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Abstract

We present a method for robust high-speed quadrotor ŕight through unknown clut-
tered environments using integrated perception and control. Motivated by experi-
ments in which the diiculty of accurate state estimation was a primary limitation
on speed, our method forgoes maintaining a map in favor of using only instantaneous
depth information in the local frame. This provides robustness in the presence of
signiőcant state estimate uncertainty. We compare the method against a benchmark
approach using a simulated quadrotor race through a forest at high speeds in the
presence of increasing state estimate noise. We then present hardware validation
experiments in both indoor and outdoor environments, performing robust obstacle
avoidance at speeds of up to 10 m/s, including sustained ŕight through a forest at
6 m/s. Finally, we add to the memoryless method, and develop a robust obstacle
avoidance approach that uses memory without resorting to a maximum-likelihood
mapping framework.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science
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Preface

This work is organized in őve chapters. Chapter 1 introduces the work, states the

contributions, discusses the motivation of the robust, high speed navigation, and

reviews related work. Chapter 2 describes the formulation of the novel approach in

detail, and Chapter 3 presents hardware validation experiments. Chapter 4 extends

the method to include memory, with Depth-Pose-Graph Planning. Chapter 5 brieŕy

discusses future work.

Chapter 2 was originally published as

Peter R. Florence, John Carter, and Russ Tedrake. Integrated percep-

tion and control at high speed: Evaluating collision avoidance maneuvers

without maps. In Workshop on the Algorithmic Foundations of Robotics,

2016.

The intent is to submit a journal version of this content together with the hardware

experiments of Chapter 3.

Chapter 4 is also a candidate for publication soon, with some more experimental

work.
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Chapter 1

Introduction

The past few years have seen rapid progress in artiőcial intelligence and robotics. As

of the year 2016, an artiőcial intelligence (AI) agent can beat the world’s best human

player in the game of Go [1], and autonomous cars are becoming increasingly accepted

to be safer than human drivers [2]. Yet despite the advances we’ve made, robots still

can’t match humans in common skills of movement ś our best robots cannot walk as

well as a toddler, cannot manipulate objects with the dexterity of human hands, and

cannot interact with the world in the rich ways humans do every day.

Agile and robust ŕight in an unknown environment is a prime example of where

our best AI agents cannot match nature. Birds are often pointed to as a remarkable

example of nature’s dominance of this task. An even more direct comparison is ofered

by the recently emerged sport of quadcopter FPV (őrst person view) racing. Quad-

copter FPV pilots use essentially the same hardware as autonomous quadcopters,

but are given less data (only a monocular video stream) than a typical autonomous

system. There is no doubt that the skills of the world’s best pilots are spectacularly

above the skills of any autonomous drone.

What in particular is hard about autonomous ŕight in cluttered environments?

Uncertainty and lack of information are primary diiculties ś the game of Go has

perfect information, whereas an autonomous drone gets only a limited, noisy view of

its world. There are other foundational robotics problems embedded as well: there is

a mix of discrete problems (should I turn left or right?) as well as continuous prob-
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lems (how wide should I turn around this corner?). The diiculty of collecting data

without crashing and the immense variability of data in navigating unknown environ-

ments make machine-learning-based methods diicult to apply. All of these problems

are exacerbated by the small payloads available on lightweight UAVs (unmanned au-

tonomous vehicles), with typically under 1 kg of payload available for sensing and

computation.

(a) 

(b) 

(c) 

(d) 

Figure 1-1: Masters of agile ŕight in unknown environments: hawks and humans. (a)
Red-tailed hawk, and (b) goshawk ŕying through forests. (c) Renowned quadcopter
FPV pilot, Charpu, and (d) quadcopter FPV race through forest.

As has been a motivational theme of our research group for the past several years,

agile and robust ŕight is a robotics problem that is “hard for the right reasons” [3].

Due to the inherent subproblems that are foundational to robotics, making advances

on this overall problem can translate into broad applicability across robotics ś from

making autonomous cars increasingly safer, to increasing the dexterity of robotic

manipulation, to making helpful robots in the home.

Chapter Organization

In this introductory chapter, the goal is to complement, rather than restate, the

motivations and backgrounds as discussed in the later chapters. Section 1.1 presents
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contributions, Section 1.2 discusses the motivation from a broad perspective, and

Section 1.3 reviews some of the most relevant research in the őeld.

1.1 Contributions

This thesis develops novel methods combining typically separate perception, control,

and state estimation considerations, and applies them to the high speed collision

avoidance problem.

In particular, in Chapter 2, to address the limitations on performance that are

observed due to state estimation diiculties, a planning-based obstacle avoidance

method is developed that avoids a dependence on global position. Simulation exper-

iments are presented in which a benchmark approach cannot provide robust collision

avoidance at high speeds, while the presented method enables the quadrotor to navi-

gate a simulated forest environment at 12 m/s even in the presence of signiőcant state

estimate noise. This is also the őrst work known to the author to describe stochastic

receding horizon control with depth sensor data for a UAV. In Chapter 3, hardware

validations of this method in both indoor warehouse and outdoor forest environments

are also presented and analyzed, at speeds up to 10 m/s. These hardware results

are among the fastest and most robust performance results achieved by a comparable

vehicle. Chapter 4 extends the integrated perception and control approach to incor-

porate memory. The approach developed is the őrst known to evaluate a distribution

of the robot’s obstacle memory in obstacle avoidance decisions.

1.2 Motivation

1.2.1 Separation or Integration of Perception and Control

A hallmark of control theory is the separation principle. In many applied control

tasks, from controlling chemical plants to stabilizing a quadcopter at a őxed point,

following the separation principle has had broadly useful empirical applications. The

principle states that a maximum likelihood estimator and feedback controller can be
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computed separately, or as worded by Kalman in his 1960 paper, "Contributions to

the theory of optimal control" [4]:

One may separate the problem of physical realization into two stages: (A)

computation of the “best approximation” �̂(�1) of the state from knowledge

of �(�) for � ≤ �1 and (B) computation of �(�1) given �̂(�1).

While the proof of the separation principle is straightforward for the simple case of

linear time-invariant systems [5], it also applies to more general, including nonlin-

ear, systems with certain technical conditions [6]. The principle, however, does not

generally apply to uncertain systems with general cost functions ś perhaps the sim-

plest way to see this is with a small POMDP (Partially Observable Markov Decision

Process) toy example, as shown in the őgure below.

Wall 
Lava 

Pit 
Goal 

1 2 3 4 

Figure 1-2: Toy example, inspired by Kaelbling et al. [7], of how a separation prin-
ciple does not generally apply to POMDPs. In this example, the actions available
are ���� and ���� . Entering the lava pit is irrecoverable, whereas attempting to
enter the wall causes the robot to remain in state 1. If the initial probability distribu-
tion between states 1, 2, 3, 4 is [0.3, 0.4, 0.0, 0.3], then the maximum likelihood state
is state 2, and the desired action should be ���� . Clearly the preferred strategy,
however, is to execute ���� until the robot knows it must be in state 1, and then
go to the goal.

The general problem of obstacle avoidance in an unknown world, with imperfect

sensing subject to őeld of view (FOV) constraints and occlusions, exempliőes a sys-

tem that does not őt the suicient conditions of Kalman’s principle. In practice,

however, there has been a de facto trend of employing the separation principle in

work in this area. For a number of reasons of convenience, including that they have

somewhat separate research communities, planning and control are often separated

from mapping and estimation.

On the opposite end of the spectrum, the close integration of perception and con-

trol has been explored in a variety of forms in robotics research and applications. In
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visual servoing, for example, image coordinates rather than full state estimates are

used to accomplish tasks [8]. Other work in manipulation with łend-to-end visuomo-

torž reinforcement learning control has suggested the advantages of allowing all raw

vision data in the control loop, rather than derived estimates of object poses [9].

1.2.2 The Conventional Routes to Autonomous UAV Naviga-

tion: Map-Plan-Track and Reactive Approaches

Much of the work towards the goal of autonomous UAV ŕight in unknown environ-

ments can be categorized as using a łmap-plan-trackž type approach, in which map-

ping, planning, and trajectory-tracking control are run as separate processes. (This

area of work is reviewed further in Section 1.3.2.) A primary barrier, however, to the

success of these techniques in unknown environments is the diiculty of high-precision

GPS-denied state estimation, particularly in regimes of fast, aggressive ŕight. When

these methods are exposed to signiőcant state estimate uncertainty, both mapping

and tracking fail. Planning-heavy approaches also tend towards high latency, although

oline- [3, 10] or online-computed [11,12] libraries can enable low-latency response.

Given this status quo, one option to make progress is to focus on improving GPS-

denied state estimation [13, 14], but in this thesis an alternate route is investigated.

Our approach takes motivation from reactive control techniques, which have blazed

their own trail separately from motion planning theory, and for a while now have pro-

vided impressive UAV obstacle avoidance capabilities. For example, work by Beyeler

et al. [15] in 2009 achieved obstacle avoidance moving at approximately 14 m/s, and

they touted their lack of explicit position dependence as a primary advantage of their

approach. That said, there are a variety of limitations with reactive control tech-

niques, including that they don’t provide rigorous frameworks for reasoning about

uncertainty.

The aim of our work was to provide a route to fast, robust ŕight that combines

the best of both these worlds. In particular, from the world of reactive control, we

want the property that we don’t necessarily need to perform full state feedback ś we
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do not want to rely on high-precision state estimation. From motion planning theory,

we employ state-space tools and reason about uncertainty.



“Map-Plan-Track”

Route

Reactive Control
Route

High precision
GPS-denied

state estimation

No Uncertainty 
Quantification 

*This work

agile, robust flight 
in unknown environments

Goal:

Figure 1-3: Depiction of the possible routes and limits towards our goal. Our work
investigates combining inspiration from both traditional approaches.

1.2.3 Motivations from the Realities of Hardware

Our approach was closely motivated by experience with hardware. Our DARPA FLA1

research team had previously implemented a map-plan-track type approach, and a

primary barrier to higher vehicle speed and performance was the diiculty of state

estimation in unknown environments, which could cause both mapping and tracking

to fail. A realization upon inspecting raw ŕight data was that even though odometry

errors made precise mapping diicult, raw depth images could be clean. An additional

realization was provided by an examination of position and velocity estimation from a

GPS-denied visual inertial odometry (VIO) state estimator. Empirically, we observe

that the variance of position is higher than velocity. This makes sense, since variance

increases for each integration of a noisy IMU.

1The DARPA Fast Lightweight Autonomy (FLA) program is a multi-research-organization effort
with a particular emphasis on speed for UAVs in unknown, GPS-denied environments.
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(a) (b) 

Figure 1-4: Comparison of (a) skewed map data and (b) raw depth image data (ASUS
Xtion structured-light sensor) from a ŕight at 5.5 m/s down a corridor.

Figure 1-5: Raw data out of a visual inertial state estimator for position and velocity.

Additionally, an important property is that depth sensors measure obstacles in

relative coordinates. Raw depth images are commonly available at a high rate (30-

60 Hz) ś a suicient rate for making obstacle avoidance decisions. Other works have

previously investigated planning-based methods in depth image space [16,17], but use

trajectory-tracking controllers. A novel combination of both (i) using only current

depth image information, and (ii) using model-predictive-control (MPC) rather than

a nominal-plan tracking controller, ofered the opportunity to eliminate an explicit

dependence on global position. Velocity estimation is still required, but it is lower

variance than position with VIO estimators, and our method is designed to handle a

Gaussian belief space for velocity. Using only the instantaneous local frame, there is

also no explicit dependence on yaw, which is well-known to be hard to estimate for

quadrotors without GPS. In contrast to our method, there is a 1:1 correspondence

between the hardest-to-estimate parts of state for a quadrotor, and the diferentially-

ŕat outputs that are commonly used for trajectory planning and tracking [18].
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Additional motivation for this approach came from how an expert quadcopter

FPV pilot ŕies. Expert pilots are able to navigate around obstacles with incredible

agility, without ever being able to estimate their global position to within centimeters.

Arguably the central components of successful FPV pilot ŕight are (i) an approximate

sense of velocity, (ii) an approximate sense of how control actions afect dynamics, and

(iii) fast reactions to sensory inputs. Our method shares these three characteristics,

although it uses depth images rather than RGB images.

(a) 

(b) 

(c) 

(d) 

Figure 1-6: FPV quadcopter pilot Charpu ŕying through trees. With only monocular
video available, expert pilots can navigate complex environments like these at re-
markable speed. The inset in each image shows the hands of the pilot sending control
inputs to an onboard attitude controller.

1.3 Related Work

First, we review the empirical state of the art for the speciőc problem of UAVs navi-

gating unknown environments at high speeds. Beginning with the empirical state of

the art forces recognition of what actually works? We then review the formulations

and varieties of the two dominant categories of approaches, (i) map-plan-track, and

(ii) reactive. Additionally, we review related areas of theory and practice.
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1.3.1 Empirical State of the Art: UAVs Navigating Unknown

Environments

Hrabar (2009) 

Bircher  
(2016) 

Hyslop (2010) 

Droeschel 
(2015) 

Conroy 
(2009) Ross (2013) 

Matthies (2014) 

Dey 
(2015) 

Liu (2016) 

Merz  
(2013) 

Chen (2016) 

Yu (2013) 

Oleynikova (2015) 

Liu (2016) 

Daftry (2016) 

Scherer (2008) 

Johnson (2014) 

This work,  
Chapter 3 

This work, 
Chapter 2 

DJI Phantom 4 Pro 
(2016)* 

Beyeler (2009) 

Barry (2016) 

Simulation 

GPS/motion-capture, 
local avoidance only 

GPS/motion-capture, 
global navigation 

GPS-denied, 
local avoidance only 

GPS-denied, 
global navigation 

Planning 

Reactive 

Unknown  
(Commercial product) 

DJI Phantom 4, DJI Mavic 
(2016)* 

Related works in UAV navigation in unknown environments 

Size of circle represents 
size (mass of vehicle) 

< 5 kg 

~ 12 kg 

> 60 kg 

Max. Demonstrated Obstacle Avoidance Speed (m/s) 

Lopez (2017) 

Increasing 
complexity 

Figure 1-7: Comprehensive comparison of works in UAVs navigating unknown en-
vironments that meet the requirements stated below. Asterisk * denotes that the
numbers are reported for manual-pilot obstacle assistance, and may be diferent for
fully autonomous navigation.

A vast amount of work has been devoted towards this goal, but the list of works

that have been empirically evaluated in unknown environments is a manageable list to

evaluate in full. The őgure above, Figure 1-7, presents a chart that to the best of the

author’s knowledge is a comprehensive compilation of works [3, 10ś12, 15, 17, 19ś32]

that meet the following requirements: (i) must be demonstrated either in hardware

with real perception or in simulation with real perception simulation, for a UAV

platform navigating among obstacles in an unknown environment. An additional

practical requirement (ii) is that the vehicle velocity must have been stated ś there is

a small list of works that meet the őrst requirement but do not provide any velocity

numbers [33ś38]. There is a much longer list of works that address subproblems but

are demonstrated either in simulation or hardware with full obstacle knowledge, use

a similar platform such as a ground vehicle instead of a UAV, or in some other way

do not meet the requirements stated above. Some of these will be referred to in the
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following sections.

A variety of careful considerations are present in Figure 1-7. All works have

been categorized as either planning or reactive approaches. The deőnition of łplan-

ningž used was that the method must consider speciőc paths in conőguration space,

wheres łreactivež encompasses all approaches that do not. Some works [11,19,20,28],

including our own, employ a layered approach, in which a higher-level planner pro-

vides global guidance, but were categorized according to the local obstacle avoidance

method. The y-axis is ordered in terms of increasing complexity: GPS-denied makes

obstacle avoidance signiőcantly harder, in part due to the variance of position esti-

mation. For the x-axis, although speed is not a perfect measure of capabilities, it is

clearly quantiőable, and often reported. To be fair to the respective authors, max-

imum obstacle avoidance speed was not necessarily the goal of each of these works.

Perhaps better metrics for quadrotor łagilityž are maximum roll angles and roll rates

while navigating an unknown environment ś the highest demonstrated among these

works is probably Lopez et al. [12], with respectively 75.4��� and 695.7deg

s
. The most

important concept that is not represented in the chart, and is perhaps our method’s

primary motivation, is robustness ś unfortunately, data is not available to compare

across separate studies.

Some conclusions are apparent from examining the works of the chart. Of all the

planning methods included, ours is the only one that does not have an explicit depen-

dence on position ś every single other planning approach performs position-tracking

control. Multiple works achieved obstacle avoidance results with reactive approaches

at 10 m/s or above several years ago [15,19], whereas only recently, Barry et al. was

the őrst to achieve this result with a planning method, using stereo vision and a

trajectory-library approach [3]. Additionally, as is highly relevant to the arguments

regarding memory presented in Chapter 4, of the eight fastest hardware-proven plan-

ning methods, őve of them use no memory of depth measurements [10ś12,17,32], one

uses only a two-second history of depth measurements [3], and one uses an exponen-

tially decaying history of depth measurements [29]. Another observation is the rapid

entrance of industry onto the scene ś 2016 saw the őrst widely available consumer
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products with these capabilities.

1.3.2 Map-Plan-Track Approaches

In the map-plan-track paradigm, each process is run separately: (i) producing a map

as close as possible to full obstacle knowledge, (ii) receding-horizon planning, and

(iii) trajectory-tracking feedback control along the nominal plan. Map-plan-track

approaches are very sensible in that they build on a large body of motion planning

theory [39]. There has been large amounts of impressive work using map-plan-track

methods for UAVs navigating amongst obstacles with a prior map, speciőc obstacle

locations, or other prior knowledge [13, 18, 40ś45]. In regimes of good information,

such as in motion capture rooms, these methods have work well.

Mapping

Mapping has been intensely studied for decades, and has many applications even

with no controller in the loop ś for example in virtual reality (VR) applications, or

in surveying. The mapping problem is often simultaneously solved with the state

estimation problem, known as SLAM (Simultaneous Localization and Mapping). For

UAV navigation [3, 29, 31, 32, 44], an overwhelmingly common option is to use occu-

pancy grids [46] as the map representation. A more detailed discussion of related

work in mapping is provided in Chapter 4.

Planning

(a) (b) (c) 

Figure 1-8: Examples of planning approaches used for UAVs, (a) A*, (b) RRT, (c)
convex segmentation and mixed-integer optimization. Images from [30,47,48].
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A few categories of planning approaches have been most prominently used for

UAVs. First, (i) discrete graph search approaches such as Dijkstra’s algorithm, A*,

or D* operate on a graph of discretized space, and have been abundantly used for UAV

platforms in at least part of an overall planning pipeline [11, 19, 20, 28, 31, 32, 35, 47].

Discrete search ofers many convenient properties, but are limited by discretization

efects, the diiculty of incorporating dynamic vehicle constraints, and the curse of

dimensionality which makes sizable 3D environments diicult. Second, (ii) sampling-

based planners, such as the classic PRM [49] or RRT [50], or preferably variants

that ofer asymptotic optimality guarantees such as RRT* [51] or FMT* [52] ofer

another route to planning through complex conőguration spaces, scale better than

discrete planning to higher dimensions, and have been commonly used for UAV navi-

gation [17,24,42]. Methods based on using a library of motion primitives [3,10,29] are

a form of sampling-based planning. Third, (iii) there are mixed-integer optimization

planning variants [43, 48, 53, 54]. The idea of using convex free-space segmentation,

rather than half-space constraints, was proposed by Deits. et al. [48] and has inspired

methods that although do not use mixed-integer programming, use convex segmenta-

tion around an initial plan to provide constraints for trajectory optimizations through

free space [31,32].

Particularly for quadrotors, an abundantly popular tool has been optimizing poly-

nomial trajectories �(�), �(�), �(�), �(�) for the diferentially-ŕat outputs (position and

yaw) of a quadrotor. Optimization tools can easily minimize higher-order time-

derivatives. This method was őrst developed for quadrotors by Mellinger et al. [18] in

2011, and produced amazingly acrobatic quadrotor ŕight in motion capture environ-

ments. To navigate among obstacles, polynomial optimization needs good constraints,

which are often provided by some previous planning step ś for which each of the three

methods mentioned above have been used [37,42,47,48,54].

Tracking

Theory has studied for decades the problem of stabilizing a dynamical system to a

time-invariant őxed point, or a trajectory through time [55]. Theory has transitioned
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well to practice for UAVs, particularly for quadrotors, which since the inŕuential

work of Mellinger et al. [18] have been able to perform aggressive maneuvers using

position and velocity feedback control. We do not review speciőc tracking methods

in detail, but note that with a good position estimate (i.e., in motion capture) and

a dynamically feasible trajectory, position-tracking for UAVs is a solved and proven

technology. One option for quadrotors that is a nice application of optimal control

theory is to time-varying LQR to directly come up with motor commands [43], but in

practice inner-loop attitude controllers are often run on separate hardware closing a

feedback loop at high rate (200+ Hz) with an IMU. For őxed-wings, time-varying LQR

can supply good tracking performance [3,56]. Recent work has developed impressive

tracking controllers for tail-sitters [57]. The open problems in tracking control are

in rigorously dealing with estimation uncertainty, particularly with nonlinear UAV

models. Exciting recent work has gone into verifying controllers of such models, given

bounds on state estimation and disturbances [56, 58].

1.3.3 Reactive Approaches

expected optic flow pattern for straight and level flight). For a west-
side obstacle, , and for the case in which
there are obstacles on both sides of the vehicle,
and (Fig. 3a).

C. Tangential Cell Analogs

Tangential cells are large, motion-sensitive neurons that reside in
the visuomotor systems of most flying insects. They are believed to
pool the outputs of large numbers of local optic flow estimates and
respond with graded membrane potentials, for which the magnitude
is both spatially and directionally selective [9,10,42,43]. Essentially,
the integrated output is a comparison between the cell’s spatial
sensitivity pattern and that of the visual stimulus (e.g., Fig. 3).
Mathematically, this comparison can be modeled as an inner product

, analogous with the dot product between vectors, which is an
abstraction of the angle between objects and . Tangential cell
analogs for spherical imaging surfaces are defined as the inner
product on the function space between the instan-

taneous optic flow and any square-integrable weighting function

:

(5)

where denotes the dot product in , and is the
solid angle of the sphere.

Real spherical harmonics (Fig. 4), which are orthogonal functions
on , will be used as weighting functions in the two component
directions to extract desired information from Eq. (3). These
functions take the form:

(6)

where is the associated Legendre function ,
, , and the factor is a normalization coefficient. The

resulting wide-field integrated outputs for component weighting
functions for are then given by

(7)

D. Interpreting Wide-Field Integration Outputs

The objective is to characterize the relationship between the
component weighting functions and the relative state:

encoded by the projections in Eq. (7). This is achieved by linearizing
the about a nominal optic flow pattern. A desired (equilibrium)

optic flow pattern is specified by a predefined amount of longitudinal
and lateral asymmetry (Fig. 3). Physically, this is attained when the
vehicle is centered between arbitrarily spaced obstacles and is flying
straight and level at some desired altitude above ground. This is
expressed mathematically by the nominal trajectory:

where is the target forward speed.
To provide an intuitive illustration of the linkages between outputs

andweighting patterns, consider a tunnel environment with infinitely
high walls, and . Several harmonic
decompositions using this optic flow model are presented in Fig. 5.

For example, provides a measure of the heave velocity when the

signal is linearized about . It quantifies the goodness of the match
between the actual optic flow pattern and a purely longitudinal

template pattern defined by the harmonic , which has constant

magnitude for all points on the sphere. A climbing vehicle
experiences longitudinal optic flow on both sides of the vehicle, and
this deviation from the nominal pattern is captured by theWFI output

. The harmonic weights the front and rear of the vehicle

strongly but with opposite signs, thus capturing any forward–aft
optic flow asymmetry (induced by pitch axis rotation) in the
decomposition. The lateral offset from the tunnel center is captured
by the output, which places large negative azimuthal flow

weights on both sides of the vehicle. If the vehicle is nearer the right-
side wall, the optic flow will be larger on that side (where azimuthal
flow is positive), thus theWFI output will be negative. If the left-side
wall is nearer, then the negative-direction azimuthal optic flow will
be stronger, and the output will be positive. The positiveweighting of
the optic flow at the front and rear of the vehicle acts to filter out yaw
rotation motion from the decomposition.

III. Optimal Static Estimation of Relative States

Optic flow cannot be measured directly; it must be inferred from
the spatiotemporal patterns of the luminance incident on an imaging

180 −180 −90 0 90 180
0

30

60

90

120

150

180

Nominal Optic Flow Pattern

azimuth (deg)

e
le

va
ti
o

n
 (

d
e

g
)

Fig. 3 Nominal optic flow patterns: a) tunnel with floor; and b) right wall with floor.

Fig. 4 Spherical harmonic weighting functions: a) zonal, Y2 1; and
b) sectoral, Y3 3.
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(a) (b) (c) 

Figure 1-9: Examples of reactive obstacle avoidance approaches, (a) optic ŕow, (b)
apf, (c) imitation learning. Images taken from Hyslop et al. [22], Scherer et al. [19],
and Ross et al. [23].

Most reactive control techniques can be divided into four categories that have

been used on UAVs: (i) optic ŕow [15,20ś22], (ii) artiőcial potential őelds [19,28] and

closely-related approaches like the vector őeld histogram [36], (iii) imitation-learning

approaches [23], and (iv) approaches that use hand-designed geometric relations but

do not speciőcally perform state-space planning [25ś27,34]. It has been a common ap-

proach to use reactive approaches in layered formulations, with a higher-level planning
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system [19, 20, 28]. A notable point is that optic ŕow methods have been performed

at ∼4 kHz, orders of magnitude faster than common depth or RGB sensors [15]. It

has been common to point to low-latency as an advantage of reactive approaches, but

we believe an under-appreciated component of reactive approaches is that many of

them have no explicit dependence on the full state estimate of the vehicle.

1.3.4 Planning Under Uncertainty

We brieŕy discuss the vast topic of planning under uncertainty. For a more compre-

hensive review of planning under uncertainty, we refer the reader to the pair of 2006

books by LaValle [39] and Thrun, Burgard, and Fox [59], which should be coupled

with more up-to-date reviews of continuous motion planning under uncertainty [56]

and POMDP solvers [60]. A general model of planning under uncertainty, POMDPs

(Partially Observable Markov Decision Processes), is discussed more in Chapter 4,

and Kaelbling et al. [7] provides a good introduction. POMDP solvers have been

used for models of aircraft collision avoidance [61,62]. A large variety of other works

have made investigated continuous belief space planning. Common ideas have been to

complement RRTs with notions of belief space [63ś66], or use other forms of sampling-

based algorithms with a notion of belief space [67, 68]. Others have used trajectory

optimization tools such as direct transcription [69]. Quadrotors can be approximated

with linear models, and so Linear-Gaussian models of uncertainty are useful ś which

have been widely used [66]. Two options for considering uncertainty are to consider an

unbounded probability distribution of state, or consider worst-case bounds. Bounded

uncertainty with nonlinear models has produced elegant formulations of veriőable

planning [56,70], where sequentially composed oline-computed funnels enables low-

latency control decisions [56].

Path Collision Probability and Probabilistic Collision Detection

A component of planning under uncertainty may be approximating the collision prob-

ability of a path through conőguration space. A good review of this topic is provided
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by Janson et al. [71], who propose smart sampling strategies for making Monte Carlo

calculations more eicient, but also review time-sampling methods. In particular,

Patil et al. provide a conditional multiplicative method that is empirically the best

among time-sampling methods [72]. Path collision probability approximations have

been coupled with RRT planners [73]. Instead of entire paths, the concept of proba-

bilistic collision detection between point clouds or meshes [74] has been studied and

used in planning systems [75].

Chance Constrained Optimization

One approach to planning under uncertainty is chance constrained optimization,

which has roots in the 1950s in operations research [76], and has been well devel-

oped in the context of robotic motion planning by a series of theoretical works by

Blackmore et al. using mixed-integer optimization [77ś79]. Related to these mixed-

integer optimization methods, the concept of chance-constraining an RRT planner

has been explored in a variety of works [80ś82].

Planning with Limited Field of View (FOV) and Occlusions

The concept of planning in unknown environments where the assumption is made

that unknown space is occupied is a common assumption. The concept of Inevitable

Collision States (ICS) by Fraichard et al. well encompasses this idea [83]. Lesperance

et al. provides a nice framework for thinking about a hierarchy of safety in motion

planning, generalizing previous ideas about the assumptions of static or dynamic

environments [84]. That said, the full implications of eiciently planning with limited

őeld of views and occlusions of available hardware sensor data like depth images, is

probably an underappreciated concept, although has been addressed in some works

[11,17].
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1.3.5 Local Frame and Depth Image Space Planning

The beneőts of performing obstacle avoidance in a local frame, rather than a global

frame, have been well appreciated by many others besides us, and are often pointed

to in studies of autonomous navigation [16, 17, 24, 85]. Moore et al. ofers a formal

evaluation of the beneőts of maintaining separate state estimates for local frame and

global frame planning [86]. A particular form of planning in the local frame is planning

directly in depth image space, which has been explored in a number of works [16,17].

1.3.6 Motion Primitive Libraries

The concept of a library of motion primitives is a widely used tactic for robotics,

including UAVs navigating among obstacles [3,10,29,45,56,87]. In practice, there are

a variety of practical beneőts of motion primitive libraries. For one, primitives can

be veriőed ahead of time to be sensical. Additionally, motion primitives ofer a way

to avoid non-convex continuous optimization, by simply choosing the best among a

discrete set. A nice theoretical framework is provided by Frazzoli et al. with their

Maneuver Automaton [88]. Often libraries are computed oline [3,10,29,56], for which

the advantage is allowing rigorous oline veriőcation [56], or can be computed online

for simple models [11, 12], which allows each primitive to have an initial condition

that is exactly the current estimate. Without this latter property, oline libraries

require careful thought about transitioning between motions [56]. Often, the choice

of motion primitives is done by hand and not subjected to rigorous analysis, although

some work has looked into optimization of motion primitive libraries [89].

1.3.7 Depth Sensor Hardware

The capabilities of available depth sensors has rapidly increased in recent years, and

merits discussion. As of 2015, Intel’s release of the RealSense R200 provided a global

shutter stereo pair that can provide 480 × 360 resolution depth images at 60 Hz,

weighs only 34 grams, costs only ∼ $100, and can provide a range of 15-25 meters in

high-texture, well-lit scenarios such as a forest. These speciőcations were simply not
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commercially available only a couple of years ago. With its IR CCDs, however, in our

hardware testing the RealSense is highly sensitive to material texture, and is blind to

low-texture surfaces, like the sides of buildings. For inside applications, the Microsoft

Kinect and ASUS Xtion sensors provide depth sensors with better robustness to a

variety of surface textures. Outside of vision sensors, the year 2016 saw the őrst

3D lidar weighing under 600 grams with the Velodyne VLP Puck Lite, although the

∼ $10, 000 cost is diicult to swallow for robots deliberately ŕying towards trees. The

year 2016 also saw the emergence of radar sensors weighing approximately 1 kg, with

range on the order of a kilometer. It is certainly an exciting time for the development

of hardware, which are critical for geometric planning algorithms.

1.3.8 Obstacle Avoidance and Navigation Without Depth Sen-

sors

In parallel to the growing capabilities of depth sensors, there is also growing interest

in the use of non-geometric data for obstacle avoidance, including for mobile robots

navigating unknown environments. Ross et al. was probably the őrst to demonstrate

this capability for UAVs, with their imitation-learning approach [23]. Supervised

learning of classifying paths in forests has enabled UAVs to follow paths in forests

using only RGB data [90]. The idea of training to navigate using vision data in

simulation is a commonly talked about idea in the research community, although

has not been notably demonstrated on UAV hardware. Modern autonomous vehicles

perform a variety of vision-based classiőcations in order to navigate their world.
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Chapter 2

Evaluating Collision Avoidance

Maneuvers Without Maps

2.1 Introduction

A primary challenge in improving robot performance is to increase robustness in

regimes of fast motion, proximity to obstacles, and signiőcant diiculty of estimating

state. A robotics platform that is at the center of all of these challenges is a UAV

navigating quickly through unknown, cluttered environments. Although compelling

progress has been made [3,10,32,91], the goal of autonomous, robust, agile ŕight into

unknown environments remains an open problem.

In this paper, we present an integrated approach for perception and control, which

we apply to the high-speed collision avoidance problem. Our approach departs from

the paradigm of building maps, optimizing trajectories, and tracking trajectories.

Central to the approach is considering routes to achieve control objectives (ŕy fast,

and don’t crash into obstacles) and taking advantage of model-based state-space

without relying on full-state feedback.

Our approach is directly motivated by the success of reactive control that is

łstraight from sensors to control inputž but uses tools from more rigorous state space

control. We show that in order to get the performance of a motion planning system,

the robot doesn’t need to build a map, doesn’t need precise estimates of its full state,
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and doesn’t need to heavily optimize trajectories.

A key insight we explore in this paper is that we can both estimate the probability

of collision for any action without building a locally consistent map, and execute that

action without the use of position-control feedback. The basics steps of our method

are: evaluate maneuvers probabilistically for collision and impose őeld of view con-

straints, choose a maneuver based on an unconstrained objective combining collision

avoidance and navigation, and execute this at high rate with a model-predictive con-

trol type approach. This method ofers a mapless collision avoidance approach that

does not depend on position, rigorously considers robustness, is amenable to low-

latency implementations, and integrates seamlessly with arbitrary navigation objec-

tives. We note, however, that the mapless method cannot escape dead-ends by itself

without a layered global planner.

Our primary contribution is the novel synthesis of our approach combining typi-

cally separate perception, control, and state estimation considerations. This synthesis

is implemented for robustness at speed by a combination of: local frame estimation

of path collision probabilities that considers őeld of view (FOV) constraints, motion

primitives deőned in the local frame, acceleration by spatial partitioning, and high-

rate robust model-predictive control that doesn’t depend on trajectory-tracking. This

is also the őrst paper known to the authors to describe stochastic receding horizon

control with depth sensor data for a UAV. Additionally, we present simulation exper-

iments in which a benchmark approach cannot provide robust collision avoidance at

high speeds, while our method enables the quadrotor to navigate a simulated forest

environment at 12 m/s even in the presence of signiőcant state estimate noise.

2.2 Related Work

The close integration of perception and control, where the realities of perceptual

information inform the control approach, is a concept of active interest in robotics.

Visual servoing methods for robotic manipulation [8], for example, are an application

where control is designed to work with partial information (relative positions in image
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space) rather than full-state feedback.

In the application area of UAV navigation in unknown environments, the predom-

inant approach is to instead impose the separation principle between perception and

control, and separately build a map, plan an optimal trajectory in that map, and

execute trajectory-tracking feedback control along the nominal plan. In this map-

plan-track paradigm, the goal is to produce a map as close as possible to full obstacle

knowledge and produce highly accurate estimates of full state. These methods work

well in regimes of good information, such as motion capture rooms with pre-prescribed

obstacle locations. They are particularly fragile, however, when exposed to signiőcant

state estimate uncertainty, causing mapping and tracking to fail. Planning-heavy ap-

proaches also tend towards high latency, although oline-computed libraries enable

low-latency response [3, 10].

A diferent approach to UAV navigation is ofered by reactive control, which has

achieved some of the most impressive obstacle avoidance results demonstrated to

date [15,19,23]. Three primary types of reactive approaches have shown success: optic

ŕow methods [15,21,22], artiőcial potential őelds [19,28], and imitation learning [23].

Reactive methods by deőnition do not őt into the map-plan-track paradigm since

they do not plan a time-sequence of states into the future, but are also generally

characterized by not performing full-state feedback.

In that our method neither builds a map nor executes trajectory-tracking control,

it departs from the map-plan-track paradigm. In that it does not perform position-

control feedback, it is more similar to the mentioned reactive methods, yet it does

plan states in the local frame into the future and reason about state-space uncertainty,

which does not őt the deőnition of a reactive method.

The theory of motion planning under uncertainty has been well studied, at least

in the domain of full obstacle knowledge. One approach is that of chance-constrained

optimization [79,80,92,93], in which the probability of collision at any time is upper-

bounded as a constraint in an optimization. In the planning portion of our approach

we use a variant where collision avoidance is included in the objective, not as a

constraint, and we estimate collision probabilities for entire paths, then choose among
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a őnite library. An important component of this approach requires path collision

probability estimation, which has been well studied [71].

Several other works are notably related to various components of our integrated

approach. One related method for online stochastic receding-horizon control is that

of łfunnelž computation and sequential composition [56, 94, 95], which notably can

handle nonlinear models. The focus of those works, however, is not on integrated

perception and control considerations, as ours is here. A somewhat related work

is by Matthies et al. [17] since it presents őeld-of-view-limited planning with depth

image information for collision avoidance, but their approach is a map-plan-track

approach, and doesn’t consider uncertainty. Probabilistic collision detection in point

clouds has been studied [74] and integrated with sampling-based motion-planners [75],

but not to our knowledge has been applied to the collision avoidance problem with

őeld-of-view constraints. Another complementary approach aims to learn, through

supervised training in simulation, collision probabilities outside of conservative őeld

of view approximations [96].

2.3 Generalized Formulation for Collision Avoidance

First, we consider the problem of estimating the probability of collision for a time-

varying distribution of conőgurations using only instantaneous depth information.

We then present approximation methods that enable fast computation for collision

avoidance at high speeds. Additionally, we discuss the use of spatial partitioning

data structures and the incorporation of global navigation objectives. This section

is generalized to allow for application to an arbitrary robot. In the next section, a

particular implementation for a quadrotor is presented.
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2.3.1 Evaluating Collision Probabilities from Instantaneous Depth

Information

We wish to evaluate the probability of collision for:

�
︀

Collision during � ∈ [0, �f ] | D, �t(q)
︀

(2.1)

where �t(q) is the time-varying distribution of conőguration, �f is the őnal time, and

D is a vector of depth sensor returns [d0, ...,dn]. This probability cannot be calculated

with certainty, due to the large amount of unknown space � ⊂ R
3 caused by occlusions

and the őnite FOV (őeld of view) of the depth sensor. Each depth return corresponds

to an occupied frustum ℱdj
⊂ R

3 whose volume is deőned by the image resolution,

depth return distance, and sensor discretization. Together these occupied frustums

comprise the known occupied subset of space, �known =
︀

j ℱdj
,�known ⊂ R

3. Each

depth return also creates a portion of unknown space ℱ(occluded by dj) ⊂ � which is a

frustum that joins the unknown space at the sensor horizon. For handling the FOV

constraints, the conservative route is to make the assumption that all unknown space

� is occupied (� ∪ �known = �), which provides a mapping from D → � that is

strictly conservative.

(a) (b) 

Fdj

istanc

e F(occluded by dj)

nsor horizon.
D, pt(q)

)

Figure 2-1: Depictions of (a) depth measurements (black) and conservative assump-
tion of unknown space as occupied (blue), and (b) time-varying distribution of con-
őguration (purple).

At any given point in time and given the distribution �t(·) over robot conőguration

q, the probability of collision is obtained by the probability that the robot is in
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collision with any of the sensor returns or occupies any unknown space:

�
︀

Collision, �ti(q)| �known,�
︀

= �
︀

q(�i) ∈ {�known or �}) (2.2)

Note that the probabilities are not disjoint, since for any non-zero-volume robot,

a given conőguration can be in collision with multiple frustums, occupied or un-

known. To evaluate this probability, an integral over all possible conőgurations must

be integrated. Even given a solution to this integral, however, this only provides an

evaluation of one possible distribution of conőguration at some future time, and hence

the probability of collision for the time-varying distribution of conőguration is still

diicult to evaluate, given that all future positions in time are dependent on previous

positions in time. One route to estimating this probability is through Monte Carlo

simulation, but approximations ofer computationally eicient routes. Although the

literature does not typically account for FOV constraints, a good review of avail-

able options for estimating path collision probabilities with full obstacle knowledge is

included in a recent paper by Janson et al. [71].

Additionally, even with the conservative assumption, the form of � (large subsets

of space) is of a diferent form than �known (small frustums). Our current formulation

addresses this by converting �known into a point cloud and evaluating the probability

distribution �t(q) at these points, whereas for � we perform a binary evaluation of

the mean of �t(q) entering � . Future work could evaluate both of these probabilities

more rigorously by integrating the probability distribution �t(q) over the volumes of

both �known and � , at additional computational cost.

2.3.2 Fast Approximation of Maneuver Collision Probabilities

Given the goal to evaluate collision probabilities in real time for the purpose of

collision avoidance, some approximations are in order. Although these are signiő-

cantly simplifying assumptions, the simulation results presented in this paper sug-

gest that even these approximations ofer a signiőcant improvement over determin-

istically collision-checking trajectories. We consider maneuvers of the form: ℳ =

36



{u(�), �t(q)}, i.e. control inputs as a function of time u(�) that produce a time-

varying distribution of conőgurations �t(q). Our choice of open-loop maneuvers is a

choice that represents our control decision to not depend on position-control feedback.

For estimating the probability of collision for the entire maneuver we use an inde-

pendence approximation. Future positions are sampled in time, and the maneuver’s

probability of collision is approximated as the subtraction from unity of the product

of the no-collision probabilities at each sampled time �i:

�
︀

Collision, �t(q)
︀

≈ 1−
nt︁

i=1

︀

1− � (Collision, �ti(q))
︀

(2.3)

For the evaluation of the no-collision probabilites at each time �i, we assign a no-

collision probability of 0 (deőnite collision) if the mean of �ti(q) is in � , and otherwise

evaluate the probability of collision with the point cloud. Evaluating only the mean

in � is a large oversimpliőcation, but avoids integrating over many small occluded

frustums:

︀

1− � (Collision, �ti(q))
︀

=

⎧

⎨

⎩

0, if �(�ti) ∈ �
︀nd

j=1

︀

1− � (Collision, �ti(q),dj)
︀

, otherwise

(2.4)

Checking if �(�ti) ∈ � can be done by a projective transform into depth image space,

and checking if the projection is either out of bounds of the depth image (outside

FOV), or a depth return at that pixel has less depth (occluded). If not in � , the

probability of collision with �known is approximated by an additional independence

approximation: each collision with all �d depth returns is assumed an independent

probability event. To evaluate each event � (Collision, �ti(q),dj) above, we must

choose a dynamic model with uncertainty. Thus far, the discussion has been gener-

alizable to any model. In Section 2.4 we describe how we evaluate this term for a

simpliőed model with Gaussian noise.

Naively, the complexity of the computation above is �(�M × �t × �d). Even for

a łlow-resolutionž depth image, the number of depth points can be high, for example

a 160 x 120 image is �d,Total = 19, 200 points. Only the closest depth returns to
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the mean of the robot’s distribution, however, will have the highest probability of

impact, and this additionally ofers a route to lower computational complexity. Thus,

rather than evaluate Equation 4.9 for all depth returns, we query only the closest

�d < �d,Total points with a �-�-tree.

In contrast to deterministic collision checking, collision probability approxima-

tion signiőcantly beneőts from three-dimensional spatial partitioning as opposed to

operating directly on the depth image. This is because with the probabilistic col-

lision checking, we care about łlong-tailsž of the robot position distribution, rather

than just deterministically collision-checking the mean. To deterministically collision

check, there is no faster way than using the raw depth image [17], but in order to

consider long-tail positions in the direct depth image method, a large block of pixels

needs to be checked. The depth image structure provides information about prox-

imity in two dimensions (neighboring pixels), but not the third (depth). We also

note, however, that since the direct depth image method requires no building of a

new data structure, highly parallelized implementations may tip computational time

in its favor (as opposed to sequentially building a �-�-tree, then searching it).

Brieŕy, we analyze the limitations of the approximation accuracy. In the context

of full obstacle knowledge, the independence approximation over time has been shown

to provide overly conservative estimates of collision probability [71]. Additionally, the

independence approximation between depth returns contributes to more overestima-

tion, and picking only one point from each cluster has been recommended to reduce

this overestimation [74]. In our method, the FOV constraints contribute even more

to over-conservatism, but there is not available information to improve this approx-

imation without adding risk going into the unknown. Learned priors, however, can

intelligently minimize this risk [96]. We note that with our unconstrained formula-

tion, it is the relative diferences between maneuver collision probabilities (see Figure

2-4b), not their absolute scale, that impacts control decisions.

At additional computational cost, additional accuracy could be achieved through

Monte Carlo (MC) evaluation, whereby randomly sampled trajectories are determinis-

tically collision-checked and the proportion of collision-free trajectories is the collision
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probability. In the limit of inőnite samples the probability is exact, but the compu-

tational cost is approximately �MC × �D, where �D is the time to deterministically

collision-check, and �MC is the number of samples. As we show in Table 1 (Section 6),

deterministic collision-checking takes approximately the same amount of time as our

independence approximation evaluation. Hence, naive MC evaluation is slower than

our method by approximately the factor �MC . Smart MC sampling strategies have

been demonstrated to enable path collision probability approximations on the order

of seconds for reasonable models [71], but our requirement is a few orders of magni-

tude faster (milliseconds) to replan at the rate of depth image information (30-150

hz).

2.3.3 Integrating Reactive and Navigation Objectives

A beneőt of the probabilistic maneuver evaluation approach is that it naturally ofers

a mathematical formulation that integrates reactive-type obstacle avoidance with

arbitrary navigation objectives. Whereas other łlayeredž formulations might involve

designed weightings of reactive and planning objectives, the probabilistic formulation

composes the expectation of the reward, E
︀

�
︀

. Given some global navigation function

that is capable of evaluating a reward �nav(ℳi) for a given maneuver, the expected

reward is:

E
︀

�(ℳi)
︀

= � (No Collision,ℳi)�nav(ℳi) + � (Collision,ℳi)�collision (2.5)

As we show in the simulation experiments, �nav(ℳi) may not even need to consider

obstacles, and collision avoidance can still be achieved. The global navigation function

can be, for example, just Euclidean progress to the global goal for environments with

only convex obstacles, or for environments with dead-ends could for example be a

cost-to-go using Dijkstra’s algorithm (Figure 2-3a). A key point is that with the

instantaneous mapless approach handling collision avoidance, �nav(ℳi) can be naive,

and/or slow, although a good �nav(ℳi) is only a beneőt. One parameter that must

be chosen, and can be tuned up/down for less/more aggressive movement around
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obstacles, is the cost (negative reward) of collision, �collision,

Given a library of maneuvers, the optimal maneuver ℳ∗ is then chosen as:

ℳ∗ = argmax
i

E
︀

�(ℳi)
︀

(2.6)

2.4 Implementation for High Speed Quadrotor Flight

The formulation presented above is generalizable for diferent robot models and for

evaluating diferent types of discrete action libraries. In this section we present a

speciőc implementation for high-speed quadrotor control.

2.4.1 High-Rate Replanning with a Motion Primitive Library

We use an approach similar to a traditional trajectory library, except our library is

generated online based on a simpliőed dynamical model. In the sense that a model is

used for real-time control, and we use no trajectory-tracking controller, this is MPC

(Model Predictive Control), but since we perform no continuous optimization but

rather just select from a discrete library, this is a motion primitive library approach.

This high-rate replanning with no trajectory-tracking controller ofers a route to con-

trolling collision avoidance without a position estimate. Since the uncertainty of the

maneuvers is considered open-loop, this can be categorized as OLRHC (open-loop

receding horizon control). Another control approach is to łshrinkž the future un-

certainty with a feedback controller [56, 66, 94], but this assumes that a reasonable

position estimate will be available. It is crucial to our method that we do not shrink

the uncertainty in this way, since this enables sensible avoidance decisions and control

without ever needing a position estimate.

2.4.2 Dynamical Model and Propagating Uncertainty

To build intuition of our simple quadrotor model, we őrst describe the basic ver-

sion of a constant-input double-integrator (constant-acceleration point-mass) mod-

eled around the attitude controller. This version approximates the quadrotor as a
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point-mass capable of instantaneously producing an acceleration vector of magnitude

||a|| ≤ �max in any direction. Together with gravitational acceleration, this deőnes

the achievable linear accelerations. This model is applied with the inner-loop attitude

and thrust controller in feedback, as depicted in Figure 2-2. Given a desired accel-

eration ai, geometry deőnes the mapping to {roll, pitch thrust} required to produce

such an acceleration, given any yaw.

Inner-loop 
attitude + thrust 

controller 

12-state Quadrotor 
plant 

u1, 
u2, 

u3, 
u4 

IMU attitude estimate 

Small-Horizon Approximation as Double Integrator 

ax, 

ay, 

az 

px, 

py, 

pz 

vx, 

vy, 

vz 

(30 Hz) 

(200+ Hz) 

Figure 2-2: Dynamics approximation considered: the quadrotor is modeled in feed-
back with the inner loop attitude and thrust controller.

A motivating factor for this model is that the overwhelmingly ubiquitous implemen-

tation for quadrotor control involves a high-rate (∼200+ Hz) inner-loop attitude and

thrust controller. The desirability of quickly closing a PID or similar loop around the

IMU makes this an attractive control design choice.

The only source of uncertainty we consider is the state estimate. In particular,

since the quadrotor’s initial position is by deőnition the origin in the local frame, we

only consider uncertainty in the velocity estimate. We use Gaussian noise for the

initial linear velocity estimate v0 ∼ � (v0,µ,Σv0) which gets propagated through the

linear model. We use the notation p ∈ R
3 to refer to the conőguration since it is just

position (point-mass is rotation-invariant). Accordingly we have:

pi(�) ∼ �
︂

1

2
ai�

2 + v0,µ�, �
2Σv0

︂

(2.7)

for maneuver ℳi = {ai,pi(�)}, � ∈ [0, �f ]

where pi(�) is a random variable deőning the distribution referred to as �t(q) in

Section 2.3. The chosen acceleration ai deőnes the maneuver ℳi.
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Extension to Piecewise Triple-Double Integrator Model

The limitations of the constant-acceleration model are clear, however: it does not

consider attitude dynamics, even though they are fast (∼100-200 ms to switch between

extremes of roll/pitch) compared to linear dynamics. It is preferable to have a model

that does include attitude dynamics: for example, the initial roll of the vehicle should

afect łturn-left-or-rightž obstacle-dodging decisions.

Accordingly, we use a triple integrator for the őrst segment, and a double inte-

grator for the remaining (łtriple-doublež integrator for short). Each maneuver ℳi

is still deőned uniquely by ai, but during � ∈ [0, �jf ], we use a jerk ji that linearly

interpolates from the initial acceleration a0 to the desired acceleration:

ji =
ai − a0

�jf
(2.8)

During the initial constant-jerk � ∈ [0, �jf ] period, this gives

pi(�) ∼ �
︂

1

6
ji�

3 +
1

2
a0�

2 + v0,µ�, �
2Σv0

︂

∀� ∈ [0, �jf ] (2.9)

and for � ∈ [�jf , �f ] the double integrator model (Equation 4.7) is used with the

appropriate forward-propagation of position and velocity. Note that for the constant-

jerk portion, an initial acceleration estimate, a0 is required. We assume this to be a

deterministic estimate. Since roll, pitch, and thrust are more easily estimated than

linear velocities, this is a reasonable assumption.

The maneuvers produced by this piecewise triple-double integrator retain the prop-

erties of being closed-form for any future � ∈ [0, �f ], of being linear with Gaussian

noise, and cheap to evaluate. Although the actual attitude dynamics are nonlinear, a

linear approximation of the acceleration dynamics during the constant-jerk period is

an improved model over the constant-acceleration-only model. We approximate �jf

as 200 ms for our quadrotor.
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2.4.3 Maneuver Library and Attitude-Thrust Setpoint Con-

trol

We use a őnite maneuver library (Figure 2-3b), where the maneuvers are determined

by a set of desired accelerations ai for the piecewise triple-double integrator. Our

method is compatible for a 3D library, but for the purposes of the simulation com-

parison against a global-planning 2D method in the next section, we use a library

constrained to a single altitude plane. To build a suitable discrete set of maneu-

vers, we approximate the maximum horizontal acceleration and sample over possible

horizontal accelerations around a circle in the horizontal plane. The max horizontal

acceleration is approximated as the maximum thrust vector (�max) angled just enough

to compensate for gravity: �max =

√
T 2
max+(mg)2

m
. By sampling both over horizontal

accelerations with just a few discretizations (for example, [�max, 0.6�max, 0.3 * �max])

and just 8 evenly spaced � over [0, 2�], this yields a useful set in the horizontal plane.

We also add a [0, 0, 0] acceleration option, for 25 maneuvers total in the plane, and

use �f = 1.0 seconds.

Executing the chosen maneuver is achieved by commanding a desired roll and

pitch to the attitude controller. For this 2D-plane implementation, a PID loop on

z-position maintains desired altitude by regulating thrust. We allow for slow yawing

at 90 degrees per second towards the direction p(�f )−p0, which in practice has little

efect on the linear model and allows for slow yawing around trees.

Integration with Dijkstra global guidance Triple-Double Integrator Model 

x

yz

v0,µ

(a) (b) 
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Figure 2-3: (a) Visualization of integrating Dijkstra global guidance, where ℛnav is
the cost-to-go (blue is lower, purple is higher) of the őnal maneuver position. (b)
Visualization of the piecewise triple-double integrator maneuver library. The library
of maneuvers is shown with a positive �, positive � initial velocity vµ,0, and the 1-�
of the Gaussian distribution is shown for one of the maneuvers. The �jf = 200 ms
constant-jerk period shown in orange. Note that due to the initial roll-left of the
vehicle, it can more easily turn left than right.

2.4.4 Evaluation of Collision Probability and Global Naviga-

tion

Each maneuver is sampled at �t positions (we use �t = 20), for a total of 500 positions

to be evaluated in our �M = 25 library. To allow for speeds past 10 m/s, given �f

= 1.0 s, we do not consider positions beyond our simulated depth image horizon of

10 meters to be in collision. All mean robot positions are evaluated for �d nearest

neighbors in the �-�-tree. In practice we have found success with �d = 1, although

larger �d is still fast enough for online computation, as shown in Table 1 in Section

6.

For each robot position mean pi,µ evaluated, we use a small-volume approximation

of the probability that a depth return point dj and the robot are in collision, by

multiplying the point Gaussian probability density by the volume �r of the robot’s

sphere:

� (Collision, pi(�)) ≈ �r ×
1

︀

det(2�Σp)
exp

︀

− 1

2
(pi,µ − dj)

TΣ−1
p (pi,µ − dj)

︀

(2.10)

where Σp is the covariance of the robot position as described by the model. This

small-volume spherical approximation has been used in the chance-constrained pro-

gramming literature [92]. If the above equation evaluates to > 1 (possible with the

approximation), we saturate it to 1. A key implementation note is that using a

diagonal covariance approximation enables the evaluation of Equation 2.10 approxi-

mately an order of magnitude faster than a dense 3× 3 covariance. Rather than use

online-estimated covariances of velocity, we choose linear velocity standard deviations

�v{x,y,z} that scale with linear velocity.
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For our quadrotor race through the forest, since the obstacles are all convex and

so navigating out of dead-ends is not a concern, we use a simple Euclidean progress

metric as our navigation function �nav, plus a cost on terminal speed �f = ||vi(�f )||2
if it is above the target max speed, �target:

�nav(ℳi) = ||p0 − pgoal|| − ||pi(�f )− pgoal||+�v(�f ) (2.11)

�v(�f ) = {0 if �f < �target, ��f if �f ≥ �target} (2.12)

Where we used � = 10, and �collision = −10, 000.

2.5 Simulation Experimental Setup

2.5.1 Simulator Description

To facilitate the comparison study, simulation software was developed to closely mimic

the capabilities of our hardware platform for the Draper-MIT DARPA FLA (Fast

Lightweight Autonomy) research team. The sensor conőguration includes a depth

sensor that provides dense depth information at 160x120 resolution out to a range of

10 meters, with a FOV (őeld of view) limited to 58 degrees horizontally, 45 degrees

vertically. A simulated 2D scanning lidar provides range measurements to 30 meters.

Both sensors are simulated at 30 Hz.

Drake [97] was used to simulate vehicle dynamics using a common 12-state nonlin-

ear quadrotor model [98] while the Unity game engine provides high ődelity simulated

perceptual data that includes GPU-based depth images and raycasted 2D laser scans.

The ŕight controller uses a version of the Pixhawk [99] őrmware running in the loop

(SITL) that utilizes an EKF over noisy simulated inertial measurements to estimate

attitude and attitude rates of the vehicle.
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(a) (b) 

Figure 2-4: (a) Screenshot from our race-through-forest simulation environment in
Unity. (b) Screenshot from Rviz which shows the evaluation of the 25-maneuver real-
time-generated motion library. The chosen maneuver and the 1-� of the Gaussian
distribution over time are visualized. The small sphere at the end of each maneuver
indicates approximated collision probabilities from low to high (green to red).

2.5.2 Experimental Setup

The experiments were carried out in a virtual environment that consists of an artiőcial

forest valley that is 50 meters wide and 160 meters long. The corridor is őlled with

53 randomly placed trees whose trunks are roughly 1 meter in diameter. A timer

is started when the vehicle crosses the 5 meter mark and stopped either when a

collision occurs or when the 155 meter mark is reached. If the vehicle is able to

navigate the forest without colliding with any of the trees or terrain in under a

predetermined amount of time, the trial is considered a success. Collisions and time-

outs are considered failures.

The experiments were repeated for each algorithm at various target velocities

�target = { 3, 5, 8, 12} meters per second and with increasing levels of state estimate

noise for �, �̇, �, �̇. We do not simulate noise in the altitude or in the orientations since

these are more easily measurable quantities. To simulate noise that causes position

to drift over time, we take the true diference in �, � over a timestep, ∆px,y, and

add zero-mean Gaussian noise which is scaled linearly with the velocity vector. The

three noise levels we use are � = {0, 0.1, 1} which is scaled by σ
10
vtrue. This linearly

increases noise with higher speed. We also add true-mean Gaussian noise to �̇ and

�̇, with standard deviations that are the same as for position noise. Accordingly we
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have:

pnoisy[�+ 1] ∼ � (ptrue[�+ 1]− ptrue[�],
�

10
vtrue) (2.13)

vnoisy[�] ∼ � (vtrue[�],
�

10
vtrue) (2.14)

The total time taken and the trial outcome was recorded for 10 trials at each noise

and speed setting, for a total of 360 simulation trials.

2.5.3 Dijkstra’s Algorithm with Pure Pursuit Description

We compare our method to a typical map-based robotics navigation solution that

consists of a global path planner that is paired with a path following algorithm. The

particular implementation we chose functions by maintaining a global probabilistic

occupancy grid (Octomap [46]) with a 0.2 meter voxel size. At a speciőed rate, a

horizontal slice of the map is extracted and a globally optimal path is computed

using Dijkstra’s algorithm. The path planning includes a soft cost on proximity to

obstacles. We then use a pure pursuit algorithm to command a vehicle velocity along

the resulting path to the goal. This approach has been heavily tested on our hardware,

and shown considerable success in complex environments in the range of 2.0 to 5.5

m/s with little state estimate noise.

2.6 Simulation Results and Discussion

The key metric for our comparison of the three methods is the no-collison success

rate of reaching the őnish line, and is presented in Figure 2-5. Additional data is

presented in Figure 2-6: average time to goal for successful trials, and example paths

at various noise levels.
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# success 
(out of 10) 

Global Path Planning  
and Following  

Mapless Deterministic 
Motion Library 

Mapless Probabilistic 
Motion Library 

Noise (st. dev)  

0 0.1 1 

Speed 

(m/s) 

3 

5 

8 

12 

Noise (st. dev)  

0 0.1 1 

Noise (st. dev)  

0 0.1 1 

Figure 2-5: Comparison summary of number of successful collision-free trials for the
diferent approaches tested in in our simulated quadrotor race through the forest. Ten
trials were run for each of the three approaches, for four diferent speeds {3, 5, 8, 12}
meters per seconds, and for three diferent levels of 2-dimensional state estimate noise
as described in Section 2.5.2.

The results for the global path planning and following approach show both the

limitations on handling higher speed, and on handling higher state estimate noise.

The approach was not able to handle any of the severe noise (� = 1) for any of the

speeds and was only able to reliably reach the goal at 5 m/s and below, with zero or

little state estimate noise. These limits on speed and state estimate noise match well

our experimental results in hardware. Primary inhibiting factors for this approach’s

success are (i) dependence on a global position estimate, (ii) latency incurred by

processing sensor data into a global map (up to ∼50 ms), (iii) latency incurred by

path planning on the local map (up to ∼200 ms), and (iv) neglect of vehicle dynamics,

which are increasingly important for obstacle avoidance at higher speeds.

For comparison, we also compare with the approach of deterministically collision-

checking our motion primitive library. For this deterministic method, the average

time to goal on a successful run was faster than the probabilistic method by approx-

imately 14%. The deterministic nature of the collision checking, however, causes the

method to leave little margin for error while navigating around obstacles. Thus, small

inaccuracies in the linear planning model (which approximates the nonlinear model

used for simulation) or in the state estimate can lead to fatal collisions.

The results for the probabilistic method demonstrate a marked increase in robust-

ness at higher speeds and with noise levels an order of magnitude higher than was
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manageable by the path following approach. The sacriőce in average time to goal

compared to the deterministic method is outweighed by the gains in robustness.

Global Path 
Planning and 

Following 

Mapless 
Deterministic 

Motion Library 

Mapless 
Probabilistic Motion 

Library 

3 60 +/- 6 51 +/- 1 59 +/- 2   

5 36 +/- 2 29.7 +/- 0.3 34 +/- 1 

8 24 18.1 +/- 0.1 21 +/- 2 

12 15 12.1 +/- 0.2 14.1 +/- 1 

Speed 

(m/s) 

Average time to goal for successful trials (s) 

(a) (b) 

Figure 2-6: (a) Comparison summary of the average time to goal for successful trials
for � = 0, which all methods were at least able to get 1 trial across the őnish line. (b)
Visualization of the diferent noise levels � = {0, 0.1, 1.0} and representative paths
for the probabilistic motion library navigating successfully through the forest at 12
m/s. The path of the noisy �, � state estimates (red) are plotted together with the
ground truth path (blue). The brown circles represent the tree obstacles at the ŕying
altitude of 1.8 m.

Additionally, an important practical consideration is that, given our fast collision

probability approximations, the total computation times of the probabilistic and de-

terministic methods are nearly identical (∼3-4 ms total), as is displayed in Table 1.

This is a strong argument for replacing deterministic collision checking with fast col-

lision probability approximation in a wide number of scenarios. We also emphasize

that these approximate computation times are achievable on our actual ŕight vehicle

hardware, which uses an Intel i7 NUC.
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Deterministic, N=1 Probabilistic, N=1 Probabilistic, N=10

Average Percentage Average Percentage Average Percentage

Subprocess time (�s) time (%) time (�s) time (%) time (�s) time (%)

Building kd-tree 1900 +/- 700 50.5 2000 +/- 500 57.8 1900 +/- 400 42.6

Evaluating future positions from real-time

generated 25-maneuver motion library 40 +/- 10 1.0 40 +/- 10 1.1 40 +/- 10 0.9

Evaluating collision probabilities with N-nearest

neighbor search on kd-tree 1800 +/- 800 47.9 1400 +/- 600 40.5 2500 +/- 1000 56.1

Evaluating expected reward, given �nav 2 +/- 1 0.1 2 +/- 1 0.1 2 +/- 1 0.0

Calculating attitude setpoint for attitude controller 17 +/- 5 0.5 17 +/- 5 0.5 17 +/- 5 0.4

Table 2.1: Measured averages and standard deviations of subprocess latencies, from
one representative run each. Implementation on single-thread Intel i7.

2.7 Future Work

There are several components to this line of work that we would like to extend.

For one, we plan to present validation experiments of the method in hardware. Ad-

ditionally, the highly parallel nature of the fast collision probability approximation

algorithm is amenable to data-parallel implementations on a GPU. We also plan to

expand on the motion primitive library, including true 3D ŕight, increased variety of

maneuvers, and analysis of the accuracy of the model. We also plan to characterize

the performance of the collision probability approximation with more elaborate global

navigation functions.
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Chapter 3

Hardware Validation

In this chapter, we analyze hardware validation experiments of the approach discussed

in the previous chapter.

Most notably, results are presented for the fastest known sustained UAV ŕight

through a dense forest. Previous top speeds demonstrated for sustained ŕight through

a forest were 1.5 m/s [10, 23], whereas we present ŕights 4x faster, at up to 6 m/s,

and dodge up to 39 obstacles in one continuous ŕight. We also present fast obstacle

avoidance in an indoor warehouse up to 10 m/s, and other near-building ŕight up to 7

m/s. These results are among the fastest and most robust results ever demonstrated

for autonomous UAVs navigating unknown environments. In particular, the outdoor

results are presented using a GPS-denied visual inertial odometry (VIO) estimator,

for which robust obstacle avoidance is especially diicult at speed. For the outdoor

ŕights, the obstacle avoidance system is demonstrated with a global planner that

enables the vehicle to get itself out of maze-like dead ends.

Chapter Acknowledgements

The hardware experiments presented in this chapter were the result of a team efort,

representing many individual contributions towards the overall goals of our Draper-
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all autonomous system, and the many hours spent dedicated to testing the particular
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contributions discussed in this chapter. Brett Lopez contributed to overall planning

and control components. Jake Ware and John Carter integrated the global planner

into the system. Nick Greene contributed to autonomous mission system intelligence.

The visual inertial odometry (VIO) state estimation system was developed by Ted

Steiner and Rob Traux. The Gaussian Particle Filter (GPF) with a prior map esti-

mation system was integrated by John Carter and Jake Ware. Scott Rasmussen led

the hardware design and building. Kris Frey handled the RealSense sensor integra-

tion and őltering. Steve Paschall and Julius Rose contributed to overall program and

testing management. This chapter will focus on evaluating the speciőc performance

of the system contributed by the author, which handles local planning and obstacle

avoidance, and its integration with the rest of the system.

Chapter Organization

The őrst set of results, Section 3.1, tests the approach in hardware in an indoor ware-

house environment, with no software changes of note from the integrated perception

and control approach that was evaluated in the simulation experiments of the pre-

vious chapter. This system has no prior obstacle information given, but the state

estimation system does, and is performed with a Gaussian Particle Filter (GPF) by

matching laser scans against a prior map [41, 42]. No global planning is used, and

obstacles are dodged at up to 10 m/s.

The second set of results, Section 3.2, extends the work to outdoor environments

with a VIO state estimator, and tests the approach in a variety of outdoor forest and

near-building environments. In order to transition to outdoor, robust ŕight, a variety

of supplementary components are added to the approach, which are presented. A

layered global planner is used, and sustained ŕight through a forest is achieved at 6

m/s. Obstacle avoidance in near-building and outdoor/indoor transition ŕight is also

demonstrated, at up to 7 m/s.
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3.1 Indoor Warehouse Flight

3.1.1 Experimental Setup for Indoor Flight

Hardware

The quadrotor hardware used in this work is shown in Figure 3-1. The frame is

the standardized platform for the DARPA FLA program: a DJI Flamewheel F450

airframe, with DJI E600 motors and 12ž propellers. Onboard computation is provided

by a dual-core Intel NUC5i7RYH. The total vehicle weight is 2.8 kg. The vehicle can

hover at approximately 61% throttle with its 6S LiPo battery. The sensor used for

obstacle perception was the ASUS Xtion sensor, mounted with 15 ��� tilt up. The

Xtion provides depth images with ∼8-10 � range at 30 Hz at VGA (640 × 480)

resolution, which were downsampled to 160 × 120 resolution. An onboard 2D laser,

the Hokuyo UTM-30LX, was used for state estimation, as well as a downward-facing

single-point LIDAR (LidarLite v2). Attitude control and an onboard InvenSense

MPU-6000 IMU was provided by a 3DR Pixhawk, running the ETH Pixhawk software

stack1. The chassis is a custom 3D print.

Figure 3-1: Draper-MIT quadrotor in conőguration used for indoor ŕight experiments,
ŕying at speed (left, and top right), and the ŕeet of airframes (bottom right).

1https://pixhawk.ethz.ch/software/start
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State Estimation

For state estimation, a Gaussian Particle Filter (GPF) [41, 42] was used that fused

measurements from the Hokuyo laser scans matched against a prior-built map, the

downward-facing single-point laser, and the onboard IMU. Only the state estimation

ś not obstacle perception or planning ś has any prior map information available.

Environment

Indoor warehouse results are presented from testing inside of the dedicated Draper-

MIT FLA testing facility. The obstacles in this environment are ŕoor-to-ceiling pillars,

which are approximately 1 meter in diameter, and are spaced in a grid with center-to-

center distance of approximately 7 meters. Since the pillar obstacles are all convex,

there is no need for a global planner.

3.1.2 Results from Indoor Flight

Three autonomous ŕights, varying only by the target max speed �target, are presented.

The start, goal, and environment were the same for each ŕight. A goal location is

given to the vehicle 32 � away at a 10 ��� angle, so the vehicle is forced to cross one

row of pillars. The vehicle is programmed to autonomously navigate to the goal at

1.4 � altitude, and return the start location, with �target = {5, 8, 10} m
s
.

Figure 3-2: Setup of warehouse environment, and locations of start and goal (32 �
away, behind the row of pillars).
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The vehicle was able to successfully navigate the unknown environment, and

achieve the target max speed in each scenario. A summary of the results is pro-

vided in Table 3.1. The maximum estimated speeds achieved for the three ŕights

were respectively 5.5, 8.4, and 10.2 m
s
. The speed proőles over time for each ŕight are

plotted in Figure 3-3. The beginning of the third ŕight in particular showcases the

system’s capability to intelligently slow down and speed up again while rounding a

sharp corner around the pillars. For the most part, each one-way trip produced two

autonomous dodges of the pillars2. The maximum estimated roll angles achieved for

the three ŕights were respectively 25.3, 37.4, and 42.6 ���.

Duration Distance Max Max Obstacles

(�) Traveled (�) Speed (m
s
) Roll (���) Dodged Result

Flight i 32.4 75.3 5.5 25.3 5 Autonomous return and land

Flight ii 31.8 80.3 8.4 37.4 4 Autonomous return and land

Flight iii 27.5 76.4 10.2 42.6 4 Autonomous return and land

Table 3.1: Summary of three ŕights of increasing speed in warehouse.
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Figure 3-3: Speed over time for the three warehouse ŕights. When the vehicle speed
is near 0, it is turning around at the goal.

2A dodged pillar was counted if the vehicle deliberately chose to avoid it.
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A sampling of the obstacle avoidance maneuvers are analyzed in step-by-step detail

in Figures 3-4, 3-5, and 3-6. For each őgure, three sequential moments are represented

by a pair of an RGB image (left) which helps provide the reader with context, and a

3D visualization (right) of the integrated perception and control. In the visualization,

for each motion primitive path (light green), the approximated collision probability of

each primitive is visualized with the sphere at the end of each primitive, (red is high

collision probability green is low, i.e. ��� = [�collision, 1 − �collision, 0]). The point

cloud produced by each Xtion depth image is rendered so that color corresponds to

depth (red is close, blue is far). The laser scans (white) are also shown, which help

give a sense of the attitude of the vehicle. The chosen motion primitive (purple) is

shown with the � of the time-varying distribution of conőguration.

Note that the Xtion sensor was tilted (pitched) 15 ��� up, and so images that

look near-level are actually during forward-pitch ŕight.
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Figure 3-4: Outbound ŕight at 5 m/s. The vehicle approaches the second pillar at
speed (top), then begins to roll left as soon as the previous pillar is passed (middle),
taking this turn with a roll angle of approximately 25 ��� (bottom).
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Figure 3-5: Outbound ŕight at 8 m/s. The vehicle approaches the őrst pillar and
takes a diferent route than the previous ŕight, cutting sharply around the őrst pillar
(top), quickly rolling and then choosing to come out of the turn (middle), aggressively
coming out of this swerve at approximately 37 ��� roll (bottom). Rotational motion
blur in the RGB images is signiőcantly higher than the 5 m/s ŕight.
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Figure 3-6: Return ŕight at 10 m/s. The motion blur from the linear velocity of 10
m
s
, at 1.4 � altitude, is noticeable, and the 40 ��� pitch causes obstacles to almost

be out of the FOV, even with a 15 ��� tilt angle for the Xtion (top). The vehicle
decides which distance to keep from the pillar according to its collision probabilities
(top), then starts rolling and pitching back (middle) and execute a 42.6 ��� roll to
come out of the turn around the second to last pillar (bottom).
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3.2 Outdoor Forest and Near-Building Flight

3.2.1 Adaptations for Outdoor Flight

Transitioning to outdoor ŕights in more complex environments and with a visual

inertial odometry (VIO) state estimation system presented a variety of diiculties

beyond the scenario presented for the indoor ŕights. Accordingly, a variety of adap-

tations were implemented for the integrated perception and control system, which are

outlined below.

Smooth Flight with Chance-Constrained Optimal Primitive

A non-optimal result of the motion primitive library previously presented, in which

primitives are sampled over the acceleration input space, is that discretization efects

can cause non-smooth ŕight alternating between primitives. Particularly for the ben-

eőt of visual inertial odometry, it was preferable to have vehicle motion that avoids

unnecessary rapid attitude changes, which makes visual feature tracking diicult. To

address this, an additional primitive was generated which rather than sampling over

an acceleration input, is calculated to be the approximate optimal input, in the ab-

sence of obstacles. The minimum-time input for a double integrator system subject

to a nonlinear actuator constraint cannot be calculated in closed form, but instead an

approximation was used that works well in practice. Given the planning horizon time,

�f , the position in the local frame at � = �f with no control input is easily calculated:

pt=tf = v0�f . The optimal acceleration is then approximated as the acceleration that

will get the vehicle moving in the direction ∆pf,desired = pgoal − pt=tf at the desired

top speed, i.e. vf,desired =
∆pf,desired

|∆pf,desired|
× |�max|. With the double integrator approxi-

mation, this optimal acceleration is a∗ =
vf,desired−v0

tf
. If the optimal acceleration was

above the chosen acceleration limits, then it was scaled down to within the acceler-

ation limit, i.e. if |a∗| > |�max|, then a∗ := a∗

|a∗|
× |�max|. A similar process is applied

for when the vehicle is within stopping distance of the goal.

To supply clear constraints, the optimal primitive was chosen in a chance-constrained

approach. This ensured it was chosen when viable, rather than subject its selection
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to the mixing of other rewards (from obstacles, global guidance, and terminal velocity

cost). In particular, the optimal primitive was chosen if �collision(ℳ∗) < �, where � is

some small probability (� = 0.02 was used). If not, then all primitives were evaluated

with all mixed rewards.

Global Planner Integration

To be able to navigate complex, maze-like environments, global guidance was provided

by a 2D A* planner from the global_planner module of the open-source navigation

ROS package3. Its integration was designed to allow slack for the local planning

system to łselectively listenž to the global guidance only when needed. This desire

for loose integration was due to: (i) mapping errors causing spurious obstacles to

appear in the global map, and (ii) the inability of the A* paths to represent dynamic

constraints. Rather than follow the global path exactly, as in a map-plan-track type

approach, we wanted only the global planner to give a general direction for the local

planning component, and when the vehicle was stuck in a dead-end, to get it turned

around and moving in the correct direction. The solution used was to have the local

goal for the local planning system to be a łcarrotž on the global planner’s path,

where the carrot distance �carrot scaled by the vehicle’s velocity, |�|. The relation

used was �carrot = 1 + 4|�|, with a minimum carrot distance of 1. Rigorous analysis

of any global-local planning integration is diicult, but empirically this architecture

provided strong results. Global frequency was limited to 2 ��, with approximately

100 �� latency. Conversely the local obstacle avoidance was performed at the depth

image rate (60 Hz) with approximately 1 �� latency. The global-local interaction is

analyzed more later.

A simple prior map was used which did not include individual obstacle information

but biased the vehicle in the correct general direction (Figure 3-7a). This map would

clear out and őll with obstacles as the vehicle progressed (Figure 3-7b). Due to high

noise of the RealSense sensor, only the Hokuyo laser was used to clear obstacles.

3http://wiki.ros.org/navigation
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(a) (b) 

Figure 3-7: Prior map (a) and map on return ŕight (b). The inset shows an onboard
image at the start location pointing north (a), and on the return ŕight in the forest
(b). The 2D A* global plan is shown in light green. The colored view cone is the
FOV of the RealSense sensor, which will give returns out to 60 �, even though only
the őrst ∼10-20 � are typically useful.

Vertical Oscillations to Help Monocular State Estimator

Since the monocular VIO state estimation system had diiculties in handling the case

of constant forward-velocity ŕight, which is an otherwise ideal ŕight regime for the

vehicle, vertical oscillations were commanded to help overall system performance. The

cause of this diiculty is a well known aspect of monocular visual odometry: when the

velocity vector is parallel to the camera axis [100], the scale factor cannot be estimated

well. During accelerations, an IMU can provide a visual-inertial estimator with a

sense of scale, but not if there are no accelerations, such as during constant forward-

velocity ŕight. Hence, until our estimation system can handle these degenerate cases,

a stopgap solution used was to sinusoidally oscillate the � setpoint for the vehicle,

according to �(�) = �*���(�* 2π
T
), where the amplitude � used was 0.5 m, and period

� was 3 seconds.

Robust 2D Flight with Laser and Stereo Combination

Given the diiculties of vision-based obstacle detection for certain diicult lighting or

low-texture environments, it was determined that a laser-based perception system was
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needed to complement the vision-based system. Even if the vision-based perception

from the RealSense was highly capable at perceiving natural high-texture obstacles

such as trees, it was essentially blind to important obstacles, like the broad sides of

low-texture walls. Complementary perception was provided by a 2D Hokuyo laser

sensor, which even in worst-case lighting conditions (direct sunlight) can reliably

detect obstacles at approximately 10− 15 � (although it is speciőed for 40 � range,

this only applies in indoor / low-light conditions). This sensor ofers reliable detection,

but its rigid mounting and lack of a vertical őeld of view presents diiculties for ŕight

with aggressive rotations. To address this, laser-data-processing assumed the world

is mostly 2.5 dimensions ś i.e., a the 3D laser point cloud data was projected into

the 2D plane at the altitude of the vehicle. To avoid projecting the ground, points

were only projected up to the vehicle plane if they were within 0.5 meters below

the vehicle, or any distance above. To incorporate both laser and vision data, the

collision probability approximation used the � = 1 closest laser point and the � = 1

closest depth image point, with an independence approximation between them. The

FOV constraints for the depth image were still imposed. Accordingly, for each time-

sampled distribution of conőguration �ti(q), we have:

︀

1−� (Collision, �ti(q))
︀

=

⎧

⎨

⎩

0, if �(�ti) ∈ �
︀

j={laser,stereo}

︀

1− � (Collision, �ti(q),dj)
︀

, otherwise

(3.1)

Emergency Stop Maneuver

There is a worst-case failure mode for the approach presented previously, when all

collision probabilities are very large (i.e., the vehicle believes it has no chance of

avoiding a wall). To address this, an emergency-stop maneuver was implemented. To

avoid false-positive detection of the need for an emergency stop, only the laser data,

which is typically cleaner than the vision data, was used to determine the emergency

stop. If all motion primitives, according to the laser only, had a higher collision
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probability than some threshold (�collision = 0.7 was used), then the stop maneuver

was executed.

3.2.2 Experimental Setup for Outdoor Flight

Hardware

The hardware used for the outdoor experiments were almost identical, with only slight

modiőcations. Rather than an ASUS Xtion depth sensor, an Intel RealSense R200

(mounted with 0 pitch angle) was used, which provided depth images at 60 Hz and

480 × 360 resolution, which were then median-őltered to reduce spurious obstacles

and down-sampled to 120×90 resolution. The Hokuyo was still present, but this time

its point cloud was actually used for obstacle detection rather than state estimation.

For these ŕights, a PointGrey Flea3 (FL3-U3-13Y3M-C) monocular camera, and a

navigation-grade ADIS 16448 IMU was added for the VIO state estimation system.

With additional camera and IMU hardware, and board to read and synchronize this

data, total vehicle weight for these ŕights was approximately 3.2 kg.

Figure 3-8: Draper-MIT quadrotor in conőguration used for outdoor ŕight exper-
iments, including with front-mounted Intel RealSense sensor and bottom-mounted
Point Grey Flea3 camera. (Images courtesy of Jon How)

State Estimation

State estimation was provided by a monocular visual inertial odometry (VIO) graph-

based smoother, łSamwisež, developed by Draper Laboratory. Samwise leverages
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GT-SAM4 for solving its pose graph.

3.2.3 Results for Outdoor Flight

Sustained Flight Through Dense Forest

Three autonomous ŕights in a forested environment are presented, in which the target

speed was respectively �target = {5, 6, 6}m
s
. The start and goal locations were the

same for each ŕight. A goal location was given to the vehicle 270 � away, and after

taking of pointing north with a őducial for orientation (Figure 3-7a,), the vehicle

was programmed to autonomously navigate to the estimated goal location at a 2 �

altitude, and return. A portion of the ŕight (approximately half) was through an

edge-of-forest clearing, while the other half was through the forest (Figure 3-9).

Figure 3-9: Overhead imagery of the ŕight path. The vehicle was instructed to
navigate 270 �, of which approximately half of the ŕight was along a clearing next
to the forest, and the other half was in the forest. (Image taken from Google Maps.)

The vehicle successfully navigated into and out of the forest and achieved the

target max speed in each scenario. A total of 84 obstacles (trees, shrubs, vehicle),

4https://bitbucket.org/gtborg/gtsam

65



were dodged along the way5. A summary of the results is provided in Table 3.2. The

maximum estimated speeds achieved for the three ŕights were respectively 5.3, 6.4,

and 6.2 m
s
. The speed proőles over time for each ŕight are plotted in Figure 3-10.

The maximum estimated roll angles achieved for the three ŕights were respectively

25.2, 33.5, and 44.2 ���.

Duration Distance Max Max Obstacles

(�) Traveled (�) Speed (m
s
) Roll (���) Dodged Result

Flight i 192.3 716.4 5.3 25.2 39 Autonomous return and land

Flight ii 158.3 711.5 6.4 33.5 27 Autonomous return and land

Flight iii 127.8 508.6 6.2 44.2 18 Safety pilot land

Table 3.2: Summary of three ŕights through forest.
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Figure 3-10: Speed over time for the three ŕights through the forest. The moments
where vehicle speed drops to near 0 are either when the vehicle is turning around at
the goal, or is stuck in a dead end.

Before analyzing the vehicle’s ŕight, it is helpful to get a sense of the raw depth

sensor data that was available. In the high-texture forest, the RealSense sensor per-

forms notably well, detecting depth returns with reasonable reliability in the 10-20 �

range, although noisy. Figure 3-11 displays this raw data from a variety of moments

throughout the test environment.

5Distinct obstacles were counted for each separate object (tree, shrub, etc) that the vehicle
intentionally dodged in its flight path.
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Time 

Figure 3-11: Raw RGBD data from the RealSense sensor, from a variety of moments
throughout Flight i. The point cloud from the depth image is displayed as an axis
color map (red is close, green is far) and is projected onto the RGB image. Time
progresses down each column, starting with the left, then moving to the middle and
right columns. Note that many natural textures, including thin trees (middle column),
grass, and shrubs (right column, second from top) are detected. A Polaris vehicle (top
right) was also detected and dodged. The bark of the large tree, however (bottom
left), is blind to the depth sensor ś as an IR sensor, it is very surface-sensitive.
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A sampling of the obstacle avoidance maneuvers are analyzed in step-by-step

detail in Figures 3-12 through 3-16, etc. The visualizations are similar to what was

provided for the indoor ŕights, except the global A* path (light green), the velocity-

scaled łcarrotž (orange), and global 2D map are also provided in the image.

Figure 3-12: Outbound, 5 �/� from Flight i. Vehicle approaches a pair of trees
(top), rolls left 21.2 ��� and then rolls right out of the dodge (middle), and returns
to forward ŕight (bottom). Note that although the global plan veers of to the left
due to mapping errors, the local planner chooses to ŕy through the open.

68



Figure 3-13: Return, 5 �/� from Flight i. Quadrotor approaches a pair of obstacles
(top), not that although the initial velocity is to the right, the A* planner does not
encode dynamic constraints and plans a path to the left. The quadrotor instead
dynamically avoids the car to the right, passing the car (bottom) and returning to
level ŕight (bottom).
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Figure 3-14: Demonstration of the global planner helping the vehicle get out of a dead
end. The vehicle approaches a dead end (top) at 5 �/� (Flight i), chooses to stop to
avoid collision (middle), and the global planner then guides the vehicle around to the
left, out of the dead end (bottom).
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Figure 3-15: Outbound, 6 �/� from Flight ii. Vehicle approaches tree (top) and rolls
to left, then chooses to snap around tree as soon as it is safely past (middle), rolling
28.9 ��� as it comes around (bottom).
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Figure 3-16: Outbound, 6 �/� from Flight iii. Vehicle approaches shrubs and rolls
left around them (top), snaps around the corner with a 44.2 ��� roll (middle), then
returns to level ŕight (bottom).
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The robustness of the method is apparent from the 84 obstacles that were consec-

utively dodged over the course of these three ŕights.

One item to note is the interaction of the global planner and local planner. In

a variety of őgures above, the local planner overrides the global planner’s guidance,

since it has a more detailed local understanding of obstacle information, and encodes

the dynamic constraints (including initial velocity and acceleration of the vehicle).

As demonstrated in Figure 3-14, however, the global planner is critical for enabling

the vehicle to turn around out of dead ends.

Near-Building Flight: Rounding Building Corners and Exiting Buildings

In addition to the forest ŕights, we present results from ŕying near buildings outside

at speed. Flying near large walls at speed presents its own challenges, diferent than

those of ŕying in the forest. In part, this is due to the perception diiculty: since man-

made walls are often low-texture, they are hard for the vision sensors (i.e., RealSense)

to perceive well. In our case, this meant relying on the 2D laser to perceive these walls.

Also, however, the obstacle avoidance is also particularly challenging: small lateral

dodges, as work with trees, are not always viable. One common obstacle avoidance

method that is suited well both for trees, and for walls, can be diicult. Since most of

the duration of the following two ŕights did not involve obstacles, so we focus only on

the obstacle avoidance moments. Figure 3-17 shows the vehicle coming around the

corner of a building at 7 �/�, in which mostly the laser data is relied upon. Figure

3-18 shows the vehicle navigating out of a door, at 6 �/�.
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Figure 3-17: Flight at 7 �/� around the edge of a hangar. With mostly laser returns
and only sparse RealSense returns, the vehicle rolls right to avoid the wall (top).
Despite a bug in the global planner that caused it to propose bad plans when in false-
positive occupied space (middle), the local planner is responsible for navigating the
vehicle to safety. As soon as the vehicle has dynamically cleared the wall (bottom),
it snaps around it with a left roll.
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Figure 3-18: Flight at 6 �/� exiting a warehouse to outdoors. The vehicle relies on
mostly laser perception (top) to see the opening, then snaps around it (middle), and
comes to level ŕight after clearing the exit (bottom).
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3.3 Discussion

We have demonstrated some of the fastest and most robust ŕight, in diicult environ-

ments, at speeds of 5 - 10 �/�. As a highlight, we have increased the fastest sustained

ŕight ever achieved through a forest by a factor of 4.

Despite the successes we have observed in hardware experimentation, there are

a variety of areas that ofer room for improvement and further research. Many of

these opportunities are outside the realm of capabilities addressed here ś for example,

improving raw perception data. Other possible improvements would be to work on

tuning small things, such as tuning to make ŕight smoother. It is expected that

eliminating the vertical oscillations in altitude would help reduce ŕight jerkiness in

outdoor environments.

Perhaps the largest opportunity for the most tangible increase in performance

would be to incorporate some memory into the obstacle avoidance. There have been

a variety of times where the vehicle will oscillate due to forgetting what it has just

seen. This topic is addressed in the next chapter.
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Chapter 4

Robust Obstacle Avoidance Beyond

Maximum-Likelihood Maps:

Depth-Pose-Graph Planning

4.1 Introduction

Robust, fast motion near obstacles is an open problem that is central in robotics, with

applications spanning across manipulation, autonomous cars, and UAV navigation

in unknown environments. To address this problem, this chapter explores how to

eiciently and robustly use a short history of depth measurements, particularly in

regimes of diicult state estimation for UAVs. The common approach is to build a map

from a history of maximum-likelihood estimated poses, but in regimes of signiőcant

state estimation uncertainty, mapping errors can be the downfall of planning motions

around obstacles [11, 32]. Accordingly, a notable trend in the state of the art has

been to develop state-space planning approaches to obstacle avoidance that use only

the most recent depth sensor measurement [10ś12,17,32], which efectively eliminates

pose estimation uncertainty from the problem.

It would seem that using memory of depth sensor measurements should be strictly

superior to a memoryless approach, since additional information should only beneőt
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decision-making. In every map-based obstacle avoidance method known to the au-

thors, however, the representation of the world used in the planning process is either

a maximum-likelihood estimate map batched over some time interval, ℳ̂MLE, for ex-

ample in a SLAM (Simultaneous Localization And Mapping) method allowing loop

closures, or is a map built incrementally from maximum-likelihood poses. Whenever

a maximum-likelihood estimate does not represent the distribution well (for exam-

ple, distributions that are high-variance and/or multi-modal), mapping errors can be

diicult to recover from (even if future measurements are good).

F
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F
−2pti(q)

F
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F0pti(q)F0

F−1F−2
F−3F−4

F
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(b) 

Figure 4-1: (a) Depiction of frame-speciőc conőguration uncertainty F−j�ti(q) for a
series of depth image őeld of views (FOVs). (b) Visualization of using Depth-Pose-
Graph Planning to navigate a simulated forest (simulated image on left, visualization
of subset of recent FOVs on right).

In this chapter, we present a novel formulation, Depth-Pose-Graph Planning, that

enables robust obstacle avoidance with memory, through incorporating a distribution

of the world in the obstacle avoidance decision-making process. Rather than oper-

ating on a summarized representation of the world as in mapping based methods,

78



this approach uses the entirety of the information available to evaluate motions: raw

depth images and a pose graph (as in a pose graph SLAM framework). This struc-

ture respects both the natural őeld of view (FOV) and occlusions of the information

available, and also enables appropriate modeling of uncertainty. In this framework,

raw depth sensor data is not fused in order to create a map, but rather the raw depth

sensor data and the pose graph itself are used to collectively score motions. Since

we do not build a map but rather only use sensor data to the extent that it scores

motion plans, we think of this as a type of łperception in the service of controlž.

To those familiar with robotic mapping and planning, the idea to use a distribu-

tion of the world state rather than a maximum-likelihood estimate seems desirable,

but expensive computationally. Eicient inference, however, can be done using both

the raw depth image data and uncertainty measures incorporating pose estimation,

velocity estimation, and depth sensing. In particular when the structure of the prob-

lem is exploited through a hierarchy of graph search and spatial partitioning, it can

be tractable for real-time implementation. The computational eiciency is notably

desirable when loop closures are allowed: mapping approaches require reinsertions for

each � depth measurements in memory, i.e. �(�) insertion complexity for uniform

grid maps or �(� log�) for octree structures, but there is no increase in complexity

for loop closures with our method.

In terms of contributions, this is the only work known to the authors that addresses

obstacle avoidance where the representation of the obstacles incorporates a history

of pose estimation uncertainty into a distribution for the world state. Among the

new ideas demonstrated in this work are: (i) using frame-speciőc uncertainty for

planning with depth sensors, (ii) eiciently using independently spatially partitioned

depth measurements, and (iii) searching a history of recent raw depth measurements

to satisfy őeld of view constraints.

79



4.2 Background and Related Work

The POMDP (Partially Observable Markov Decision Process) provides a general

framework for belief space planning [7], where decisions are made based on a prob-

ability distribution of what the state of the world is. General-purpose solvers exist

for POMDPs, and although there have been gains made in the size of problems they

can address [60, 101ś103], discretizing the world state with a őne resolution leads to

an intractable number of states, and complexity scales exponentially with the num-

ber of time steps in the planning horizon. Belief space planning approaches that

exploit particular problem structure at the expense of restricting themselves from

general-purpose solvers have been addressed through a large variety of works, with

a general sampling-based framework provided by the Belief Roadmap (BRM) [67].

Belief space planning with Linear-Gaussian belief spaces, as we use here, has also

been used broadly [66]. To varying extents, however, all previous works involving

avoiding obstacles with belief space planning require some prior knowledge about the

obstacles of the environment, or use a deterministic world state rather than including

a distribution of the world state.

A few related works share some features of using pose estimation uncertainty in

planning, but do not address planning around obstacles in unknown environments.

Previous works have used directly the uncertainty of a pose graph framework for

planning but have a critical limitation that they only plan over graphs of pre-known

poses [104, 105]. Other work seeks to develop generalized belief space that includes

distributions over worlds, but there are no obstacles in these worlds, only landmarks

for navigation [106]. Another related work includes a sampling of depth perception

estimates (a discrete probability distribution), but inserts them into a map structure

using maximum-likelihood poses [29].

Rather than deal with the belief space of previous poses, the predominant ap-

proach for incorporating memory has been to ignore pose uncertainty, and use a

maximum-likelihood mapping approach [37, 44]. Mapping-based approaches beneőt

from extensive decades of research into the robot mapping problem. When they are
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well constrained, many SLAM approaches are able to create precise maps that are

the maximum likelihood estimate map ℳ̂MLE from the fusion of a variety of noisy

depth sensor, RGB, and other sensor data. There are a variety of diferent ways to

formulate a map ś the most common version are occupancy grids, which are used

ubiquitously [46]. Occupancy grids can probabilistically incorporate depth sensor

measurements (multiple measurements can be required for a cell to be occupied), but

this doesn’t address pose estimation uncertainty. Other forms include polar maps,

and for some dense SLAM techniques, surfel maps are used. The accuracies of map

structures are subject to the limits of discretization (i.e., voxel and polar maps), or

are limited by parametric representations of geometry (i.e., surfel maps).

A diferent and popular approach to the obstacle avoidance problem under sig-

niőcant state estimation uncertainty is to essentially cut pose estimation out of the

equation, which can be done via a method that uses no memory of depth sensor

measurements. In addition to planning-based approaches that exhibit this prop-

erty [10ś12,16,17,32], any obstacle avoidance approaches that are considered reactive

approaches may inherently have this property as well. Reactive approaches, including

optic ŕow methods [15], reactive imitation-learning [23], and non-planning-based geo-

metric approaches [27] have demonstrated considerable success at obstacle avoidance

for UAVs. The limitations of memoryless obstacle avoidance have been well noted,

however [16, 23]. Related approaches have limited map-building to very short time

horizons [3], or have used map structures that exponentially decay old depth sensor

measurements [29].

4.3 Problem Formulation

We consider the robust obstacle avoidance problem as a particular type of planning

problem. This problem, which is concerned with latency on the order of seconds and

a spatial area only the size of the robot’s stopping distance, has a set of constraints

that difers by orders of magnitude from the navigate-the-maze planning problem,

which can tolerate seconds of latency and has to operate over whichever spatial area
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is of concern to the robot (potentially kilometers or more). Accordingly, we consider

a layered approach [11, 19, 28, 107] in which a higher-level planner provides a global

navigation function ℛnav(�), for any policy �, without itself needing to consider

collision risk rigorously.

Higher-level Planner 

Control inputs to actuators or 

lower-level control 

Obstacle Avoidance System 
 

 π∗ = argmax
π

F

(

ℛnav(π), Pcollision(π)

)

ℛnav(·)

Figure 4-2: Layered planning structure that abstracts the obstacle avoidance problem
away from the higher-level planning problem.

Given a higher-level navigation function, the obstacle avoidance problem reduces to

determining the risk of collision for each policy �. In a probabilistic framework,

this means evaluating the collision probability �collision(�). If this quantity can be

estimated for any policy, then the optimal policy may be chosen by optimization over

some chosen mapping � :

�∗ = argmax
π

�

︂

ℛnav(�), �collision(�)

︂

(4.1)

In particular in this work, we consider a őnite set of policies Π = {�0, �1, ..., �K}
as in popular motion library approaches, which have a variety of practical beneőts

including avoiding nonconvex optimization. This enables the optimal policy to be

chosen as simply the best from the discrete set evaluated, �∗ = argmax
πi

� (·).
We also speciőcally consider the obstacle avoidance problem where all of the infor-

mation �̃ about the true world state � is given in the form of a depth-pose-graph.

The depth-pose-graph is deőned fully in Section 4.4.1, but the two main components

are (i) a sequence of depth images, and (ii) a pose graph. Since a maximum-likelihood
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map can be produced from a depth-pose-graph, this set of information is general

enough to allow typical mapping-based approaches.

4.4 Depth-Pose-Graph Planning

Before describing the details, we provide a brief overview of the key ideas. When each

depth image is received, the raw depth image and a �-�-tree of its associated point

cloud are stored in memory together with the pose from which they came. To evaluate

motions for collision risk, this memory is searched to see if a queried point in space is

found in the viewed free space of a depth image. If such a depth image view is found,

the conőguration distribution is transformed backwards in time through the uncertain

pose graph. Now in the frame of a previous depth image, eicient querying of the

closest obstacle is provided by the previously constructed �-�-tree associated with

each depth image (within its frame, it does not need to be re-spatially-partitioned,

despite a changing pose graph).

In the following subsections, we deőne a depth-pose-graph, describe searching a

depth-pose-graph, describe how to evaluate motions using the search of the graph,

and complete the description with a model, motion library, and policy for selection

motions.

4.4.1 The Depth-Pose-Graph

A depth-pose-graph is the correlated combination of two types of information com-

monly available in robotic hardware systems that have a depth image sensor, and

perform graph-based SLAM. In a depth-pose-graph, the depth images are paired

with time-synchronized poses in a pose graph.

The graph �depth−pose = ({�,�}, ℰ) is a combination of a set of depth im-

ages � and pose graph� = (�, ℰ) such that each node in the graph {�i,di}
is the pairing of the depth image di that corresponds to the timestamp of

that pose �i. It is assumed that depth images each have a corresponding

time-stamped pose.
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The two components are speciőcally deőned as follows:

1. A set of � depth images, � = {d0,d−1, ...,d−n}. Each depth image has these

following key characteristics: � × � pixels, őnite range �range, camera intrinsic

matrix � which deőnes the őnite őeld of view (FOV), and obstacles create

occlusions for the depth sensor (the depth �r,c at each pixel is the measure to

the closest obstacle, and is blind to objects behind the obstacle).

2. A pose graph � = (�, ℰ), whose vertices � are � poses �0, �−1, ..., �−n, and

whose edges ℰ are noisy measurements �̃ij of pairwise relative transforms �ij =

(�ij, �ij) between poses, �ij , �−1
i �j(� ̸= �).

We assume that the edges of the pose graph, the noisy pairwise relative transforms

�̃ij, are provided by a separate SLAM front-end, which are available in many varieties

and are often packaged separate than the back-end graph optimization solver [108].

We note that pose-graph-based SLAM is only one type of approach to SLAM ś other

approaches can use a simple őlter, for example, or there also exist dense SLAM

techniques without a pose graph [109]. The pose graph, however, contains all of the

information that would be available to any other SLAM technique ś one could simply

run a őlter, for example, on the sequential information from the pose graph.

4.4.2 Greedy Search on a Depth-Pose-Graph

Each depth image is subject to FOV limitations as shown in Figure 4-3, and so is

only able to percept a limited, non-necessarily-convex polyhedron of free space.

(1)Free space

(2)Laterally outside FOV

(3)Inside occupied frustum

(4)In occluded frustum

(5)Beyond sensor horizon

(1)

(2)

(3) (4)

(5)

Figure 4-3: The őve subsets of space partitioned by one depth image.
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Greedy search provides a heuristic for which depth-pose to use: the őrst depth image

which has the mean of the queried mean point �(� = �i), inside its FOV. This equates

to calling only a fast subroutine, IsInFOV(), for each node of the depth-pose-graph

searched. This subroutine is fast, as shown below, where � is the projective transform,

(�, �) = (x
z
, y
z
), in the right-down-forward Cartesian frame of the depth image, and

(�, �, �) = �� with � the camera intrinsics matrix.

IsInFOV() =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

����, if 0 < � < � and

0 < � < � and

� < �r,c and

� < �range and

� > 0

�����, otherwise

(4.2)

In some cases, multiple depth images may all have a view of a particular subset of

space. Each depth-pose could be used to contribute to the overall evaluation, but it

is helpful to limit the expensive querying of each �-� tree (which for 160x120 images,

has 19,200 nodes) to only when the depth image is the most useful.

We use a hierarchy of breadth-őrst-search (BFS) graph search and spatial parti-

tioning for a fast use of the depth-pose-graph. In the greedy search, the őrst depth

image found that evaluates IsInFOV() = ���� is used. This method is depicted in

the őgure below.

 

 

Depth image k-d tree

For each frame Fj

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F0

F−1

F−2

F−N

F−k F−l

F−m

...

Independently spatially-partitioned Gdepth−pose

1 

2 3 4 

5 6 

N 

i Ordering in BFS greedy search

Figure 4-4: Greedy search on the depth-pose-graph.
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When there are no loop closures in the pose graph, the greedy search reduces to a

search down an array of depth-pose nodes, where temporal preference (more recent

is better) is used as a heuristic for which depth image to use.

4.4.3 Evaluating Motions With A Depth-Pose-Graph

We consider a type of sampling-based motion planning with a depth-pose-graph, in

which a discrete library of motions is evaluated. Previous works have had success

using a small library of motion primitives and replanning at high rate (i.e., 30-60

Hz) [11, 12]. The motion primitives we consider are open-loop input trajectories,

of the form u(�) over some őnite horizon � ∈ [0, � ], and are executed in a Model-

Predictive-Control (MPC) type fashion, without any position-tracking controller [11].

A key step is to determine a time-varying distribution of conőguration, for any

motion primitive. (Since only conőguration space matters for collisions, only a time-

varying distribution of conőguration is needed, rather than full state.) We consider

a őnite set of � open-loop input trajectories, U = {u1,u2, ...,uK}. Future states are

determined with the given dynamical model, ẋ = �(x,u). In the current frame of

the robot F0, there is no initial position or orientation uncertainty. Accordingly to

determine the time-varying distribution of conőguration in frame F0, for a second

order system only the velocity estimates are needed. With a current velocity esti-

mate ṽ0, together with the open-loop input trajectory, a time-varying distribution of

conőguration can be determined {ṽ0,u(�)} → �t(q).

Unless we are performing Monte Carlo evaluation1, we need to sample the time-

varying conőguration distributions over a sequence of times:

{ṽ0,u(�)} →
sample over times t1,t2,...,tN

�t1(q), �t2(q), ..., �tN (q) all in frame F0

(4.3)

1As mentioned in the previous chapter, Monte Carlo evaluation was deemed too slow for our
purposes, although recent work has shown that highly parallel implementations of Monte Carlo can
enable reasonable computation times [110].
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t = 0

F0

pt1(q)
pt2(q)

ptN (q)

Figure 4-5: In current frame F0, sampling time-varying distribution of conőguration
at times �1, �2, ..., �N . The FOV of the depth sensor is shown with the gray triangle.

We then use a simple independence approximation to combine evaluations of multiple

times in order to evaluate the whole trajectory. This is not a perfect approximation,

and its accuracy limitations have been previously addressed [71], but empirically it

has shown to be useful [11]. With the independence approximation, the probability

of collision for the whole trajectory is

�collision(�t(q)) ≈ 1−
N︁

i=0

︂

1− �collision(�ti(q))

︂

(4.4)

The problem then reduces to determining the �collision at each time step, for which

the entire depth-pose-graph may be used:

�collision

︀

�ti(q) | �depth−pose

︀

(4.5)

The eicient, uncertainty-conscious evaluation of the above expression is the central

part of this work. The previous subsection described searching the depth-pose-graph

ś once the appropriate depth-pose has been found, its frame-speciőc uncertainty is

determined as described in the next section.

4.4.4 Determining Frame-Specific Uncertainty

Each time-sampled conőguration distribution is originally considered always in the

current robot frame F0, and so transforming this distribution through the uncertain

pose graph edges �̃i,j creates a diferent uncertainty distribution Fj�ti(q) in the frame

Fj of each diferent pose.
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F
−3pti(q)

F
−2pti(q)

F
−1pti(q)

F0pti(q)

Gdepth−pose Frame-specific uncertainty

F0

F−1

F−2

F−3

F−4

x̃0,−1

x̃−1,−2

x̃−1,−4

x̃−2,−3 x̃−3,−4

Figure 4-6: The uncertain frame transformations �̃i,j are used to determine the frame-
speciőc time-sampled distributions of conőguration.

The colors in the above depiction match each pose (and corresponding depth image)

with their respective uncertainty of the time-sampled distribution of conőguration.

We make the simplifying assumption that rotations are known, and there is only

uncertainty is in the transformations. Although incorporating rotational uncertainty

would be more rigorous, this assumption is actually the same made for least-squares-

based pose graph SLAM, which is commonly used.

In the current frame F0, for a Linear-Gaussian model we have mean �(�) and

covariance Σ(�):

F0pi(�) ∼ �
︂

�(�),Σ(�)

︂

(4.6)

Now for frame Fj associated with pose � we incorporate the mean translation �0j and

its covariance Σ0j, which both sum (they are Linear-Gaussian):

Fjpi(�) ∼ �
︂

�(�) + �0j,Σ(�) + Σ0j

︂

(4.7)

This completes the determination of frame-speciőc conőguration uncertainty.

4.4.5 Evaluation Within Each Frame, With Inverse-Depth Gaus-

sian Noise

Given the frame-speciőc conőguration uncertainty, the task is to evaluate the prob-

ability of collision, given only the depth image in that frame. Previous work has

addressed fast planning with current-depth-image-only FOV constraints accelerated
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by spatial partitioning [11]. We ofer an improvement over this previous method for

handling one depth image ś we now incorporate a model of depth image uncertainty.

We do this by adding an uncertainty component to the covariance which is only in

the direction of depth ś in a right-down-forward convention of the Cartesian frame

of a depth image, this corresponds to a 3 × 3 covariance Σdepth whose only non-zero

component is the bottom right entry. We use inverse-depth Gaussian noise, so if the

depth at a particular pixel is �r,c, we have:

Σdepth3,3
=

1
1

dr,c
+ �

where � can be determined for the speciőc sensor. This is added to the other two

sources of uncertainty previously discussed:

Σ(�) + Σ0j + Σdepth

Although inverse-depth Gaussian noise does not perfectly model the real failure modes

of depth sensors (which may have binary łdon’t see object at allž failure modes rather

than a Gaussian decay of depth uncertainty), it is an improved model over modeling

no depth image uncertainty. Operating in inverse-depth is a well-established tech-

nique when dealing with range data computed from triangulation, for example in

stereo/monocular vision [111].

4.4.6 Marginalization and Pruning of the Pose Graph

For computational purposes it is useful to not keep a fully dense pose graph. Local

obstacle avoidance does not require a long history of depth information ś only a

short history is necessary. Speciőcally, we consider a small handful of seconds (10)

to be suicient. Given a framerate frequency �framerate in Hz, this would be 10 ×
�framerate depth images, but not every depth image is needed. Instead, we consider

that remembering only 5 Hz of depth information is suicient. Thus our depth-pose-

graph will have 50 nodes, which is reasonably small complexity.
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Although a back-end graph optimization tool is not required for our approach,

and is not involved in the critical-path latency (complex graphs can sometimes take

seconds to solve). To reduce a high framerate of depth-pose nodes down to 5 Hz

requires pruning ś but rather than throw away some of the odometry information, it

is better to perform marginalization of the full pose graph. Sparsiőcation can leverage

well-developed methods for marginalization from SLAM back-ends, which can run in

a parallel thread to our planning thread.

F0

F0

Marginalization and 

pruning 

Fj

Fj

Figure 4-7: Sparsiőcation of a subgraph of a pose graph, which can be provided by a
SLAM back-end optimizer.

4.4.7 Quadrotor Obstacle Avoidance with a Triple Integrator

Model

For the robot of interest, a speciőc Linear-Gaussian dynamics model needs to be

chosen. We use a previously described quadrotor model, in which the closed loop

around the inner-loop attitude controller is approximated as a triple integrator, as

described in previous work [11]. This triple-integrator Gaussian-noise model is:

pi(�) ∼ �
︂

1

6
ji�

3 +
1

2
a0�

2 + v0,µ�, �
2Σv0

︂

∀� ∈ [0, �jf ] (4.8)

4.4.8 Collision-Probability-Constrained Motion Library

We consider a particular � (see the Problem Formulation), similar to chance-constrained

programming, which favors the maximum reward policy �nav that meets a collision
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constraint2. The collision constraint, however, is deőned for the entire policy, rather

than any speciőc time (as is done in chance-constrained programming). If the collision

constraint cannot be met, we choose the minimum-�collision policy.

�∗ =

⎧

⎪

⎨

⎪

⎩

argmax
πi

ℛnav(�i), ∀ �i with �collision(�i) < �

argmin
πi

�collision(�i), if ̸ ∃ �i with �collision(�i) < �
(4.9)

With the chance-constrained formulation, an arbitrary ℛnav will not allow purpose-

fully allow the collision probability to exceed some threshold �.

4.5 Comparison with Memoryless and

Maximum-likelihood Mapping Approaches

Now that Depth-Pose-Graph Planning has been formulated, and we have provided a

complete description of a Greedy Depth-Pose-Graph Planning algorithm, we analyze

its properties compared to the two alternatives mentioned: (i) memoryless current-

depth-image-only planning, and (ii) maximum-likelihood mapping-based planning.

First, we ignore computation time, and analyze their properties in the absence

of computational limits. Then we perform time complexity analysis. We note that

space complexity is not a limit in practice: with 32 GB of RAM available on our

hardware platform, the entirety of sensor data can be stored in memory for many

minutes before running out of space. As mentioned before, for obstacle avoidance we

only care about a small number of seconds of memory, which is of insigniőcant size.

Comparison of properties, ignoring computational complexity

First, we note that both (i) memoryless planning, and (ii) maximum-likelihood mapping-

based planning, can both be reduced from the full information of (iii) planning with

2In previous work, we have used unconstrained objective functions, but the problem is potentially
cleaner with a constrained objective. An unconstrained objective is subject to relative scaling
problems, whereas in a constrained objective the navigation function ℛnav can be scaled arbitrarily.
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a depth-pose-graph. In other words, the entirety of information available to both

of these other approaches is only a subset of information available to planning with

a depth-pose-graph. In that sense, planning with a depth-pose-graph is strictly su-

perior, modulo computational complexity. This is not true, however, of the Greedy

Depth-Pose-Graph Planning method, which is the tractable variant presented.

One potentially useful aspect of mapping-based planning is the sensor fusion of

depth data over multiple time steps. In general, however, planning with a depth-pose-

graph can also achieve combining data over multiple points in time. The depth-pose-

graph framework even allows the opportunity to selectively only do sensor fusion ś

łlazy sensor fusionž ś which is not a property of a mapping-based approach, which

exhaustively fuses sensor data even if it is never used for the planning system.

Another key distinction is that mapping-based planning methods ofer the ability

to do discrete-space planning, which can leverage discrete planning algorithms such

as �∗. This may seem like a disadvantage of depth-pose-graph approaches, but upon

further analysis, this is not much of a limitation. For one, discrete-space planning

approaches do not ofer great ways of handling dynamic constraints of a robot, which

is critical for obstacle avoidance. Additionally, depth-pose-graph methods can still

use discrete planning tools, but over a graph of motion primitives rather than over

graph of discretized space. Sampling-based planning is fully available to all three of

these methods.

Finally, we note that, ignoring uncertainty, the raw frustum information of depth

images is closer to łpolygon worldž that classical planning approaches would refer

to operate with. If uncertainty is either bounded or eliminated from the situation,

then path collision evaluation can be performed without sampling (a whole continuous

segment of a path through conőguration space can be said to be obstacle-free). This is

a nice property of depth-pose-graphs which may be attractive in particular situations.

Comparison of computational complexity

The comparison of computational complexity depends on a number of parameters.

We note them below:
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Sensor and memory parameters

∙ �pixels = � × � = # pixels in each depth image

∙ �mem = # depth images to remember

Motion planning parameters

∙ �samples = # time-sampled conőgurations for motion planning

Mapping parameters

∙ �voxels = # voxels in discretized map

For (i), the computational complexity of memoryless planning as described in [11],

we have the following expression. In our implementation, with �pixels = 19, 200, �1

is dominated by �-� tree building, and �2 is dominated �-� tree lookup. Our total

latency has previously been measured at ∼2 ms:

�1(�pixels) +�samples * �2(�pixels)

For (ii), the computational complexity of mapping-based planning, there is a sizable

diference in whether the map is built incrementally, or in a batch fashion (which is

required in order to allow loop closures). When the map is built incrementally, we have

the following expression, where �3 represents map-building, and the motion-planning

latency is assumed to be dominated by collision-detection in the map structure.

�3(�pixels, �voxels) +�samples ×�lookup

We have previously measured the above latency on the order of 100 ms for the őrst

term only, and this does not allow for loop closures. When batched maps, rather than

incremental maps, are used, the latency increases signiőcantly:

�3(�pixels ×�mem, �voxels) +�samples ×�lookup
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For (iii), greedy planning with a depth-pose-graph, we have a similar complexity to

(i), with only the addition of another term, where �FOV check is the fast IsInFOV()

subroutine described before.

�1(�pixels) +�samples ×�mem ×�FOV check +�samples * �2(�pixels)

Initial experimentation has suggested that, due to �FOV check being small, that the

total worst-case latency of planning with �mem = 50 rather than 1, only increases

the total latency to ∼3 ms.

4.6 Simulation Experiments

Figure 4-8: Screen capture from three consecutive moments of a simulated quadrotor
ŕying through a forest using our method.

Initial simulation experiments have demonstrated the robust ability of a őeld-of-

view constrained quadrotor to navigate complex environments (Figure 4-8). Among

the types of maneuvers that are capable with robustly adding memory: (i) the quadro-
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tor can pass by a tree, and remember that it was on its left, not its right, (ii) fast

horizontal obstacle avoidance can strafe, without needing őrst to yaw, (iii) during

decelerations while the FOV is pointed up in the air due to vehicle’s pitch, it can

remember the obstacle in front of it. These types of behaviors make the vehicle’s

motion more graceful, and even under pose estimation noise allows the vehicle to

reason about which areas outside its current FOV are safe and which are not.

4.7 Discussion

We have presented a formulation that eiciently applies a robust planning viewpoint

to planning with memory, and initial simulation experiments have suggested its prac-

tical capabilities. Testing this approach in hardware is future work that we hope will

be under way soon.

There are a number of other areas in which this work could be expanded. Although

a Depth-Pose-Graph Planning framework coupled with a sampling-based exploration

strategy such as a PRM [49] or RRT [50] ofers the ability to navigate arbitrary maze-

type environments, the performance problem we are most interested in is local robust

collision avoidance, rather than global minimum-cost planning.

It would be ideal, as an alternative to greedy search, to be able to use a spatial

partitioning of depth image views in order to determine which depth image to use.

Unfortunately, although there exist fast methods for querying distances to convex

polyhedra [112] and spatially partitioning them [113], the polyhedra of free space

associated with each depth image has many faces, is not necessarily convex. Since we

can limit the size of the graph with pruning and marginalization we resort to greedy

search.

Our current implementation only simulates noise that would come from a real

SLAM front-end, and so it would be of course interesting to integrate with a real

SLAM framework. We also discussed but have not implemented the use of a back-

end to marginalize a pose graph. It would be interesting to explore what are good

metrics for choosing which keyframes are good to keep ś this is a diferent problem
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than just pure pose-graph SLAM, since we want to keep view cones of free space, not

just minimize maximum-likelihood estimation error.
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Chapter 5

Discussion and Future Work

We have presented a novel approach to collision avoidance, demonstrated the method

in hardware, and extended it to address the őrst iteration’s largest opportunity for

improvement to robustly incorporate memory. Of note, we have demonstrated for the

őrst time the basic viability of a UAV navigating among obstacles using planning-

based methods but only executing commands via model predictive control, without

any tracking controller. Further, the results are among the fastest and most robust

results ever demonstrated for a comparable system. More generally applicable across

robotics platforms, we have demonstrated the utility of an approach where perception

and control are closely integrated ś in particular, when control speciőcally plays to

the strengths of available sensor data, while still applying rigorous techniques.

A surprisingly interesting question to reŕect on has been: what did we think was

going to be a problem, but turned out to not be a primary issue? There are a variety of

questions that, before the hardware results were obtained, would have seemingly been

questions of primary concerns. This included: will a control approach that is so model-

dependent, and has no trajectory-tracking controller even work? Especially when

there has been essentially no proper system identiőcation performed? Surprisingly,

not once in hardware testing have we thought that we are limited by the inaccuracy of

our dynamic model. This speaks potentially to the beneőts of planning for robustness

(the cushion allowed for velocity estimation also provides a cushion for imperfections

of the dynamic model), but also may speak to the simplicity of the dynamics of the
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quadrotor.

Additionally, after formulating the technique and its őrst implementation in soft-

ware, an area we thought would have been low-hanging fruit for dramatically im-

proving performance was massively parallel implementations on a GPU. Such imple-

mentations could allow us to increase by orders of magnitude the number of motion

primitives evaluated, and also enable improved path collision probability approxima-

tions. It turns out, though, that a very small number of motion primitives has done

quite well for us, and it is unclear if orders of magnitude more would have signiő-

cantly improved performance. Another area that we would have expected to be an

exciting and rich next step was fully exploring 3D ŕight. Although not presented,

we actually have implemented and tested in hardware full 3D ŕight with 3D motion

primitive libraries. There have been a number of issues, however. The primary issue

was perception ś the only sensor we had that could reliably detect low-texture sur-

faces was our 2D laser, and so we had to limit ŕight to 2D without a fully reliable 3D

sensor. The constraints of the őeld of view are also more diicult to manage for 3D

ŕight ś our new implementation incorporating memory, however, should help with

this limitation, as we can explore more in future testing. It also has turned out that

fast, aggressive 2D ŕight still is an exciting and diicult problem to work on.

Robustness to wind and disturbances is also something that our method does not

address. This is not an issue in indoor environments, but surprisingly it has turned

out that in approximately 100 ŕights outdoors, in moderate wind less than 20 mph,

on only a few ŕights has the lack of wind-disturbance rejection been an issue for a

ŕight. Implementing an observer to estimate the wind online would enable robustness

to wind.

From the overall perspective of our vehicle’s ŕight performance and where the

biggest opportunities for improvement lie for improving robust and agile UAV ŕight,

planning is not the primary roadblock. Perception is probably the biggest area of

opportunity. State estimation is also diicult, but there appears to be a clear path to

making VIO estimation incrementally better. Perception has more frontiers ś for ex-

ample, achieving human-level scene understanding, using not just depth information
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but raw RGB vision information.

In terms of particular future work, a couple areas are outlined below.

Integrated Perception and Control on other Platforms

The overall approach of closely integrating perception and control, and attempting

to break de facto trends in separating them, is a concept that ofers opportunities for

other systems in addition to UAVs ś for example, manipulation and walking. In ma-

nipulation, rather than attempting the solve the grasping problem in one global frame

with full state estimation, but also rather than trying to only use image-coordinate

visual servoing, approaches could be developed that apply rigorous state-space tools

yet play to the strengths of actual sensor information. This could for example be

exciting to incorporate in approaches that combine both visual and tactile sensing.

Robust Perception

In our approach, we have primarily focused on robustness to state estimation, but a

key assumption has been that each depth image is a dependable source of information.

In Chapter 4, we added a modiőcation to allow for inverse-depth Gaussian noise

in the depth image, and although this is preferable to modeling no uncertainty in

the depth image, it is far from perfect. Empirically, the failure modes of depth

sensors are not due to easily-modeled Gaussian decay. Rather, due to poor lighting

conditions, or low surface texture, a vision-based sensor may entirely miss an object,

and think an entire area of the depth image is empty of objects, which is non-ideal for

obstacle avoidance. Even laser-based depth sensors also have varying sensing quality

based on environmental conditions and surface textures. Increasing our capabilities to

understand the limits of perception systems, and using that understanding to increase

the robustness of such systems, is an exciting route for further research.
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