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Abstract

This paper addresses the identification of the inertial parameters and the contact forces associated with objects making

and breaking frictional contact with the environment. Our goal is to explore under what conditions, and to what degree, the

observation of physical interaction, in the form of motions and/or applied external forces, is indicative of the underlying

dynamics that governs it. In this study we consider the cases of passive interaction, where an object free-falls under gravity,

and active interaction, where known external perturbations act on an object at contact. We assume that both object and

environment are planar and rigid, and exploit the well-known complementarity formulation for contact resolution to

establish a constrained optimization-based problem to estimate inertial parameters and contact forces. We also show

that when contact modes are known, or guessed, the formulation provides a closed-form relationship between inertial

parameters, contact forces, and observed motions, that turns into a least squares problem.

Consistent with intuition, the analysis indicates that without the application of known external forces, the identifiable set

of parameters remains coupled, i.e. the ratio of mass moment of inertia to mass and the ratio of contact forces to the mass.

Interestingly the analysis also shows that known external forces can lead to decoupling and identifiability of mass, mass

moment of inertia, and normal and tangential contact forces. We evaluate the proposed algorithms both in simulation and

with real experiments for the cases of a free falling square, ellipse, and rimless wheel interacting with the ground, as well

as a disk interacting with a manipulator.
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1. Introduction

Autonomous manipulation in an uncertain environment can

benefit from an explicit understanding of contact. The a

priori models of objects and environment that robots rely

on are inevitably deficient or defective: in some cases it is

not cost effective to build accurate models; in others the

complex and transforming nature of nature makes it impos-

sible. This understanding of contact is often made implicit

in the design of a manipulator. We deal with uncertainty

by carefully choosing materials and geometries. However,

when we want to monitor or actively control the execu-

tion of a manipulation task, an explicit understanding of the

algebra between motions, forces, and inertias at contact is

principal.

We are inspired by humans’ unconscious but effective

biases that make sense of contact to understand their envi-

ronment. It only takes us a small push of a cup of coffee to

estimate how full it is, and a quick glance to a bouncing ball

to gauge its stiffness. Similarly, this work aims for robots to

harness known laws of physical interaction to make sense

of observed motions and/or forces, and as a result gain a

better understanding of their environment and themselves.

In particular, in this study we explore the identifiability

of inertial parameters and contact forces associated with

planar frictional contact interactions. We exploit the lin-

ear complementarity formulation (LCP) of contact resolu-

tion (Stewart and Trinkle, 1996; Anitescu and Potra, 1997)

to relate inertial parameters, contact forces, and observed

motions. Section 3.1 reviews in detail the structure of an

LCP problem and describes the mathematical framework

necessary to outline the identifiability analysis.
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Fig. 1. Is the trajectory of the rod in the figure indicative of the

dynamic system that governs its motion? Note the two key events:

when the left end of the rod makes contact and sticks to the ground,

and the subsequent contact when the right end of the rod contacts

the ground and slides. Stewart and Trinkle (1996) used the exam-

ple of a falling rod to introduce a time-stepping complementarity

scheme for contact resolution that has become one of the standard

techniques for simulating frictional contact. In this paper, we look

at the same formulation and similar examples from the perspective

of identification.

What can we say about an object from observing its

motions and/or forces? One specific type of system we con-

sider is a single planar rigid body undergoing impact after

a period of free fall, as in Figure 1. The trajectory of the

rod is a ballistic motion following the dynamics of free

fall, which are not too informative. The relevant events are

when the left end of the rod makes contact and “sticks" to

the ground, and when the opposite end makes contact and

“slides" on the ground. The key challenge, and focus of this

paper, is in finding a formulation suitable for system identi-

fication, that can handle the complexity of contact dynamics

with unknown and intermittent reaction forces due to fric-

tional contact. Such a formulation provides the basis of

an approach for identification in a broader set of contact

interactions.

Our main contribution is an analysis of the question

of the identifiability of the mass, the moment of inertia,

and contact forces from kinematic observations of fric-

tional contact interactions. Section 4 details that analysis

both for cases when contacts stick or slip, as well as when

known external forces are applied during contact. In this

paper, we use a batch approach to system identification,

that estimates the inertial parameters and contact forces that

explain a window of observations. A potential benefit over

more traditional calibration methods for parameter fitting, is

that equivalent on-line techniques are well understood and

readily available.

Section 5 and Section 6 demonstrate the validity of the

approach through simulated and real experiments on single

contact events, with a planar square, an ellipse, and a rim-

less wheel free-falling against a flat ground, and with the

multiple-contact scenario of a manipulator interacting with

a disk rolling on the ground.

2. Background and motivation

System identification studies the problem of fitting a

model (i.e. inertial parameters) to a series of inputs

(i.e. forces and torques) and responses (i.e. displace-

ments/velocities/accelerations) of a dynamic system. The

basic idea behind system identification is that, although

the response of a dynamic system tends to be complex, the

governing dynamics are often linear in a set of observable

parameters. For example, while
∑

f = m·a can lead to com-

plex trajectories, forces and accelerations are still linearly

related by the mass m. In unconstrained dynamic systems,

this allows closed-form least-squares formulations for the

estimation of those parameters.

System identification determines what parameters, or

combinations of parameters, are instrumental to a partic-

ular dynamic system, what observations are informative,

and how to excite the system to trigger those observations,

ultimately yielding estimates of the parameters. This idea

has been applied in robotics to the identification of serial

and parallel link manipulators (Gautier and Khalil, 1988;

Khosla and Kanade, 1985), and to identify inertial param-

eters sufficient for control purposes (Slotine, 1987) among

others.

In robotic manipulation, we often rely on dynamic mod-

els of impact and frictional interaction by assuming known

masses, inertias, and coefficients of friction or restitution.

For example many algorithms for contact-aware state esti-

mation (Atkeson, 2012; Erdmann, 1998; Koval et al., 2015;

Yu et al., 2015; Zhang and Trinkle, 2012), use a dynamic

model to filter noisy observations of state. Zhang et al.

(2013) studies the problem of simultaneously estimating

state and inertial and frictional parameters in a planar push-

ing task. Our work characterizes which parameters can

actually be estimated from the type of interaction and the

available information. Ayusawa et al. (2014) exploit the par-

ticularities of floating base robots to simplify the estimation

of their inertial parameters. This work focuses on dealing

with the issues that originate from the hybridness of making

and breaking contact.

Close to our work, Kolev and Todorov (2015) develop a

similar approach to estimating inertial parameters, based on

a physics engine with smoothed contact dynamics, leading

to computationally efficient algorithms. More recently, in

the context of a planar pushing task, Zhou et al. (2016) pro-

pose to constrain the search for dynamic models to a convex

polynomial relationship between forces and motions. The

assumption, motivated by the principle of maximal dissipa-

tion and the concept of limit surface (Goyal et al., 1991),

yields a data-efficient algorithm.

Algorithms for planning and control of dynamic manipu-

lation through contact (Chavan Dafle and Rodriguez, 2015;

Hogan and Rodriguez, 2016; Lynch and Mason, 1996; Platt

and Kaelbling, 2011; Posa et al., 2013) also rely heavily on

known dynamic parameters to make predictions for given

control inputs. Dynamic models are also widely used for

fault detection and task monitoring, although to a lesser
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degree within the context of frictional contact. Willsky

(1976) provides an early review of methods to detect and

diagnose changes in the evolution of a system from its

expected behavior, where the expected behavior can be

specified as following a particular parametrized dynamic

model (Barai and Pandey, 1995; De Luca and Mattone,

2005; Salawu, 1997) or data-driven model (Tax et al., 1999;

Rodriguez et al., 2010). Recently, Manuelli and Tedrake

(2016) proposed the use of a particle filter based scheme

to estimate and localize external contacts to explain unex-

pected internal torques in a floating base mechanism like a

humanoid. In all these cases, system identification has the

potential to provide a formal approach to extract estimates

of system parameters and contact forces from observations

of rigid-body contact interactions.

The main design choice in our approach is the selection

of a time-stepping linear complementarity problem (LCP)

scheme for the resolution of forces and accelerations (or

rather impulses and velocities) during frictional contact.

Why LCP? Brogliato et al. (2002) identifies three classes

of methods for rigid body simulation.

1. Penalty methods approximate contact interactions by

allowing interpenetration of bodies and generating

forces proportional to the amount of penetration, yield-

ing smooth yet stiff systems that can be solved with inte-

gration methods. These methods yield computationally

favorable solutions at the cost of realism.

2. Event-driven methods rely on a listing, resolution, and

selection of all possible contact/impact events. They

typically require some knowledge of contact time which

may be difficult to predict a priori for complicated

multi-body systems.

3. Time-stepping methods integrate the equations of

motion during a finite time interval. Should a contact

(or multiple) be detected during the interval, the algo-

rithm resolves the collisions and continues to integrate

the equations of motion.

The time-stepping approach, in conjunction with the

velocity-impulse resolution of contact, which results in

a complementarity problem (CP), has been advocated by

Stewart and Trinkle (1996) and Anitescu and Potra (2002)

among others, and has been shown to be robust to phe-

nomena such as Painleve’s problem (Stewart, 2000), and

to always yield a solution, with linear approximations of

the friction cone. Specially interesting for this work, LCP,

or CP in general, provides a unique consistent formulation

over different contact modalities, i.e. contact vs. separation

and sticking vs. slipping.

3. Complementarity problems for collision

resolution

The standard approach to resolve motion in unconstrained
dynamic systems follows an iterative integration scheme

Current state −→ Compute resultant

of applied forces
−→ Integrate forward

to next state

A key difficulty in dealing with the constraints induced

by rigid body contact dynamics, as in many constrained

dynamical systems, is that it breaks this approach. From an

algebraic perspective, forces and states must be consistent

with the constraints, which complicates their resolution.

From a mechanical perspective, the motion of the system

depends on the resultant of applied contact forces, while

these applied contact forces (friction and contact normal)

also depend on the motion of the system. Normal forces

are only present if the system wants to move into contact.

Equally, tangential friction forces depend on the relative

motion at contact. For example, at a sliding point contact

the direction of friction opposes the direction of sliding.

This direction, however, is determined by the resultant of

forces, including friction. Consequently, both contact forces

and resulting motions must be determined (searched for)

simultaneously, instead of sequentially.

Penalty methods, by approximating contact forces as a

measure of interpenetration, effectively can turn contact

resolution back into the iterative integration scheme above.

Methods that rely on contact enumeration search the space

of motions and forces by decomposing all possible types

of contact configurations each yielding a different model of

contact forces.

This section reviews the complementarity formulation

for contact resolution, a formulation that yields a consis-

tent set of equations of the dynamics and constraints of

contact, at the cost of increased algebraic complexity. The

derivations in this section draw from Stewart and Trinkle

(1996) and Stewart (2000), to which we refer the reader to

for further details.

3.1. A linear complementarity problem

A general (i.e. nonlinear) complementarity problem is

defined as

Find z (1)

s.t. z ≥ 0

g( z) ≥ 0

z · g( z) = 0

The basic idea behind a complementarity problem is to

encode two mutually exclusive conditions on z. In the sim-

ple formulation above, we need to find a vector z that sat-

isfies the two conditions z ≥ 0 and g( z) ≥ 0, these being

exclusive z ·g( z) = 0, i.e. at least one of them must be 0. We

see this often written in compact form as 0 ≤ z ⊥ g( z) ≥ 0.

A linear complementarity problem (LCP) is formed when

the constraint function g is linear g( z) = 3z+b. Since their

development in the 1960s (Cottle et al., 1992), these formu-

lations have found a wide application range. The comple-

mentarity conditions in equation (1) arise naturally when

setting up Lagrange multipliers for optimization problems

with inequality constraints, and is a classical problem in

optimization theory. In 1996, Pang and Trinkle (1996) pre-

sented an algorithm based on a LCP and an approximated
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version of Coulomb’s frictional law to predict the instanta-

neous acceleration of a system of rigid bodies undergoing

frictional contact. In this context, complementarity natu-

rally encodes constraints such as the exclusivity between the

magnitude of a contact force and the distance to contact (at

all times one of them has to be zero), or between the mag-

nitude of the sliding velocity at contact and the magnitude

of the frictional force (either the sliding velocity is zero, or

the frictional force has to reach the maximum determined

by Coulomb’s law). Provided algorithms exist to efficiently

solve LCPs, the formulation allows us to search the space

of motions and forces without having to enumerate contact

modes.

The equation of motion resulting from force balance for

a single frictional contact can be written as

M(q)
dv

dt
+ C(q, v) v = g(q) +fext(q) +JT

n (q) cn + JT
t (q) ct

(2)

where q and v are respectively the joint configurations and

velocities. The left side encodes the motion of the system

where:

1. M(q) is the (positive-definite) inertia matrix defined in

joint space;

2. C(q, v) v represents the centrifugal and Coriolis acceler-

ations.

The right-hand side is the resultant of all applied forces.

1. g(q) is the resultant of all conservative forces (only

dependent on configuration); in this paper, we only con-

sider gravity, but it can also incorporate forces due to

the deformation of non-rigid bodies.

2. fext(q) is the resultant of all generalized external non-

conservative forces, excluding contact.

3. JT
n (q) cn is the contact normal force in an inertial refer-

ence frame, where cn is its magnitude. JT
n (q) = ∇φn(q)T

is the gradient of a scalar “distance-to-contact" function

φn(q) that determines the boundary between no contact

(φn(q)> 0) and penetration (φn(q)< 0). Evaluated at

contact (φn(q) = 0), it gives the outward normal to the

contact surface in an inertial reference frame.

4. JT
t (q) ct is the contact frictional force in an inertial ref-

erence frame, where ct is a magnitude along each basis

vector in JT
t (q). The columns of JT

t (q) form a linear span

of the tangent space at contact. Note that the combi-

nation of the columns in JT
t (q) with JT

n (q) gives a full

linear basis, or reference frame, at a contact.

Equation (2) is an unconstrained dynamic system with

forces ct and cn as inputs. We can change the pose q of an

object by choosing the geometry of contact Jn(q) and Jt(q)

and by controlling the magnitude of the contact forces

ct and cn. In this context, classical system identification

would provide a well-understood process to estimate prob-

lem parameters and forces, leading to a least-squares prob-

lem formulation (Ljung, 1999), as we will see in examples

in Section 5.

Unfortunately, without making assumptions about the

interaction mode, ct and cn are constrained, and depend both

on each other and on the states (q, v). They are constrained

by motion principles and by frictional laws. First, the mag-

nitude of the normal force cn should always be positive, and

different than zero only at contact, φn(q) = 0. At the same

time, the distance to contact should always be positive, and

zero only when in contact. We can write both conditions

compactly as the complementarity constraint 0 ≤ φn(q) ⊥
cn ≥ 0. Second, the motion at contact and the tangential

frictional force Jt(q) ct are related by the maximum power

inequality (Anitescu and Potra, 1997). This states that dur-

ing contact the selection of motion and frictional forces

is resolved to maximize power dissipation, which we have

seen experimentally to be a good approximation in tasks

such as pushing (Yu et al., 2016) or prehensile pushing

(Kolbert et al., 2016)

min
ct

v · JT
t (q) ct s.t. (cn, ct) satisfy friction law (3)

In practice, and in simple cases such as point contacts, con-

tact resolution searches for the components of ct such that

the frictional force Jt(q) ct maximally opposes the instan-

taneous sliding velocity v from within a valid domain of

contact forces. That domain is specified by a frictional law,

which constrains the normal and tangential components

of the contact force, and is commonly represented by an

inequality constraint ψ( ct) ≤ µcn, with µ as the scalar

coefficient of friction andψ(·) a scalar function. In this case

equation (3) looks like

min
ct

v · JT
t (q) ct s.t. ψ( ct) ≤ µcn (4)

Note that Coulomb’s law is the special case when ψ( ct) =
||ct||2, i.e. all contact forces must lie inside the friction

cone FC(q) = {JT
n (q) cn + JT

t (q) ct s.t. ||ct||2 ≤ µcn}.
We can incorporate this constraint in the minimization in

equation (4) through a Lagrange multiplier λ, where we

minimize now h( ct, λ) = vT · JT
t (q) ct − λ(µcn − ψ( ct) )

with respect to both ct and λ. The conditions for optimality

for a minimization problem with inequality constraints are

known as the Karush–Kuhn–Tucker conditions (Boyd and

Vandenberghe, 2004)

∂h

∂ct

= Jt(q) v + λ
∂ψ( ct)

∂ct

= 0 (5)

λ ≥ 0

µcn − ψ( ct) ≥ 0

λ·(µcn − ψ( ct) ) = 0

which are the origin of the algebraic expression of the

complementarity conditions.
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We can then complete the complementarity formulation

for contact resolution (for one point contact) as

dq

dt
= v (6)

M(q)
dv

dt
+ C(q, v) v = g(q) +fext( t) +JT

n (q) cn + JT
t (q) ct

Subject to: 0 = Jt(q) v + λ
∂ψ( ct)

∂ct

0 ≤ φn(q) ⊥ cn ≥ 0

0 ≤ λ ⊥(µcn − ψ( ct) ) ≥ 0

It is possible to add an extra constraint Jn(q) ·( v+ + εv) =
0 when φn(q) = 0 to model the elasticity of the contact,

where ε denotes the coefficient of restitution and v+ the post

contact velocity. For the perfectly inelastic case, ε = 0, the

constraint turns into Jn(q) v+ = 0 when φn(q) = 0 which

simply zeroes the normal component of the velocity after

contact.

The optimization problem in equation (6) is nonlinear,

due to the friction surface function ψ . For computational

reasons, it is common to linearize the friction cone by

approximating it as a polyhedral convex cone. We construct

it by using a finer discretization of the tangent space at

contact with a set of vector generators {di(q) }i=1...m that

positively span it. It will be convenient to choose these vec-

tors as equispaced and paired to each other di = −dj as in

the work by Stewart and Trinkle (1996). We then stack this

larger set of generators in the same matrix JT
t (q) with which

we can express any frictional force as a positive linear com-

bination JT
t (q) ct with ct ≥ 0, subject to the approximated

Coulomb’s frictional law ψ( ct) =
∑m

i=1 ct,i ≤ µcn where

ct =( ct,1 . . . ct,m), and under the complementarity condition

that ct ≥ 0. Applying this approximation, we can write

dq

dt
= v (7)

M(q)
dv

dt
+ C(q, v) v = g(q) +fext( t) +JT

n (q) cn + JT
t (q) ct

Subject to: 0 ≤ ct ⊥ Jt(q) v + λe ≥ 0

0 ≤ φn(q) ⊥ cn ≥ 0

0 ≤ λ ⊥(µcn −
m
∑

i=1

ct,i) ≥ 0

where e is a vector of all ones, that originates when differen-

tiating ψ( ct) =
∑m

i=1 ct,i with respect to ct. In the rest of the

paper we will focus on the specific case of planar contacts,

i.e. at every contact there are only two generators m = 2

of the polyhedral friction cone spanning the tangent space,

both opposite to each other. Note that in practice, this is

equivalent to using the true Coulomb friction cone, but it

better generalizes for higher dimensions.

3.2. A time-stepping approach

Shortly after Pang and Trinkle (1996) introduced the instan-

taneous LCP formulation for contact resolution in the space

of forces and accelerations, Stewart and Trinkle (1996) pro-

posed a time-stepping formulation in the space of impulses

and velocities which added stability and effectiveness for

forward simulation. The resulting equations of motion and

constraints are based on a discretization of equation (7) and

follow from Stewart (2000). For the particular case of one

contact in the plane we can write them as

qk+1 − qk = hvk+1 (8)

M(qk+1)
(

vk+1 − vk
)

+ C(qk+1, vk+1) vk+1 = g(qk+1) +f k
ext

+ JT
n (qk+1) cn + JT

t (qk+1) ct

0 ≤ ct ⊥ Jt(q
k+1) vk+1 + λe ≥ 0

0 ≤ φn(qk) ⊥ cn ≥ 0

0 ≤ λ ⊥ µcn−( ct,1 + ct,2) ≥ 0

where superscripts k and k+1 denote discretized time. Note

that the first constraint is a vector with one complementarity

constraint for every generator of the contact tangent space

Jt, all sharing the same Lagrange multiplier λ.

The particular time-stepping method used in equation (8)

is based on an implicit Euler integration scheme, but can

be adapted to other methods. To simulate forward a single-

contact rigid-body frictional interaction between two rigid

bodies, we need to solve the set of equations and comple-

mentarity constraints in equation (8). To do so, we search

for the velocity of the object vk+1 and consistent values

of the contact forces cn and ct,i that step the system from

instant k to instant k + 1.

The search is also over the values of the extra variables

introduced to formulate the complementarity constraints, φ

and λ, which determine the contact mode, i.e. contact vs.

no-contact and sticking vs. slipping. We will exploit this

in the following sections for the purpose of parameter and

force estimation. We emphasize that if the contact mode is

known or assumed, there is no need to solve the LCP. In that

case, impulses during impact and velocities post-impact

can be solved strictly as functions of states and external

influences pre-impact. We will use this in Section 4.3 and

Section 4.4 to find closed-form relations between impulses,

velocities, and inertial parameters.

3.3. Regarding the distance function φn(·)
The function φn(·) measures the minimum distance between

the boundaries of two interacting rigid bodies (or a body

and the environment). The particular form of that function

depends on the geometry of the problem.

Consider the example in Figure 2 of a rigid object falling

under gravity on a fixed ground. The function 8(q) =
(φn,φt) parametrizes the position of point P (closest to the

ground) in an inertial reference frame. The object is in free

space if φn > 0, in contact if φn = 0, and in penetration if

φn < 0. We can write 8 as

8 =
[

φn

φt

]

=
[

y − l(β) cos (β − θ)

x − l(β) sin (β − θ)

]

(9)
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Fig. 2. Distance to contact. For a planar object falling on a hori-

zontal surface aligned with axis X , we consider the distances φn

and φt between the closest point to the ground P and the origin O

of a fixed reference frame. Following equation (9), the coordinates

of point P are given by the configuration of the object q =( x, y, θ ),

the angle β, and the distance l(β).

where β parametrizes the contact point P in an object-fixed

reference frame, and l(·) parametrizes the object boundary.

In an inertial reference frame, the closest point P is also a

function of the orientation of the object θ . The geometry

of contact is then given by the function β( θ ) defined in the

interval 0 ≤ β( θ )< 2π .

The equation of motion derived in the previous section

requires the Jacobian of the distance function in equa-

tion (9)

J = ∂8

∂q
=
[

Jn

Jt

]

=
[

0 1 Jy( θ )

1 0 Jx( θ )

]

(10)

with

Jy = −∂β
∂θ

(

∂l

∂β
cos(β − θ ) −l sin(β − θ )

)

− l sin(β − θ )

Jx = −∂β
∂θ

(

∂l

∂β
sin(β − θ ) +l cos(β − θ )

)

+ l cos(β − θ )

where the rows of J, or columns of JT , can be seen as a map-

ping, projecting Cartesian contact forces in the local contact

frame to generalized forces in a global inertial frame.

4. Identifiability analysis

In this section, we study the identifiability of inertial param-

eters (masses and inertias) and contact forces of rigid bodies

making and breaking frictional contact with the environ-

ment. In Section 4.1 we will briefly review the key concepts

of identifiability analysis and what it means for a parame-

ter to be identifiable. The following subsections will discuss

the application of this analysis to the problem of planar rigid

body contact.

4.1. Key concepts in identifiability analysis

System identification is a well-developed field, with many

excellent texts (Ljung, 1999), which we make use of here.

In its barest form, system identification seeks to answer two

questions;

(a) what is the set of parameters from a dynamical sys-

tem that we can hope to estimate (identifiability) given

sufficient observations;

(b) how to estimate them (identification).

In this paper, we study a special class of systems in which

the inputs and outputs are related through a linear set

of parameters. This class of systems has been shown to

include a large set of rigid body robotic systems (Khosla

and Kanade, 1985).

To illustrate the principles of system identification, con-

sider the following one degree-of-freedom (DOF) dynamic

system subject to a harmonic excitation with a known

magnitude a and frequency ω (also known as a Duffing

oscillator)

mẍ + cẋ + k1x + k2x3 = a cos(ω) (11)

for which the parameter set θ = [m, c, k1, k2]T is unknown.

We can relate observations of the input force (excitation)

a cos(ω) and states ( ẍ, ẋ, x) to the unknown parameter

set as
[

ẍ ẋ x x3
]

· θ = a cos(ω) (12)

or more generally

Y( ẍ, ẋ, x) ·θ = f (13)

where Y is a non-linear function of the observed state, θ

is the parameter set, and f is the known input. Equation

(13) has a linear regression form, and given N observations

of ( Y, f) with N larger than the dimension of θ , we will

be able to estimate θ assuming the matrix Y is sufficiently

well conditioned. In this formulation, the identifiable set is

θ which can be estimated by solving a least squares prob-

lem. In this work, the inputs are contact reaction forces.

This does not change the form of the identifiability prob-

lem, or the identifiable set, rather it will affect our ability

to generate informative trajectories, since we do not have

direct control over those contact forces, which ultimately

affects the structure of the matrix Y, as further described in

Section 7.3.

It is interesting to note that if we eliminate the excitation

and apply initial conditions to the system then the linear

regression formulation can be written as
[

ẋ x x3
]

θ̂ = −ẍ (14)

where θ̂ = [ c
m

,
k1
m

,
k2
m

]T . The parameters of the original sys-

tem are now coupled to each other and not distinguishable,

i.e. the identifiable set is lower dimensional.

In the discussion so far we have not considered con-

straints on the dynamics of the system. This is only the

case when the contact mode is constant and known. The

rest of this section is dedicated to the study of the identifi-

cation problem for systems that make and break contact, in

which we need to explicitly handle constraints and changing

contact modes.
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4.2. Parameter and contact force estimation

through contact

Identifiability analysis starts by writing the left-hand side

of the dynamic equation of motion in equation (8) in lin-

ear form Y(q, v, v̇) ·θ , with the parameter vector θ called

the base inertial parameters. The structure of the base iner-

tial parameters depends on the geometry of the problem,

and dictates what can or cannot be identified or estimated.

It is often the case that the parameters we want to esti-

mate are coupled (Ljung, 1999). In this section, we study

the problem of determining and estimating the base inertial

parameter set and contact forces with no a priori assumption

on contact modes. In followup subsections we will make

assumptions on the contact mode to show insights into how

the identifiable set changes given the presence or absence

of known excitation.

Recalling equation (8) we can write the dynamic equation

of motion between two time steps k and k + 1 as

qk+1 − qk = hvk+1 (15)

Y(qk+1, vk , vk+1, h) ·θ = fk
ext + JT

n ( qk+1) cn + JT
t ( qk+1) ct

subject to a set of constraints, where we note that we

incorporated gravity g(qk+1) on the left-hand side of the

equation. For compactness of notation, we introduce the

vectors

JT
c (q) =

[

JT
n (q) JT

t (q)
]

(16)

cT = [cn ct]
T

where JT
c (q) projects Cartesian space forces into joint space

generalized forces. We can then rewrite equation (15) as

qk+1 − qk = hvk+1 (17)

Y(qk+1, vk , vk+1, h) θ = fk
ext + JT

c (qk+1) c

We assume we have access to a time-limited window of

noisy observations of the state of the system {q1 . . . qm} and

we are interested in estimating the values of the base param-

eters θ and contact forces {c1 . . . cm} that best explain that

series of observations. Figure 3 illustrates an example prob-

lem where a disk comes into contact with a rigid surface.

The true trajectory of the disk is shown with a solid line,

and the noisy observations qi are depicted with circles.

We use r to denote the dimension of the parameter space,

θ ∈ R
r. We use p to denote the number of generators in the

linear approximation of the friction cone, so we can express

the contact force with p + 1 positive numbers, c ∈( R
+)p+1,

one for the normal force and p for the tangent force. The

total number of parameters we want to estimate is then

r + m( p + 1), which for the planar examples in this paper

becomes r + 3m.

In this section, we use the example of a single planar

body and a single point contact to illustrate the formulation.

We will describe and estimate its base parameters, as well

as the magnitude of the normal and friction forces cn, c1 and

Fig. 3. A disk transitions from free flight to rolling contact. The

solid line denotes the true trajectory of the disk, and the dots

denote observations corrupted by sensor noise. Given an observa-

tion window of length m we want to estimate the inertial parame-

ters of the ball θ and the contact forces {c1 . . . cm} for the duration

of the window.

c2. We find the most likely estimates of θ and {c1 . . . cm} by

minimizing their fit to the time-stepped dynamic equation

of motion and the series of constraints in equation (8). The

equations of motion must be satisfied in between any two

sequential observations k and k+1, and the constraints must

be satisfied at all m time-steps in the window. This takes the

form of a nonlinear optimization problem, in a similar fash-

ion to recent approaches for trajectory optimization through

contact (Posa et al., 2013)

min
θ ,c1...cm,λ

∥

∥

∥

∥

fk
ext −

[

Y(qk+1, vk , vk+1, h) −JT
c (qk+1)

]

[

θ

ck+1

]
∥

∥

∥

∥

2

(18)

s.t: 0 ≤ ck+1
t ⊥ Jt(q

k+1) vk+1 + λk+1e ≥ 0 ∀k = 1 . . .m

0 ≤ φn( qk) ⊥ ck+1
n ≥ 0 ∀k = 1 . . .m

0 ≤ λk+1 ⊥ µck+1
n −( ck+1

t,1 + ck+1
t,2 ) ≥ 0 ∀k = 1 . . .m

where we have one complementarity constraint modulated

by the distance to contact φn( qk), one complementarity con-

straint modulated by the magnitude of the relative velocity

at contact λk+1, and two complementarity constraints, each

modulated by the force along the corresponding generators

of the contact tangent plane ck
t,1 and ck

t,2.

Note that the regressor matrix Y and the parameter vec-

tor θ , have been appended with the contact Jacobian and

the contact forces respectively. The constraints resolve the

contact mode and enforce physically realizable values for

the contact forces as well as the inertial parameters. We

will see in following subsections that assuming we know

exactly the mode of contact, we can neglect the constraints

and get back to the unconstrained linear least squares for-

mulation described in Section 4.1. Before, we list a few

important observations regarding the nonlinear problem in

equation (18).

1. We assume we can directly observe or estimate the

applied external forces fk
ext, the kinematic matrix
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[

Y(qk+1, vk , vk+1, h) −JT
c (qk+1)

]

, the distance φn(qk),

and the velocity at contact Jt(q
k+1) vk+1. In prac-

tice, these are estimated by numerically differentiating

observed states qk and by assuming knowledge of the

geometry of the object and the environment.

2. If fext is sufficiently rich, and the system is in contact,

then the identifiable set is the full vector θ as well as all

contact forces. The state dependant contact constraints

do not affect the base inertial parameter set, they instead

impose that the estimated contact forces and identi-

fied parameters are physically consistent. The contact

forces affect the dynamics linearly and so can be folded

into the linear parameter formulation discussed in Sec-

tion 4.1. It is important to note that the identification

is only effective if the external forces are informative

enough to excite the complete spectrum of dynamics of

the system considered (Section 7.3).

3. In the case fext = 0, i.e. there is no known external

actuation on the system for the duration of the motion,

equation (18) becomes homogeneous, and the optimiza-

tion reduces to a singular value problem. The contact

forces cannot be found independently of the parameter

vector θ and only a ratio of the two can be found, as in

the example discussed in Section 4.1.

4. The gravitational force g( qk+1) does not yield addi-

tional information with respect to the identifiability of

inertial parameters. This is because the gravitational

term is linear in inertias, which are consequently pro-

portional to accelerations. An intuitive example is a

free-falling object where m · g = m · a, observing its

motion is not informative about its mass.

5. When there is no contact, i.e. φ(q)> 0, all constraints

are satisfied trivially, and the nonlinear optimization

problem becomes again a linear least squares regres-

sion over the parameter vector θ . This is the case for

several seminal works on system identification applied

to robotics (Khosla and Kanade, 1985; Slotine, 1987).

The optimization program in equation (18) is formulated

to deal with unknown contact modes, this is critical since in

practice these modes are often not known beforehand. In the

following subsections, we gain insight by focusing on a sin-

gle rigid body making contact with a rigid flat surface and

solve away the complementarity constraints for the cases of

sliding (Section 4.3) and sticking contact (Section 4.4), both

leading to the same set of identifiable parameters.

4.3. Parameter and contact force estimation for a

sliding contact

Here we assume that the system of interest is a single rigid

body making contact with a flat surface and assume it is

in sliding contact mode during the window of observation.

This breaks the hybridness of the dynamics of intermit-

tent frictional contact, and will resolve the complemen-

tarity constraints. During sliding, these complementarity

constraints become

ck
n > 0 λk > 0 ck

t > 0 (19)

where ck
t is ck

t,1 or ck
t,2, depending on whether the object is

sliding to the right or the left.

The choice of contact mode turns the problem into an

unconstrained optimization. Expanding equation (18) with

the general expressions in equation (8), and rewriting the

linear system with cn, ct and λ as variables, we obtain





JT
n M−1Jn JT

n M−1Jt 0

JT
t M−1Jn JT

t M−1Jt 1

µ −1 0









ck
n

ck
t

λk



 = −





JT
n b

JT
t b

0





(20)

where

b = vk + hM−1( −G( qk) −C( qk , vk) +Fk
ext)

Expressions for all other terms are provided in Appendix 1.

Solving the linear system of equations for cn and ct we can

write

ck
n = m

vk
y + θ kJ k

y − hg + h
m

( Fk
y + h m

I
Fθ )

1 +
(

J k
y

2 + µJ k
x J k

y

)

m
I

= ck
t

µ
(21)

which solves contact forces as functions of the inertial

properties, geometry of contact, and kinematic measure-

ments. We replace the expressions for normal and tangential

contact forces back into the equations of motion, yielding





vk+1
x − vk

x

vk+1
y − vk

y + hg

vk+1
θ − vk

θ



 =
vk

y + vk
θJ

k
y − hg + h

m
( Fk

y + h m
I

Fk
θ )

1 +
(

J k
y

2 + µJ k
x J k

y

)

m
I







µ

1
m
I

(

J k
y + µJ k

x

)






+ h









Fk
x

m
Fk

y

m
Fk
θ

I









(22)

Recalling from Section 4.1 in order to study the identifiabil-

ity of the system making contact we need to manipulate this

expression into a linear form in the unknown parameters.

With some algebraic manipulation, we can write Y · θ = f,

with

Y(q, v, fext) =









y1(q, v)

y2(q, v, fext)

y3(q, v, fext)

y4(q, v, fext)









T

θ =









m
I
1
m
1
I
m

I2









The complete expressions are provided in Appendix 1. This

linear mapping f = Y · θ in the base parameters θ =
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[

m
I

1
m

1
I

m

I2

]T

indicates that this is indeed the identifiable

set (Section 4.1), i.e. that provided we have sufficiently rich

external excitation (Section 7.3), we can estimate m and I

independently. To estimate these parameters we collect N

data points of the states and external forces and solve a

linear least squares optimization to evaluate the mass and

inertia of the object then plug the values found back into

equation (21) to find the contact forces.

Note that Y depends both on the states and the exter-

nal forces. The second, third, and fourth columns are linear

functions of the external forces whereas the first column is

a function only of states. This implies that if there is no

known external excitation during the contact then y2(·) =
y3(·) = y4(·) = 0 and only the first column of the Y matrix

provides any information. Consequently we can only esti-

mate the first element of θ , that is the ratio of the mass to the

inertia m
I

. Equation (21) then yields the ratio of the contact

forces to mass ct

m
and cn

m
.

4.4. Parameter and contact force estimation for a

sticking contact

Analogous to the sliding case, during sticking contact, the

complementarity constraints in equation (18) become

ck
n > 0 λk = 0 ck

t > 0 (23)

Expanding equation (18) with the general expressions in

equation (8), and rewriting the linear system with cn, ct, and

λ as variables, we obtain
[

JT
n M−1Jn JT

n M−1Jt

JT
t M−1Jn JT

t M−1Jt

] [

ck
n

ck
t

]

= −
[

JT
n b

JT
t b

]

(24)

Following the same strategy as in Section 4.3, we solve for

cn and ct

[

ck
n

ck
t

]

= −m

1 + m
I

(

J k
y

2 + J k
x

2
)

[

1 + m
I

J k
x

2 −m
I

J k
x J k

y

−m
I

J k
x J k

y 1 + m
I

J k
y

2

]

·

·
[

vk
y − hg + vk

θJ
k
y + h

m
( Fk

y + m
I

Fk
θ J k

y )

vk
x + vk

θJ
k
x + h

m
( Fk

x + m
I

Fk
θ J k

x )

]

(25)

We construct the linear mapping Y · θ = f, by replacing the

last expression into the equations of motion, yielding

Y(q, v, fext) =









y1(q, v)

y2(q, v, fext)

y3(q, v, fext)

y4(q, v, fext)









T

θ =









m
I
1
m
1
I
m

I2









The detailed expressions for Y and f are in Appendix 2. By

a similar inspection as in the previous section, we conclude

that the inertial parameters m and I are uniquely identifiable

in the presence of known external forces. We can then infer

the value of the contact forces from equation (25).

In the case where external forces do not exist y2(·) =
y3(·) = y4(·) = 0, in which case only the ratio of mass to

the angular moment of inertia m
I

, and the ratio of contact

forces to the mass cn

m
and ct

m
are identifiable, consistent with

the results in the sliding mode.

5. Identification for single body interactions

In this section, we demonstrate the application of the for-

mulation in equation (18) to several examples, and show

results with both simulated and experimental data. Sec-

tion 5.1 describes the application of the approach to single

body interactions, in particular we set the focus on objects

falling under gravity. Section 5.2 describes three particu-

lar examples, an ellipse, a square, and a rimless wheel, and

we conclude the section with simulated (Section 5.3) and

experimental (Section 5.4) results.

5.1. Identification formulation

Let q =( x, y, θ )T be the state of the rigid body and v =
( vx, vy, vθ )

T its derivative. The state of the object is then

described by the vector ( x, y, θ , vx, vy, vθ )
T . Consider a rigid

body as in Figure 2 falling under gravity with no external

actuation. Equation (18) can be written as

minimize
θ ,ck

1...m

∥

∥

∥

∥

∥

∥





vk+1
x − vk

x

vk+1
y − vk

y

vk+1
θ − vk

θ





−h









0

−g

0



+ ck+1
n

m





0

1
m
I

J k
y



+ ck+1
t

m





1

0
m
I

J k
x









∥

∥

∥

∥

∥

∥

2

(26)

subject to the same set of complementarity constraints as in

equation (18). Since there is no external actuation, as dis-

cussed in the previous sections, the inertial parameters are

coupled to the contact forces and disambiguation is not pos-

sible. This fact may not be immediately obvious from equa-

tion (26) so we relate this formulation to the least squares

formulation in Section 4.3 and Section 4.4 by assuming

a contact mode and solving away the complementarity

constraints to arrive at

min
θ1

||Y · θ − f||2 (27)

where: f = vk+1
θ − vk

θ

Y =( vk+1
x − vk

x) J k
x −( vk+1

y − vk
y + hg) J k

y

θ = m

I

where the vectors and matrices are now scalars and where

only the ratio of mass to inertia is identifiable. The solution
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Fig. 4. Parametrization of the contact geometry of a 2D square of

side a.

of equation (27) yields an estimate of m
I

. It is important

to note that the constraints of the optimization exist but

now have to be solved implicitly (external detection of con-

tact events and transitions). If this is possible then the least

squares approach can be applied when contact occurs and

the ratio of contact forces to mass can be estimated through

a process of back substitution using the estimate of m
I

. The

results in subsequent sections rather use the formulation in

equation (26) with explicit complementarity constraints and

make no assumption over the contact mode.

5.2. Examples

So far we have not studied any particular contact geome-

try, and assumed that the contact Jacobian is a sufficient

representation of the body. Yet algebraic expressions are

required to compute that Jacobian as a function of the con-

figuration of the object and its geometry. The following

subsections show examples of analytical expressions for a

square, ellipse, and rimless wheel which we will later use in

simulated and real experiments.

5.2.1. 2D Square. The square in Figure 4 models as a

square with side length a, orientation θ , center of mass

( x, y), mass m, and angular inertia I . The minimum distance

from the square to the ground is the minimum of the vertical

distances from all vertexes

φn = min

(











y − a√
2

cos(π/4 − θ )

y − a√
2

cos(π/4 + θ )

y + a√
2

cos(π/4 − θ )

y + a√
2

cos(π/4 + θ )











)

(28)

The contact Jacobian is derived from differentiating

the distances in equation (28) following the expressions

in equation (11). Assuming the first vertex is the lowest

(with β = π/4 and l = a/
√

2), and since curvature does

Fig. 5. Parametrization of the contact geometry of an ellipse of

major and minor principal radii a and b.

not play a role, i.e.
∂β

∂θ
= 0, the expression of the normal

and tangential Jacobians become

Jn(q) =
[

0 1 − a√
2

sin(π/4 − θ )
]

Jt(q) =
[

1 0 a√
2

cos(π/4 − θ )
]

(29)

which we could have also obtained by directly differentiat-

ing the distance function.

5.2.2. 2D Ellipse. The ellipse in Figure 5 incorporates

extra complexity due to its curvature. We will see that

the resulting contact dynamics are sensitive to orientation,

because small perturbations can produce large changes in

contact location.

We parametrize the perimeter curve of the ellipse by

angle β. Denote the major and minor radii of the ellipse

with a and b, and its orientation with respect to a fixed ref-

erence frame by θ . The relationship between β to θ is given

by

tan(π − θ ) = −b

a
cotβ

∂β

∂θ
= −a

b

1 + tan2(π − θ )

1 + cot2(β)
(30)

We now write the distance of any point on the perimeter of

an ellipse from its center as

l(β) = ab
√

b2 cos2 β + a2 sin2 β

∂l

∂θ
= ab( b2 − a2) sin 2β

2

√

( b2 cos2 β + a2 sin2 β)3

∂β

∂θ
(31)

Which allows us to find the expression for ∂l/∂θ . By sub-

stituting in equation (11) we can find an expression for the

Jacobian.
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Fig. 6. Parametrization of the contact geometry of an rimless

wheel with six spokes. The figure shows the contact distance for

three possible contact points.

5.2.3. Rimless wheel. The rimless wheel (as depicted in

Figure 6) is a classical example of a very simple pas-

sive walker. Its stability and gait cycles have been exten-

sively studied. Here we demonstrate the application of the

parameter and contact force estimation approach to a rim-

less wheel as it “walks" down an incline. We make no

assumption of sticking vs. sliding motion. The formulation

in equation (18) applied to the rimless wheel becomes

min
θ ,c1...m

∥

∥

∥

∥

∥

∥





vk+1
x − vk

x

vk+1
y − vk

y

vk+1
θ − vk

θ



− h





1
m

0 0

0 1
m

0

0 0 1
I













0

−mg

0



+
p
∑

i=1

ck+1
n,i Jk+1

n,i + ck+1
t,i Jk+1

t,i





∥

∥

∥

∥

∥

∥

2

(32)

where we are now summing over the contact forces at

all legs/spokes, since all legs can make contact with the

ground. Note also the increase in complexity due to the fact

that two simultaneous contact forces are possible.

5.3. Results from simulated data

In this section, we demonstrate the identification process

with synthetic data for the square, ellipse, and rimless

wheel. To do so, we simulate the time-stepping LCP for-

mulation in equation (7) and add Gaussian noise to state

observations.

In the simulation we use a unit mass (kg), coefficient of

restitution of 0.6 and a horizontal flat rigid surface with

coefficient of friction 0.7. The ratio of mass m to angular

inertia I for the square and ellipse are 6 (1/m2) and 0.8

(1/m2) respectively.

To generate data, we gave the bodies a random set of

initial positions and velocities and simulate their trajectory

100 times. Figures 7 to 9 show traces of example trajecto-

ries for the square, ellipse, and rimless wheel respectively.

For motivation, note in Figure 10 the dependence of the

motion of the center of mass of the rimless wheel with its

Fig. 7. Example of a trace of an LCP simulation of a falling

square.

Fig. 8. Example of a trace of an LCP simulation of a free-falling

ellipse. The smoothness of the boundary of the ellipse leads to a

more complex scenario, where the contact point can evolve while

sticking (i.e. rolling) or sliding.

total mass, clearly indicating that, unlike in free fall, the tra-

jectory through contact contains information regarding its

inertial properties.

To test the robustness of the identification algorithm we

add Gaussian noise of varying magnitude ∼ N ( 0, σ 2) to

the simulated data (both to configurations q and veloci-

ties v). We then use the corrupted signals to estimate m/I

following the formulation in equation (26).

Table 1 shows the identification results for the square and

ellipse, for different values of the signal to noise ratio. The

first column details the mean error and standard deviation

in predicting the value of m/I , the second column denotes

the percent error and the final column denotes the signal

to noise ratio. We see good agreement between the pre-

dicted and true parameter with low levels of noise and a

steady deterioration of prediction as noise is increased. One

particularly damaging deterioration that noise produces is

the modification of the contact geometry of the problem, of

contact Jacobian. Poor evaluation of these variables results

in poor behavior identifiability.

The proposed algorithm can also estimate contact forces.

We show an example with the rimless wheel, in this case
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Fig. 9. Example of a trace of an LCP simulation of a rimless

wheel with (top) high friction and (bottom) low friction between

the wheel and ground. The dark spokes show the contacts that are

(top) sticking and (bottom) slipping. The dynamics of the rim-

less wheel are very dependent on whether the contacts slip or

stick. As we have argued, this is a key difficulty in doing system

identification.

Fig. 10. Dependence of the trajectory of the rimless wheel with its

mass. Intuitively, the trajectory contains information of its inertial

properties.

Table 1. Identification of m/I from simulated data.

Mean error ± std. Error (%) S.N.R. (dB)

Square

−0.02 ± 0.10 1/m2 0.3 40

−0.12 ± 0.31 1/m2 2.1 30

−0.66 ± 0.91 1/m2 11.0 20

−3.49 ± 1.37 1/m2 58.2 10

Ellipse

−0.03 ± 0.10 1/m2 0.3 40

−0.14 ± 0.44 1/m2 2.3 30

−0.71 ± 0.82 1/m2 11.7 20

−4.89 ± 1.94 1/m2 80.4 10

Fig. 11. Estimation of the normal force during an impact of the

rimless wheel with the ground from simulated data. Note that three

different spokes undergo impact, so we show the reconstructed

profiles for those three spokes.

assuming we know its mass m, since we have already deter-

mined that in the absence of external forces, these are cou-

pled. Figure 11 shows the estimated profile of the contact

normal for an example where the rimless wheel happens

to roll without sliding. The plot shows impacts from three

different spokes.

5.4. Results from experimental data

In this section, we validate the proposed identification

scheme with real data. To do so, we constructed the exper-

imental setup in Figure 12, in likeness to the simulation

environment used in the section above.

The dropping arena is constructed with two very flat

sheets of glass with support spacers to constrain the motion

of a falling object in the vertical plane. The objects are

3D printed in hard plastic, with shapes of a square of side-

length 70 mm and of an ellipse with major and minor axis

lengths of 70 mm and 50 mm. We track the position of

the objects with a Vicon motion tracking system at 250 Hz

which proved accurate enough to extract velocity estimates

by low-pass filtering and differentiation. To collect ground

truth measurements of force we use an ATI Gamma six-

axis force torque sensor with 1000 Hz sampling rate. For

each drop experiment we considered the first three bounces,

which are extracted automatically using the impact sig-

nature captured by the F/T sensor. Figure 13 shows an

example of such a trajectory.

For the validation, we use the data from a total of 280

drop tests to estimate the ratio of mass to inertia of the

objects, as well as the peak contact forces at contact. For

the case of the ellipse, the ratio of mass to inertia was esti-

mated as 587 1/m2 with a standard deviation of 27.6, while

the real value is 535 1/m2. The mean error in peak contact

force estimation was -12.12 N with a standard deviation of

31.59 N, where the average magnitude of the peak force was

in the order of 135 N.
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Fig. 12. Experimental dropping setup. A six-axis industrial robot latches magnetically on a part, gives it some initial velocity and

orientation, and drops it. A motion capture system and a F/T sensor capture the falling motion at high frequency.

Fig. 13. Example of a falling trajectory of a planar ellipse in

the experimental dropping arena. The figure shows a sub-sampled

trajectory recorded by the motion tracking system.

Figure 14 shows an example of contact force estimation.

The ellipse is shown as it comes into contact with the sur-

face, and the plot compares the estimated ground reaction

force with the profile captured by the force–torque sensor.

Note that the contact force shows oscillations post impact.

This is due to vibrations induced on the ground after the

first impact. To avoid their effects, we focus this analysis on

estimating the timing and magnitude of the first impact.

6. Identification for multi-body interactions

In this section, we demonstrate the application of the tech-

nique to a multi-body, multi-contact problem. Figure 15

shows a two link manipulator pushing a disk resting on

flat ground. During the motion the disk makes and breaks

contact with both the manipulator and the environment. Ini-

tially, the manipulator and disk are not in contact and the

disk starts to drop from a height, subsequently the two link

manipulator makes contact with the disk and pushes the

disk against the ground, the disk begins to roll and slides

its way out of the wedge formed by the manipulator and

ground.

Fig. 14. Reconstruction of the contact force for a impact of an

ellipse. Note the oscillations of the measurements of the real force

in the experimental setup. This is due to the vibrations induced

after the first impact. It is a nuisance, so we focus on the ability

of the algorithm to estimate the timing and magnitude of the first

impact.

The system has a total of five-DOFs (two rotational

joints of the manipulator and the position and orientation

of the disk). Jointly with their velocities, these variables

make for a 10-dimensional state space. We assume a maxi-

mum of two possible contact pairs at any given instant, the

manipulator-ball pair and the ball-ground pair, and for each

pair there are the associated normal and tangential contact

forces in the contact frame, as well as their correspond-

ing complementarity constraints. The control inputs are the
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Fig. 15. Schematic of the frictional interaction between a two-

link manipulator, a disk, and the ground. In this case we have

two simultaneous contacts, which we need to model with their

correspondent rigid-body constraints, yielding, for example, two

separate distances to contact φn1 and φn2 .

Fig. 16. Estimation of the normal force cn and two tangen-

tial forces ct,1 and ct,2 during the brief interaction between the

manipualtor and disk in Figure 15.

joint torques of the manipulator, and everything is under the

influence of a vertical gravitational field.

We adopt the formulation in equation (18) and assuming

a window length of m, the total number of parameters to

estimate is 4m+3+2 where there are 2m forces per contact

pair, three base inertial parameters of the two-link manipu-

lator and two base inertial parameters of the ball. Note that

the number of parameters to optimize grows linearly with

the length of the window and there will be an additional 2m

per any new contact pair.

To simulate the experiment we initialize the manipulator

and disk in a configuration similar to Figure 15 and apply

pre-determined torque profiles to the two-link manipulator.

We log the resulting states and contact forces generated.

Next, we use the recorded configurations and torque profiles

as inputs to equation (18) along with the complementarity

constraints to estimate the contact forces and base inertial

parameters. Figure 16 shows estimated contact forces in

the three directions between the disk and the manipulator

overlaid with the simulated values.

Fig. 17. Noise in the pose measurement can lead to impacts hap-

pening in configurations that do not lie on the contact manifold.

The image shows an example where an ellipse is projected (top)

down or (bottom) up to satisfy the constraints of rigid contacts.

7. Practical considerations

Practical implementation and uncertainty in measurements

create interesting challenges. In this section, we discuss

some important details to consider when applying the

approach outlined by this work.

7.1. Measurement noise and hard constraints

The model we use in this paper for contact resolution

assumes rigid contact. This yields several hard constraints

that take the form of equality constraints in the optimiza-

tion problem. Even if the objects and environment we use

were to be perfectly rigid, sensor noise makes the obser-

vations violate those constraints. For example, it is often

the case that objects slightly penetrate the ground, or that

contact forces act at a short distance from the ground,

as shown in Figure 17. As a consequence, imposing the

complementarity constraints on the observed data proves

challenging.

Ideally, one would want to do simultaneous state estima-

tion and system identification, to reduce sensor noise. How-

ever, that is an important but complex topic for future work.

In this work, we considered two possible solutions to allevi-

ate this issue. The first is to employ a projection algorithm

that at the time of contact imposes that objects be on the

contact manifold. The second approach is to relax the strict

equality and allow a slack proportional to the uncertainty in

measurements.

The implementation of the first approach requires knowl-

edge or detection of contact events which may be difficult,

and the second approach allows for application of force at a

distance, but the magnitude of such a force will be small. In

our implementation, we used the projection approach due

to accurate knowledge of the ground elevation and relative

high accuracy of the sensors.
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7.2. Sample rate variation across sensors

Force sensors and joint encoders usually sample at a higher

frequency than tracking/vision hardware. Our approach,

however, assumes that during a window, sensor data is uni-

formly sampled and synched. In the event that sensor data

is not uniformly sampled it is the authors experience that

interpolation of the lower sample rate sensors works better

than downsampling of faster sensors. This avoids throw-

ing fine detail information that might be present in the

high frame rate sensors, which is of special relevance for

detecting contact events.

7.3. Persistence of excitation

Persistence of excitation is a common consideration made

when estimating parameters and variables in the context of

system identification (Ljung, 1999). It quantifies how much

a signal “excites” the dynamic modes of a system. We can

build some intuition for this concept by considering again

the Duffing oscillator discussed in Section 4.1

mẍ + cẋ + k1x + k2x3 = a cos(ω)

If the amplitude and frequency of the excitation signal are

both small, then the cubic stiffness term has very little effect

on the output response of the oscillator and so estimates

of the stiffness parameter k2 will be poor. More formally,

consider the class of systems that are linear in parameters

f( t) = Y( t) θ , where θ is the unknown parameter vector,

Y is the known state dependant regressor matrix and f is a

pseudo output vector. The persistence of excitation criteria

requires that

αI ≤ 1

T

∫ t+tobs

t

Y( τ )T Y( τ ) dτ

for the observed trajectories to be informative of the param-

eters to identify. The parameter α is a chosen positive

scalar and I denotes the identity matrix. Intuitively, this

criteria quantifies the positive-definiteness of the matrix

Y( t)T Y( t) over the window of observation of length tobs.

Loosely put, the importance of the positive definiteness of

this matrix is due to the inversion it undergoes in estimating

the parameters over the time period.

Regarding the formulated nonlinear optimization equa-

tion (18) the persistence of excitation criteria sets condi-

tions on the Y and Jc matrices respectively. To be more

illustrative, rather informally we write

[

Y( qk+1, vk , vk+1, h) −Jc( qk+1)T
]

[

θ

c

]

= Fk
ext

[

θ

c

]

=
[

Y( qk+1, vk , vk+1, h) −Jc( qk+1)T
]†

Fk
ext

The pseudo inverse of the regressor matrix is well posed

when the criteria for persistent excitation of the signals is

satisfied. Figure 18 shows an intuitive example, the con-

tact of a square against a flat surface. In the left image,

Fig. 18. Example of (a) non-rich and (b) rich excitations for a

bouncing square. The case of a vertical impact is indistinguishable

from a point contact and hence it cannot possibly give information

about the angular inertia of the object. The geometry of contact,

and the corresponding regressor matrix Y is not full rank.

the square lands perfectly on one side whereas on the

right it lands at an angle. The left square will continue to

bounce up and down vertically without ever rotating, imply-

ing no information can be deduced regarding its rotational

inertia—in fact it cannot be distinguished from a point par-

ticle. The square on the right rotates with various angular

velocities as it bounces, which provides information regard-

ing its rotational inertia, so the excitation can be considered

rich.

7.4. Rigidity of interactions

The LCP formulation for contact resolution used in this

paper assumes perfectly rigid bodies. In practice, bodies

are not perfectly rigid, which means that velocities will

not vary instantaneously, but rather will be modulated by

the compliance-deformation of the materials. The formu-

lation we presented is not adequate for systems that exhibit

considerable compliance during contact. The contact model

would need to be augmented to incorporate deformation,

which is an interesting line of research for future work.

8. Conclusions and future work

In this paper, we study the problem of estimating contact

forces and inertial parameters of systems of rigid bodies

undergoing planar frictional contact. We formulate the esti-

mation as a nonlinear optimization problem, where the dif-

ferent contact modes, i.e. contact vs. no-contact and stick-

ing vs. slipping, can effectively and compactly be written as

complementarity conditions. We discuss the identifiability

and identification of parameters and forces for systems with

and without the presence of external forces. We provide

analysis and experimental demonstration with simulated

and real experiments for three simple systems:

• a free falling rigid body;

• a rolling/slipping rimless wheel;

• a manipulator pushing a disk.
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We finish the paper with a discussion of practical con-

siderations for the implementation of these algorithms,

issues with non-rigid contacts, and criteria for persistence

of excitation.

We would like to note that the key premise upon which

the approach is formulated is rigid body contact. While this

may constitute a large set of systems of interest in robotics,

it is by no means all inclusive. There are important classes

of systems that exhibit significant compliance during con-

tact. We are interested in generalizing the approach pre-

sented here to more complex contact models that incorpo-

rate compliance and deformation. Further, note that the con-

tact resolution technique we use (LCP) is just one of several

models available. In the future, we plan to evaluate the per-

formance of various models such as those by Anitescu and

Potra (2002) and Drumwright and Shell (2009), for pre-

liminary results the interested author can refer to Fazeli

(2017).

The focus of this paper is on estimating contact forces

and inertial parameters, and we implicitly assumed that

the geometry of contact, i.e. shapes and poses, are known.

Uncertainty in the geometry of the problem however

presents a difficult challenge with important implications

which is an exciting direction to explore.
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Appendix 1.

Single rigid body sliding contact mode

Expressions for the terms in equation (20) are given by

M−1 =





1
m

0 0

0 1
m

0

0 0 1
m





G( qk) =





0

mg

0





F k
ext =

[

Fk
x Fk

y Fk
θ

]T

ω̃k =





0 −θ̇ k 0

θ̇ k 0 0

0 0 0





Rk =





cos θ k − sin θ k 0

sin θ k cos θ k 0

0 0 1


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C( qk , vk) =





0

0

ω̃RI0RTω



 =





0

0

0



 (33)

The expressions for the linear mapping for the sliding mode

are given by

f =





[

vk+1
x − vk

x

vk+1
y − vk

y + hg

]

−
[

µ

1

]

(

vk
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)

vk+1
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θ





(34)
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Appendix 2.

Single rigid body sticking contact mode

The expressions for the linear mapping for the sticking

mode are given by

f =





vk+1
x + vk

θJ
k
x
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k
y
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 (36)
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]

with

y1 =











−
(

J k
y

2 + J k
x

2
)

vk+1
x + J k

x

2
vk

x + J k
x J k

y

(

vk
y − hg

)

−
(

J k
y

2 + J k
x

2
)

vk+1
y + J k

x J k
y vk

x + J k
y

2
(

vk
y − hg

)

−
(

J k
y

2 + J k
x

2
)

vk+1
θ − J k

x vk
x − J k

y

(

vk
y − hg

)











y2 = h





Fk
x

Fk
y

0





(37)

y3 = h







−Fk
x J k

y

2 + Fk
y J k

x J k
y − J k

x Fk
θ

Fk
x J k

x J k
y − J k

x

2
Fk

y − J k
y Fk

θ

−Fk
x J k

x − Fk
y J k

y + Fθ







y4 =





0

0

−( J k
x

2 + J k
y

2
) hFk

θ





(38)


