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Abstract. We present a method for robust high-speed quadrotor flight
through unknown cluttered environments using integrated perception
and control. Motivated by experiments in which the difficulty of accu-
rate state estimation was a primary limitation on speed, our method
forgoes maintaining a map in favor of using only instantaneous depth in-
formation in the local frame. This provides robustness in the presence of
significant state estimate uncertainty. Additionally, we present approx-
imation methods augmented with spatial partitioning data structures
that enable low-latency, real-time reactive control. The probabilistic for-
mulation provides a natural way to integrate reactive obstacle avoidance
with arbitrary navigation objectives. We validate the method using a
simulated quadrotor race through a forest at high speeds in the presence
of increasing state estimate noise. We pair our method with a motion
primitive library and compare with a global path-generation and path-
following approach.

1 Introduction

A primary challenge in improving robot performance is to increase robustness in
regimes of fast motion, proximity to obstacles, and significant difficulty of esti-
mating state. A robotics platform that is at the center of all of these challenges is
a UAV navigating quickly through unknown, cluttered environments. Although
compelling progress has been made [1–4], the goal of autonomous, robust, agile
flight into unknown environments remains an open problem.

In this paper, we present an integrated approach for perception and control,
which we apply to the high-speed collision avoidance problem. Our approach
departs from the paradigm of building maps, optimizing trajectories, and track-
ing trajectories. Central to the approach is considering routes to achieve control
objectives (fly fast, and don’t crash into obstacles) and taking advantage of
model-based state-space without relying on full-state feedback.

Our approach is directly motivated by the success of reactive control that
is “straight from sensors to control input” but uses tools from more rigorous
state space control. We show that in order to get the performance of a motion
planning system, the robot doesn’t need to build a map, doesn’t need precise
estimates of its full state, and doesn’t need to heavily optimize trajectories.



A key insight we explore in this paper is that we can both estimate the prob-
ability of collision for any action without building a locally consistent map, and
execute that action without the use of position-control feedback. The basics steps
of our method are: evaluate maneuvers probabilistically for collision and impose
field of view constraints, choose a maneuver based on an unconstrained objective
combining collision avoidance and navigation, and execute this at high rate with
a model-predictive control type approach. This method offers a mapless colli-
sion avoidance approach that does not depend on position, rigorously considers
robustness, is amenable to low-latency implementations, and integrates seam-
lessly with arbitrary navigation objectives. We note, however, that the mapless
method cannot escape dead-ends by itself without a layered global planner.

Our primary contribution is the novel synthesis of our approach combin-
ing typically separate perception, control, and state estimation considerations.
This synthesis is implemented for robustness at speed by a combination of: lo-
cal frame estimation of path collision probabilities that considers field of view
(FOV) constraints, motion primitives defined in the local frame, acceleration by
spatial partitioning, and high-rate robust model-predictive control that doesn’t
depend on trajectory-tracking. This is also the first paper known to the authors
to describe stochastic receding horizon control with depth sensor data for a UAV.
Additionally, we present simulation experiments in which a benchmark approach
cannot provide robust collision avoidance at high speeds, while our method en-
ables the quadrotor to navigate a simulated forest environment at 12 m/s even
in the presence of significant state estimate noise.

2 Related Work

The close integration of perception and control, where the realities of percep-
tual information inform the control approach, is a concept of active interest
in robotics. Visual servoing methods for robotic manipulation [5], for example,
are an application where control is designed to work with partial information
(relative positions in image space) rather than full-state feedback.

In the application area of UAV navigation in unknown environments, the
predominant approach is to instead impose the separation principle between
perception and control, and separately build a map, plan an optimal trajectory
in that map, and execute trajectory-tracking feedback control along the nominal
plan. In this map-plan-track paradigm, the goal is to produce a map as close
as possible to full obstacle knowledge and produce highly accurate estimates of
full state. These methods work well in regimes of good information, such as mo-
tion capture rooms with pre-prescribed obstacle locations. They are particularly
fragile, however, when exposed to significant state estimate uncertainty, causing
mapping and tracking to fail. Planning-heavy approaches also tend towards high
latency, although offline-computed libraries enable low-latency response [1, 3].

A different approach to UAV navigation is offered by reactive control, which
has achieved some of the most impressive obstacle avoidance results demon-
strated to date [6–8]. Three primary types of reactive approaches have shown



success: optic flow methods [7,9,10], artificial potential fields [6,11], and imitation
learning [8]. Reactive methods by definition do not fit into the map-plan-track
paradigm since they do not plan a time-sequence of states into the future, but
are also generally characterized by not performing full-state feedback.

In that our method neither builds a map nor executes trajectory-tracking
control, it departs from the map-plan-track paradigm. In that it does not perform
position-control feedback, it is more similar to the mentioned reactive methods,
yet it does plan states in the local frame into the future and reason about state-
space uncertainty, which does not fit the definition of a reactive method.

The theory of motion planning under uncertainty has been well studied, at
least in the domain of full obstacle knowledge. One approach is that of chance-
constrained optimization [12–15], in which the probability of collision at any time
is upper-bounded as a constraint in an optimization. In the planning portion of
our approach we use a variant where collision avoidance is included in the objec-
tive, not as a constraint, and we estimate collision probabilities for entire paths,
then choose among a finite library. An important component of this approach
requires path collision probability estimation, which has been well studied [16].

Several other works are notably related to various components of our inte-
grated approach. One related method for online stochastic receding-horizon con-
trol is that of “funnel” computation and sequential composition [17–19], which
notably can handle nonlinear models. The focus of those works, however, is not
on integrated perception and control considerations, as ours is here. A somewhat
related work is by Matthies et al. [20] since it presents field-of-view-limited plan-
ning with depth image information for collision avoidance, but their approach
is a map-plan-track approach, and doesn’t consider uncertainty. Probabilistic
collision detection in point clouds has been studied [21] and integrated with
sampling-based motion-planners [22], but not to our knowledge has been applied
to the collision avoidance problem with field-of-view constraints. Another com-
plementary approach aims to learn, through supervised training in simulation,
collision probabilities outside of conservative field of view approximations [23].

3 Generalized Formulation for Collision Avoidance

First, we consider the problem of estimating the probability of collision for a
time-varying distribution of configurations using only instantaneous depth infor-
mation. We then present approximation methods that enable fast computation
for collision avoidance at high speeds. Additionally, we discuss the use of spatial
partitioning data structures and the incorporation of global navigation objec-
tives. This section is generalized to allow for application to an arbitrary robot.
In the next section, a particular implementation for a quadrotor is presented.

3.1 Evaluating Collision Probabilities from Instantaneous Depth
Information

We wish to evaluate the probability of collision for:

P
(
Collision during t ∈ [0, tf ] | D, pt(q)

)
(1)



where pt(q) is the time-varying distribution of configuration, tf is the final time,
and D is a vector of depth sensor returns [d0, ...,dn]. This probability cannot
be calculated with certainty, due to the large amount of unknown space U ⊂ R3

caused by occlusions and the finite FOV (field of view) of the depth sensor.
Each depth return corresponds to an occupied frustum Fdj

⊂ R3 whose volume
is defined by the image resolution, depth return distance, and sensor discretiza-
tion. Together these occupied frustums comprise the known occupied subset of
space, Oknown =

⋃
j Fdj

,Oknown ⊂ R3. Each depth return also creates a por-
tion of unknown space F(occluded by dj) ⊂ U which is a frustum that joins the
unknown space at the sensor horizon. For handling the FOV constraints, the
conservative route is to make the assumption that all unknown space U is occu-
pied (U ∪Oknown = O), which provides a mapping from D→ O that is strictly
conservative.
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– E�cient evaluation of the distribution of future robot configurations in the
local frame which allows for fast online computation of collision probabilities

– Probabilistic formulation which enables seamless integration of reactive con-
trol with arbitrary navigation objectives

– Implementation of the above for robust, fast obstacle avoidance for a quadro-
tor UAV

– Simulation experiments demonstrating the e�cacy of a probabilistic mapless
approach compared to a deterministic mapless approach, and global map-
based planning
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Fig. 1: Depictions of (a) depth measurements (black) and conservative assump-
tion of unknown space as occupied (blue), and (b) time-varying distribution of
configuration (purple).

At any given point in time and given the distribution pt(·) over robot con-
figuration q, the probability of collision is obtained by the probability that the
robot is in collision with any of the sensor returns or occupies any unknown
space.

P
(
Collision, pti(q)| Oknown,U

)
= P

(
q(ti) ∈ {Oknown or U}) (2)

Note that the probabilities are not disjoint, since for any non-zero-volume robot,
a given configuration can be in collision with multiple frustums, occupied or un-
known. To evaluate this probability, an integral over all possible configurations
must be integrated. Even given a solution to this integral, however, this only pro-
vides an evaluation of one possible distribution of configuration at some future
time, and hence the probability of collision for the time-varying distribution
of configuration is still difficult to evaluate, given that all future positions in
time are dependent on previous positions in time. One route to estimating this
probability is through Monte Carlo simulation, but approximations offer compu-
tationally efficient routes. Although the literature does not typically account for
FOV constraints, a good review of available options for estimating path collision
probabilities with full obstacle knowledge is included in a recent paper by Janson
et al. [16].



Additionally, even with the conservative assumption, the form of U (large
subsets of space) is of a different form than Oknown (small frustums). Our cur-
rent formulation addresses this by converting Oknown into a point cloud and
evaluating the probability distribution pt(q) at these points, whereas for U we
perform a binary evaluation of the mean of pt(q) entering U . Future work could
evaluate both of these probabilities more rigorously by integrating the proba-
bility distribution pt(q) over the volumes of both Oknown and U , at additional
computational cost.

3.2 Fast Approximation of Maneuver Collision Probabilities

Given the goal to evaluate collision probabilities in real time for the purpose
of collision avoidance, some approximations are in order. Although these are
significantly simplifying assumptions, the simulation results presented in this
paper suggest that even these approximations offer a significant improvement
over deterministically collision-checking trajectories. We consider maneuvers of
the form: M = {u(t), pt(q)}, i.e. control inputs as a function of time u(t) that
produce a time-varying distribution of configurations pt(q). Our choice of open-
loop maneuvers is a choice that represents our control decision to not depend on
position-control feedback.

For estimating the probability of collision for the entire maneuver we use
an independence approximation. Future positions are sampled in time, and the
maneuver’s probability of collision is approximated as the subtraction from unity
of the product of the no-collision probabilities at each sampled time ti:

P
(
Collision, pt(q)

)
≈ 1−

nt∏

i=1

[
1− P (Collision, pti(q))

]
(3)

For the evaluation of the no-collision probabilites at each time ti, we assign a
no-collision probability of 0 (definite collision) if the mean of pti(q) is in U , and
otherwise evaluate the probability of collision with the point cloud. The mean in
U is a large oversimplification, but avoids integrating over many small occluded
frustums:

[
1− P (Collision, pti(q))

]
=

{
0, if µ(pti) ∈ U∏nd

j=1

[
1− P (Collision, pti(q),dj)

]
, otherwise

(4)
Checking if µ(pti) ∈ U can be done by a projective transform into depth image
space, and checking if the projection is either out of bounds of the depth image
(outside FOV), or a depth return at that pixel has less depth (occluded). If not
in U , the probability of collision with Oknown is approximated by an additional
independence approximation: each collision with all nd depth returns is assumed
an independent probability event. To evaluate each event P (Collision, pti(q),dj)
above, we must choose a dynamic model with uncertainty. Thus far, the discus-
sion has been generalizable to any model. In Section 4 we describe how we
evaluate this term for a simplified model with Gaussian noise.



Naively, the complexity of the computation above is O(nM×nt×nd). Even
for a “low-resolution” depth image, the number of depth points can be high, for
example a 160 x 120 image is nd,Total = 19, 200 points. Only the closest depth
returns to the mean of the robot’s distribution, however, will have the highest
probability of impact, and this additionally offers a route to lower computational
complexity. Thus, rather than evaluate Equation 4 for all depth returns, we query
only the closest nd < nd,Total points with a k-d-tree.

In contrast to deterministic collision checking, collision probability approxi-
mation significantly benefits from three-dimensional spatial partitioning as op-
posed to operating directly on the depth image. This is because with the prob-
abilistic collision checking, we care about “long-tails” of the robot position dis-
tribution, rather than just deterministically collision-checking the mean. To de-
terministically collision check, there is no faster way than using the raw depth
image [20], but in order to consider long-tail positions in the direct depth image
method, a large block of pixels needs to be checked. The depth image structure
provides information about proximity in two dimensions (neighboring pixels),
but not the third (depth). We also note, however, that since the direct depth
image method requires no building of a new data structure, highly parallelized
implementations may tip computational time in its favor (as opposed to sequen-
tially building a k-d-tree, then searching it).

Briefly, we analyze the limitations of the approximation accuracy. In the
context of full obstacle knowledge, the independence approximation over time
has been shown to provide overly conservative estimates of collision probabil-
ity [16]. Additionally, the independence approximation between depth returns
contributes to more overestimation, and picking only one point from each clus-
ter has been recommended to reduce this overestimation [21]. In our method,
the FOV constraints contribute even more to over-conservatism, but there is
not available information to improve this approximation without adding risk go-
ing into the unknown. Learned priors, however, can intelligently minimize this
risk [23]. We note that with our unconstrained formulation, it is the relative
differences between maneuver collision probabilities (see Figure 4b), not their
absolute scale, that impacts control decisions.

At additional computational cost, additional accuracy could be achieved
through Monte Carlo (MC) evaluation, whereby randomly sampled trajectories
are deterministically collision-checked and the proportion of collision-free trajec-
tories is the collision probability. In the limit of infinite samples the probability
is exact, but the computational cost is approximately nMC × TD, where TD is
the time to deterministically collision-check, and nMC is the number of sam-
ples. As we show in Table 1 (Section 6), deterministic collision-checking takes
approximately the same amount of time as our independence approximation
evaluation. Hence, naive MC evaluation is slower than our method by approxi-
mately the factor nMC . Smart MC sampling strategies have been demonstrated
to enable path collision probability approximations on the order of seconds for
reasonable models [16], but our requirement is a few orders of magnitude faster
(milliseconds) to replan at the rate of depth image information (30-150 hz).



3.3 Integrating Reactive and Navigation Objectives

A benefit of the probabilistic maneuver evaluation approach is that it naturally
offers a mathematical formulation that integrates reactive-type obstacle avoid-
ance with arbitrary navigation objectives. Whereas other “layered” formulations
might involve designed weightings of reactive and planning objectives, the prob-
abilistic formulation composes the expectation of the reward, E

[
R
]
. Given some

global navigation function that is capable of evaluating a reward Rnav(Mi) for
a given maneuver, the expected reward is:

E
[
R(Mi)

]
= P (No Collision,Mi)Rnav(Mi) + P (Collision,Mi)Rcollision (5)

As we show in the simulation experiments, Rnav(Mi) may not even need to
consider obstacles, and collision avoidance can still be achieved. The global nav-
igation function can be, for example, just Euclidean progress to the global goal
for environments with only convex obstacles, or for environments with dead-ends
could for example be a cost-to-go using Dijkstra’s algorithm (Figure 3a). A key
point is that with the instantaneous mapless approach handling collision avoid-
ance, Rnav(Mi) can be naive, and/or slow, although a good Rnav(Mi) is only
a benefit. One parameter that must be chosen, and can be tuned up/down for
less/more aggressive movement around obstacles, is the cost (negative reward)
of collision, Rcollision,

Given a library of maneuvers, the optimal maneuver M∗ is then chosen as:

M∗ = argmax
i

E
[
R(Mi)

]
(6)

4 Implementation for High Speed Quadrotor Flight

The formulation presented above is generalizable for different robot models and
for evaluating different types of discrete action libraries. In this section we present
a specific implementation for high-speed quadrotor control.

4.1 High-Rate Replanning with a Motion Primitive Library

We use an approach similar to a traditional trajectory library, except our li-
brary is generated online based on a simplified dynamical model. In the sense
that a model is used for real-time control, and we use no trajectory-tracking
controller, this is MPC (Model Predictive Control), but since we perform no
continuous optimization but rather just select from a discrete library, this is a
motion primitive library approach. This high-rate replanning with no trajectory-
tracking controller offers a route to controlling collision avoidance without a
position estimate. Since the uncertainty of the maneuvers is considered open-
loop, this can be categorized as OLRHC (open-loop receding horizon control).
Another control approach is to “shrink” the future uncertainty with a feedback
controller [17, 18, 24], but this assumes that a reasonable position estimate will
be available. It is crucial to our method that we do not shrink the uncertainty
in this way, since this enables sensible avoidance decisions and control without
ever needing a position estimate.



4.2 Dynamical Model and Propagating Uncertainty

To build intuition of our simple quadrotor model, we first describe the basic
version of a constant-input double-integrator (constant-acceleration point-mass)
modeled around the attitude controller. This version approximates the quadro-
tor as a point-mass capable of instantaneously producing an acceleration vector
of magnitude ||a|| ≤ amax in any direction. Together with gravitational acceler-
ation, this defines the achievable linear accelerations. This model is applied with
the inner-loop attitude and thrust controller in feedback, as depicted in Figure
2. Given a desired acceleration ai, geometry defines the mapping to {roll, pitch
thrust} required to produce such an acceleration, given any yaw.

Inner-loop 
attitude + thrust 

controller 

12-state Quadrotor 
plant 

u1, 
u2, 
u3, 
u4 

IMU attitude estimate 

Small-Horizon Approximation as Double Integrator 

ax, 
ay, 
az 

px, 
py, 
pz 

vx, 
vy, 
vz 

(30 Hz) 

(200+ Hz) 

Fig. 2: Dynamics approximation considered: the quadrotor is modeled in feed-
back with the inner loop attitude and thrust controller.

A motivating factor for this model is that the overwhelmingly ubiquitous im-
plementation for quadrotor control involves a high-rate (∼200+ Hz) inner-loop
attitude and thrust controller. The desirability of quickly closing a PID or similar
loop around the IMU makes this an attractive control design choice.

The only source of uncertainty we consider is the state estimate. In particu-
lar, since the quadrotor’s initial position is by definition the origin in the local
frame, we only consider uncertainty in the velocity estimate. We use Gaussian
noise for the initial linear velocity estimate v0 ∼ N (v0,µ, Σv0) which gets prop-
agated through the linear model. We use the notation p ∈ R3 to refer to the
configuration since it is just position (point-mass is rotation-invariant). Accord-
ingly we have:

pi(t) ∼ N
(

1

2
ait

2 + v0,µt, t
2Σv0

)
(7)

for maneuver Mi = {ai,pi(t)}, t ∈ [0, tf ]

where pi(t) is a random variable defining the distribution referred to as pt(q) in
Section 3. The chosen acceleration ai defines the maneuver Mi.

Extension to Piecewise Triple-Double Integrator Model The limitations
of the constant-acceleration model are clear, however: it does not consider at-
titude dynamics, even though they are fast (∼100-200 ms to switch between
extremes of roll/pitch) compared to linear dynamics. It is preferable to have a



model that does include attitude dynamics: for example, the initial roll of the
vehicle should affect “turn-left-or-right” obstacle-dodging decisions.

Accordingly, we use a triple integrator for the first segment, and a double in-
tegrator for the remaining (“triple-double” integrator for short). Each maneuver
Mi is still defined uniquely by ai, but during t ∈ [0, tjf ], we use a jerk ji that
linearly interpolates from the initial acceleration a0 to the desired acceleration:

ji =
ai − a0
tjf

(8)

During the initial constant-jerk t ∈ [0, tjf ] period, this gives

pi(t) ∼ N
(

1

6
jit

3 +
1

2
a0t

2 + v0,µt, t
2Σv0

)
∀t ∈ [0, tjf ] (9)

and for t ∈ [tjf , tf ] the double integrator model (Equation 7) is used with
the appropriate forward-propagation of position and velocity. Note that for the
constant-jerk portion, an initial acceleration estimate, a0 is required. We assume
this to be a deterministic estimate. Since roll, pitch, and thrust are more easily
estimated than linear velocities, this is a reasonable assumption.

The maneuvers produced by this piecewise triple-double integrator retain
the properties of being closed-form for any future t ∈ [0, tf ], of being linear with
Gaussian noise, and cheap to evaluate. Although the actual attitude dynamics
are nonlinear, a linear approximation of the acceleration dynamics during the
constant-jerk period is an improved model over the constant-acceleration-only
model. We approximate tjf as 200 ms for our quadrotor.

4.3 Maneuver Library and Attitude-Thrust Setpoint Control

We use a finite maneuver library (Figure 3b), where the maneuvers are deter-
mined by a set of desired accelerations ai for the piecewise triple-double inte-
grator. Our method is compatible for a 3D library, but for the purposes of the
simulation comparison against a global-planning 2D method in the next section,
we use a library constrained to a single altitude plane. To build a suitable discrete
set of maneuvers, we approximate the maximum horizontal acceleration and sam-
ple over possible horizontal accelerations around a circle in the horizontal plane.
The max horizontal acceleration is approximated as the maximum thrust vector

(Tmax) angled just enough to compensate for gravity: amax =

√
T 2
max+(mg)2

m . By
sampling both over horizontal accelerations with just a few discretizations (for
example, [amax, 0.6amax, 0.3∗amax]) and just 8 evenly spaced θ over [0, 2π], this
yields a useful set in the horizontal plane. We also add a [0, 0, 0] acceleration
option, for 25 maneuvers total in the plane, and use tf = 1.0 seconds.

Executing the chosen maneuver is achieved by commanding a desired roll
and pitch to the attitude controller. For this 2D-plane implementation, a PID
loop on z-position maintains desired altitude by regulating thrust. We allow for
slow yawing at 90 degrees per second towards the direction p(tf )−p0, which in
practice has little effect on the linear model and allows for slow yawing around
trees.



Integration with Dijkstra global guidance Triple-Double Integrator Model 

x

yz

v0,µ

(a) (b) 

Fig. 3: (a) Visualization of integrating Dijkstra global guidance, where Rnav is
the cost-to-go (blue is lower, purple is higher) of the final maneuver position.
(b) Visualization of the piecewise triple-double integrator maneuver library. The
library of maneuvers is shown with a positive x, positive y initial velocity vµ,0,
and the 1-σ of the Gaussian distribution is shown for one of the maneuvers. The
tjf = 200 ms constant-jerk period shown in orange. Note that due to the initial
roll-left of the vehicle, it can more easily turn left than right.

4.4 Evaluation of Collision Probability and Global Navigation

Each maneuver is sampled at nt positions (we use nt = 20), for a total of 500
positions to be evaluated in our nM = 25 library. To allow for speeds past 10 m/s,
given tf = 1.0 s, we do not consider positions beyond our simulated depth image
horizon of 10 meters to be in collision. All mean robot positions are evaluated
for nd nearest neighbors in the k-d-tree. In practice we have found success with
nd = 1, although larger nd is still fast enough for online computation, as shown
in Table 1 in Section 6.

For each robot position mean pi,µ evaluated, we use a small-volume approx-
imation of the probability that a depth return point dj and the robot are in
collision, by multiplying the point Gaussian probability density by the volume
Vr of the robot’s sphere:

P (Collision, pi(t)) ≈ Vr ×
1√

det(2πΣp)
exp

[
− 1

2
(pi,µ − dj)

TΣ−1p (pi,µ − dj)
]

(10)
where Σp is the covariance of the robot position as described by the model. This
small-volume spherical approximation has been used in the chance-constrained
programming literature [12]. If the above equation evaluates to > 1 (possible
with the approximation), we saturate it to 1. A key implementation note is that
using a diagonal covariance approximation enables the evaluation of Equation
10 approximately an order of magnitude faster than a dense 3 × 3 covariance.
Rather than use online-estimated covariances of velocity, we choose linear veloc-
ity standard deviations σv{x,y,z} that scale with linear velocity.

For our quadrotor race through the forest, since the obstacles are all convex
and so navigating out of dead-ends is not a concern, we use a simple Euclidean



progress metric as our navigation function Rnav, plus a cost on terminal speed
vf = ||vi(tf )||2 if it is above the target max speed, vtarget:

Rnav(Mi) = ||p0 − pgoal|| − ||pi(tf )− pgoal||+Rv(vf ) (11)

Rv(vf ) = {0 if vf < vtarget, kvf if vf ≥ vtarget} (12)

Where we used k = 10, and Rcollision = −10, 000.

5 Simulation Experimental Setup

5.1 Simulator Description

To facilitate the comparison study, simulation software was developed to closely
mimic the capabilities of our hardware platform for the Draper-MIT DARPA
FLA (Fast Lightweight Autonomy) research team. The sensor configuration in-
cludes a depth sensor that provides dense depth information at 160x120 resolu-
tion out to a range of 10 meters, with a FOV (field of view) limited to 58 degrees
horizontally, 45 degrees vertically. A simulated 2D scanning lidar provides range
measurements to 30 meters. Both sensors are simulated at 30 Hz.

Drake [25] was used to simulate vehicle dynamics using a common 12-state
nonlinear quadrotor model [26] while the Unity game engine provides high fidelity
simulated perceptual data that includes GPU-based depth images and raycasted
2D laser scans. The flight controller uses a version of the Pixhawk [27] firmware
running in the loop (SITL) that utilizes an EKF over noisy simulated inertial
measurements to estimate attitude and attitude rates of the vehicle.

(a) (b) 

Fig. 4: (a) Screenshot from our race-through-forest simulation environment in
Unity. (b) Screenshot from Rviz which shows the evaluation of the 25-maneuver
real-time-generated motion library. The chosen maneuver and the 1-σ of the
Gaussian distribution over time are visualized. The small sphere at the end of
each maneuver indicates approximated collision probabilities from low to high
(green to red).



5.2 Experimental Setup

The experiments were carried out in a virtual environment that consists of an
artificial forest valley that is 50 meters wide and 160 meters long. The corridor
is filled with 53 randomly placed trees whose trunks are roughly 1 meter in
diameter. A timer is started when the vehicle crosses the 5 meter mark and
stopped either when a collision occurs or when the 155 meter mark is reached. If
the vehicle is able to navigate the forest without colliding with any of the trees
or terrain in under a predetermined amount of time, the trial is considered a
success. Collisions and time-outs are considered failures.

The experiments were repeated for each algorithm at various target velocities
vtarget = { 3, 5, 8, 12} meters per second and with increasing levels of state
estimate noise for x, ẋ, y, ẏ. We do not simulate noise in the altitude or in the
orientations since these are more easily measurable quantities. To simulate noise
that causes position to drift over time, we take the true difference in x, y over
a timestep, ∆px,y, and add zero-mean Gaussian noise which is scaled linearly
with the velocity vector. The three noise levels we use are σ = {0, 0.1, 1} which
is scaled by σ

10vtrue. This linearly increases noise with higher speed. We also
add true-mean Gaussian noise to ẋ and ẏ, with standard deviations that are the
same as for position noise. Accordingly we have:

pnoisy[i+ 1] ∼ N (ptrue[i+ 1]− ptrue[i],
σ

10
vtrue) (13)

vnoisy[i] ∼ N (vtrue[i],
σ

10
vtrue) (14)

The total time taken and the trial outcome was recorded for 10 trials at each
noise and speed setting, for a total of 360 simulation trials.

5.3 Dijkstra’s Algorithm with Pure Pursuit Description

We compare our method to a typical map-based robotics navigation solution
that consists of a global path planner that is paired with a path following algo-
rithm. The particular implementation we chose functions by maintaining a global
probabilistic occupancy grid (Octomap [28]) with a 0.2 meter voxel size. At a
specified rate, a horizontal slice of the map is extracted and a globally optimal
path is computed using Dijkstra’s algorithm. The path planning includes a soft
cost on proximity to obstacles. We then use a pure pursuit algorithm to com-
mand a vehicle velocity along the resulting path to the goal. This approach has
been heavily tested on our hardware, and shown considerable success in complex
environments in the range of 2.0 to 5.5 m/s with little state estimate noise.

6 Simulation Results and Discussion

The key metric for our comparison of the three methods is the no-collison success
rate of reaching the finish line, and is presented in Figure 5. Additional data is
presented in Figure 6: average time to goal for successful trials, and example
paths at various noise levels.
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Motion Library 
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12 
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Noise (st. dev)  

0 0.1 1 

Fig. 5: Comparison summary of number of successful collision-free trials for the
different approaches tested in in our simulated quadrotor race through the forest.
Ten trials were run for each of the three approaches, for four different speeds {3,
5, 8, 12} meters per seconds, and for three different levels of 2-dimensional state
estimate noise as described in Section 5.2.

The results for the global path planning and following approach show both
the limitations on handling higher speed, and on handling higher state estimate
noise. The approach was not able to handle any of the severe noise (σ = 1) for
any of the speeds and was only able to reliably reach the goal at 5 m/s and below,
with zero or little state estimate noise. These limits on speed and state estimate
noise match well our experimental results in hardware. Primary inhibiting factors
for this approach’s success are (i) dependence on a global position estimate, (ii)
latency incurred by processing sensor data into a global map (up to ∼50 ms),
(iii) latency incurred by path planning on the local map (up to ∼200 ms), and
(iv) neglect of vehicle dynamics, which are increasingly important for obstacle
avoidance at higher speeds.

For comparison, we also compare with the approach of deterministically
collision-checking our motion primitive library. For this deterministic method,
the average time to goal on a successful run was faster than the probabilistic
method by approximately 14%. The deterministic nature of the collision check-
ing, however, causes the method to leave little margin for error while navigating
around obstacles. Thus, small inaccuracies in the linear planning model (which
approximates the nonlinear model used for simulation) or in the state estimate
can lead to fatal collisions.

The results for the probabilistic method demonstrate a marked increase in
robustness at higher speeds and with noise levels an order of magnitude higher
than was manageable by the path following approach. The sacrifice in average
time to goal compared to the deterministic method is outweighed by the gains
in robustness.



Global Path 
Planning and 

Following 

Mapless 
Deterministic 

Motion Library 

Mapless 
Probabilistic Motion 

Library 

3 60 +/- 6 51 +/- 1 59 +/- 2   

5 36 +/- 2 29.7 +/- 0.3 34 +/- 1 

8 24 18.1 +/- 0.1 21 +/- 2 

12 15 12.1 +/- 0.2 14.1 +/- 1 

Speed 
(m/s) 

Average time to goal for successful trials (s) 

(a) (b) 

Fig. 6: (a) Comparison summary of the average time to goal for successful trials
for σ = 0, which all methods were at least able to get 1 trial across the finish line.
(b) Visualization of the different noise levels σ = {0, 0.1, 1.0} and representative
paths for the probabilistic motion library navigating successfully through the
forest at 12 m/s. The path of the noisy x, y state estimates (red) are plotted
together with the ground truth path (blue). The brown circles represent the tree
obstacles at the flying altitude of 1.8 m.

Additionally, an important practical consideration is that, given our fast colli-
sion probability approximations, the total computation times of the probabilistic
and deterministic methods are nearly identical (∼3-4 ms total), as is displayed in
Table 1. This is a strong argument for replacing deterministic collision checking
with fast collision probability approximation in a wide number of scenarios. We
also emphasize that these approximate computation times are achievable on our
actual flight vehicle hardware, which uses an Intel i7 NUC.

Deterministic, N=1 Probabilistic, N=1 Probabilistic, N=10

Average Percentage Average Percentage Average Percentage
Subprocess time (µs) time (%) time (µs) time (%) time (µs) time (%)

Building kd-tree 1900 +/- 700 50.5 2000 +/- 500 57.8 1900 +/- 400 42.6

Evaluating future positions from real-time
generated 25-maneuver motion library 40 +/- 10 1.0 40 +/- 10 1.1 40 +/- 10 0.9

Evaluating collision probabilities with N-nearest
neighbor search on kd-tree 1800 +/- 800 47.9 1400 +/- 600 40.5 2500 +/- 1000 56.1

Evaluating expected reward, given Rnav 2 +/- 1 0.1 2 +/- 1 0.1 2 +/- 1 0.0

Calculating attitude setpoint for attitude controller 17 +/- 5 0.5 17 +/- 5 0.5 17 +/- 5 0.4

Table 1: Measured averages and standard deviations of subprocess latencies,
from one representative run each. Implementation on single-thread Intel i7.



7 Future Work

There are several components to this line of work that we would like to extend.
For one, we plan to present validation experiments of the method in hardware.
Additionally, the highly parallel nature of the fast collision probability approxi-
mation algorithm is amenable to data-parallel implementations on a GPU. We
also plan to expand on the motion primitive library, including true 3D flight, in-
creased variety of maneuvers, and analysis of the accuracy of the model. We also
plan to characterize the performance of the collision probability approximation
with more elaborate global navigation functions.
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