipulation. We call our vi-

sual representations Dense Object Nets, which are deep neural networks trained to provide

Code, data, and video available: github.com/RobotLocomotion/pytorch-dense-correspondence
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dense (pixelwise) description of objects.

Contributions. We believe our largest contribution is that we introduce dense de-

scriptors as a representation useful for robotic manipulation. We’ve also shown that self-

supervised dense visual descriptor learning can be applied to a wide variety of potentially

non-rigid objects and classes (47 objects so far, including 3 distinct classes), can be learned

quickly (approximately 20 minutes), and can enable new manipulation tasks. In example

tasks we grasp specific points on objects across potentially deformed configurations, do

so with object instance-specificity in clutter, or transfer specific grasps across objects in a

class. We also contribute novel techniques to enable multi-object distinct dense descrip-

tors, and show that by modifying the loss function and sampling procedure, we can either

acquire descriptors which generalize across classes of objects, or descriptors that are dis-

tinct for each object instance. Finally, we contribute general training techniques for dense

descriptors which we found to be critical to achieving good performance in practice.

Chapter Organization. In Section 3.2 we describe related work. As preliminary in

Section 3.3.1 we describe the general technique for self-supervising dense visual descrip-

tor learning, which is from [16] but reproduced here for clarity. We then describe additional

techniques we’ve developed for object-centric visual descriptors in Section 3.3.2, and Sec-

tion 3.3.3 describes techniques for distinct multi-object descriptors. Section 3.4 describes

our experimental setup for our autonomous system, and Section 5 describes our results: our

learned visual descriptors for a wide variety of objects (Section 3.5.1) multi-object descrip-

tors and selective class generalization (Sections 3.5.2 and 3.5.3), and robotic manipulation

demonstrations (Section 3.5.4). The next chapter, Chapter 4, presents new formulations of

the underlying visual correspondence problem.

3.2 Related Work

We review three main areas of related work: learned descriptors, self-supervised visual

learning for robots, and robot learning for specific tasks. The task of correspondence esti-

mation from multiple views of the same scene is fundamental in computer vision, whereas

dense semantic correspondence across different scenes was popularized by [14]. Recent
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advances have been made by introducing a pixel-wise variant of contrastive loss [59] com-

bined with deep convolutional networks, as in Choy et al. [15] and Schmidt et al. [16].

For cross-instance semantic correspondence, [15] relies on human annotations, while [16]

learns these unsupervised, as we do here. Other work [60] uses image warping to learn

descriptors, and most require manually annotated labels [61–63]. Zeng et al. [64] also uses

dense 3D reconstruction to provide automated labeling, but for descriptors of 3D volume

patches. Some of these works [16, 60, 63], like ours, learn descriptors for specific object

instances or classes, while others [64] learn descriptors for establishing correspondence of

arbitrary data. None of these prior works in dense visual learning involve robots.

In the area of self-supervised visual robot learning, while some recent work has sought

to understand ‘how will the world change given the robot’s action?” [18,65] in this work we

instead ask “what is the current visual state of the robot’s world?”. We address this question

with a dense description that is consistent across viewpoints, object configurations and (if

desired) object classes. At the coarse level of semantic segmentation several works from

the Amazon Robotics Challenge used robots to automate the data collection and annotation

process through image-level background subtraction [56,57,66]. In contrast this work uses

3D reconstruction-based change detection and dense pixelwise correspondences, which

provides a much richer supervisory signal for use during training.

In the area of robot learning for a specific task there have been impressive works on

end-to-end reinforcement learning [39, 67]. In these papers the goal is to learn a specific

task, encoded with a reward function, whereas we learn a general task agnostic visual

representation. There have also been several works focusing on grasping from RGB or

depth images [40, 41, 66, 68]. These papers focus on successfully grasping any item out of

a pile, and are effectively looking for graspable features. They have no consistent object

representation or specific location on that object, and thus the robotic manipulation tasks we

demonstrate in Section 3.5.4, e.g. grasping specific points on an object across potentially

deformed object configurations, are out of scope for these works.
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3.3 Methodology

3.3.1 Preliminary: Self-Supervised Pixelwise Contrastive Loss

We use self-supervised pixelwise contrastive loss, as developed in [15, 16]. This learns

a dense visual descriptor mapping which maps a full-resolution RGB image, R𝑊×𝐻×3

to a dense descriptor space, R𝑊×𝐻×𝐷, where for each pixel we have a 𝐷-dimensional

descriptor vector. Training is performed in a Siamese fashion, where a pair of RGB images,

𝐼𝑎 and 𝐼𝑏 are sampled from one RGBD video, and many pixel matches and non-matches

are generated from the pair of images. A pixel 𝑢𝑎 ∈ R2 from image 𝐼𝑎 is a match with

pixel 𝑢𝑏 from image 𝐼𝑏 if they correspond to the same vertex of the dense 3D reconstruction

(Figure 3-1 (c-f)). The dense descriptor mapping is trained via pixelwise contrastive loss.

The loss function aims to minimize the distance between descriptors corresponding to a

match, while descriptors corresponding to a non-match should be at least a distance 𝑀

apart, where 𝑀 is a margin parameter. The dense descriptor mapping 𝑓(·) is used to map

an image 𝐼 ∈ R𝑊×𝐻×3 to descriptor space 𝑓(𝐼) ∈ R𝑊×𝐻×𝐷. Given a pixel 𝑢 we use

𝑓(𝐼)(𝑢) to denote the descriptor corresponding to pixel 𝑢 in image 𝐼 . We simply round the

real-valued pixel 𝑢 ∈ R2 to the closest discrete pixel value 𝑢 ∈ N2, but any continuously-

differentiable interpolation can be used for sub-pixel resolution. We denote 𝐷(·) as the 𝐿2

distance between a pair of pixel descriptors: 𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏) , ||𝑓(𝐼𝑎)(𝑢𝑎)− 𝑓(𝐼𝑏)(𝑢𝑏)||2.
At each iteration of training, a large number (on the order of 1 million total) of matches

𝑁matches and non-matches 𝑁non-matches are generated between images 𝐼𝑎 and 𝐼𝑏. The images

are mapped to corresponding descriptor images via 𝑓(·) and the loss function is

ℒmatches(𝐼𝑎, 𝐼𝑏) =
1

𝑁matches

∑︁

𝑁matches

𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏)
2 (3.1)

ℒnon-matches(𝐼𝑎, 𝐼𝑏) =
1

𝑁non-matches

∑︁

𝑁non-matches

max(0,𝑀 −𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏))
2 (3.2)

ℒ(𝐼𝑎, 𝐼𝑏) = ℒmatches(𝐼𝑎, 𝐼𝑏) + ℒnon-matches(𝐼𝑎, 𝐼𝑏) (3.3)
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3.3.2 Training Procedures for Object-Centric Descriptors

Prior work [16] has used dynamic reconstruction [69] of raw RGBD data for only within-

scene data association and remarkably showed that even without cross-scene data associa-

tion, descriptors could be learned that were consistent across many dynamic scenes of the

upper body of a human subject. While dynamic reconstruction is powerful, the challenges

of topology changes [70] and difficulties of occlusion make it difficult to reliably deploy

for an autonomous system. Schmidt et al. [16] also used data associations from static scene

reconstructions for the task of relocalization in the same static environment. In contrast we

sought to use only static reconstruction but seek consistency for dynamic objects. Other

work [60] obtains dense descriptor consistency for a curated dataset of celebrity faces using

only image warping for data association.

Using our robot mounted camera we are able to reliably collect high quality dense re-

constructions for static scenes. Initially we applied only static-scene reconstruction to learn

descriptors for specific objects, but we found that the learned object descriptors were not

naturally consistent for challenging datasets with objects in significantly different config-

urations. Subsequently we developed techniques that leverage 3D reconstruction change

detection, data augmentation, and loss function balancing to reliably produce consistent

object representations with only static-scene data association for the wide variety of ob-

jects we have tested. These techniques also improve the precision of correspondences, as is

discussed in Section 3.5.1. While we have tried many other ideas,these are the techniques

that were empirically found to significantly improve performance.

(a) Robot-Automated Data Collection (b) 3D Reconstruction based 
Change Detection and 

Masked Sampling 

(d) Cross Object Loss (e) Direct Multi Object (f) Synthetic Multi Object (c) Background Randomization 

Figure 3-1: Overview of the data collection and training procedure. (a) automated collection with a robot
arm. (b) change detection using the dense 3D reconstruction. (c)-(f) matches depicted in green, non-matches
depicted in red.

Object masking via 3D change detection. Since we are trying to learn descriptors of
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objects that take up only a fraction of a full image, we observe significant improvements if

the representational power of the models are focused on the objects rather than the back-

grounds. A 640 × 480 image contains 307, 200 pixels but an image in our dataset may

have as few as 1,000 to 10,000 of those pixels, or .3%-3%, that correspond to the object

of interest. Initial testing with human-labeled object masks [2] showed that if matches

for data associations were sampled only on the object (while non-matches were sampled

from the full image) then correspondence performance was significantly improved. In or-

der to provide autonomous object masking without any human input, we leverage our 3D

reconstructions and results from the literature on 3D change detection [71] to recover the

object-only part of the reconstruction (Figure 3-1b). Projecting this geometry into each

camera frame yields object masks for each image. We want to emphasize that automatic

object masking enables many other techniques in this chapter, including: background do-

main randomization, cross-object loss, and synthetic multi-object scenes.

Background domain randomization. A strategy to encourage cross-scene consis-

tency is to enforce that the learned descriptors are not reliant on the background. Since we

have autonomously acquired object masks, we can domain randomize [72] the background

(Figure 3-1c top) to encourage consistency – rather than memorizing the background (i.e.

by describing the object by where it is relative to a table edge), the descriptors are forced

to be representative of only the object.

Hard-negative scaling. Although as in [16] we originally normalized ℒmatches and

ℒnon-matches by 𝑁matches and 𝑁non-matches, respectively, we found that what we call the “hard-

negative rate”, i.e. the percentage of sampled non-matches for which 𝑀−𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏) >

0 would quickly drop well below 1% during training. While not precisely hard-negative

mining [73], we empirically measure improved performance if rather than scalingℒnon-matches

by 𝑁non-matches, we adaptively scale by the number of hard negatives in the non-match sam-

pling, 𝑁hard-negatives, where 1 is the indicator function:

𝑁hard-negatives =
∑︁

𝑁non-matches

1(𝑀 −𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏) > 0) (3.4)

ℒnon-matches(𝐼𝑎, 𝐼𝑏) =
1

𝑁hard-negatives

∑︁

𝑁non-matches

𝑚𝑎𝑥(0,𝑀 −𝐷(𝐼𝑎, 𝑢𝑎, 𝐼𝑏, 𝑢𝑏))
2 (3.5)
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Data augmentation and normalization. While we collect only a modest number of scenes

(4-10) per object or class, we ensure they are diverse in orientations, crops, and light-

ing conditions. We also applied synthetic 180-degree rotations randomly to our images.

Additionally we find gains in performance by projecting all features to the unit sphere,

i.e. 𝑓(𝐼)(𝑢) ← 𝑓(𝐼)(𝑢)
||𝑓(𝐼)(𝑢)|| when using high-dimensional descriptors spaces (i.e., more than

𝐷 = 4).

3.3.3 Multi-Object Dense Descriptors

We of course would like robots to have dense visual models of more than just one object.

When we began this work it wasn’t obvious to us what scale of changes to our training

procedure or model architecture would be required in order to simultaneously (a) achieve

individual single-object performance comparable to a single-object-only model, while also

(b) learn dense visual descriptors for objects that are globally distinct – i.e., the bill of a hat

would occupy a different place in descriptor space than the handle of a mug. To achieve

distinctness, we introduce three strategies:

i. Cross-object loss. The most direct way to ensure that different objects occupy

different subsets of descriptor space is to directly impose cross-object loss (Figure 3-1d).

Between two different objects, we know that each and every pair of pixels between them is a

non-match. Accordingly we randomly select two images of two different objects, randomly

sample many pixels from each object (enabled by object masking), and apply non-match

loss (with hard-negative scaling) to all of these pixel pairs.

ii. Direct training on multi-object scenes. A nice property of pixelwise contrastive

loss, with data associations provided by 3D geometry, is that we can directly train on multi-

object, cluttered scenes without any individual object masks (Figure 3-1e). This is in con-

trast with training pixelwise semantic segmentation, which requires labels for each indi-

vidual object in clutter that may be difficult to attain, i.e. through human labeling. With

pixel-level data associations provided instead by 3D geometry, the sampling of matches

and the loss function still makes sense, even in clutter.

iii. Synthetic multi-object scenes. We can also synthetically create multi-object scenes
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by layering object masks [56]. To use dense data associations through synthetic image

merging, we prune matches that become occluded during layering (Figure 3-1f). A benefit

of this procedure is that we can create a combinatorial number of “multi-object” scenes

from only single object-scenes, and can cover a wide range of occlusion types without

collecting physical scenes for each.

3.4 Experimental

Data Collection and Pre-Processing. The minimum requirement for raw data is to col-

lect an RGBD video of an object or objects. Figure 3-1 shows our experimental setup; we

utilize a 7-DOF robot arm (Kuka IIWA LBR) with an RGBD sensor (Primesense Carmine

1.09) mounted at the end-effector. With the robot arm, data collection can be highly auto-

mated, and we can achieve reliable camera poses by using forward kinematics along with

knowledge of the camera extrinsic calibration. For dense reconstruction we use TSDF

fusion [45] of the depth images with camera poses provided by forward kinematics. An

alternative route to collecting data which does not require a calibrated robot is to use a

dense SLAM method (for example, [13, 43]). In between collecting RGBD videos, the

object of interest should be moved to a variety of configurations, and the lighting can be

changed if desired. While for many of our data collections a human moved the object

between configurations, we have also implemented and demonstrated (see our video) the

robot autonomously rearranging the objects, which highly automates the object learning

process. We employ a Schunk two-finger gripper and plan grasps directly on the object

point cloud.If multiple different objects are used, currently the human must still switch the

objects for the robot and indicate which scenes correspond to which object, but even this

information could be automated by the robot picking objects from an auxiliary bin.

Training Dense Descriptors. For training, at each iteration we randomly sample be-

tween some subset of specified image comparison types (Single Object Within Scene, Dif-

ferent Object Across Scene, Multi Object Within Scene, Synthetic Multi Object), and then

sample some set of matches and non-matches for each. In this chapter, we use only static-

scene reconstructions, so pixel matches between images can be easily found by raycasting
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and reprojecting against the dense 3D reconstruction model, and appropriately checking

for occlusions and field-of-view constraints. For the dense descriptor mapping we train a

34-layer, stride-8 ResNet pretrained on ImageNet, but we expect any fully-convolutional

network (FCN) that has shown effectiveness on semantic segmentation tasks to work well.

3.5 Results

  

Objects used 
•  47 objects total 
•  275 scenes 
8 hats 
 
 
 
 

15 shoes 
 
 
 
 

15 mugs 
 
   
 
 

9 additional objects 

Figure 3-2: Learned object descriptors can be consistent across significant deformation (a) and, if desired,
across object classes (b-d). Shown for each (a) and (b-d) are RGB frames (top) and corresponding descriptor
images (bottom) that are the direct output of a feed-forward pass through a trained network. (e)-(f) shows
that we can learn descriptors for low texture objects, with the descriptors masked for clear visualization. Our
object set is also summarized (right).

3.5.1 Single-Object Dense Descriptors

We observe that with our training procedures described in Section 3.3.2, for a wide variety

of objects we can acquire dense descriptors that are invariant to viewpoint, configuration,

and deformation. The variety of objects includes moderately deformable objects such as

soft plush toys, shoes, mugs, and hats, and can include very low-texture objects (Figure 3-

2). Many of these objects were just grabbed from around the lab (including the authors’ and

labmates’ shoes and hats), and dense visual models can be reliably trained with the same

network architecture and training parameters. The techniques in Section 3.3.2 provide sig-

nificant improvement in both (a) qualitative consistency over a wide variety of viewpoints,

and (b) quantitative precision in correspondences. As with other works that learn pairwise
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mappings to some descriptor space [74], in practice performance can widely vary based on

specific sampling of data associations and non-associations used during training. One way

to quantitatively evaluate correspondence precision is with human-labeled (used only for

evaluation; never for training) correspondences across two images of an object in differ-

ent configurations. Given two images 𝐼𝑎, 𝐼𝑏 containing the same object and pixel locations

𝑢*𝑎 ∈ 𝐼𝑎, 𝑢
*
𝑏 ∈ 𝐼𝑏 corresponding to the same physical point on the object, we can use our

dense descriptors to estimate 𝑢*𝑏 as �̂�𝑏:

�̂�𝑏 , arg min
𝑢𝑏∈𝐼𝑏

𝐷(𝐼𝑎, 𝑢
*
𝑎, 𝐼𝑏, 𝑢𝑏) (3.6)

Figure 3-3 (b-c) shows a quantitative comparison of ablative experiments, for four differ-

ent training procedures described in Figure 3-3a. Our new standard single-object training

procedure (standard-SO) performs significantly better than our implementation of prior

work’s training procedures (Schmidt), and we isolate and measure significant improve-

ment in correspondence precision for both object-masking and hard-negative scaling. We

also find that for some low-texture objects, orientation randomization and background do-

main randomization are critical for attaining consistent object descriptors. Otherwise the

model may learn to memorize which side of the object is closest the table, rather than a con-

sistent object model (Figure 3-4b). Background domain randomization is most beneficial

for smaller datasets, where it can significantly reduce overfitting and encourage consistency

(Figure 3-4a); it is less critical for high-texture objects and larger datasets.

3.5.2 Multi-Object Dense Descriptors

An early observation during experimentation was that overlap in descriptor space naturally

occurs if the same model is trained simultaneously on different singulated objects, where

sampling of matches and non-matches was only performed within scene. Since there is no

component of the loss function that requires different objects to occupy different subsets

of descriptor space, the model maps them to an overlapping subset of descriptor space,

distinct from the background but not each other (Figure 3-5a). Accordingly we sought to

answer the question of whether or not we could separate these objects into unique parts of
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single	or	
mul,	
object	
dataset	

masked		
match	
sampling	

scale	by	
hard	
nega,ves	

cross-
object	
loss	

standard-SO	 single	

no-masking	 single	

no-hard-neg	 single	

Schmidt	 single	

consistent	 mul*	

specific	 mul*	

(a) (b) (c) 

Figure 3-3: (a) table describing the network training procedures referenced in experiments. (standard-SO
= “standard single object”. (b) Plots the cdf of the L2 pixel distance (normalized by image diagonal, 800
for a 640 x 480 image) between the best match �̂�𝑏 and the true match 𝑢*

𝑏 , e.g. for standard-SO in 93% of
image pairs the normalized pixel distance between 𝑢*

𝑏 and �̂�𝑏 is less than 13%. All networks were trained on
the same dataset. (c) Plots the cdf of the fraction of pixels 𝑢𝑏 of the object pixels with 𝐷(𝐼𝑎, 𝑢

*
𝑎, 𝐼𝑏, 𝑢𝑏) <

𝐷(𝐼𝑎, 𝑢
*
𝑎, 𝐼𝑏, 𝑢

*
𝑏), i.e. they are closer in descriptor space to 𝑢*

𝑎 than the true match 𝑢*
𝑏 .

Image #1 (cropped) (i) Without orientation and    
background randomization 

Image #2 (cropped) 

(ii) standard-SO 

inconsistent consistent 

(a) (b) 

Figure 3-4: (a), with same axes as Figure 3-3b, compares standard-SO with without-DR, for which the only
difference is that without-DR used no background domain randomization during training. The dataset used
for (a) is of three objects, 4 scenes each. (b) shows that for a dataset containing 10 scenes of a drill, learned
descriptors are inconsistent without background and orientation randomization during training (middle), but
consistent with them (right).

without cross-object loss with cross-object loss 

(a) (b) (c) 

Figure 3-5: Comparison of training without any distinct object loss (a) vs. using cross-object loss (b). In
(b), 50% of training iterations applied cross-object loss and 50% applied single-object within-scene loss,
whereas (a) is 100% single-object within-scene loss. The plots show a scatter of the descriptors for 10,000
randomly-selected pixels for each of three distinct objects. Networks were trained with 𝐷 = 2 to allow direct
cluster visualization. (c) Same axes as Figure 3-3 (a). All networks were trained on the same 3 object dataset.
Networks with a number label were trained with cross object loss and the number denotes the descriptor
dimension. no-cross-object is a network trained without cross object loss.
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descriptor space.

By applying cross-object loss (Section 3.3.3.i, training mode specific in Figure 3-3a),

we can convincingly separate multiple objects such that they each occupy distinct subsets

of descriptor space (Figure 3-5b). Note that cross-object loss is an extension of sampling

across scene as opposed to only within scene. Given that we can separate objects in descrip-

tor space, we next investigate: does the introduction of object distinctness significantly limit

the ability of the models to achieve correspondence precision for each individual object?

For multi-object datasets, we observe that there is a measurable decrease in correspondence

precision for small-dimensional descriptor spaces when the cross-object loss is introduced,

but we can recover correspondence precision by training slightly larger-dimensional de-

scriptor spaces (Figure 3-5c). For the most part, 3-dimensional descriptor spaces were

sufficient to achieve saturated (did not improve with higher-dimension) correspondence

precision for single objects, yet this is often not the case for distinct multi-object networks.

3.5.3 Selective Class Generalization or Instance Specificity

Surprisingly we find that when trained simultaneously on similar items of a class using

training mode consistent, the learned descriptors naturally generalize well across suffi-

ciently similar instances of the class. This result of converging descriptors across a class is

similar to the surprising generalization observed for human datasets in [16, 60]. Here we

show that we can obtain class consistent dense descriptors for 3 different classes of objects

(hats, shoes, and mugs) trained with only static-scene data association. We observe that

the descriptors are consistent despite considerable differences in color, texture, deforma-

tion, and even to some extent underlying shape. The training requirements are reasonably

modest – only 6 instances of hats were used for training yet the descriptors generalize well

to unseen hats, including a blue hat, a color never observed during training. The general-

ization extends to instances that a priori we thought would be failure modes: we expected

the boot (Figure 3-6h) to be a failure mode but there is still reasonable consistency with

other shoes. Sufficiently different objects are not well generalized, however – for example

Baymax and Starbot (Figure 3-2e,f) are both anthropomorphic toys but we do not attain
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general descriptors for them. While initially we proposed research into further encour-

aging consistency within classes, for example by training a Dense Object Net to fool an

instance-discriminator, the level of consistency that naturally emerges is remarkable and

was sufficient for our desired levels of precision and applications.

For other applications, however, instance-specificity is desired. For example, what if

you would like your robot to recognize a certain point on hat A as distinct from the com-

parable point on hat B? Although we could separate very distinct objects in multi-object

settings as discussed in the previous section, it wasn’t obvious to us if we could satis-

factorily separate objects of the same class. We observe, however, that by applying the

multi-object techniques (specific in Figure 3-3) previously discussed, we can indeed learn

distinct descriptors even for very similar objects in a class (Figure 3-6iv).

3.5.4 Example Applications to Robotic Manipulation: Grasping Spe-

cific Points

Here we demonstrate a variety of manipulation applications in grasping specific points on

objects, where the point of interest is specified in a reference image. We emphasize there

could be many other applications, as mentioned in the Conclusion. In our demonstrations,

a user clicks on just one pixel 𝑢*𝑎 in one reference image. Now the robot has the ability

to autonomously identify the corresponding point in new scenes via Equation 3.6. Akin

to other works with similarity learning in metric spaces [74], we set a simple threshold

to determine whether a valid match exists. If a match is identified in the new scene we

can instruct the robot to autonomously grasp this point by looking up the corresponding

location in the point cloud and using simple geometric grasping techniques.

The particular novel components of these manipulation demonstrations are in grasping

the visual corresponding points for arbitrary pixels that are either in different (potentially

deformed) configurations (Fig. 3-6i-ii), general across instances of classes (Fig. 3-6iii), or

instance-specific in clutter (Fig. 3-6iv). Our video1 best displays these tasks. Note that

only a dense (as opposed to sparse) method can easily accommodate the arbitrary selection

1See video (https://youtu.be/L5UW1VapKNE) for extensive videos of the different types of
robot picking.
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of interaction points, and class-generalization is out of scope for hand-designed descriptors

such as SIFT. This is also out of scope for general grasp planners like [40,41,66,68] which

lack any visual object representation, and for segmentation based methods [56,57,66] since

the visual representation provided by segmentation doesn’t capture any information beyond

the object mask.

(a) (b) (c) 

Grasp Best Descriptor Match 
in Different Configurations 

Location: Tail 
Trained: standard-SO  
 

(d) (e) (f) 

Reference Image (ii) 

Reference Image (i) 

Grasp Best Descriptor Match 
in Different Configurations 

Location: Right ear 
Trained: standard-SO  
 

(g) (h) (i) 

Grasp Best Descriptor Match 
for Class-General Position 

Location: Tongue 
Trained: consistent  
 

Reference Image (iii) 

(j) (k) (l) 

Reference Image (iv) Location: Heel 
Trained: specific 
 

Grasp Best Descriptor Match 
for Instance-Specific Position 

Figure 3-6: Depiction of “grasp specific point” demonstrations. For each the user specifies a pixel in a single
reference image, and the robot automatically grasps the best match in test configurations. For single-object
demonstrations, two different points for the caterpillar object are shown: tail (i) and right ear (ii). Note that
the “right-ear” demonstration is an example of the ability to break symmetry on reasonably symmetrical
objects. For class generalization (iii), trained with consistent, the robot grasps the class-general point on a
variety of instances. This was trained on only 4 shoes and extends to unseen instances of the shoe class, for
example (iii-i). For instance-specificity (iv) trained with specific and augmented with synthetic multi object
scenes (3.3.3.iii), the robot grasps this point on the specific instance even in clutter.

3.6 Conclusion

This chapter introduces Dense Object Nets as visual object representations which are use-

ful for robotic manipulation and can be acquired with only robot self-supervision. Building

on prior work on learning pixel-level data associations we develop new techniques for

object-centricness, multi-object distinct descriptors, and learning dense descriptors by and

for robotic manipulation. Without these object centric techniques we found that data asso-

ciations from static-scene reconstructions were not sufficient to achieve consistent object

descriptors. Our approach has enabled automated and reliable descriptor learning at scale

for a wide variety of objects (47 objects, and 3 classes). We also show how learned dense

descriptors can be extended to the multi object setting. With new contrastive techniques we

are able to train Dense Object Nets that map different objects to different parts of descriptor

space. Quantitative experiments show we can train these multi object networks while still
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retaining the performance of networks that do not distinguish objects. We also can learn

class-general descriptors which generalize across different object instances, and demon-

strated this result for three classes: shoes, hats, and mugs. Using class-general descriptors

we demonstrate a robot transferring grasps across different instances of a class. Finally

we demonstrate that our distinct-object techniques work even for objects which belong to

the same class. This is demonstrated by the robot grasping a specific point on a target

shoe in a cluttered pile of shoes. We believe Dense Object Nets can enable many new ap-

proaches to robotic manipulation, and are a novel object representation that addresses goals

(i-iv) stated in the abstract. In future work we are interested to explore new approaches to

solving manipulation problems that exploit the dense visual information that learned dense

descriptors provide, and how these dense descriptors can benefit other types of robot learn-

ing, e.g. learning how to grasp, manipulate and place a set of objects of interest.
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Chapter 4

Dense Spatial-Temporal Distributional

Correspondence Learning

4.1 Introduction

Correspondence is one of the most fundamental of computer vision tasks, underpinning the

ability to infer the structure of the world. Recent powerful methods for correspondence

learning have emerged in a variety of areas, including dense spatial correspondence mod-

els trained via novel pixel-to-pixel contrastive techniques [15, 76], dense 3D contrastive

techniques [64], and temporal correspondence also trained via contrastive techniques [77].

Both spatial and temporal visual correspondence models can be learned in an entirely self-

supervised fashion, no human annotation needed, by leveraging the inherent structure of

high-dimensional data that is inherently spatio-temporal. These methods may be a pow-

erful enabler for the future of artificial perception of geometry and beyond – for example

enabling the ability for robots to fully autonomously learn dense visual correspondence [1].

In this chapter we introduce a novel formulation of correspondence learning on distri-

butions. We separate detection from localization, and formulate our correspondence local-

ization as a minimization of distributional divergence. Given our developed framework, a

As nicely recently quoted in [75], the story goes that Takeo Kanade once told a young graduate student
that the three most important problems in computer vision are: “Correspondence, correspondence, correspon-
dence!”

55



number of extensions become natural. Following the 2D case we extend into 3D, includ-

ing an efficient factorized version, and then address occlusion handling and multi-sensor

fusion. Temporal and then full spatio-temporal correspondence modeling also become nat-

ural extensions.

A primary motivation and application of this formulation is addressed in the subsequent

chapter, in which we will use this computer vision method to allow robots to efficiently

learn visuomotor policies. The success of the subsequent chapter is the primary result of

the formulation in this chapter. While the previously-used contrastive loss formulation as

in Chapter 3 provided impressive results, the new formulation is a significant step in terms

of learning precise correspondences. Future work will further benchmark this approach

against alternative methods.

4.2 Motivation

While self-supervised viusal correspondence learning presents an exciting, scalable route to

learn the visual structure of the world, previous methods have been limited in a number of

ways. For one, contrastive-loss-trained dense correspondence models can predict undesir-

ably amodal correspondences, are highly sensitive to the relative scaling of match and non-

match pairs, and existing paradigms do not easily separate detection of correspondences

from localization, instead relying on hand-tuning thresholds for detection [1] and predict-

ing delta distributions for localization. Additionally, dense visual correspondence models

have been far from offering the correspondence precision of human-supervised template-

based dense correspondence [79] or human-supervised keypoint detection [80, 81]. The

high precision of these methods can directly translate, for example, into precision and in-

terpretability for robots accomplishing tasks [82].

4.3 Background and Related Work

Self-Supervised and Generative Visual Learning. The methods presented in this chapter

are perhaps most exciting in that they fit into the overarching theme of visual learning with
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no human supervision. The broader topic of self-supervised visual learning has recently

made exciting advances in areas such as identifying relative image patches [83], time cor-

respondence learning [77], video prediction [84, 85], pose-supervised vision [86], monoc-

ular depth prediction trained from stereo images [87, 88] or structure-from-motion [89],

and others. Relatedly, large advances have been made in generative models of entire im-

ages [90–94]. Some of the self-supervised methods exploit inherent structure freely avail-

able in the data, such as the structure of the images themselves, their timestamps and their

sequence, while others may use reliable algorithms applied to full sequences, such as multi-

view geometry [13,45,69,95]. Some methods can learn pixel-level tracking without spatial

correlation data, for example using only time supervision [75, 77] or colorization learn-

ing [96]. In particular our work advances the line of dense image-to-image correspondence

learning as developed in [1, 15, 60, 76].

Image-to-Image Pixel Correspondence. The aim of spatial correspondence between im-

ages is to find points in different images which correspond in a variously-defined meaning-

ful way. In short, the history of image correspondence in computer vision has progressed as

follows. At first, for example in the 1960s, humans provided 2D correspondences between

images and computers solved the least squares estimation problems to solve for down-

stream tasks like 3D estimation. Throughout the latter half of the 20th century and into

the 21st century, great advances were made in engineering highly robust sparse keypoint

detection algorithms, for example SIFT [97], based on finding highly-discriminative points

and corresponding them across images. A focus in research more recently have been to

extend these methods to be more learning based, for example LIFT [98] and others [99].

Sparse, accurate keypoints are often sufficient for many problems, including camera pose

estimation, and sparse [100, 101] or semi-dense [102] reconstruction.

More recently, fully dense learning methods have emerged [1,15,76], which fundamen-

tally differ from the keypoint detection algorithms in that they do not aim to correspond dis-

criminative points, but are trained to estimate correspondences between any image pixels,

including for example areas of low texture which we may need to use full-image context in

See the video lecture “3D Computer Vision: Past, Present, and Future”, by Steve Seitz, 2012, for a great
overview of this history
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order to infer the correspondence. Perhaps the most challenging problems are to find cor-

respondences which differ dramatically in (i) viewpoint, (ii) lighting, (iii) scale, and/or (iv)

context [103]. For some applications, such as for dense structure-from-motion (SFM) [95]

and image editing [104], well-designed algorithms and simple metrics such as photometric

distance may be remarkably successful between images that do not have too much variation

in the mentioned challenges, (i-iv). Much progress has been made in learned depth-from-

stereo [105,106], which addresses dense correspondence in the small-baseline setting with

remarkable results, but doesn’t fundamentally address the mentioned challenges (i-iv). The

fully dense correspondence learning methods differ, since they are capable of addressing

those challenges (i-iv). Further, dense visual correspondence models, probably due to the

information bottleneck in their final descriptor representation, have been shown to exhibit

remarkable consistency across either deformable objects in different configurations or even

across entire classes of objects [1, 76]. This extends dense descriptor learning into a sepa-

rate challenge area, which is to identify dense correspondences across scenes. This problem

was introduced originally by SIFT-Flow [14], which provides compelling results but cannot

benefit from end-to-end learning of the full problem.

Keypoint Detection. A related but different set of problems is to detect a finite number

of keypoints, where the goal is to learn an 𝑥 to 𝑦 mapping where 𝑥 is an image and 𝑦

is an ordered set of keypoints. A common problem is to find a supervised, labeled, set

of keypoints [80, 81] either in 2D or 3D, which is highly applicable to problems such as

human keypoint template regression, or any domain where applicable large human-labeled

datasets exist. Some methods may also provide dense detection of a template by relying on

a structured dense template [79]. While human-supervised methods can be highly precise,

their utility must scale with human labeling effort, whereas self-supervised methods may

scale with just data. Yet another related but different problem is to find an ordered set

of keypoints, but where the keypoints are not provided but instead learned without direct

supervision via a downstream supervised task [107].

3D Correspondence. Note also that a similar but parallel trend for correspondences has

happened for learning on 3D representations, moving from engineered 3D descriptors [108]

into fully learned 3D descriptors [64, 109]. Also when inference is performed over 3D,
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then assumptions about the rigid or the regularized deformable structure of the world can

provide correspondences by methods such as point set registration, including the popular

ICP (Iterative Closest Point) algorithm [110]. There is a parallel between the methods

in this chapter and probabilistic point-set registration such as CPD (Coherent Point Drift)

[111] and related methods [112] which operate over a distribution of correspondences,

rather than a assuming a one-to-one mapping as in ICP. In this chapter we pose our learning

problem as learning from arbitrary multi-channel spatial-temporal data, for which a fused

3D representation is a special case.

Temporal Correspondence. A recent exciting line of work has worked on temporal cor-

respondence learning [77, 113, 114]. These methods have been posed as metric learning

frameworks via positive-negative samples provided by time-correlated data.

4.4 Contributions

This chapter contributes a novel generalization of space-time correspondence into a single

unified learning framework on distributions. We formulate the localization problem for

dense pixel-conditioned image-to-image correspondence learning over spatial distributions

in 2D pixel space. We then extend this dense image-to-image correspondence learning into

3D, via pixel-conditioned image-to-image correspondence over known 3D distributions.

We also formulate dense image-to-image correspondence learning into handling occlusions

with either 2D or 3D learning and estimation, and novel extension of multi-camera infer-

ence over pixel-conditioned dense correspondences in 2D or 3D.

4.5 Formulation

The problem we are addressing is this: given an image, 𝐼 , and another image 𝐼 ′ and pixel

coordinates in that image 𝑥′, 𝑦′, we would like to know: (i) is there (one or more) corre-

sponding pixel coordinates in the image 𝐼 , and if so then (ii) where is the corresponding

pixel, or pixels?

This first question (i), is a detection problem. While detection is standard fare in many
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computer vision tasks, for example object-level detection, and is performed in keypoint

correspondence algorithms i.e. SIFT, to our knowledge we do not know of a prior work

that has posed the dense detection problem as a learning task. It turns out that we can pose

the dense detection problem as a standard pixelwise classification problem.

The second question (ii), is a localization problem, and is our primary interest in this

work. In particular, we address a specific type of localization problem, which is:

𝑝(𝑥, 𝑦|𝐼, 𝐼 ′, 𝑥′, 𝑦′,∃ exactly 1 match in image 𝐼 for pixel 𝑥′, 𝑦′ in image 𝐼 ′)

i.e., our estimation problem has already been conditioned on the assumption that there

exists exactly one match we are looking for in image 𝐼 . Given this scenario in which

detection and has been handled upstream of localization, and detection has determined

there is exactly one match, then we are able to create a valid probability distribution for

the localization of this pixel match over the image, specifically 𝑝(𝑥, 𝑦|·) becomes a valid

probability distribution where the domain is the pixel space [0 : 𝑊, 0 : 𝐻], for example for

a 𝑊 width and 𝐻 height image.

How useful is this assumption, that something upstream of localization will be able to

detect that there exists exactly 1 match? Specifically, what if instead there was 0 match?

Or what if there was more than 1 match? This also of course depends on what we consider

to be a match.

When we use as our definition of match that two pixels are only a match if their em-

anating rays intersect the world’s geometry at exactly the same point, then it is clear that

there cannot be more than 1 match, modulo absurd camera lenses and/or mirrors. Further,

if the point is occluded or out of field-of-view, then this is something that we can easily

determine given a dense 3D reconstruction of the world geometry, and a camera pose and

camera model. So in this case where our match definition is explicitly spatial, then our

assumption stands to be a good assumption, since there will never be more than 1 match in

an image, and we can detect whether or not there is not a match.

The moment we start to use a broader definition of match, however, we must be careful.

In particular, in the previous chapter, we considered corresponding points across instances
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Figure 4-1: Comparison of dense distributional loss (this chapter) with dense contrastive loss (as in Chapter
3). To depict the comparison, a pair of simple low-resolution images, 𝐼𝑎 and 𝐼𝑏 are shown. With the con-
trastive loss, for some pixel 𝑥𝑎, 𝑦𝑎 in image 𝐼𝑎, there is one ground truth correspondence 𝑥*

𝑏 , 𝑦
*
𝑏 in image 𝐼𝑏,

and the loss function implicitly has the shape such that the entire weight of the distribution is on the one dis-
crete correct pixel (red), and everything else is equally wrong (blue). This loss does not take into account the
error in pixel space (orange) for any given predicted correspondence �̂�𝑏, 𝑦𝑏. In contrast with the distributional
loss formulation, we consider “heat maps” 𝑝* of the correspondence distribution in image 𝐼𝑏.

of a class. Were there to be two instances of a class in the same image, then 𝑝(𝑥, 𝑦|·) as

written above is not valid. Thankfully, we have solutions to the issue of multiple potential

matches. One solution is to never show two instances of the same class in the same image

during training. (This is what we will do in the subsequent chapter.) A less restrictive option

would be to handle instance segmentation upstream of dense detection and localization, in

which case 𝑝(𝑥, 𝑦|·) could be applied to an image which was instance-segmented to have

only one instance of the class that we expect to generalize across.

Our focus is in the localization formulation. The key concept is to formulate the lo-

calization problem with a probabilistic distribution, one that better leverages the spatial

structure of the correspondence problem. A comparison with the previously-discussed

contrastive loss is provided in Figure 4-1. To develop our formulation we will first re-

view preliminaries (Section 4.5.1) in correspondence learning and probabilistic keypoint

detection, and then discuss our approach (Section 4.5.2).
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4.5.1 Preliminaries

First we provide background context and notation for prior image-to-image dense cor-

respondence methods, and compare our formulation with dense correspondence learning

based on sampled spatial-contrastive losses, time-contrastive losses, and with keypoint de-

tection.

Following [1, 15, 76], dense image-to-image correspondence learning can be posed as

the task of learning a dense descriptor mapping 𝑓(·) which maps a full-resolution RGB

image 𝐼 ∈ R𝑊×𝐻×3, to a dense descriptor space 𝑓(𝐼) ∈ R𝑊×𝐻×𝐷, where for each pixel

we have a 𝐷-dimensional descriptor vector. Training is performed in a Siamese fash-

ion [74, 115, 116], where the input required is a pair of images, and many pixel-to-pixel

matches between the images. A continuous pixel coordinate [𝑥𝑎, 𝑦𝑎] ∈ R2 in image 𝐼𝑎

is a match with pixel coordinate [𝑥𝑏, 𝑦𝑏] ∈ R2 in image 𝐼𝑏 if they correspond to pixels

whose rays intersect the same point with the world’s 3D geometry. Note that we can han-

dle continuous-valued pixels by indexing into the image with interpolation. If desired,

these pixel-level correspondences may be labeled by hand – alternatively, dense 3D recon-

struction can automatically provide correspondences without human supervision [76], for

example on the order of 1010 matches for even a small number of images and modest cam-

era resolution of a scene. Prior works in deep dense correspondence learning [1, 15, 76]

have primarily used pixelwise contrastive loss, as developed in [15, 76].

One view of the contrastive-loss-based correspondence approach is that the goal is to

learn the delta function 𝑝(𝑥, 𝑦|𝐼, 𝐼 ′, 𝑥′, 𝑦′) = 𝛿[𝑥*, 𝑦*] for the precise correspondence, and

to train to do so via sparse sampling over the 𝑊𝐻 − 1 non-matches. If a predicted corre-

spondence is to be wrong, we may prefer its error to be 0.3 pixels rather than 300.0 pixels,

and the contrastive loss framework does not provide an effective way to do so. We have

tried weighting match errors by their incorrect distance in pixel space or 3D space; we

have not measured improved performance. Additionally, as can be seen in the measured

performance in [1], the precision of contrastive-trained models can be highly sensitive to

A simple approximation is as follows: for a 𝑊 ×𝐻 image with a fraction overlap 𝛼 between each image
pair, and for 𝑁 images each of which could be paired, we may have 𝑊𝐻 ·𝛼·𝑁(𝑁−1), i.e. this is 1.47×1010
for modest 𝑊 = 640, 𝐻 = 480, 𝑁 = 400, 𝛼 = 0.3.
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the relative weighting between positive-negative pairs. Also, although correspondence de-

tection can be performed via choosing a hand-tuned descriptor norm threshold as in [1],

this is somewhat arbitrary.

The methods of for example Time-Constrastive Networks [77] shares remarkable sim-

ilarity to the pixelwise contrastive approaches, except the indexing is via temporal-wise-

indexing into a video rather than pixel-wise-indexing into image. While a contrastive loss

approach can successfully learn compelling time-descriptors with generalization across

similar video sequences, it does share the similar traits of the pixelwise contrastive methods

in that there is no separation of detection from localization, and in the original time-contrast

framework it is unclear how to prefer correlation that is close in time but not far [77], i.e.

0.01 seconds error is not as bad as 10.0 seconds. Recent methods have aided this by adding

classification over multiple time scales [113] and a Gaussian-shaped loss over the temporal

dimension [114]. These methods also do not formulate how to address detection.

Motivation from Supervised Keypoint Detection

We are inspired by the popular method in keypoint detection to predict probability heatmaps

of keypoint locations in either 2D or 3D [80, 81]. The aim to to regress a set of probability

distributions (“heatmaps”) for each keypoints 𝑘 = {1, 2, ..., 𝐾}. In 2D we can consider

these that methods aim to minimize the following loss function of a divergence between

the predicted heatmap and the ground truth heatmap:

ℒ𝑘 = 𝐷(𝑝(𝑥, 𝑦|𝐼, 𝑘) || 𝑝*(𝑥, 𝑦|𝐼, 𝑘)) (4.1)

where 𝑝*(𝑥, 𝑦|𝐼, 𝑘) is the ground truth distribution for each supervised keypoint 𝑘, which

in truth, we can consider this be a delta function at exactly [𝑥𝑘*, 𝑦𝑘*], but given the inherent

human-labeling noise and measurement noise from camera imperfections, we can consider

𝑝*(𝑥, 𝑦|𝐼, 𝑘) ∼ 𝒩 ([𝑥*, 𝑦*],Σ) with, for example a diagonal covariance with each 𝜎 = 1

pixel, as is used in [80] and other works. Various forms of these pixel distribution diver-

gences, which we can also think of as “heat map losses” have been proposed and used in

the keypoint detection literature, as summarized in [80]. Options include: the sum over
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per-pixel norms, i.e.
∑︀

𝑖,𝑗 ||𝑝(𝑥, 𝑦) − 𝑝*(𝑥, 𝑦)||, the KL-divergence over the distributions,

𝐷𝐾𝐿(𝑝(𝑥, 𝑦) || 𝑝*(𝑥, 𝑦)) = −∑︀
𝑖,𝑗 𝑝(𝑥, 𝑦)𝑙𝑜𝑔

(︀𝑝*(𝑥,𝑦)
𝑝(𝑥,𝑦)

)︀
, or any other divergence metric.

Another divergence metric can be based on the spatial expectation [�̂�𝑘, 𝑦𝑘] of the key-

point locations, which can then be compared with the ground-truth keypoint location [𝑥𝑘*, 𝑦𝑘*]

via for example ||�̂�𝑘 − 𝑥𝑘*||𝑝 + ||𝑦𝑘 − 𝑦𝑘*||𝑝 for any 𝑝 = {1, 2, ...,∞}. The spatial expec-

tation can be computed by, for example for �̂�𝑘:

�̂�𝑘 = E(𝑥|𝐼, 𝑘) (4.2)

=
∑︁

𝑖,𝑗

𝑝(𝑥𝑖, 𝑦𝑗|𝐼, 𝑘)𝑥𝑖, (4.3)

where 𝑥𝑖 ∈ R1 is the continuous coordinate in the width of the image, and 𝑝(𝑥𝑖, 𝑦𝑗|𝐼, 𝑘) is

the probability that the pixel coordinate [𝑥𝑖, 𝑦𝑗] is the predicted keypoint, i.e. obtained via

the spatial softmax:

𝑝(𝑥𝑖, 𝑦𝑗|𝐼, 𝑘) =
𝑒𝑎𝑖,𝑗,𝑘∑︀

𝑖′,𝑗′ 𝑒
𝑎𝑖′,𝑗′,𝑘

(4.4)

where each 𝑎𝑖,𝑗,𝑘 ∈ R1 is the activation of a row, column ordered neuron, for example in a

deep convolutional network, for each keypoint 𝑘. The above was for �̂�𝑘, and an identical

process may be repeated for 𝑦𝑘 and for each �̂�𝑘′ , 𝑦𝑘
′ additional keypoint. On a computer,

this may all be implemented in a highly parallel fashion. Interestingly, a similar insight

of converting an image-shaped set of activations into a continuous real-valued number via

the spatial expectation was separately proposed in the end-to-end robot learning literature

by [39] which has shown usefulness both for reinforcement [39] and imitation learning [78].

These methods can be interpreted as a way to regress a fixed set of keypoints, where the

keypoints are learned for the purpose of aiding a downstream task, where in this case the

downstream task is robot control.

4.5.2 Learning Correspondence Localization on Distributions

We assume we are given a large set of images and pixel-level correspondences between

these images, and would like to learn a model of the form 𝑝(𝑥, 𝑦|𝐼, 𝑥′, 𝑦′, 𝐼 ′,𝑀 = 1), where

𝑀 = 1 refers to that there is exactly 1 pixel-pixel match between the images. For notational
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simplicity in the rest of this chapter, we do not include 𝑀 = 1 as a written condition in

each 𝑝(·), but it is implied. For each pair of images 𝐼𝑎 and 𝐼𝑏, we consider a loss function

which is independently summed over each set of pixel-to-pixel correspondences, each set

is denoted as coordinate [𝑥𝑎, 𝑦𝑎] in image 𝐼𝑎 corresponding as a match to pixel coordinate

[𝑥𝑏, 𝑦𝑏] in image 𝐼𝑏,

ℒ(𝐼𝑎, 𝐼𝑏) =
∑︁

𝑁matches

ℒ𝑚𝑎𝑡𝑐ℎ(𝐼𝑎, 𝑥𝑎, 𝑦𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) (4.5)

For the loss associated with each matching pair ℒ𝑚𝑎𝑡𝑐ℎ, we can consider separately two

terms which consider how the pixel in [𝑥𝑎, 𝑦𝑎] in 𝐼𝑎 corresponds to the distribution of pixels

in 𝐼𝑏, and vice versa to make the loss symmetric:

ℒ𝑚𝑎𝑡𝑐ℎ = ℒ𝑎→𝑏 + ℒ𝑏→𝑎 (4.6)

For each of these terms, we can consider trying to minimize the divergence between the

ground truth pixel distribution and our predicted distributions. We can consider general

divergences between these two probability distributions:

ℒ𝑎→𝑏 = 𝐷(𝑝𝑏(𝑥, 𝑦|𝐼𝑏, 𝐼𝑎, 𝑥𝑎, 𝑦𝑎) || 𝑝*𝑏(𝑥, 𝑦|𝐼𝑏)) (4.7)

ℒ𝑏→𝑎 = 𝐷(𝑝𝑎(𝑥, 𝑦|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) || 𝑝*𝑎(𝑥, 𝑦|𝐼𝑎)) (4.8)

Where 𝑝*𝑎(𝑥, 𝑦|𝐼𝑎) represents a ground truth pixel distribution for the point in image 𝐼𝑎.

Note that unlike in the keypoint detection literature, as shown in Eq. 4.3, we cannot inter-

pret 𝑝𝑎(𝑥, 𝑦|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) as the probability mass for predicting some fixed keypoint, but

instead may interpret this as the probability mass that pixel [𝑥, 𝑦] in image 𝐼𝑎 corresponds

to the reference descriptor at pixel location [𝑥𝑏, 𝑦𝑏] in 𝐼𝑏. Note that for both comparisons, a

probability distribution of correspondence has been induced, conditioned on a comparing

image and a reference pixel in the image. Specifically, given image 𝐼𝑏 and pixel [𝑥𝑏, 𝑦𝑏],

this defines a conditional probability distribution of correspondence in image 𝐼𝑎, namely

𝑝𝑎(𝑥, 𝑦|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏).

We can choose to minimize any divergence metric, for example the norm between the
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expectations of the predicted pixel locations and the ground truth locations:

ℒ𝑎→𝑏 = ||𝑥𝑏 − �̂�𝑏||𝑝 + ||𝑦𝑏 − 𝑦𝑏||𝑝 (4.9)

ℒ𝑏→𝑎 = ||𝑥𝑎 − �̂�𝑎||𝑝 + ||𝑦𝑎 − 𝑦𝑎||𝑝 (4.10)

where the expectation for each of the four one-dimension pixel coordinates 𝑥𝑎, 𝑦𝑎, 𝑥𝑏, 𝑦𝑏 in

the pair of images can be computed via the expectation, for example shown below for 𝑥𝑎,

�̂�𝑎 = E(𝑥𝑎|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) (4.11)

=
∑︁

𝑖,𝑗

𝑝𝑎(𝑥𝑖, 𝑦𝑗|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏)𝑥𝑖 (4.12)

The question then, is how to estimate these distributions 𝑝𝑎 and 𝑝𝑏. To estimate them,

we can introduce a nonparametric kernel 𝐾
(︀
𝑓(𝐼)[𝑥, 𝑦], 𝑓(𝐼 ′)[𝑥′, 𝑦′]

)︀
over the R𝐷 descriptor

space to measure the similarity between descriptors. This nonparametric kernel can be

thought of as simply weighting more heavily descriptors that are close together, as opposed

to those that are far apart. Any function that maps {R𝐷,R𝐷} → R1 should suffice although

we would like at least the properties of (i) symmetry, i.e. 𝐾(𝑖, 𝑖′) = 𝐾(𝑖′, 𝑖), (ii) 𝐾(𝑖, 𝑖) >

𝐾(𝑖, 𝑖′) i.e. two identical descriptors should be weighted more heavily than two different

descriptors, and (iii) non-negativity. Note that this is a simple type of weighting function

as used in nonparametric estimation, and is similar to the negative of a psuedo-distance

in metric learning, although we do not require the additional psuedo-distance property of

the triangle inequality [117]. The probability mass for each pixel can be computed via a

kernel-weighted descriptor-similarity softmax as

𝑝𝑎(𝑥𝑖, 𝑦𝑗|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) =

𝐾
(︀
𝑓(𝐼𝑏)[𝑥𝑏, 𝑦𝑏], 𝑓(𝐼𝑎)[𝑥𝑖, 𝑦𝑗]

)︀
∑︀

𝑖′,𝑗′ 𝐾
(︀
𝑓(𝐼𝑏)[𝑥𝑏, 𝑦𝑏], 𝑓(𝐼𝑎)[𝑥𝑖′ , 𝑦𝑗′ ]

)︀ (4.13)

Note that this kernel is over the descriptor space, not the spatial space. It is the descriptor-

space kernel which is used to provide a probability distribution over correspondences, and

this estimated distribution is not inherently spatial. We may compute generic divergences
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between this distribution and the ground truth distribution, as in Eqs. 4.7, 4.8. The overall

loss function may then assume a spatial nature either by spatial assumptions on the ground

truth pixel distribution, and/or via computing the spatial expectation as in Eq. 4.11.

For the choice of kernel function 𝐾(·, ·), various options are available. Perhaps the

simplest is a negative norm between descriptors, i.e. −||𝑓(𝐼)[𝑥, 𝑦]− 𝑓(𝐼 ′)[𝑥′, 𝑦′]||. Below

we use the Gaussian kernel over the squared 𝑙2 norm, but other kernels could be used (i.e.,

uniform, triangular, Epanechnikov, Gaussian, etc.). For notation we define the squared

𝑙2 norm between descriptors as 𝐷(𝐼, 𝑥, 𝑦, 𝐼 ′, 𝑥′, 𝑦′) , ||𝑓(𝐼)[𝑥, 𝑦] − 𝑓(𝐼 ′)[𝑥′, 𝑦′]||22 and

accordingly we obtain the probability mass for each pixel via kernel-weighted descriptor-

similarity softmax,

𝑝𝑎(𝑥𝑖, 𝑦𝑗|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) =

=
𝑒−(𝐷(𝐼𝑏,𝑥𝑏,𝑦𝑏,𝐼𝑎,𝑥𝑖,𝑦𝑖))

2

∑︀
𝑖′,𝑗′ 𝑒

−(𝐷(𝐼𝑏,𝑥𝑏,𝑦𝑏,𝐼𝑎,𝑥𝑖′ ,𝑦𝑖′ ))
2 (4.14)

Note that any normalization terms of the Gaussian kernels drop out when put into the

softmax. It is interesting to take note that due to the softmax, then as intended the above

equation will normalize any combination of many {𝐾(·, ·)...} into a normalized probability

distribution, and then applying Eq. 4.11 will always compute the expectation of a match

for a given reference descriptor.

4.5.3 Extending Image-to-Image Correspondence Learning into 3D

Spatial Distributions

A benefit of our dense correspondence localization framework is that it naturally extends

into direct 3D inference, occlusion handling, and also naturally lends itself well to multi-

sensor fusion and inference. A comparison of the 2D version with 3D versions is provided

in Figure 4-2.

Consider the formation of the probability distribution over 𝑝𝑎(𝑥, 𝑦|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏), which

again is a probability distribution over the pixel space in image 𝐼𝑎, representing the prob-

ability that the pixel coordinates correspond to the some reference coordinate [𝑥𝑏, 𝑦𝑏] in
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Point associated 
with

p⇤b(x, y)p⇤a(x, y)

p⇤a(x, y, z) p⇤b(x, y, z)

Pixel-space (2D) distribution 3D-space distribution 

(3D distribution
In camera frame a)

(3D distribution
in camera frame b)

(2D distribution over
pixel-space of image a)

(2D distribution over 
pixel-space of image b)

Depth-factored 3D-space distribution

p⇤a(x, y, z)

third z dimension as well.

La!b = D(pb(x, y, z|Ib, Ia, xa, ya) || p⇤b(x, y, z|Ib)) (4.17)

Lb!a = D(pa(x, y, z|Ia, Ib, xb, yb) || p⇤a(x, y, z|Ia)) (4.18)

If we know the depth value for each pixel z[x, y], and we trust our depth estimation such

that these depth values are independent of the reference image, then we can simply factor

the inferred distributions to instead be

La!b = D
�
pb(z|Ib, x, y)pb(x, y|Ib, Ia, xa, ya)

|| p⇤Ib
(x, y, z)

�
(4.19)

Lb!a = D
�
pa(z|Ia, x, y)pa(x, y|Ia, Ib, xb, yb)

|| p⇤Ia
(x, y, z)

�
(4.20)

where we know p(z|x, y), which we can approximate as a simple Gaussian centered at the

measured depth mean, N (z[x, y], �2) with � appropriately chosen for some depth sensor

measurement noise. A more complicated distribution may also be assumed, for example

one whose noise scales with inverse depth, as this is a more correct notion of uncertainty

in multi-view geometry [118].

The above efficiently factorized framework presents a particularly exciting performance

opportunity with little tradeoff in compute. Specifically, the pa(z|Ia, x, y) factor provides a

rigorous way to use our 3rd-dimension spatial data in order to properly weight the learning

of the 2D spatial correspondence problem.

Just as we had formulated for pixel-space-only distributions, we may consider a variety

of divergence metrics. Again, we may use an identical correspondence kernel in descrip-

tor space as in Eq. 4.13. The learning becomes spatial either by adding a ground truth

3-dimensional distribution p⇤(x, y, z) or by computing an expectation over the predicted

spatial distribution. Again we may also note that in the above learning scheme we may

choose our f(·) to either accept the depth image, i.e. I 2 RW⇥H⇥4, or learn using only

I 2 RW⇥H⇥3. Similarly in even our 2D pixel-space-only loss formulation we could have
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Figure 4-2: Depiction of different spatial formulations for which distributions to learn. In the 2D, pixel-
space version (left), for a given point that is viewable from two views, we ask the correspondence model to
learn pixel-space distributions centered at the pixel-coordinates to which the point projects. In 3D versions
(middle), we ask the correspondence models to learn distributions over 3D space in the frame of the camera,
such that the point is centered in these distributions. In our efficient depth-factored 3D version (right), we
may use a known depth image, i.e. 𝑝𝑎(𝑧|𝐼𝑎, 𝑥, 𝑦), together with a desired 3D distribution 𝑝*𝑎(𝑥, 𝑦, 𝑧) to have
the model learn the pixel-space distribution 𝑝𝑎(𝑥, 𝑦|·) in a way that minimizes the 3D loss.

image 𝐼𝑏. This probability distribution is computed by a kernel-space softmax of the form

in Eq. 4.13. As noted previously, the descriptor space kernel is not inherently spatial, but

the formulation may become spatial via one of two ways: either assumptions about the

ground-truth distribution, or by computing a spatial metric on the distribution such as a

spatial expectation as in Eq. 4.11.

Estimation in 3D from 2D-only-trained Correspondence via a Known Depth Image

Due to this separation of the correspondence-kernel and the spatially-formulated-loss, we

can naturally make our inference 3D while only having a correspondence model trained

on pixel space. If for example we have the depth value of each pixel, as we may acquire

from any type of dense depth estimation method, we may acquire the expected 𝑧𝑎 in camera

frame, where 𝑧[𝑥𝑖, 𝑦𝑗] denotes the depth measured at pixel [𝑥𝑖, 𝑦𝑗]

𝑧𝑎 = E(𝑧𝑎|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) (4.15)

=
∑︁

𝑖,𝑗

𝑝𝑎(𝑥𝑖, 𝑦𝑗|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏)𝑧[𝑥𝑖, 𝑦𝑗] (4.16)

The above, for example, even if we had only every trained with 2D correspondences be-

tween 2D images, would still allow us to compute the expectation of the depth correspond-
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ing to a pixel in a reference image.

Training in 3D via a Known 3D Spatial Distribution

If however we also have ground truth depth values for each of the pixels in an image

(or, practically, even just a significant fraction) during training time, we can train with with

knowledge of the known 3D structure between images. While we will require dense RGBD

images R𝑊×𝐻×4 to enable the training, we may either train to do inference from either RGB

or RGBD images. Again consider a loss function of the form Eq. 4.5 and Eq. 4.6, except

now each of our divergence metrics may instead include probability distributions over the

third 𝑧 dimension as well.

ℒ𝑎→𝑏 = 𝐷(𝑝𝑏(𝑥, 𝑦, 𝑧|𝐼𝑏, 𝐼𝑎, 𝑥𝑎, 𝑦𝑎) || 𝑝*𝑏(𝑥, 𝑦, 𝑧|𝐼𝑏)) (4.17)

ℒ𝑏→𝑎 = 𝐷(𝑝𝑎(𝑥, 𝑦, 𝑧|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) || 𝑝*𝑎(𝑥, 𝑦, 𝑧|𝐼𝑎)) (4.18)

If we know the depth value for each pixel 𝑧[𝑥, 𝑦], and we trust our depth estimation such

that these depth values are independent of the reference image, then we can simply factor

the inferred distributions to instead be

ℒ𝑎→𝑏 = 𝐷
(︀
𝑝𝑏(𝑧|𝐼𝑏, 𝑥, 𝑦)𝑝𝑏(𝑥, 𝑦|𝐼𝑏, 𝐼𝑎, 𝑥𝑎, 𝑦𝑎)

|| 𝑝*𝐼𝑏(𝑥, 𝑦, 𝑧)
)︀

(4.19)

ℒ𝑏→𝑎 = 𝐷
(︀
𝑝𝑎(𝑧|𝐼𝑎, 𝑥, 𝑦)𝑝𝑎(𝑥, 𝑦|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏)

|| 𝑝*𝐼𝑎(𝑥, 𝑦, 𝑧)
)︀

(4.20)

where we know 𝑝(𝑧|𝑥, 𝑦), which we can approximate as a simple Gaussian centered at the

measured depth mean, 𝒩 (𝑧[𝑥, 𝑦], 𝜎2) with 𝜎 appropriately chosen for some depth sensor

measurement noise. A more complicated distribution may also be assumed, for example

one whose noise scales with inverse depth, as this is a more correct notion of uncertainty

in multi-view geometry [118].

The above efficiently factorized framework presents a particularly exciting performance

opportunity with little tradeoff in compute. Specifically, the 𝑝𝑎(𝑧|𝐼𝑎, 𝑥, 𝑦) factor provides a
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rigorous way to use our 3rd-dimension spatial data in order to properly weight the learning

of the 2D spatial correspondence problem.

Just as we had formulated for pixel-space-only distributions, we may consider a variety

of divergence metrics. Again, we may use an identical correspondence kernel in descrip-

tor space as in Eq. 4.13. The learning becomes spatial either by adding a ground truth

3-dimensional distribution 𝑝*(𝑥, 𝑦, 𝑧) or by computing an expectation over the predicted

spatial distribution. Again we may also note that in the above learning scheme we may

choose our 𝑓(·) to either accept the depth image, i.e. 𝐼 ∈ R𝑊×𝐻×4, or learn using only

𝐼 ∈ R𝑊×𝐻×3. Similarly in even our 2D pixel-space-only loss formulation we could have

also chosen either RGB or RGBD as input, even if the loss was only made spatial in a 2D

way.

Training for 3D Inference, Including Occlusion Handling

We may also extend our method into full 3D inference, for which a primary benefit is

the ability to handle occlusions. Occlusion handling is a nice capability of 3D keypoint

detection techniques [80], and to our knowledge has not been applied to a fully dense self-

supervised domain.

By analogy let us consider an example state of the art 3D keypoint estimation frame-

work. For each keypoint 𝑘 = 1, 2..., 𝐾, a 3D heatmap may be estimated, 𝑝𝑘(𝑥, 𝑦, 𝑧). The

heatmap is approximated by a 3D tensor, 𝐻𝑘 ∈ R𝑊×𝐻×𝐿, where 𝐿 is the depth discretiza-

tion. If there are 𝐾 keypoints, this can be represnted by a 4𝐷 tensor, 𝐻 ∈ R𝑊×𝐻×𝐿×𝐾

Each heatmap 𝐻𝑘 is ordered and paired with a ground truth heatmap for the labeled key-

point, for a small number 𝑘, and it is over this 4𝐷 tensor that the divergence metric can be

computed.

By comparison, in the previous cases we considered for either 2D-only learning or

depth-independence-factorized 3D training, we would have a dense descriptor space which

is a 4D tensor R𝑊×𝐻×𝐷×𝑁𝑚 , where 𝑁𝑚 is the number of samples.

To extend into the third dimension, the most straightforward way is to make our dense

descriptor mapping to extend to creating a 5-dimensional tensor, 𝑓(·) ∈ R𝑊×𝐻×𝐿×𝐷×𝑁𝑚 ,

where again 𝐿 is the depth discretization, and 𝐷 is the descriptor dimension. This becomes
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a valid way to frame the learning problem, and equates to a descriptor-space kernel for

which the softmax is applied over all correspondences in both width, height, and depth:

𝑝𝑎(𝑥𝑖, 𝑦𝑗, 𝑧𝑘|𝐼𝑎, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) =

𝐾
(︀
𝑓(𝐼𝑏)[𝑥𝑏, 𝑦𝑏, 𝑧𝑏], 𝑓(𝐼𝑎)[𝑥𝑖, 𝑦𝑗, 𝑧

𝑝𝑟𝑜𝑗
𝑘 ]

)︀
∑︀

𝑖′,𝑗′,𝑘′ 𝐾
(︀
𝑓(𝐼𝑏)[𝑥𝑏, 𝑦𝑏, 𝑧𝑏], 𝑓(𝐼𝑎)[𝑥𝑖′ , 𝑦𝑗′ , 𝑧

𝑝𝑟𝑜𝑗
𝑘′ ]

)︀ (4.21)

The primary difference is that during training, we do not discard any potential matches

which become occluded in an alternative view, and we also note that every 𝑧𝑝𝑟𝑜𝑗𝑘 is the

projection of 𝑧𝑏 into the image 𝐼𝑎, rather than any depth value in the image 𝐼𝑎.

Multi-Sensor 3D Estimation

Continuing the benefits of our spatial 3D methods further, we can easily consider a multi-

sensor fusion framework, where for online prediction of the expected location of a reference

descriptor, we can use known physical camera parameters to fuse multiple camera predic-

tions directly. This may be applied to a correspondence model which was trained either

over 2D pixel space or 3D space during training time, as long as there is the ability to map

to 3D space during test time. This may also be applied either with descriptor mappings

trained to handle occlusions, or not. Given some reference descriptor 𝑓(𝐼𝑏)[𝑥𝑏, 𝑦𝑏, (𝑧𝑏)],

where 𝑧𝑏 is optional, in a single image, then if also given a set of images from a calibrated

camera or cameras, and known poses {𝑇𝒲←1, 𝑇𝒲←2, ...} each ∈ 𝑆𝐸(3) in some common

world frame𝒲 , we may compute the expectation of this corresponding point in 3D in some
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common world frame via

�̂�𝒲 = E(𝑥𝒲 |{𝐼1, 𝐼2, ...}, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) (4.22)

=
∑︁

𝑛

∑︁

𝑖,𝑗

𝑝𝒲{·}(𝑥𝑖,𝑛, 𝑦𝑗,𝑛, 𝑧𝑛[𝑥𝑖, 𝑦𝑗]|𝐼𝑏, 𝑥𝑏, 𝑦𝑏)𝑥
𝒲
𝑖,𝑛 (4.23)

𝑦𝒲 = E(𝑦𝒲 |{𝐼1, 𝐼2, ...}, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) (4.24)

=
∑︁

𝑛

∑︁

𝑖,𝑗

𝑝𝒲{·}(𝑥𝑖,𝑛, 𝑦𝑗,𝑛, 𝑧𝑛[𝑥𝑖, 𝑦𝑗]|𝐼𝑏, 𝑥𝑏, 𝑦𝑏)𝑦
𝒲
𝑗,𝑛 (4.25)

𝑧𝒲 = E(𝑧𝒲 |{𝐼1, 𝐼2, ...}, 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) (4.26)

=
∑︁

𝑛

∑︁

𝑖,𝑗

𝑝𝒲{·}(𝑥𝑖,𝑛, 𝑦𝑗,𝑛, 𝑧𝑛[𝑥𝑖, 𝑦𝑗]|𝐼𝑏, 𝑥𝑏, 𝑦𝑏)𝑧
𝒲
𝑛 [𝑥𝑖, 𝑦𝑗] (4.27)

The simplest way to interpret the above is by considering the expectation over a fused 3D

point cloud. For simplicity we have written the 3D points 𝑥𝑖,𝑛, 𝑦𝑖,𝑛, 𝑧𝑛[𝑥𝑖, 𝑦𝑗] which are

the points for each pixel [𝑥𝑖, 𝑦𝑗] in each image 𝐼𝑛 as 3D points which have already been

transformed via the camera’s intrinsic calibration and known camera pose into a 3D point

in world frame, where the superscript 𝒲 denotes the frame. For brevity above is written

𝑝{·}, this is really a correspondence distribution over all images, i.e. 𝑝{𝐼1,𝐼2,...}.

The above formulation represents a few exciting properties: for one, for arbitrary num-

bers of cameras we can still use the same correspondence model and kernel function as we

used before during training in order to provide the per-pixel correspondence weighting, and

we can incorporate fusion of 𝑁 cameras in an efficient 𝒪(𝑁) framework which only adds

an additional summed term for each camera.

Perhaps the most exciting capability, however, offered by multi-sensor fusion is that

our conditional probability distribution is less constrained than in the single-image case:

specifically, it is over the full set of fused images, rather than just a given single image.

Accordingly when estimating this probability function we may incorporate all of these

72



terms into the denominator of the softmax:

𝑝{𝐼1,𝐼2,...,𝐼𝑁}(𝑥𝑖,𝑛, 𝑦𝑗,𝑛, 𝑧𝑛[𝑥𝑖, 𝑦𝑗] | 𝐼𝑏, 𝑥𝑏, 𝑦𝑏) =

𝐾
(︀
𝑓(𝐼𝑏)[𝑥𝑏, 𝑦𝑏], 𝑓(𝐼𝑛)[𝑥𝑖, 𝑦𝑗]

)︀
∑︀

𝑛′
∑︀

𝑖′,𝑗′ 𝐾
(︀
𝑓(𝐼𝑏)[𝑥𝑏, 𝑦𝑏], 𝑓(𝐼𝑛′)[𝑥𝑖′ , 𝑦𝑗′ ]

)︀ (4.28)

Where above is written the known 3D version, 𝑓(·)→ R𝑊×𝐻×𝐷, but the same can also be

written for the 3D inference version, 𝑓(·)→ R𝑊×𝐻×𝐿×𝐷.

4.5.4 Correspondence Learning on Temporal Distributions

Following a similar framework we have developed for spatial correspondence, we can write

down our same framework over time. Consider two video sequences 𝑉𝑎 and 𝑉𝑏 each in

R𝑇×𝑊×𝐻×𝐶 , where each video is a set of timestamped frames, i.e. 𝑉 = {(𝐼0, 𝑡0), (𝐼1, 𝑡1), ...(𝐼𝑇 , 𝑡𝑇 )},
then we can pose the frame-conditioned video-to-video correspondence problem as a lo-

calization problem of the form

𝑝𝑎(𝑡|𝑡𝑏, 𝑉𝑎, 𝑉𝑏) (4.29)

where the time-indexing 𝑉𝑏[𝑡𝑏] indexes into a specific image at 𝑡𝑏 in the video 𝑉𝑏. Note that

for a visibly monotonically-changing video-sequence, then we would expect 𝑝𝑎(𝑡|𝑡𝑏, 𝑉𝑎, 𝑉𝑏)

to be a unimodal distribution, but due to the ambiguities in sequences of videos for example

due to any redundant motion, the distribution that we would guess as humans corresponding

two image sequences will not always be unimodal.

In order to align over times, what we would like to learn is a temporal correspondence

mapping 𝑓𝑡(·), which maps a sequence of images 𝑉 = (𝐼0, 𝐼1, 𝐼2, ..., 𝐼𝑇 ) ∈ R𝑇×𝑊×𝐻×𝐶

to a temporal descriptor space, R𝑇×𝐷, where for each time 𝑇 we have a discriminative

descriptor.

Using Explicit Temporal Distributions

Similar to the spatial case, we can consider minimizing the divergence between the ground

truth alignment distribution and an inferred distribution, for example in the first the frame-
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conditioned and then the unconditioned case

ℒ = 𝐷(𝑝(𝑡𝑎|𝑡𝑏, 𝑉𝑎, 𝑉𝑏) || 𝑝*(𝑡𝑎|𝑡𝑏, 𝑉𝑎, 𝑉𝑏)) (4.30)

ℒ = 𝐷(𝑝(𝑡𝑎, 𝑡𝑏|𝑉𝑎, 𝑉𝑏) || 𝑝*(𝑡𝑎, 𝑡𝑏|𝑉𝑎, 𝑉𝑏)) (4.31)

If we would like to choose an explicit temporal distribution, we may for example use a

simple univariate Gaussian

𝑝*(𝑡𝑎|𝑡𝑏, 𝑉𝑎, 𝑉𝑏) = 𝒩 (𝑡*𝑏 , 𝜎) (4.32)

where 𝜎 can for example be the error in the relative sensor time calibration. Similar to the

spatial case, we can choose a variety of divergence metrics, and as in our spatial learning

framework, we can estimate our probability distribution via a correspondence kernel:

𝑝(𝑡𝑎𝑖 |𝑉𝑎, 𝑉𝑏, 𝑡𝑏) =

𝐾
(︀
𝑓𝑡(𝑉𝑏)[𝑡𝑏], 𝑓𝑡(𝑉𝑎)[𝑡

𝑎
𝑖 ]
)︀

∑︀
𝑖′ 𝐾

(︀
𝑓𝑡(𝑉𝑏)[𝑡𝑏], 𝑓𝑡(𝑉𝑎)[𝑡𝑎𝑖′ ]

)︀ (4.33)

In the temporal learning case during optimization we sample many times and form

heatmaps over the other distributions, i.e. during learning our models map to a 3-dimensional

tensor R𝑇×𝐷×𝑁𝑚 where 𝑁𝑚 is the number of sampled matches per gradient step.

4.5.5 Correspondence Learning Across Space-Time

At this point, since we have a fully general framework for both spatial and temporal gen-

erative correspondence learning, it is trivial to extend this to space-time correspondence

learning. We can aim to learn a mapping 𝑓𝑠−𝑡(·), which maps a sequence of images

𝑉 = (𝐼0, 𝐼1, 𝐼2, ..., 𝐼𝑇 ) ∈ R𝑇×𝑊×𝐻×𝐶 to a dense spatial-temporal descriptor space. In

the pixel-spatial-temporal case the mapping is to a space R𝑇×𝑊×𝐻×𝐷, where for each

point in time, and for each pixel we have a 𝐷-dimensional descriptor. In the 3D-spatial-

temporal case the mapping is to a space R𝑇×𝑊×𝐻×𝐿×𝐷. During training we accord-

ingly perform descriptor-kernel softmaxes over either a tensor of shape R𝑇×𝑊×𝐻×𝐷×𝑁𝑚
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or R𝑇×𝑊×𝐻×𝐷×𝑁𝑚 , i.e. 5-D or 6-D tensors.

Although it is unclear what is the primary application of a spatial-temporal correspon-

dence model, this fits naturally into our framework with essentially no modifications. And

after all, spatial-temporal correspondence is a task that humans are able to do, for example

this of course is a critical task in forensics.

4.5.6 Dense-to-Sparse Correspondences

For a number of practical reasons though it may be nice to have a visual representation of

the world 𝑧 which is smaller-dimensional that dense fields of descriptors, and instead have

a sparse representation of only select points in the world. Reasons include: (i) in particu-

lar this can make predictions through occlusion significantly easier, and (ii) for control we

may like to have an approximate state space which moves continuously. This does funda-

mentally change our problem – the difference is that we know what we are looking for. In

the dense case, we must assign to each pixel some type of descriptor which is useful for

comparing it against every other pixel. In the sparse problem, we just need to decide where

is the pixel we are looking for.

Given the ability to perform dense correspondence, it is of course easy to subsample to

dense correspondences. The first step is to have some type of initialization procedure. We

can then come up with some descriptor set {𝑑𝑖}𝑃𝑖=1, which is just a set of 𝑃 descriptors,

with each 𝑑𝑖 ∈ R𝐷. We can now essentially consider our problem a keypoint problem.. i.e.,

we would like,

𝑝(𝑥𝑖, 𝑦𝑗|𝐼, 𝑘) =
𝑒𝑎𝑖,𝑗,𝑘∑︀

𝑖′,𝑗′ 𝑒
𝑎𝑖′,𝑗′,𝑘

(4.34)

To give a fixed number of heatmaps for each point, but where these sparse feature points

are defined only as being sampled from a dense correspondence field.

𝑝(𝑥𝑖, 𝑦𝑗|𝐼, 𝑑𝑘) =
𝑒𝐾(𝑑𝑖𝑗 ,𝑑𝑘)

∑︀
𝑖′,𝑗′ 𝑒

𝐾(𝑑𝑖′𝑗′ ,𝑑𝑘)
(4.35)

We have now transformed our dense descriptor mapping into a sparse mapping, i.e.:
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𝑓𝑑 : R𝑊×𝐻×𝐶 → R𝑊×𝐻×𝐷 (4.36)

𝑓𝑠𝑑 : R𝑊×𝐻×𝐶 → R𝑊×𝐻×𝐷 → R𝑊×𝐻×𝐾 (4.37)

Where we now have 𝐾 heatmaps but we haven’t added any parameters to our model.

4.6 Conclusion

We have developed a novel framework for performing dense correspondence learning. Our

primary result is presented in the next chapter, which uses this formulation to perform

efficient imitation learning.

Compared with the dense pixelwise contrastive loss as discussed in the previous chap-

ter, the dense distributional loss yields learned correspondence models which are more

desirably precise and uni-modal. The loss is more aligned with what we actually want,

which is that if predicted correspondences are “wrong”, they should be close rather than

far from the correct correspondence. The distributional framework also enables a number

of capabilities leveraging 3D information and multi-sensor fusion.

To summarize briefly, from a broad perspective, what is the capability offered by this

approach: the capabilities of this method are similar to the approach presented in Chap-

ter 3, although with a handful of differences. In terms of what is the same: we may take

multi-view data, preferably of one object at a time, and learn correspondence models for

those objects. The new approach presented in this chapter, however, will produce corre-

spondence models that are more precise, with uni-modal correspondences, may leverage

3D information, and may enable fused inferences from many views. While we did not

discuss multi-object model concepts such as cross-object loss, this fits into our new frame-

work at the detection stage – if two objects are different, they should not have any detected

correspondences between them, and there is no correspondence localization.
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Chapter 5

Self-Supervised Correspondence in

Visuomotor Policy Learning

5.1 Introduction

For robots to achieve general-purpose manipulation skills, they will need to employ closed-

loop real-time manipulation policies and be able to scalably achieve new manipulation

skills without excessive incremental human effort per task. We have seen in our previous

work (Chapter 3) that we are able to make a robot entirely self-supervise remarkably con-

sistent dense visual models of objects. In this prior work, however, we did not attempt to

take advantage of this ability to form closed-loop policies and address a diversity of tasks,

which we now consider. To train closed-loop policies, other prior work has often used

visual training methods to such as end-to-end training [39], autoencoding [119], and pose-

based losses [39, 78]. These methods, however, have not benefitted from the rich sources

of self-supervision that may be provided by dense three-dimensional computer vision tech-

niques [76,89,120], for example correspondence learning which robots can automate with-

out human input [1].

Correspondence is fundamental in computer vision, and we believe it has fundamen-

tal usefulness for robots learning complex tasks requiring visual feedback. We intro-

duce using self-supervised correspondence for visuomotor policies, and our results suggest

this enables policy learning that is surprisingly capable. Our evaluations pair correspon-
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dence training with a simple imitation learning objective, and extensive hardware validation

shows that learned policies can address challenging scenarios: manipulating deformable

objects, generalizing across a class of objects, and visual challenges such as textureless ob-

jects, clutter, moderate occlusion, and lighting variation. Learning these policies may take

as few as 50 demonstrations. Additionally our simulation-based comparisons empirically

suggest that our method offers significant generalization and sample complexity advan-

tages compared to existing methods for training visuomotor policies, while requiring no

additional human supervision.

Briefly as well we consider the scope our method – when is it applicable, and when is

it not? We believe that the approach of self-supervising correspondence to aid visuomo-

tor policy learning is applicable when there is informative local spatial visual coherence.

That is to say, if the way something looks (its visual texture and appearance), is at least

somewhat coherent in its different configurations and provides information about its state,

then correspondence training can be useful. An example that would be difficult for spa-

tial correspondence alone to address would be deciding when to be finished cooking eggs,

since there is not local spatial visual coherence. We would propose that whether or not

the egg is finished can also be posed as a correspondence problem (to the "perfect time to

stop cooking the egg"), but the scale of the correspondence is larger than the dense spatial

correspondences that we train in this work.

5.2 Related Work

There are a number of primary related areas of work to the contributions presented in this

chapter. Since previous chapters of this thesis have addressed related work in the areas of

self-supervised robotics (see Chapter 3) and correspondence learning (see Chapter 4), we

instead will focus this chapter’s related work around two topics: visual training methods

for visuomotor policies, and approaches for providing the policy learning signal.

80



5.2.1 Visual Training Methods for Visuomotor Policies

There have been three primary methods used in the robot learning literature to train the

visual portion of visuomotor policies. Often these methods are used together – for example

[39, 78] use pose-based losses together with end-to-end training.

1. End-to-End training. This approach can be applied to any learning signal that is

formed as a consequence of a robot’s actions, for example through imitation learning

or reinforcement learning. While often end-to-end training is complemented with

other learning signals, other works use purely end-to-end training.

2. Autoencoders. Autoencoding can be applied to any data with no supervision and

is commonly used to aid visuomotor policy learning [119, 121–125]. Sometimes

polices are learned with a frozen encoder [119, 121, 122], other times in conjunction

with end-to-end training [125].

3. Pose-based losses. In [39], for example, a separate dataset is collected of the robot

holding objects, and assuming that the objects are rigid and graspable, then using the

robot’s encoders and forward kinematics the visual model can be trained to predict

the object pose. In [78], pose-based auxiliary losses are used regardless of whether or

not objects are held – we wouldn’t expect this to learn how to predict object config-

urations unless they are also rigid and grasped. Simulation-based works [126] have

also used auxiliary losses for object and gripper positions.

In our comparison experimentation, we include end-to-end training and autoencoding,

but not pose-based losses, since they are not applicable to deformable or un-graspable

objects. While the above are three of the most popular, other visual training methods

include: training observation dynamics models [19, 127], using time-contrastive learning

[77], or using no visual training and instead using only generic pre-trained visual features

[128]. Relevant concurrent works include [129] which proposes autoencoder-style visual

training but with a reference image and novel architecture, and [130] which proposes a

graph-based reward function using a fixed set of correspondences.
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5.2.2 Methods for Learning Vision-Based Closed-Loop Policies

While the previous section discussed visual training methods, to acquire policies they must

be paired with a policy learning signal. We are particularly interested in approaches that

can (i) scalably address a wide variety of tasks with potentially deformable and unknown

objects, (ii) use a small incremental amount of human effort (on the order of 1 human-hour)

per each new object or task, and (iii) produce real-time vision-based closed-loop policies.

One source of policy learning signal may be from reinforcement learning, which has

demonstrated many compelling results. A primary challenge, however, is the difficulty of

measuring rewards in the real world. Some tasks such as grasping can be self-supervised

[68], and other tasks can leverage assumptions that objects are grasped and rigid in order

to compute rewards [39], but this only applies to a subset of tasks. A more generalizable

direction may be offered by unsupervised methods of obtaining reward signals [77, 119,

128]. Another direction which has shown promising results is using sim-to-real transfer

[126, 131–133], but our interest in a small amount of incremental human effort per new

task is challenging for these methods, since they currently require significant engineering

effort for each new simulation scenario.

Another powerful source of signal may come from imitation learning from demon-

stration, which several recent works have shown promise in using to produce real-time

vision-based closed-loop policies [24, 77, 78, 121, 122, 125, 128, 134]. We point the reader

to a number of existing reviews of learning from demonstration [21,22]. Another direction

may be to learn models from observations and specify goals via observations [19,119,127],

but these may be limited to tasks for which autonomous exploration has a reasonable chance

of success.

In terms of limitations of these prior works, one primary challenge relates to reliability

and sample complexity – it is not clear how much data and training would be required in

order to achieve any given level of reliability. Relatedly, a second limitation is that little

work has characterized the distributions over which these methods should be trained and

subsequently expected to generalize. Third, like in many areas of robotics it is difficult to

reproduce results and compare approaches on a common set of metrics. While we believe
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Figure 5-1: Diagram of common visuomotor policy factorization (a), and our proposed model (b) using
visual models trained on correspondence.

hardware validation is critical, we also believe that increased effort should be put into

simulation-based results that compare methods and can be reproduced.

5.3 Visuomotor Formulation

We propose a formulation of visuomotor policy learning which leverages self-supervised

correspondence. First as preliminary we identify some primary attributes of existing visuo-

motor policy learning approaches, and then present our approach based on self-supervised

correspondence.

5.3.1 Preliminary: Visuomotor Policies

We would like to have a policy 𝑎𝑡 = 𝜋𝜃(𝑜0:𝑡), where 𝑜0:𝑡 = (𝑜0,𝑜1, . . .𝑜𝑡) is the full

sequence of the robot’s observations during some episode up until time 𝑡, with each 𝑜𝑖 ∈
𝒪, the robot’s observation space. This sequence of observations is mapped by 𝜋𝜃(·), the

robot’s policy parameterized by 𝜃, to the robot’s actions 𝑎, each ∈ 𝒜. In particular, we are

interested in visuomotor policies in which the observation space contains high-dimensional

images 𝒪image ⊂ 𝒪, for example 𝒪image = R𝑊×𝐻×𝐶 for a 𝐶-channel, width 𝑊 , and height

𝐻 image. The visual data is perhaps complemented with additional lower-dimensional

measurements 𝒪robot, such as produced from sensors like the robot’s encoders, such that

𝒪robot ×𝒪image = 𝒪.

It is common for a visuomotor policy to have an architecture that can factored as dis-
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played in Fig. 5-1(a),

𝑧 = 𝑓𝜃𝑣(𝑜image) : 𝑜image ∈ 𝒪image, 𝑧 ∈ R𝑍 (5.1)

𝑎 = 𝜋𝜃𝑝(𝑧,𝑜robot) : 𝑜robot ∈ 𝒪robot, 𝑧 ∈ R𝑍 , 𝑎 ∈ 𝒜 (5.2)

in which a visual model 𝑓𝜃𝑣(·), parameterized by 𝜃𝑣, processes the high-dimensional 𝑜image

into a much smaller 𝑍-dimensional representation 𝑧. The policy model 𝜋𝜃𝑝(·) then com-

bines the output of the visual model with other observations 𝑜robot. This is a practical

modeling choice – images are extremely high dimensional, i.e. in this work we use images

in R640×480×3 = R921,600, whereas our 𝒪robot is at most R13. A wide variety of works have

employed a similar architecture to [39], consisting of convolutional networks extracting

features from raw images into an approximately 𝑍 = 32 to 100 bottleneck representation

of features, e.g. [24, 78, 119, 123, 125, 135]

5.3.2 Visual Correspondence Models for Visuomotor Policy Learning

The objective of the visual model is to produce a feature vector 𝑧 which serves as a suitable

input for policy learning. In particular, we are interested in deploying policies that can op-

erate directly on RGB images. Given the role that pose estimation has played in traditional

manipulation pipelines it seems valuable to encode the configuration of objects of interest

in the vector 𝑧. Pose estimation, however, doesn’t extend to the cases of deformable or

unknown objects. Some of the prior works discussed in Sec. 5.2.1, for example [39, 119],

have interpreted their learned feature points 𝑧 as encoding useful spatial information for the

objects and task. These feature points are learned via the supervisory signals of end-to-end,

pose-based, or autoencoding losses, and don’t explicitly train for spatial correspondence.

In contrast our approach is to directly employ visual correspondence training, building off

the approach of [1] which can in a self-supervised manner, learn pixel descriptors of objects

that are effective in finding correspondences between RGB images.

We introduce four different methods for how to employ dense correspondence models

as the visual basis of visuomotor policy learning. The first three are based on the idea of

a set of points on the object(s) that are localized either in image-space or 3D space. We
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represent these points as a set {𝑑𝑖}𝑃𝑖=1 of 𝑃 descriptors, with each 𝑑𝑖 ∈ R𝐷 representing

some vector in the 𝐷-dimensional descriptor space produced by a dense descriptor model

𝑓 dense
𝜃𝑣

(·). This 𝑓 dense
𝜃𝑣

(·), a deep CNN, maps a full-resolution RGB image, R𝑊×𝐻×3, to a

full-resolution descriptor image, R𝑊×𝐻×𝐷. Let us term 𝑓𝐶(·) to be the non-parametric

correspondence function that, given one or more descriptors and a dense descriptor image

𝑓 dense
𝜃𝑣

(𝑜image), provides the predicted location of the descriptor(s):

𝑧 = 𝑓𝐶
(︀
𝑓 dense
𝜃𝑣 (𝑜image), {𝑑𝑖}𝑃𝑖=1

)︀
(5.3)

Specifically 𝑓𝐶 : R𝑊×𝐻×𝐷 × R𝑃×𝐷 → R𝑃×𝐾 , where 𝐾 = 2 corresponds to: 𝑧 is the

predicted corresponding (𝑢, 𝑣) pixel coordinates of each descriptor in the image, while

𝐾 = 3 is their predicted 3D coordinates. All four methods optimize a generic policy-based

loss function, shown in Eq. (5.4), and vary only in the set of learnable parameters Θ and

how 𝑧 is acquired (the first three use Eq. 5.3). This loss function ℒ is generic and could

represent any approach for learning the parameters of a visuomotor policy.

𝑚𝑖𝑛
Θ
ℒ
(︂
𝜋𝜃𝑝

(︀
𝑧,𝑜robot

)︀)︂
(5.4)

Fixed Descriptor Set. This method only optimizes the policy parameters, Θ = {𝜃𝑝}.
In this case both the set of descriptors {𝑑𝑖}𝑃𝑖=1 and visual model 𝑓 dense

𝜃𝑣
(·) are fixed. We use

a simple initialization scheme of sampling {𝑑𝑖} from a single masked reference descriptor

image. While we have found this method to be surprisingly effective, it is unsatisfying that

the visual model’s representation is not optimized after the random initialization process.

Descriptor Set Optimization. This method optimizes the descriptor set {𝑑𝑖}𝑃𝑖=1 along

with the policy parameters 𝜃𝑝 while keeping the dense descriptor mapping 𝑓𝑑𝑒𝑛𝑠𝑒
𝜃𝑣

fixed.

Intuitively 𝑓𝑑𝑒𝑛𝑠𝑒
𝜃𝑣

has already been trained to perform correspondence, and we are simply

allowing the policy optimization to choose what to correspond. We have observed that

Descriptor Set Optimization can improve validation error in some cases over a Fixed De-

The specific form of 𝑓𝐶(·) is defined by how the correspondence model was trained. In our preferred
model we compute a spatial-expectation using a correspondence kernel, either in image-space or 3D. See
Chapter 4 for details.
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scriptor Set, and adds minimal computational cost and parameters.

End-to-End Dense Optimization. The third option is to train the full model architec-

ture end-to-end by including 𝜃𝑣 in the optimization. While we may have expected this ap-

proach to allow the visual model to more precisely focus its modeling ability on task-critical

parts of images, we so far have not observed a performance advantage of this approach over

Descriptor Set Optimization.

End-to-End with Correspondence Pretraining. The fourth option is to directly apply

a differentiable operation to a model which was previously trained on dense correspon-

dence. We can apply any differentiable operation 𝑔(·) on top of 𝑓 dense
𝜃𝑣

directly to produce a

representation 𝑧 = 𝑔
(︀
𝑓𝑑𝑒𝑛𝑠𝑒
𝜃𝑣

(𝑜image)
)︀
. For example, we can apply non-parametric channel-

wise spatial expectations to each of the 𝐷 channels of the dense descriptor images. The

optimization variables in this case are Θ = {𝜃𝑝, 𝜃𝑣}.
For our 𝑓 dense

𝜃𝑣
we use a 34-layer ResNet, as in [1], which is a powerful vision backbone.

Accordingly, using either a fixed- or optimized- descriptor set will significantly increase

policy training speed, since it does not require forward-backward optimizing through a

very deep convolutional network in each step of policy training, which in our case is 1 to 2

orders of magnitude faster.

5.4 Visual Imitation Formulation

We now propose how to use the general approach of the previous section for a specific type

of imitation learning for robot manipulation.

5.4.1 Imitation Learning Visuomotor Policies

To evaluate visual learning strategies for enabling visuomotor policy learning, we use im-

itation learning via a simple behavioral cloning [136] strategy, which a few recent works

have demonstrated to be viable for learning visuomotor manipulation policies [78, 125].

Optimizing a policy with parameters Θ on the behavioral cloning objective, given a dataset

of 𝑁train trajectories of observation-sequence-to-action pairs {(𝑜𝑡,𝑎
*
𝑡 )}𝑇𝑖

𝑡=0 can be written
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as:

𝑚𝑖𝑛
Θ

1

𝑁train

𝑁train∑︁

𝑖=1

𝑇𝑖∑︁

𝑡=0

ℒBC
(︀
𝑎*𝑡 , 𝜋Θ(𝑜𝑡)

)︀
(5.5)

For our loss function we use a simple weighted sum of 𝑙1 and 𝑙2 loss, ℒBC(·) = ||𝑎* −
𝜋(·)||22 + 𝜆||𝑎* − 𝜋(·)||1 where we use 𝜆 = 0.1. We scale 𝑎* to equalize 1.0m end-effector

translation, 0.1 radians end-effector rotation, and 1.0m gripper translation.

5.4.2 Robot Observation Space, Action Space, and Interface to Low-

level Control

A primary interest of this work is in how to process the image portion of the observa-

tion space 𝒪image, but here we also consider the rest of the observation space 𝒪robot. Our

intuition matches the results demonstrated in recent work [137] that, for a robot that has

accurate encoders and the ability to perform effective inverse-kinematics based control,

end-effector space is a good space for learning policies. For the translational component of

our observation space, we can simply use some type of measurement of 3D position of the

end-effector in world frame. Rotation, however, is more complicated to represent. We ex-

perimented with several different rotational observation options. We settled on a redundant

over-parameterized representation, part of which is the location of three 3D points on the

hand in world frame as in [39], and the other part of which is an axis-angle representation

relative to the end-effector’s nominal pose for the task. We found this representation to per-

form at least as well as any other representation we tried, including only the 3D points, only

the axis-angle, and/or some mix of these with quaternions and euler angles. Accordingly,

our full non-vision observation comprises:

(all non-vision observations) 𝑜robot = (𝑜end-effector, 𝑜gripper) (5.6)

(end-effector frame observations) 𝑜end-effector = (𝑊𝑝0,
𝑊𝑝1,

𝑊𝑝2, [𝑎𝑥, 𝑎𝑦, 𝑎𝑧]) (5.7)

where 𝑊𝑝𝑖 ∈ R3 for 𝑖 = {0, 1, 2} are the three points on the end effector expressed in world

frame and [𝑎𝑥, 𝑎𝑦, 𝑎𝑧] ∈ R3 is a vector whose direction and magnitude represents the axis-

angle representation relative to the nominal pose. Note that in full 𝑜end-effector comprises a
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12-dimensional redundant observation space of what is only 6 degrees of freedom. For the

gripper, 𝑜gripper ∈ R1 is just the single position measurement of the gripper width.

For the action space, we choose our policy to predict a desired transform of the end-

effector. This desired transform of the end-effector is then passed to a lower-level inverse-

kinematics controller, which is PD-based and handles computing the joint positions which

are sent to the robot. We also predict a continuous desired gripper width ∈ R1, which is

sent to a lower-level gripper controller. This interface of providing end-effector desired

poses and gripper width setpoints matches the teleoperation modality by which we provide

demonstrations. This action space can be written as the desired robot state, 𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑
robot , where

“robot” helps to signify that we only have direct control over the fully-actuated robot, and

not the full state of the world that we would like our robot to interact with. Specifically,

for our robot modeled at the level of end-effector setpoints, the full 𝑥robot state consists of

7 degrees of freedom: the 6-DOF pose of the end-effector, and 1-DOF gripper.

(observation, action pair) (𝑜𝑡,𝑎𝑡) (5.8)

(action as desired robot state) 𝑎𝑡 = 𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑
robot,𝑡 (5.9)

Interestingly we have observed significant generalization performance increase, in some

scenarios, for the robot policy to predict desired setpoints which are relative to its current

position, rather than absolute. Specifically, for a given degree of freedom, we observe

this performance increase by predicting the relative-desired position only when there is

variation for that degree-of-freedom between different trajectories in the demonstration

dataset. If that degree-of-freedom’s trajectory is identical across all demonstrations, we

have observed it is better to predict the absolute rather than relative position. When we use

as our action space the desired robot state relative to current state we instead have

(action as relative desired robot state) 𝑎𝑡 = 𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑
robot,𝑡 − 𝑥robot,𝑡 = ∆𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑

robot,𝑡 (5.10)

An additional detail is that when using our LSTM sequence model, we follow the recom-

mendation from [125] and train at rates lower than the full image rate (30 Hz), which may
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help ease the ability of the sequence model to learn dependencies over time. We prefer 5

Hz, which still provides satisfyingly fast visual feedback for our tasks addressed. When

we downsample the trajectory to a lower rate, since we are using position setpoints as the

output of our policy, then we accordingly sample action pairs such that the desired action

spreads the downsampled gap. For example when we slice a 30 Hz trajectory into six trajec-

tories at 5 Hz, (𝑁𝑠𝑙𝑖𝑐𝑒𝑠 = 6), then we use an “action bias” of 𝑏 = 𝑁𝑠𝑙𝑖𝑐𝑒𝑠− 1 = 5. If there is

no downsampling, as when we train MLP models, then 𝑁𝑠𝑙𝑖𝑐𝑒𝑠 = 1 and 𝑏 = 𝑁𝑠𝑙𝑖𝑐𝑒𝑠−1 = 0.

In general we have

(action as rate-adjusted relative desired robot state) 𝑎𝑡 = 𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑
robot,𝑡+𝑏 − 𝑥robot,𝑡 = ∆𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑

robot,𝑡,𝑏

(5.11)

Finally, if we are predicting actions from our model at less-than-image-rate, then we inter-

polate position setpoints at 100 Hz between the previous and new desired setpoint. This

aids in the robot moving smoothly.

5.4.3 Training for Feedback through Data Augmentation

We introduce a simple technique which we have found to be effective in at least partially

addressing a primary issue in imitation learning: the issue of cascading errors [138]. While

many other works have previously shown injecting noise into the dynamics either during

imitation learning [139] or sim-to-real transfer [140] can aid the ability to deploy closed-

loop policies that avoid cascading errors, we provide a simple method based only on data

augmentation. This method does not address recovering from failures that cause discrete

changes in the environment, but we have observed it does effectively enable the robot

to stably execute a trajectory from only a single demonstration, whereas without noise

augmentation fitting a policy to a single trajectory does not yield a stabilizing controller.

Since the output of our policy is desired position setpoints, and these position setpoints

are handled by a lower-level feedback controller, then we can train our policy to perform

feedback to the nominal training trajectories by augmenting the robot-state portion of the

observations with a small amount of noise. If we consider only the robot-state portion
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of the observation space, together with our desired robot-state, then we have, writing our

relative-desired action with bias 𝑏,

(robot-only portion of observation, relative-action pair) (𝑥robot,𝑡, 𝑥
𝑑𝑒𝑠𝑖𝑟𝑒𝑑
robot,𝑡+𝑏 − 𝑥robot,𝑡)

(5.12)

We can then augment the measured robot state with noise 𝜉 ∼ 𝒩 (0,Σ) with for example

Σ as a diagonal covariance. Since our action space is relative to the measured robot state,

then we must appropriately account for this noise when forming the relative action:

(robot-only portion of noisy-observation, relative-action pair) (5.13)
(︀
𝑥robot,𝑡 + 𝜉, 𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑

robot,𝑡+𝑏 − (𝑥robot,𝑡 + 𝜉)
)︀

A remaining question, of course, is what scale of noise is appropriate. In practice we find

that, given the scale of our robot its typical speeds, without any downsample slicing then

𝜎 = 1 mm is an appropriate noise scale for the translational components. When we use an

action bias 𝑏 > 0, then we scale the noise proportional to the action bias, i.e. for 𝑏 = 5 we

use 𝜎 of 5 𝑚𝑚. For the rotational components we use 𝜎 = 1 degree when 𝑏 = 5, and for

the gripper we use 𝜎 = 0.01. The gripper’s domain ranges from 0.0 to 0.1.

𝑆𝐸(3) Formulation of Training for Feedback through Noisy Data Augmentation

A technical detail is that our robot’s end-effector pose 𝑊𝑇𝑡, here noted at time 𝑡 in world

frame 𝑊 , actually lives in the Special Euclidean group 𝑆𝐸(3) for rigid-body transforma-

tions in three dimensions. Accordingly we formulate our noise augmentation and relative-

desired action space in terms of 𝑆𝐸(3). In this section we follow the transform notation

of 𝑡𝑜𝑇𝑓𝑟𝑜𝑚, so that we can write chained transforms together as 𝑐𝑇𝑎 = 𝑐𝑇𝑏
𝑏𝑇𝑎, for some

frames 𝑎, 𝑏, and 𝑐.

Consider again the robot-only subset of the observation-action pair, but this time we will

consider both the observation of and the desired action for the end-effector pose ∈ 𝑆𝐸(3),
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first with the action in world frame:

(end-effector only portion of observation, action pair) (𝑊𝑇𝑡,
𝑊𝑇 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑡+𝑏 ) (5.14)

to make the action a relative transform, concatenating transforms we have 𝑊𝑇 𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑡+𝑏 =

𝑊𝑇𝑡
𝑡𝑇 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑡+𝑏 . Accordingly our relative-frame action space, with no noise augmentation, is

(end-effector only portion of observation, relative-action pair) (𝑊𝑇𝑡,
𝑡𝑇 𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑡+𝑏 ) (5.15)

To now add noise augmentation, we sample a small noisy transform 𝑡𝑇𝑡, which transforms

from a noisy end-effector frame to the true end-effector frame at time 𝑡. The observed

noisy end-effector transform as observed in world frame becomes 𝑊𝑇𝑡
𝑡𝑇𝑡. For the relative

desired transform, we now must have this be relative to the noisy transform, since that is

where the robot is told to believe where it is. Concatenated into world frame this action

would be 𝑊𝑇𝑡
𝑡𝑇𝑡

𝑡𝑇 𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑡+𝑏 , but we ask the policy to only predict the relative component:

(end-effector only portion of noisy-observation, relative-action pair) (𝑊𝑇𝑡
𝑡𝑇𝑡,

𝑡𝑇 𝑑𝑒𝑠𝑖𝑟𝑒𝑑
𝑡+𝑏 )

(5.16)

This completes the 𝑆𝐸(3) noise-augmented and relative-action-space formulation.

5.4.4 Dynamic-Scene, Multi-View Time-Sychronized Correspondence

Training

Unlike in our previous work (Chapter 3) in which we trained correspondence models only

for static environments, we now would like to train correspondence models of dynamic

environments. To address this challenge, we employ a multi-view camera setup. Although

the environment is dynamic and we do not perform non-rigid dynamic reconstruction [69]

as in [76], we can instead correspond pixels between two camera views if they are approxi-

mately synchronized in time. For this we require the cameras to be calibrated both for their

intrinsics and extrinsics into a common frame. Like the static-scene case, finding pixel

correspondences between images can remain a simple geometric operation involving only
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depth images, camera poses, and camera intrinsics.

Compared to our previous, static-scene moving-camera training procedure, the dynamic-

scene scenario suffers significantly in (a) not being able to benefit from a wide variety of

views from which to fuse highly accurate accurate 3D reconstructions, and (b) not being

able to benefit from a wide variety of rotations, viewing angles, and scales in order to

provide correspondences between a diversity of views. To help alleviate (a) the reduced

correspondence precision due to the lack of a highly accurate 3D reconstructions, we add

photometric-error-based rejection of correspondences. Specifically, if the imperfect geo-

metric correspondence provided by noisy depth images predicts two pixels 𝑎 and 𝑏 with a

photometric error ||[𝑅𝑎, 𝐺𝑎, 𝐵𝑎]
𝑇 − [𝑅𝑏, 𝐺𝑏, 𝐵𝑏]

𝑇 ||2 to be above a threshold, then we reject

this correspondence. To help alleviate (b), we add significant affine transformation augmen-

tation (which includes rotation, scale, and shear augmentations), and for real-data training

(but is unnecessary for simulation data) we also augment the hue and brightness of im-

ages. Due to the aggressive data augmentation, rather than only sampling correspondences

between different views and then augmenting these images, we also with 50% probability

just choose one image, pair it with itself, and let the augmentation provide the only corre-

spondence challenge for the model to learn. While these photometric-error-based-rejection

(i.e., [141]) and data augmentation methods are standard computer vision techniques, they

are critical new components to our correspondence learning practice.

5.4.5 Policy Models

We use two standard classes of policy models, Multi-Layer Perceptrons (MLP) and Long

Short-Term Memory (LSTM) recurrent networks, which are familiar model classes to many

different types of machine learning problems and in particular have been demonstrated to

be viable for real-world visuomotor control [39, 78, 125]. In our evaluations the MLPs

are only provided current observations, 𝜋(𝑜𝑡), whereas through recurrence the LSTMs use

the full observation sequence. For details on the model architectures and training, see the

Appendix.
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the visual representation zi for each datapoint in the dataset. As shown in the results, this

enables significant training speed. Optimizing a visuomotor policy with a Fixed Descriptor

Set, for some loss function L, can be represented by:

min
✓

L
✓
⇡✓
�
z, oother

�◆
(5.3)

z = fC
�
fdense
 (oimage), {di}P

i=1

�
(5.4)

The second option, “Descriptor Set Optimization”, is to allow {di}P
i=1 to be optimizable

parameters of our overall visuomotor policy. This is an attractive option that has become

our preferred method, both philosophically and also because it provides the best perfor-

mance. In this method, we allow the parameters  of the dense descriptor mapping fdense
 

to remain fixed, but we allow the policy optimization to choose what to correspond. To do

this, we can simply include the descriptor set {di}P
i=1 together with the policy’s parameters

✓ as parameters to be optimized during training. The descriptor set may then be optimized

at least locally.

min
✓,{di}P

i=1

L
✓
⇡✓
�
z, oother

�◆
(5.5)

z = fC
�
fdense
 (oimage), {di}P

i=1

�
(5.6)

We have observed that Descriptor Set Optimization can increase generalization perfor-

mance in some cases over a Fixed Descriptor Set, and introduces minimal additional com-

putational cost and parameters. Specifically, the number of additional parameters will be

P⇥D, and for example we often use P in the range of 16 and D in the range of 10. Interest-

ingly, we observe that the advantage of Descriptor Set Optimization over Fixed Descriptor

Sets is most pronounced when P is small and D is large, i.e., a small number of descriptors

are used, so it especially matters which descriptors are used, and also we hypothesize that

the larger-dimensional descriptors are less prone to local minima than smaller-dimensional

descriptors. With Descriptor Set Optimization we also maintain the ability to leverage pre-

computation in order to significantly speed up visuomotor policy optimization. Unlike with

fixed descriptors where we could precompute zi, we instead now precompute each of the
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putational cost and parameters. Specifically, the number of additional parameters will be
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ingly, we observe that the advantage of Descriptor Set Optimization over Fixed Descriptor

Sets is most pronounced when P is small and D is large, i.e., a small number of descriptors

are used, so it especially matters which descriptors are used, and also we hypothesize that
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5.3.1 Preliminary: Visuomotor Policies

We would like to have a policy at = ⇡✓(o
�t:0
t ), where o�t:0

t = (o�t, o�t+1, o�t+2, ..., o0) is

the full sequence of the robot’s observations during some episode up until time t, and with

each oi 2 O, the robot’s observation space. This sequence of observations is mapped by

⇡✓(·), the robot’s policy parameterized by parameters ✓, to the robot’s actions a, each 2 A,

the robot’s action space. In particular, we are interested in visuomotor policies in which the

observation space critically contains high-dimensional images Oimage ⇢ O, for example

Oimage = RW⇥H⇥C for a C-channel, width W , and height H image. The visual data is

perhaps complemented with additional lower-dimensional measurements Oother, such as

produced from sensors like the robot’s encoders, such that Oother [Oimage = O.

It is common for a visuomotor policy to be factored into the following form, ignoring

the potential sequence-model nature of the model for simplicity:

(visual model portion f ) z = f (oimage) : oimage 2 Oimage, z 2 RZ (5.1)

(policy model portion ⇡✓) a = ⇡✓(z, oother) : oother 2 Oother, z 2 RZ , a 2 A (5.2)

in which a visual model f (·), parameterized by  , processes the high-dimensional oimage

into a much smaller Z-dimensional representation z. The policy model ⇡✓(·) then com-

bines the output of the visual model with other observations oother. This is a practical

modeling choice – images are extremely high dimensional, for example in this work we

use images that live in R640⇥480⇥3 = R921,600, whereas we use Oother of at most R13.

For the vision portion, models such as convolutional networks have been shown by the

computer vision community to succeed on a wide variety of tasks and possess remarkable

inductive bias [118], whereas other model classes work well for processing something in

R13. This factorization of visuomotor policy learning has been shown to be effective – a

wide variety of works have employed a similar architecture consisting of convolutional net-

works extracting features directly from raw images into a, for example, Z = 32 bottleneck

representation of features [35, 74, 117].
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Figure 5-2: Depictions of used methods for evaluating different methods of training the visual portion of
visuomotor policies: (a) qualitative visual feature inspection, (b) supervised learning validation loss for
behavior-cloned policies, and (c) closed loop task success evaluations.

5.5 Experimental

5.5.1 Evaluating Visual Representations for Visuomotor Policy Learn-

ing

We offer three types of analysis of the different visual representations. Since the measure

of a representation’s usefulness should be based on what it is actually used for, we argue

that the last of these methods is ultimately the most important. The others additionally

complement the analysis.

1. Qualitative Visual Feature Inspection. We can qualitatively inspect the features pro-

duced by different visual models to attempt to gain insight. Both the auto-encoder

method and end-to-end method we analyze utilize a spatial expectation operation in

their model architecture – the two methods actually share an identical model archi-

tecture; they are just trained differently. Since the prior works have interpreted the

features at the spatial expectation layer, visualized on top of the image, as identifying

various features in the robot’s environment [39, 119], we can perform this analysis

and compare with our own correspondence method as well. Note that not all inter-

mediate representations are meant to be interpretable as features in image-coordinate
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space, but this is a design choice for these architectures.

2. Supervised Learning Validation Error. In our experimental analysis we learn our

policies through supervised learning (imitation learning), and at least in simulation

we can create the ingredients of a proper supervised learning analysis. By having the

expert use a ground-truth policy for which there is a correct action everywhere in the

state space, we can withhold a validation set of demonstrations by the expert and use

the standard metric of supervised learning: generalization error on the withheld val-

idation set. Note that the expert demonstrator policy may be simply designed using

ground-truth state information in simulation, although the learned policy may only

be provided observations rather than state in order to learn the policy. There are a

couple practical benefits of using a supervised learning validation error metric: (i) it

can be computed very quickly, i.e. less than a few seconds to test our models on the

entire test set, which is much cheaper computationally than deploying trained models

in a closed-loop simulation environment including visual simulation. Additionally,

(ii) it becomes even easier for the research community to reproduce our quantitative

results – the metric is just computed on static data and does not even require a sim-

ulation environment. It is surprising that to our knowledge we do not know of other

works at least in the robotic manipulation imitation learning literature that have used

supervised learning validation error to evaluate models. We do observe, however,

that when comparing trained models, the relative ordering of their performance on

supervised learning validation error does not always match their relative ordering of

their closed-loop performance. At least one reason for this is the non-uniqueness

of policies for accomplishing any given task. Although our ultimate goal is closed-

loop performance, it is interesting to keep in mind that, when performing behavior

cloning, the supervised learning validation error does actually more directly measure

the model’s success at doing what it was asked to do – which is to fit the policy.

3. Closed-Loop Performance on Task Success. Since our ultimate goal is to deploy

closed-loop policies, we also compute metrics of task success based on the final state

of the robot over some finite horizon. This is effectively a reward function, but since
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none of our evaluations use reinforcement learning on this signal, we don’t call it a

reward for clarity. For a given task, the task success metric 𝛾 effectively uses the true

dynamics 𝑓(·), the true state 𝑥, and the true observation function 𝑔(·) (all unknown

to the robot) to compute

𝛾 = 𝛾(𝑥𝑓 ) (5.17)

∀𝑡, �̇�(𝑡) = 𝑓
(︀
𝑥(𝑡), 𝜋(𝑔(𝑥))

)︀
(5.18)

where the task success metric 𝛾(·) is designed for the specific task, and 𝑥𝑓 is the final

state. We allow a finite amount of time for the robot to attempt the task, or terminate

early if the robot reaches the maximum 𝛾.

5.5.2 Simulation Experimentation

We use simulated imitation learning tasks (Fig. 5-3) to compare the generalization perfor-

mance of behavior-cloned policies where the only difference is how the “visual represen-

tation” 𝑧 is acquired. The first two tasks involve reaching to an object whose configuration

varies between trials either in translation only, or rotation as well. An additional two tasks

are pushing tasks, which require feedback due to simulated external disturbances. Expert

demonstrations use simple hand-designed policies using ground truth object state informa-

tion.

The compared methods are:

1. Ground truth 3D points (GT-3D): 𝑧 is ground truth world-frame 3D locations of

points on the object.

2. Ground truth 2D image coordinates (GT-2D): 𝑧 is similar to the previous baseline,

but the points are projected into the camera using the ground truth camera parameters.

3. Autoencoder (AE): 𝑧 is the encoding of a pre-trained autoencoder, similar to the

visual training in [119, 123].

4. End-to-End (E2E): 𝑧 is the intermediate representation from end-to-end training.
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Figure 5-3: RGB images used for visuomotor control in each of the simulation tasks. T=translation,
R=rotation, see Appendix for task descriptions.

This closely resembles the visual training and models in [39, 78], but we do not

also add pose-based losses, in order to investigate end-to-end learning without these

auxiliary losses.

5. Ours, Dense descriptors (DD): 𝑧 is the expected image-space locations (DD-2D) or

3D-space locations (DD-3D) of the descriptor set {𝑑}𝑖, where the visual model was

trained on dense correspondence.

Note that the two vision-based baselines AE and E2E share an identical model architecture

for producing 𝑧, and differ only in the method used to train the parameters. The model

is close to [39, 78, 119] with the key architectural traits of having a few convolutional

layers followed by a channel-wise spatial expectation operation, which has been widely

used [24,122,123,135,142–144]. Most methods we compare (AE, E2E, DD-2D) use only

one RGB camera stream as input to learned policies; DD-3D additionally uses the depth

image. DD methods use descriptor set optimization (Sec. 5.3.2) and use both views for

the correspondence training, before policy training. See the Appendix for additional model

and task details.
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Figure 5-4: Example demonstration, in this case for the shoe flip task, with the robot teleoperated by the
demonstrator.

5.5.3 Real-Hardware Experimentation

Our hardware closely resembles our simulation experimentation. We used a Kuka IIWA

LBR robot with a Schunk WSG 50 parallel jaw gripper. RGBD sensing was provided by

RealSense D415 cameras rigidly mounted offboard the robot and calibrated to the robot’s

coordinate frame. Note that for effective correspondence learning between views, it is

ideal to have views with some overlap such that correspondences exist, but still maintain

different-enough views. Our hardware setup included three available cameras, although in

practice we would choose two of these cameras to log demonstration data for any given

task. Our correspondence training leverages multiple views, but note that, for all trained

and deployed policies, we only used a single monocular RGB camera (using only the color

stream off one of the RealSenses).

We test our method on five different challenging tasks in hardware, each offering a dif-

ferent challenge for the robot. Each of the tasks are human-demonstrated via teleoperation.

These tasks are described in the Appendix.

5.5.4 Imitation Learning Demonstration Modality

While many different works in Learning from Demonstration have employed a wide variety

of demonstration modalities, we opt for the simple method of teleoperating the robot using

a mouse and keyboard, with all of the robot’s degrees of freedom mapped to different keys

and mousing directions. While this does not allow for as dynamic and fluid demonstrations

as with, for example, hand-held 6-DOF tracked controllers as are used for virtual reality
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devices [78], this method was sufficient and involves little engineering overhead. For the

operator to observe the robot and its environment during demonstrations, we simply have

the operator operate "visually", i.e. using their own eyes rather than visualization of the

robot’s sensors. Note that this introduces a difference in the observation space for the

demonstrator and the learner, namely that the robot learner must use its cameras from their

viewpoint(s), whereas the demonstrator uses their human eyes from their viewpoint. Note

that, as is shared with all remote teleoperation methods, our method of demonstration does

not introduce obstructions to the robot’s observation space, as kinesthetic demonstrations

do, and does not present an embodiment correspondence problem as is present in third-

person imitation, for example in [77].

5.6 Results

Our experimentation sought to answer these primary questions: (1) Is it possible to use

self-supervised descriptors as successful input to learned visuomotor policies? (2) How

does visual correspondence learning compare to the benchmarked methods in terms of

enabling effective policy learning, as measured by generalization performance and sample

complexity? We also evaluate (3) the effect of noise augmentation, and (4) whether our

dynamic-scene visual training technique is capable of effective correspondence learning.

Simulation results are detailed in Sec. 5.6.1, hardware results are in Sec. 5.6.2.

5.6.1 Simulation Results

Table 5.1 contains the results of the simulation experiments. Interestingly we find that

our method’s visual representation is capable of enabling policy learning that is remark-

ably close in performance to what can be achieved if the policy has access to ground truth

world state information. In contrast the performances of the end-to-end (E2E) and autoen-

coder (AE) methods vary much more across the different tasks. Since our method benefits

from object mask information during visual training, we also experimented with letting the

autoencoder use this information by applying the reconstruction loss on only the masked

image. Additionally we tried training the autoencoder end-to-end during behavior cloning.
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Reach Reach Push Push
Method / Task T only T + R box plate
Ground truth 3D points 100.0 100.0 100.0 90.5
Ground truth 2D image coord. 94.1 95.6 100.0 92.0
RGB policy input
Autoencoder, frozen 8.1 61.1 31.0 53.0
Autoencoder w/ mask, frozen 16.3 10.0 73.0 67.0
Autoencoder, then End-to-End 40.7 38.9 – 16.0
End-to-End 43.0 32.2 100.0 5.5
End-to-End (34-layer ResNet) – 3.3 – –
DD 2D image coord. (ours) 94.1 97.8 100.0 87.0
RGBD policy input
DD 3D coord. (ours) 100.0 100.0 – 98.0

Table 5.1: Summary of simulation results (success rate, as %). DD = Dense Descriptor. See Appendix for
task success criteria and additional details.

Both of these yield mixed results, depending on the task.

Since the vision network in our method is a 34-layer ResNet, we wanted to see if

the end-to-end method would benefit from using the same, deeper vision backbone. The

deeper network did not improve closed-loop performance (Table 5.1) although it did reduce

behavior-cloning validation error. This suggests the advantage of our method comes from

the correspondence training rather than the model capacity.

The binary success metrics of Table 5.1, however, do not fully convey the methods’

performances. We also experiment with varying the number of demonstrations, and char-

acterize the performance distributions. By plotting the performance for the “Reach, T + R”

task over a projection of the sampled object configurations (Figure 5-5), we learn that the

few failures of our method occur when the box position lies outside the convex hull of the

training data. Interestingly the GT-2D baseline also struggles with similar failure modes,

while the GT-3D method succeeds in more cases outside the convex hull. This suggests

that policies that consume 3D information are better able to extrapolate outside the train-

ing distribution; our DD-3D method also provides better generalization than DD-2D. The

baseline vision-based methods do not generalize as well; for example, the E2E performance

distribution is shown in Figure 5-5. On this task we find that with just 30 demonstrations

our method outperforms both AE and E2E with 200 demonstrations.

The pushing tasks are of particular interest since they demand closed-loop visual feed-

back. Disturbances are applied to the object both while collecting demonstrations and
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30 demonstrations 200 demonstrations
Noise / Method GT-2D DD-2D GT-2D DD-2D
No noise 5.6 1.1 5.6 3.4
With noise 73.3 73.3 95.6 97.8

Table 5.2: Comparison of using our feedback-training noise augmentation technique or not (success rate,
as %) on the “Reach, T + R” task. No noise uses 𝜎𝑖 = 0.0, whereas With noise uses 𝜎translation = 1mm,
𝜎rotation = 1 degree. See Section 5.5.2 for descriptions of GT-2D (ground truth) and DD-2D (our method).

deploying the learned policies. Since the “Push box” task used a dynamic state feedback

controller to provide demonstrations, we find that we need the sequence model (LSTM) for

the policy network to achieve the task, even when the policy has access to ground truth ob-

ject state. On the other hand, the “Push plate” task employed a static feedback controller

to provide demonstrations, and so MLP models that consume only the current observation,

𝜋𝜃𝑝(𝑜𝑡), are sufficient.

Interestingly a variety of methods performed well on the “Push box” task while large

differences were evident in the “Push plate” task. We speculate that this is because higher

precision is required to accurately push the plate as compared to the box. Since the rect-

angular robot finger experiences a patch contact with the box, while only a point contact

with the plate, there is more open loop stability in pushing the box. On the harder “Push

plate” task we found that our DD-2D method performed almost as well as the GT-2D

baseline and significantly outperformed both the AE and E2E approaches, and that DD-3D

improved performance even further.

Additionally we find (Table 5.2) our noise augmentation technique (Sec. 5.4.3) has a

marked effect on task success for behavior-cloned policies. This applies to ground truth

methods and our method, with as few as 30 demonstrations or as many as 200.

More simulation results, including qualitative feature inspection and quantitative com-

parisons, are provided in the Appendix.

5.6.2 Hardware Results

We validate both our visual learning method and its use in imitation learning in the real

world. As in simulation, we only use demonstration data for both visual training and pol-

icy learning; no additional data collection is needed. While the simulation results provide a
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Figure 5-5: Task success distribution plotted over the 2D projection of the varied box configurations for the
“Reach, T + R” task. The color of each point represents the result of deploying the learned policy with the
object at that 𝜃, 𝑦. Specifically the color encodes the distance to target threshold: min(0,−(Δtranslation +
Δrotation) + 𝜖), where 𝜖 is the success threshold. The 𝑥 coordinate is not shown in order to plot in 2D.
Dark blue corresponds to perfect performance on the task with the object in that configuration, red is poor
performance. Note that the color scale cuts off at -2 in order to highlight differences in the range [-2,0]. Each
gray “x” in each subplot represents the configurations of the box in the training set, for either (from top to
bottom) 30, 50, 100, or 200 demonstrations. The dashed gray line shows the convex hull of the respective
training sets.
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Source Targets (overlaid with correspondence heatmap)

Figure 5-6: Learned correspondences from demonstration data, depicted as correspondence heatmaps be-
tween a source pixel (left, with the green reticle) and target scenes (right, with red reticle as best predicted
correspondence).

controlled environment for comparisons, there are a number of additional challenges in our

real world experiments: (i) visual complexity (textures, lighting, backgrounds, clutter), (ii)

use of human demonstrations rather than expert simulation controllers, (iii) real physical

contact, and (iv) imperfect correspondence learning due to noisy depth sensors and calibra-

tion. Our hardware experiments test all of these aspects. All real hardware experiments use

LSTM policy networks, since we suspect our human demonstrators use dynamic internal

state.

Learned Correspondences from Dynamic Scenes

Fig. 5-6 displays visualizations of learned correspondences from demonstration data. The

results show that the learned visual models, despite imperfect depth sensor noise, calibra-

tion, and only time-synchronized image pairs, are capable of identifying correspondences

across a class of objects, for an object in different deformable configurations, and for ob-

jects in a diversity of backgrounds. Figure 5-7 displays class-general correspondences for

a particularly challenging instance with large shape variation.
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Source Target (heatmap)                     (image)

Train

Test

Figure 5-7: Learned correspondences (left) between a standard-sized shoe and an extra-tall boot. A small
amount of movement near the top of the ankle on the shoe (far left) corresponds to a “stretched-out” move-
ment on the boot (right). Images cropped for visualization. Also shown are shoe train and test instances (far
right).

Real-World Visuomotor Policies

Figure 5-8 displays examples of autonomous hardware results, and Table 5.3 provides a

quantitative overview. To highlight a few results, several of the tasks achieve over 95%

reliability, including the “Push sugar box” task with and without disturbances, and the

“Flip shoe, single instance” and “Push-then-grab plate” tasks without disturbances. Each

of the different tasks present significant challenges, best appreciated in our video. Several

of the tasks include non-prehensile manipulation, including pushing the box and plate, and

flipping the shoes. In the “Pick-then-hang hat on rack” task, the robot autonomously reacts

to the deformable configuration of the hat after disturbances. The “Push-then-grab plate”

task as well is highly challenging given the visual clutter, the symmetry and lack of visual

texture for the object, and requires using “extrinsic dexterity” [145] via the wood block to

enable sliding the gripper into position to grasp the plate.

5.7 Conclusion

Our experiments have shown self-supervised correspondence training to enable efficient

policy learning in the real world, and our simulated imitation learning comparisons em-
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Figure 5-8: Depictions of the five demonstrated hardware tasks.
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Trained Without disturbances With disturbances Demonstration data
Success with manual # # # # # time

Task criterion disturbances attempts success % attempts success % total (min.)
Push sugar box is < 3 cm yes 6 6 100.0 70 68 97.1 51 13.9
box from finish line
Flip shoe, shoe is no 43 42 97.7 40 35 87.5 50 6.5
single instance upright
Flip shoe,
class-general
previously seen shoe is no 43 38 88.4 – – – 146 17.5
shoes (14) upright
novel shoe is no 22 17 77.3 – – – 146 17.5
shoes (12) upright
Pick-then-hang hat is yes 50 42 84.0 41 28 68.3 52 11.5
hat on rack on the rack
Push-then- plate is yes 22 21 95.5 27 22 81.5 94 27.4
grab plate off the table
Total 186 178

Table 5.3: Summary of task attempts and success rates for hardware validation experiments. Autonomous
re-tries are counted as successes.

pirically suggest that our method outperforms two vision-based baselines in terms of gen-

eralization and sample complexity. While different hyperparameters, model architectures,

and other changes to the baselines may increase their performance, our method is already

near the upper bound of what can be expected in the used experimental setting: it achieves

results comparable to baselines using ground truth information. One reason our approach

may outperform the vision-based baselines is that it additionally uses a fundamentally dif-

ferent source of supervision, provided by visual correspondence training. Since our ap-

proach is self-supervised, it does not entail additional human supervision.

Dense descriptor learning has shown to be an exciting route for improving visuomotor

policy learning. While this has enabled the variety of tasks shown, there are many that are

out of scope. One current limitation is that our visual representation does not explicitly

address simultaneously viewing multiple object instances of the same class. Future work

could, similar to the visual pipeline in [82], combine both instance-level segmentation with

intra-instance visual representations. Additionally, returning to the cooking eggs example

in the Introduction, it is interesting to consider using spatial correspondence as part, but not

the entirety, of the visual representation of the world.
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Chapter 6

Conclusion

In this thesis, we have investigated a variety of directions related to self-supervised robot

learning and manipulation. In this conclusion we will synthesize what we have learned

from each of these different directions, compare them, and propose future directions.

With LabelFusion, we demonstrated a way of leveraging multi-view geometry and an

intuitive human interface to act as a large multiplying factor on the value of information

provided by humans in training artificial perception. In hindsight, and in comparison with

other more recent work, it has become even more clear how to evaluate its unique benefits

and limitations. The primary benefits are in the particular value of the ground-truth data it

is able to provide, and the mix of both accuracy, flexibility, ease-of-use, and scalability that

is provided. The value of the ground truth data provided by LabelFusion is important to

appreciate, and it is a type of value that is not present in the same way in, for example, the

Dense Object Nets approach. In particular, when the perception system seeks to estimate

a pose and pixelwise instance labels, then we believe there exists ground truth data which

is uniquely correct – there is one right answer for each of these representations of the data.

Additionally, these outputs of the automated system are also the “final answer” that percep-

tion systems can either be tested against, trained on, or both. This is in contrast with, for

example, Dense Object Nets, in which although the self-supervised underlying pixelwise

correspondences are uniquely correct, the final representation that is acquired and used (the

dense descriptor representation) has no unique answer. While determining the 6DOF pose

of an object is inherently an arbitrary process (what should be the correct origin frame of
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my shoe?), deciding an arbitrary one via a single canonical 3D mesh model does make the

problem well-defined such that there is a single correct answer. There is some practical ad-

ditional benefit in that LabelFusion produces standard, widely-used representations (6DOF

pose and pixelwise labels), which enables immediate widespread usability by the research

community. An additional benefit to appreciate for LabelFusion is that the quality of the

data produced can be highly accurate. The generated ground truth data will be accurate

within the margin of error of what is acceptable to the human labeler and the error of the

dense 3D reconstruction.

While LabelFusion is not fully self-supervised, there are some types of information

that are perhaps best for a human to efficiently provide, rather than the robot to fully self-

supervise on its own – for example, the semantic class of an object. The goal, however,

should be for a robot to take small pieces of efficiently provided information ("this is a

shoe") and be able to learn as much as possible about its world from involving that piece of

information in the rest of its autonomously-acquired world model. In this case, the dense

3D reconstruction of the world, and each of the camera poses, are autonomously acquired

via dense visual SLAM, and this enables taking the human-provided information ("this is

an initial guess pose of the object in world frame"), refining it with local optimization, and

associating the result with each individual image. As was included in analysis in our paper’s

supplementary information, we showed that using LabelFusion provided an approximate

increase in efficiency of about four orders of magnitude (10,000x) compared to traditional

single-image polygon-based labeling. This impressive number, however, must be partially

tempered since we also showed in analysis that using thousands of nearby views of a single

static scene has diminishing returns – in particular, with data from a slow-moving camera

(average 0.03 𝑚/𝑠) within the workspace of a single 7-DOF arm with 1.8 𝑚3 working en-

velope volume (Kuka IIWA LBR) we observe diminishing returns in trained segmentation

network performance using more than a few hundred views of a scene, whereas for data

from a faster human-carried camera (typically 0.05-0.17 𝑚/𝑠) we do observe incremental

value in using 1,000 rather than 100 views of a scene. Even after adjusting for subsampling

the generated data by one or two orders of magnitude, LabelFusion is still 2-3 orders of

magnitude (100x-1,000x) faster than a traditional single-image labeling technique.

108



The primary limitations of LabelFusion, on the other hand, are simply stated: (1) the

method only works for rigid objects with no easy way to extend to deformable objects, (2)

acquiring full, watertight 3D object meshes can be time-consuming, and (3) it is not fully

self-supervised, requiring human initialization of 3D object poses.

With Dense Object Nets, however, the advantages of moving away from rigid 6DOF

poses became readily apparent. By opting for dense descriptor representations of objects

rather than 6DOF object poses, and an associated self-supervised learning scheme, we

directly address the primary limitations of LabelFusion: we can (i) handle both deformable

and rigid objects, (ii) not require complete watertight 3D object meshes, and (iii) require no

human in the annotation process for instead a fully self-supervised pipeline. In hindsight

after presenting this work to the research community, I believe there are a few elements that

resonate well with current researchers in robotics. The primary conceptual contribution is

easily understood and widely applicable – we can use dense visual object descriptors as a

way to think about manipulation problems. It is a rich intermediate representation and one

that may be useful for many types of tasks.

It also has resonated well that our learning process is “sample efficient”, in particular in

terms of the amount of time that is needed to interact with an object (only about 5 minutes)

and then train (only about 15 minutes on a single consumer-grade GPU). Sample efficiency

is a key concern of many current learning-based approaches particularly in robotics, both

in supervised learning where thousands of human-labeled samples are often required, and

in model-free reinforcement learning where the need is for tens of thousands of episodes

with reward signals, which may be hard to attain for a real robot and there are challenges

in transferring from simulation. A beautiful aspect of training with dense descriptors is

that, in addition to them being self-supervised with no human involvement, there is also an

enormous amount of individual pieces of information when the labeling happens densely.

To contrast, labeling a semantic class of one image patch provides one piece of information.

While it is easy to acquire a partial 3D mesh of an object in one configuration, one must be careful in
combining multiple scans (for example, to cover the bottom of the object), although other work has shown
how to automate this [146].

The original idea for the paper was actually to let global 6DOF registration algorithms solve the initial-
ization process entirely, removing the need for humans to initialize poses. Although we found current global
registration methods to not be robust enough in practice, potentially in future they will be, and potentially
due to training on data generated from pipelines like LabelFusion.
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On the other hand with dense correpondence training, even just from a single scene, if we

take N views, there are 𝒪(𝑁2) pairs of images for which each step of training we take

one pair and provide millions of match/not-a-match labels. In total, for images that are

𝑊 × 𝐻 pixels, there are (𝑊𝐻)(𝑊𝐻−1)(𝑁)(𝑁−1)
4

non-match pixel pairs, which for standard

parameters from our work is 3.8× 1015 constraints for the visual system, from just a single

scene and with no human involvement needed. It is a very rich world to live in for visual

robots when labeling is both dense and self-supervised. Other work such as self-supervising

video prediction of robots interacting with objects [18, 19] also has these two properties of

being (i) self-supervised and (ii) dense and therefore an enormous amount of individual

labels.

The amount of self-supervision is genuinely satisfying, and there is scalability in the

promise of “put any object in front of the robot, and it can autonomously learn this represen-

tation”. It’s insightful to contrast the satisfaction of human-independent, fully-autonomous

learning with our LabelFusion work: even though we were able to efficiently generate over

1 million labeled object instances with just a handful of hours of labeling data, it was still

an excruciatingly boring handful of hours of labeling. The two of us authors that did the

labeling unanimously felt that we never wanted to have human labeling be a part of a sys-

tem again. In contrast, with Dense Object Nets the more scalable, no-human-involvement

makes it seem more of a viable component of the long-term “right answer” for robot manip-

ulation. It is both a representation that is autonomously acquirable, but also the representa-

tion is sufficiently flexible to handle deformable objects, and also tends to find consistency

across entire classes of objects, which is encouraging in terms of its scalability to a wide

set of manipulation problems.

The dense descriptor representation of objects for manipulation, however, has the con-

trast with 6DOF poses and pixelwise class labels (as from LabelFusion) in that there is no

unique answer for the representation. Like with anything trained in a metric-learning style,

the absolute value of any feature does not matter, instead it is only the pairwise relationships

between features that matter. This has the disadvantage that, to the extent systems are built

on top of using the dense descriptor intermediate representation, they are dependent on a

𝑊 = 640, 𝐻 = 480, 𝑁 = 400
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feature space that has arbitrary absolute answers. Despite there being no unique answer

for the representation, however, it can easily be evaluated for its correctness. It is simple

to withhold autonomously-acquired training data as test data and use various quantitative

metrics to measure the performance of the dense correspodences between two different

views of the same scene. As we also do in the paper, it is also easy to provide a small

amount of human labeling (only for evaluation, not for training) on the type of cross-scene

and cross-instance correspondences for which we have no way of autonomously acquiring

ground-truth labels.

Another consideration that is a limitation of our self-supervised learning method is

that there is no guarantee that consistency between different configurations of the object

and across the class of objects will arise. The best answer we still have at this point is

that although we cannot guarantee consistency will arise, it is easy to check whether or

not it happens. There is a difference though between how these two types of consistency

(configuration-consistency and class-consistency) may be addressed. For dense correspon-

dence across configurations, this type of training data is acquirable via any method that

does non-rigid dynamic reconstruction, as was done in prior work [16], but has challenges

in deploying for an autonomous system. For dense correspondence across the semantic

class, however, it does not seem possible to guarantee that class consistency will happen

in any self-supervised fashion. The counter example would be with certain types of ad-

versarial objects: a shoe could be designed that has an optical illusion such that it looks

upside-down when it is right-side up. Another direction would be to involve additional in-

formation that could help with class-wide consistency – we could incorporate other sources

of information such as observing objects in use by humans: "I know this is the toe of the

shoe because the human just put its foot in it this way". This is left, however, to other

researchers to pursue.

One question that I often get is whether it makes sense to have descriptor-learning be

associated with classes of objects, or whether we should just instead learn “descriptors-

for-everything”. Is there any value in training descriptors one class at a time? Although

further experimentation would be needed, I have hypotheses of why class information may

help: by providing the additional information that objects are the same member of a class,
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this may encourage generalization that is more meaningful. Alternatively, if just training

descriptors simultaneously on everything in the world, they may end up generalizing just

across “yellow rectangular things”, rather than generalizing differently across books that

happen to be yellow, and cereal boxes that happen to be yellow. It is useful to keep in mind

that in the visual correspondence training methods presented in this thesis, the learners do

not have access to the broad context and world knowledge that we as humans do. Instead,

the learner is just looking at a bunch of pixels and trying to minimize a loss function that

has only to do with correspondence. Future work may investigate learning very large-scale

descriptor training across many classes of objects, and test whether there are benefits of

including class-identify information and how descriptors fare on entire classes that have

not been seen before. (For example, a model that has trained descriptors on cats, dogs,

foxes, wolves, etc., but hasn’t seen a hyena before.)

There is also the ability, although it does not have to be associated with class-generality,

of changing the contract of what descriptors are chosen to signify. Typically in computer

vision, whether stated or not, we assume that a pixel’s descriptor should signify something

about the first intersection of that pixel’s camera ray with the solid geometry of the world

– the first thing that ray hits. This contract for a descriptor inherently will not address

occlusions. If an object is partially occluded by another object, then the occluding object

should overtake that descriptor’s value. By instead choosing descriptors to correspond to

something about the class, the contract may be changed – the descriptor can correspond

to the first ray intersection with an object of the class, rather than just any object. This

naturally allows inference through partial occlusions of objects in the class. There may be

other benefits to this line of thinking as well.

Finally, with our imitation learning work, we demonstrated that there is indeed a signifi-

cant benefit of using correspondence self-supervision in order to learn visuomotor policies.

This has been an exciting discovery, and to be honest, I have been fully surprised with how

well the robot learns to perform the manipulation tasks with such a limited amount of data.

I believe there is certainly an exciting future ahead for self-supervision and policy learning.

In terms of limitations with the presented visuomotor policy learning approach and

specific used imitation learning methods in Chapter 5, there are several. As mentioned
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in the chapter, the current visual approach does not handle multiple instances of the class

at the same time. While instance segmentation could address this, it is not obvious this

would be sufficiently robust, nor is it obvious this is actually the best route forward. Also

as mentioned in the chapter, spatial correspondence simply does not constitute a sufficient

state space for some tasks (with cooking eggs as a simple example). Several other obvious

limitations are with the behavior cloning strategy that was employed. For one, there is no

ability to perform better than the demonstrator. There is also not a great way to use data

from anything that is not a successful demonstration. These limitations, however, pertain

to behavior cloning in general, and this was not the focus of our work but rather used as a

tool to evaluate different visual training strategies.

There are a handful of logical next steps for research to pursue. An inevitably primary

one must be thinking about the high-level decision-making at the level above small, short-

horizon tasks. Something like an LSTM running a real-time control loop has been shown

to be an effective way to produce surprisingly robust skills for challenging short-horizon

tasks. For longer-horizon tasks and handling multi-task requests, should the robot’s policy

be just one big LSTM or comparable model? Or should there be more structure in how

different single-task policies are composed? Additionally, there may be many ways to

further leverage the visual training methods with policy learning methods that may benefit

from non-demonstration data and improve with experience.
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Appendix A

A.1 Policy Models and Training

For MLP models, we train on only current-observation-to-current-action mappings, i.e.

𝑎𝑡 = 𝜋(𝑜𝑡). Although several works use a history of low-dimensional robot observations

with MLP models [39, 78], we have found LSTMs to be more effective when using a

history of observations. With supervised learning validation loss on our simulation tasks

as our guiding metric, we performed a significant amount of model tuning. We have found

that the general hyperparameters of MLP models used in prior works in visuomotor policy

learning [39] are indeed good model choices – at least, we did not find any significant

changes that significantly improved model performance. The basic architecture consists

of a 2-hidden-layer model with ReLu unit activations – in all shown experiments we use

128 units in each of the hidden layers. Interestingly, we found significant reduction of

performance in moving from 2 to 3 hidden layers. We also found Dropout to be effective at

reducing overfitting and we use a dropout probability of 0.2. Training of MLP models was

performed with the RMSProp optimizer, with 𝛼 = 0.9. We found RMSProp to give better

validation error than two other optimizers we tried, Adam and SGD-with-momentum. An

advantage of using MLP models, when applicable for tasks, is that we can train them much

more quickly than the LSTM models – for a model using ground-truth simulated data (no

vision), our MLP models train in approximately 15 minutes, compared with over an hour

for the LSTM models. We trained all MLP models for 75,000 steps with a batch size of 16

observation-action pairs, starting at a learning rate of 1𝑒 − 4, and decaying by a factor of

0.5 every 10,000 steps.
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For LSTM models, we train within each demonstration trajectory on the observation-

history-to-current-action mappings, i.e. 𝑎𝑡 = 𝜋(𝑜−𝑡:0𝑡 ). LSTM models have been validated

for example in [125] to be effective for visuomotor robot policy learning. We also per-

formed significant tuning of the LSTM models, using supervised learning test loss as our

guiding metric. We arrived at a model architecture similar to [125] with a couple differ-

ences. For one, we use only one layer of LSTM, and did not find advantages of using

multiple-LSTM-layers at least on our datasets. We also preprocess the input to the LSTM

with a 2-hidden-layers of MLP. The architecture we settled on for all presented results uses

two 100-ReLu-unit MLP layers followed by one 100-unit LSTM layer. We found Layer

Normalization [147] on the activations coming into the LSTM to indeed improve gener-

alization performance. All LSTM models were trained with RMSProp for 200,000 steps,

each step optimizing via truncated backpropagation with maximum 50 steps, and with a

learning rate starting at 2.0𝑒 − 3 and decaying by a factor of 0.75 every 40,000 steps. To

aid in stabilizing training, we clip gradient norms as suggested in [148], in our case to have

a maximum magnitude of 1.0.

For policy learning we also found, as is standard in machine learning, that normalizing

inputs provided significant model performance increase. We performed this both for the

MLP and LSTM models, normalizing each observation dimension to have 0-mean and

unit-variance. Even when performing Descriptor Set Optimization, we can first normalize

the correspondence point space based on the initialization of the descriptor set.

While [125] advocated for multi-modal policy prediction in visuomotor policies, and

we agree this is a philosophically desirable property, we did not find our implementation

of a Mixture-Density-Network-based multi-modal policy prediction to provide advantage

over direct regression of the policy, at least on our tested tasks in simulation. None of our

tasks, however, presented any obvious significant needs for multi-modal policy prediction,

although other tasks might (i.e. "grab this symmetrical object from either the left or the

right").

The loss function requires a choice of weighting between three components in the action

space that, since they are in different units, are not obvious how to weight: translation,
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rotational, and gripper components. We can represent the weighting in the loss function as

ℒ(·) = 𝜆𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛ℒ𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(·) + 𝜆𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛ℒ𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛(·) + 𝜆𝑔𝑟𝑖𝑝𝑝𝑒𝑟ℒ𝑔𝑟𝑖𝑝𝑝𝑒𝑟(·)

where the overall loss is the sum of losses that operate on only either the end-effector

translational, end-effector rotational, or (one-degree-of-freedom) gripper. With these three

components respectively in the units of meters, radians, and meters, we found 𝜆𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 =

1.0, 𝜆𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 0.1, 𝜆𝑔𝑟𝑖𝑝𝑝𝑒𝑟 = 1.0 to give good performance.

A.2 Vision Networks

Both “AE” and “E2E” methods used an identical architecture, with the only difference

being the additional decoder used for the AE method during autoencoding. The network is

almost exactly as in [39] and [119], but we provided a full-width image, 320 × 240. We

used 16 2D feature points. “DD” architecture is identical to [1]. DD-2D computes image-

space spatial expectation, DD-3D computes 3D-space spatial expectation using the depth

image, see Chapter 4 for details; both used 16 descriptors. The “E2E (34-layer)” network

is exactly the DD architecture but with 𝐷 = 16 and channel-wise 2D spatial softmax to

obtain 𝑧.

A.3 Simulation Tasks

Our simulation environment was configured to well match our real hardware experimenta-

tion. Using Drake [150], we simulate the 7-DOF robot, the gripper, and environment dy-

namics, and multi-view RGBD sensing of the robot’s workspace. In simulation we use two

cameras mounted at a downwards angle towards the table, in a mounting position similar to

our hardware experiments. In our simulation tasks we use simple ground truth controllers

as the expert demonstrators, which we can design based on ground truth knowledge of the

object pose in simulation. Our used simulated tasks are:

Task: “Reach, translation only.” Our first task is a simulated reaching task, where the
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position of the object (a sugar box) is varied only in 2D translation on the table top. The

robot begins at a nominal pose centered above the table and must translate in 3D towards

the box. The non-vision observation 𝑜robot for this task is only the 3D position of the

end-effector. No rotation is observed nor included in the action space. The ground truth

controller for this task simply takes in measured end-effector pose, and a target pose, which

is defined relative to the ground truth object pose. At the simulated image rate (30 Hz),

the ground truth controller sets the desired end-effector position 1 𝑐𝑚 closer to the target

than its current position. The varying environment configuration for this task is defined by

only the object pose, and is sampled from a truncated gaussian with diagonal covariance,

𝜎𝑥 = 0.05, 𝜎𝑦 = 0.1 and truncated by rejection sampling to be within a rectangle that fits in

the robot’s workspace, specifically in the range [[0.6, 0.7], [−0.2, 0.2]] meters respectively

for 𝑥 and 𝑦. Additionally we reject any positions for which the box is not fully visible by the

used camera, which includes a small corner of this region. Samples from this distribution

can be seen in Figure A-4.

Task: “Reach, with translation and rotation.” Our second task is similar to the first task,

except we also include rotations. In addition to sampling the box 𝑥 and 𝑦 position from the

same truncated gaussian inside the robot’s field of view, we also sample the box’s rotation,

𝜃 from a uniform distribution [−30, 30] in degrees. Samples from a projection of this

distribution can be seen in Figure 5-5. Rotations are also added to the robot’s observation

space (using the full end-effector observation space described previously), and to the action

space. The ground truth controller accordingly interpolates between the full measured end-

effector pose and the rotation of the target pose, which is the same relative to the object as

in the last task but now includes the rotation.

Task: “Push box.” Our third task necessitates the need for feedback, and also involves

complex frictional contacts. This task is a pusher-slider system [151] in which we con-

strain the robot’s movement to be in the 𝑥𝑦 plane above the table. The goal of the ground

truth controller is push the box across the table in 𝑦, without any specified goal in 𝑥. We

hand-designed the ground truth controller based on a simple state machine. To necessi-

tate feedback in this task, we add random disturbances to the box such that it rotates –

this simulates a similar effect as if the box was sliding on an imperfect frictional surface.
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The initial box position is sampled over rotation (uniform [-30,30] in degrees) and a small

translational region (10 𝑐𝑚 × 4 𝑐𝑚) on one side of the table.

Task: “Push plate.” Our fourth task is similar to the box-pushing task, but with a few

critical differences. For one, the object is circular, and pushing this object yields less open-

loop stability than pushing a box, as discussed in Chapter 5. Additionally, the object is

fully symmetric rotationally. Another difference is that the ground truth controller pushes

the plate to a specific 𝑥, 𝑦 location, rather than just to a line in 𝑦 as in the box task. Like the

box-pushing task, we provide disturbances both during training and during evaluations.

In the first two tasks we use the left camera to train policies, although either could have

been used. In the second two tasks, we use the right camera to train policies, since there

is significant occlusion for the left camera in both of these tasks. In all tasks both cameras

were used for correspondence training.

A.4 Additional Simulation Results

Qualitative Visual Feature Inspection

Inspecting the features learned by the different vision-based methods, we observe that both

the spatial autoencoder and end-to-end methods are able to produce features that appear to

track consistent locations on or near the object (Figure A-1). Note that not always may we

interpret features superimposed on top of the image, but due to the spatial softmax archi-

tectures used for these methods, the interpretation is that for at least some of the features

they will identify features in the image [39, 119]. While some features appear to be related

to the object location, many other features do not. The end-to-end method can produce

stable features during the robot’s hand movement across the image, but since the spatial

autoencoder must be able to use the bottleneck representation to reconstruct different im-

ages, the features will move in response to any movement in the image, for example from

the hand. Our method using a descriptor set of Dense Descriptors, since it is trained to

perform correspondence for the object, will track consistent locations on the object.
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(a) Spatial Autoencoder (b) End-to-End

(c) Dense Descriptor Set

Figure A-1: Feature visualizations of the different methods. For (a) the spatial autoencoder, the orange
feature on the box appears to identify the box location, as shown in two different images. Similarly for the
end-to-end method, the blue feature near the left corner of the box appears to identify the box location. For
the Dense Descriptor method, a set of predicted locations is shown in a reference image (left) and a target
image (right), for an example descriptor set of nine descriptors. In the middle is shown the heatmaps of
correspondences for these descriptors.

Additional Quantitative Results

On this task, we observe that our proposed method using Dense Descriptors nearly matches

the performance of the ground truth methods and provides better performance than the two

benchmarked vision-based alternatives. In this case the ordering between the 5 bench-

marked options is essentially consistent between both the supervised learning validation

loss, and with the closed-loop task success metric 𝛾𝑝. Although it is difficult to interpret

how meaningful the scale of the differences are with the supervised learning validation

loss, they are more tangible for the task success metric. In this case 𝛾𝑝 measures the dis-

tance between the ground truth target location and the final end effector pose – specifically,

𝛾𝑝 = min(||𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒𝑛𝑑−𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟|| + 𝜖, 0) in 𝑐𝑚, where we allowed an 𝜖 of 1.2 𝑐𝑚. All

methods for this task were trained on 200 demonstrations of the ground truth controller.
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Figure A-3: Distribution of the task success metric 𝛾𝑝 on the “Reach, translation only” task for the different
bechmarked methods.
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Figure A-2: Comparison of train and validation loss for the different visuomotor models trained on the
“Reach, translation only” task. For clearer visualization, the training loss has been smoothed with a simple
exponential filter, with 𝛼 = 0.9. The unsmoothed data is plotted semi-transparently.

The ground truth 3D world state estimate, as would be reasonably expected, provides

the best ability to learn effective policies. The validation error is notably lowest for this

baseline (Figure A-2), and in closed loop performs perfectly on our metric 𝛾𝑝, terminating

within 𝜖 of the target on 100% of tested object locations (Figure A-3). For the baseline

where this ground truth 3D point is projected into the camera and provided as an image-

space coordinate, there is a small drop in generalization performance – 94% of tested object

locations terminate within 𝜖 (Figure A-3). As can be seen in Figure A-4, the locations

that are imperfectly generalized are in the corner of the distribution, where there were no

training examples (which are displayed with gray “x”s overlaid in the plot). Our method

using Dense Descriptors provides nearly identical performance as if the policy learning was
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Figure A-4: Spatial distribution of task success metric 𝛾𝑝 on the “Reach, translation only” task for the
different bechmarked methods. Each colored point displays the 𝛾𝑝 for deploying the trained policy with the
object at that 𝑥, 𝑦 location. The 200 training examples are overlaid as gray “x”s. The bottom right corner of
this distribution shows where we did not use points that were outside of the used camera’s field of view.

provided the ground truth image coordinate – the validation loss is slightly larger (Figure

A-2), while the closed-loop performance is essentially identical, with also 94% of tested

object locations terminating within 𝜖 of the goal (Figure A-3). More specifically, Figure A-4

shows that the same object locations that were imperfectly generalized for the ground truth

image coordinate baseline are the same locations imperfectly generalized for the Dense

Descriptors.

For the vision-based baselines, end-to-end optimization performs notably well, with

every tested object location terminating within 1 𝑐𝑚 of the 𝜖 ball around the target location

(Figure A-3). The performance is not as high, however, as the Dense Descriptors method,

with only 43% of tested locations terminating inside 𝜖 of the target. In terms of the spatial

distribution of its performance (Figure A-4), the End-to-End method oddly has a region of

measurably worse performance in the center of the training distribution, while performing

better on some of the edges. We were not able to train policies as effectively using the

frozen autoencoder visual features – the average test terminated over 1.2 𝑐𝑚 outside the 𝜖

ball, with a large fraction of the distribution being several 𝑐𝑚 outside (Figure A-3). Since

the End-to-End method provided a much more competitive baseline to our method, we

focus on the comparison with End-to-End in our subsequent evaluations.

“Reach, translation and rotation”. On the task involving rotations as well the relative
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Figure A-5: Comparison of train and validation loss on the “Reach, translation and rotation” task for a sample
complexity sweep with {30, 50, 100, 200} demonstrations for each of the different four most competitive
methods.

ordering of the methods’ performances are similar, although there is a notable decrease in

performance for the End-to-End method in addressing rotation, whereas the Dense Descrip-

tor method and unsurprisingly the ground truth methods do not struggle to handle rotation.

Compared with the shown results for the “Reach, translation only” task, when training on

rotations as well and also with 200 demonstrations there is a more pronounced difference

for the End-to-End method compared to the others, both measured by supervised learning

validation loss (Figure A-5, see for 200 demonstrations) and in closed loop performance

(Figure A-6, see for 200 demonstrations). The metric 𝛾𝑇 for this task now also includes a

rotational component such that 𝛾𝑇 = min(||𝑝𝑡𝑎𝑟𝑔𝑒𝑡−𝑝𝑒𝑛𝑑−𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟||+𝜆𝑟(∆𝛼)+𝜖, 0), where

𝜆𝑟 scales between translation and rotation, and ∆𝛼 is the angle difference between the tar-

get and end-effector rotations. On this task we also perform a sample complexity sweep,

training the methods on either 30, 50, 100, or 200 demonstrations and testing their gener-

alization performance. All evaluations used the same test locations for generalization tests,

regardless of how many demonstrations were used. In Figure 5-5 the distribution samples

in the different training sets can be seen by comparing the gray “x”s for (top to bottom)

30, 50, 100, and 200 demonstrations. The training sets used monotonically increasing data,
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Figure A-6: Comparison of the distribution of task success metric outcomes (rewards) for 30, 50, 100, or
200 demonstrations for the different tested methods.

i.e. the 100-demonstration dataset contained all of the logs in the 50-demonstration dataset

plus an additional 50, etc.

The sample complexity sweep shows that, as measured both by supervised learning val-

idation error and by the closed-loop task success metric 𝛾𝑇 , that using Dense Descriptors

we are able to train on only 30 demonstrations and achieve better generalization perfor-

mance than using End-to-End with 200 demonsrations. Figure 5-5 displays the spatial dis-

tribution of 𝛾𝑇 for the tested methods. Again we observe a remarkable similarity between

using the Dense Descriptors and using the ground truth image-space 2D coordinates. When

observing the convex hull of the used training examples for each of the {30, 50, 100, 200}
demonstrations, we see that for the most part Dense Descriptors, like the ground truth

image-space coordinates, can enable policy learning that generalizes well inside the convex

hull of the training examples. Both Dense Descriptors and the ground truth image coordi-

nate methods struggle to perform extrapolation outside of the convex hull. Interestingly the

ground truth 3D coordinates enable much better extrapolation.

A critical question, however, is to investigate whether the differences in results are re-

lated to (a) the training method, or (b) the model complexity. In particular, the presented

dense visual correspondence models use a 34-layer convolutional architecture with 21 mil-

lion parameters. In contrast, the visual baselines have used only 3-layer convolutional

architectures, with approximately 3 orders of magnitude less parameters, at 86,000. To

test whether the differences in results are due to (a) or (b), we took the exact architec-
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Figure A-7: Comparison, including a 34-layer End-to-End-trained model, of train and validation loss for the
different visuomotor models trained on the “Reach, translation and rotation” task. For clearer visualization,
the training loss has been smoothed with a simple exponential filter, with 𝛼 = 0.9. The unsmoothed data is
plotted semi-transparently.

ture (34-layer ResNet) used for the Dense Descriptor method, and chose a 𝐷 = 16 final

full-resolution output channel depth upon which a 2D spatial expectation was computed to

produce a 𝑍 = 32 representation 𝑧. This is essentially a > 10x deeper version of the End-

to-End and Spatial Autoencoder architectures. We trained this 34-layer ResNet end-to-end

for 22.5 hours (54x longer than our method) and found that there was a small advantage in

validation loss over the smaller end-to-end architecture, but not comparable to the Dense

Descriptors method using correspondence training (Figure A-7). This suggests it is (a)

correspondence training, and not the deeper architecture, which provides the advantage.

A.5 Hardware Tasks

Task: “Push sugar box.” This task is similar to our simulated pushing task, and the goal

is to push the box across the table to a finish line. Rather than use a ground truth controller

as done in simulation, however, instead the human demonstrator follows a similar strategy

as the simulated ground truth controller. The robot’s motion is constrained to the 𝑥𝑦 plane

above the table in this task, and to make the system more unstable and hence require more

feedback, we leave the gripper closed such that there is a small area of contact. Note

that it would be much easier for this task to use the fingers in a widespread configuration.

The initial configuration for the box used during the demonstrations is similar to the used
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distribution in the simulated task. In this task, in a large fraction of demonstrations a human

intervenes with a toy gripper and provides disturbances to the box. This puts reacting to

disturbances in the training set.

Task: “Flip shoe, one instance.” This task is similar to our used flipping task in simula-

tion. The goal for this task is to dynamically flip the shoe upright. A single shoe is used,

and it is placed on the table such that the only variation is its two-dimensional translation

on the table top and rotation along one degree of freedom (approximately in the range of

+/- 30 degrees). The shoe always starts on the same side. We do not provide disturbances

during demonstrations of this task.

Task: “Flip shoe, class-general.” This task tests the ability of the learned policies to gen-

eralize across a class of objects with some shape and appearance variation among instances

of the class. The task is similar to the previous task, except rather than use only one shoe,

we demonstrate shoe flips with a training set of 14 shoes.

Task: “Pick-then-hang hat on rack." This task tests the ability of our method to handle

deformable objects. The goal of this task is to grab a hat and place it on a short rack on

the table. To add to the challenge, in the demonstrations we grab the hat near the bill,

such that the rear of the hat will be able to sufficiently deform relative to the rigid grasp of

the hat, and hence test our ability to react to meaningful deformable configuration changes

of the object. During demonstrations of this task, disturbances are provided to the hat’s

deformable configuration.

Task: “Push-then-grab plate." This task presents several unique challenges compared

to the other tasks. Part of the challenges are visual: for one, the object is rotationally

symmetric, textureless, and glossy, and in this task we provide demonstrations with a wide

variety of backgrounds and clutter. The robot must first reach for the plate, and then push

the plate across the table. Due to physical clutter on the table, the robot must react to how

clutter affects the trajectory of the plate. The final portion of the task involves contact-rich

manipulation with complicated frictional contacts to grab the plate. The robot pushes the

plate up against a wall, lifts one edge of the plate against the wall, slides into a grasping
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position, grasps the plate, and then lifts. This task is inspired from a recent demonstration1

using a robust feedback controller synthesized specifically for this task.

1Toyota Research Institute, "Introducing TRI Manipulation for Human-Assist Robots”,
https://youtu.be/LgaFkWCtSGU?t=56
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