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Abstract This paper addresses the identifiability of the inertial parameters and the
contact forces associated with an object making and breaking frictional contact with
the environment. Our goal is to explore under what conditions, and to what de-
gree, the observation of physical interaction, in the form of motions and/or forces,
is indicative of the underlying dynamics that governs it. In this initial study we
consider the cases of passive interaction, where an object free-falls under gravity,
and active interaction, where known external perturbations act on the object at con-
tact. We assume that both object and environment are planar and rigid, and exploit
the well-known complementarity formulation for contact resolution to establish a
closed-form relationship between inertial parameters, contact forces, and observed
motions. Consistent with intuition, the analysis indicates that without the applica-
tion of known external forces, the identifiable set of parameters remains coupled,
i.e., the ratio of mass moment of inertia to mass and the ratio of contact forces to the
mass. Interestingly, the analysis also shows that known external forces can lead to
decoupling and identifiability of mass, mass moment of inertia, and normal and tan-
gential contact forces. We evaluate the identifiability formulation both in simulation
and with real experiments.

1 Introduction

Autonomous manipulation in an uncertain environment requires an autonomous un-
derstanding of contact. A priori models of objects and their environment are rou-
tinely deficient or defective: In some cases it is not cost-effective to build accurate
models; others the complex and ever-transforming nature of nature renders it im-
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possible. This understanding of contact is often implicit in the design of a manip-
ulator. By carefully choosing materials and geometries we can passively deal with
uncertainty. However, when we want to monitor or actively control the execution
of a manipulation task, an explicit understanding of the algebra between motions,
forces, and inertias at contact is principal.

We are inspired by human’s unconscious but effective ability to make sense of
contact to understand its environment. It only takes us a small push to a cup of coffee
to estimate how full it is, and a quick glance to a bouncing ball to gauge its stiffness.
This work builds on the conviction that, similarly, robots can harness known laws
of physical interaction to make sense of observed motions and/or forces, and as a
result gain a better understanding of their environment and themselves.

In particular, in this initial study we explore the identifiability of inertial param-
eters and contact forces associated with planar frictional contact interactions. We
exploit the linear complementarity formulation (LCP) of contact resolution [18, 1]
to relate inertial parameters, contact forces, and observed motions. Section 3 re-
views the structure of an LCP problem and describes the mathematical framework
necessary to outline the identifiability analysis.

The specific system we consider is a single planar rigid body undergoing impact
after a period of free fall, as in Fig. 1. What can we say about an object from ob-
serving its motions and/or forces? The falling trajectory is a simple ballistic motion,
which can be fitted to the dynamics of free fall. The key challenge, and focus of this
paper, is in finding a formulation suitable for system identification, that can handle
the complexity of unknown and spurious reaction forces due to frictional contact.
Such a formulation might yield a systematic approach for a broader set of contact
interactions including sliding, pushing or grasping.

Fig. 1: Stewart and Trinkle [18] used the example of a falling rod to introduce a time-stepping
complementarity scheme for contact resolution that has become one of the standard techniques for
simulating frictional contact. In this paper we look at the same formulation and similar examples
from the perspective of identification. Is the trajectory of the rod indicative enough of the dynamic
system that governs its motion?
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Our main contribution is a systematic analysis of the question of the identifia-
bility of the mass, the moment of inertia, and contact forces from kinematic ob-
servations of frictional contact interactions. Section 4 details the analysis both for
cases when contacts stick or slip, as well as when known external forces are applied
during contact.

In this paper we use a batch approach to system identification, where we extract
the best possible inertial parameters and contact forces that explain a series of obser-
vations. A potential benefit over more traditional calibration methods for parameter
fitting, is that equivalent on-line techniques are well understood and readily avail-
able. Section 5 evaluates the validity of the approach analysis with simulated and
real experiments with a planar block and a planar ellipse falling on a flat ground,
which are captured with a high-speed camera.

2 Background & Motivation

System identification studies the problem of fitting a model (i.e., inertial param-
eters) to a series of inputs (i.e., forces and torques) and responses (i.e., displace-
ments/velocities/accelerations) of a dynamic system. The most basic idea behind
system identification is that, although the response of a dynamic system tends to
be complex, the governing dynamics are often linear in a set of observable param-
eters. For example, while ∑ f = m · a can lead to complex trajectories, forces and
accelerations are still linearly related by m. This allows closed-form least-squares
formulations for the estimation of those parameters.

System ID is the process of identifying what parameters are instrumental and
what observations are informative, and then make estimates of the parameters from
measured data. This idea has been applied in robotics to the identification of serial
and parallel link manipulators [7, 8], and to identify inertial parameters sufficient
for control purposes [17].

In this paper we show that system identification has the potential to provide a
formal approach to observe rigid-body contact interactions, which, in turn, opens
with a wide set of possible applications: Contact-aware state estimation (Erdmann
[6], Atkeson [3], Koval et al [9], Zhang and Trinkle [22], Trinkle [20], Yu et al
[21]); Contact-aware planning and control (Lynch and Mason [10], Platt and Kael-
bling [12], Posa et al [13], Chavan Dafle and Rodriguez [5]); Fault detection or task
monitoring (Rodriguez et al [15], Salawu [16]).

One of the main assumptions in our approach is the selection of a time-stepping
Linear Complementarity Problem (LCP) scheme for the resolution of forces and
accelerations during frictional contact. Why LCP? Brogliato et al [4] identifies 3
classes of methods for rigid body simulation:

i. Penalty methods model interaction as a reaction force proportional to the amount
of interpenetration. Although easier to solve, they lack in realism.

ii. Event-driven methods rely on a listing, resolution, and selection of all possible
contact/impact events. They typically require some knowledge of contact time.
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Müller and Pöschel [11] showed that they can lead to exceedingly high velocities
in situations with multiple contacts.

iii.Time-stepping methods integrate the equations of motion during a finite time
interval. Should a contact (or multiple) be detected during the interval, the algo-
rithm resolves the collisions and continues to integrate the equations of motion.

The time-stepping approach, in conjunction with the velocity-impulse resolution of
contact, which results in a Complementarity Problem (CP), has been advocated by
Stewart and Trinkle [18] and Anitescu and Potra [2] among others, and has been
shown to be robust to phenomena such as Painleve’s problem [19], and always to
have a solution, with linear approximations of the friction cone and for a positive
definite mass matrix.

3 Complementarity Problems for Collision Resolution

The standard approach to resolve motion, which we sometimes refer to as Euler
integration, follows the simple iterative scheme:

Current state−→ Compute resultant
of applied forces −→

Integrate forward
to next state (1)

One of the core difficulties in dealing with contact is that it breaks that basic scheme.
The motion of the system depends on the resultant of applied forces, but at the same
time these applied forces (friction and contact normal) depend on the motion of
the system. As a consequence, both contact forces and resulting motions must be
determined (searched for) simultaneously, instead of sequentially as in (1).

This section reviews the complementarity formulation for contact resolution
which solves simultaneously for contact forces and velocities. For further details
we refer the reader to Stewart [19].

A Linear Complementarity Problem

A general (i.e. nonlinear) complementarity problem is defined as:

Find: z s.t. 0≤ g(z), 0≤ z, 0 = z ·g(z) (2)

A linear complementarity problem is formed when g is of the form g(z) = Mz+q.
The benefit of a complementarity formulation is that it allows us to write the equa-
tions of motion of a dynamic system with contact defined as unilateral constraints
(and that mathematicians have devised solvers for that kind of problem). Force bal-
ance looks like:

M(q)
dv
dt

= Jncn +D(q)ct + k(q,v)−∇V (q)+Fext(t) (3)

where:
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. Jncn(t) and D(q)ct(t) represent the normal and tangential contact forces;

. Jn = ∇φn(q), is the gradient of a function φn(q) that determines the boundary
between no contact (φn(q)> 0) and penetration (φn(q)< 0);

. D(q) is a set of column vectors that linearly span the tangent space at contact,
and the product D(q)ct represents the actual frictional force at a contact;

. V (q) represents conservative forces, such as gravity;

. k(q,v) represents the centrifugal and Coriolis velocity components;

. and Fext represents all external non-conservative forces excluding contact.

The motion at contact, and the tangential contact forces due to friction are related
by the principle of maximal dissipation [1] which states that during contact the
selection of both has to maximize dissipation, i.e., generally that friction tends to
oppose motion:

min
ct

(v+)T D(q)ct such that: ψ(ct)≤ µcn (4)

Contact resolution then will need to search for the components of ct such that the
frictional force D(q)ct opposes velocity, from within a valid domain of frictional
forces ψ(ct)≤ µcn. If we follow Coulomb’s law, all possible frictional forces must
lie inside a cone FC(q) = {D(q)ct s.t. ||ct ||2 ≤ µcn}, where now ψ(ct) = ||ct ||2. In
general, ψ can be shown to be convex, coercive and positively homogeneous which
implies that D(q)ct ∈ cnFC(q) is equivalent to ψ(ct)≤ µcn.

We can convert (4) into a CP constraint by noting that the inequality constraint
can be incorporated in the minimization by using a Lagrange multiplier h(ct ,λ ) =
(v+)T D(q)ct −λ (µcn−ψ(ct)) where now the condition for minimum is:

∂h
∂ct

= µD(q)T v++λ
∂ψ(ct)

∂ct
= 0 (5)

Furthermore we can write:

0 ∈ µD(q)T v++λ
∂ψ(ct)

∂ψ

0≤ λ , 0≤ µcn−ψ(ct), 0 = λ (µcn−ψ(ct)) (6)

which completes the CP formulation for contact resolution:

dq
dt

= vM(q)
dv
dt

= Jncn +D(q)ct −∇V (q)+ k(q,v)+Fext

s.t. 0≤ cn ⊥ 0≤ φn, 0 ∈ µD(q)T v++λ
∂ψ(ct)

∂ψ

s.t. 0≤ λ ⊥ 0≤ µcn−ψ(ct), 0 = JT
n v+ if φn(q) = 0 (7)

Note that the formulation so far is nonlinear with respect to the friction surface
constraint (ψ). For the sake of resolution, it is common linearize the CP by approxi-
mating ψ as a polyhedral convex cone. We construct it by using a finer discretization



6 Nima Fazeli, Russ Tedrake and Alberto Rodriguez

of the tangent plane at contact with a set of vectors {Jn +µdi(q)|i = 1,2, ...,m} that
positively span it. It is convenient to chose these vectors equiangular with respect to
each other, and are paired as di =−d j, which we stack in a new matrix D̃(q). Now
we can express the friction force as D̃(q)c̃t where c̃t ≥ 0 and Σ c̃t i ≤ µcn. Note that
we will drop the tilde from the notation but in the rest of the paper, we will assume
that the polyhedral approximation holds for all further analysis.

Finally, the CP formulation for contact resolution is:

qk+1 = qk +h · vk+1

M(qk)(vk+1− vk) = cnJn(qk)+D(qk)ct −h · k(qk,vk)−h ·∇V (qk)+h ·Fext

0≤ cn ⊥ 0≤ Jn(qk)
T (vk+1 + εvk)

0≤ ct ⊥ 0≤ λe+D(qk)
T vk+1

0≤ λ ⊥ 0≤ µcn− eT ct (8)

A Time-Stepping Approach

Next, to be able to simulate the evolution of the dynamics we convert the formula-
tion to its time-stepping equivalent, for which we integrate the contact forces over
a time step. The resulting equations of motion and constraints follow Stewart [19].
We integrate the expressions in (8) forward in time using an Euler scheme. Distance
to contact is captured by a measure of the closest distance between boundary of two
rigid bodies:

Φ =
[

φn φt
]T (9)

where φn > 0 signals free space, φn = 0 contact, and φn < 0 interpenetration. Fig. 2
depicts an arbitrary planar rigid body with active contact constraints:

Φ =

[
φn
φt

]
=

[
y− l(β )cos(β −θ)
x− l(β )sin(β −θ)

]
=

[
0
0

]
(10)

where angle β parameterizes the object boundary and localizes the contact point.
It is a function of θ such that 0 ≤ β (θ) < 2π . We compute the Jacobian of the
constraint for the equation of motion (3) as:

∂Φ

∂q
=

[
Jn
Jt

]
=

[
0 1 Jy(θ)
1 0 Jx(θ)

]
(11)

where the rows of ∂Φ

∂q can be seen as contact forces, and:

Jy =−
∂β

∂θ

(
∂ l
∂β

cos(β −θ)− l sin(β −θ)

)
− l sin(β −θ)

Jx =−
∂β

∂θ

(
∂ l
∂β

sin(β −θ)+ l cos(β −θ)

)
+ l cos(β −θ) (12)
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Fig. 2: 2D Rigid Body in Contact

In general, this formulation gives us the contact mode post-impact given pre-
impact kinematic measurements, and externally applied forces. On the other hand,
if the contact-mode is known, then there is no need to solve the CP. Impulses during
impact and velocities/positions post-impact can be solved strictly as functions of
these states and external influences pre-impact. We use this fact in Section 4.1 and
Section 4.2 to find close form relations between forces, accelerations, and inertial
parameters.

4 Identifiability Analysis

In this section we study the identifiability of the inertial parameters (mass and sec-
ond moment of inertia) and contact forces of a rigid body as it comes into contact
with a rigid and fixed flat surface. We assume that the positions, orientations and
velocities (linear and angular) of the object are given and the external forces acting
on the object are known. The second moment of inertia of the object is expressed
with respect to a reference frame attached to the center of mass. Given that kine-
matic measurements of the trajectory are available, we can derive the direction of
friction by invoking the principle of maximum dissipation as outlined in Section 3.
We will denote the direction by Jt . We consider sticking and sliding contact modes
separately in the following subsections.

4.1 Sliding Contact Mode

During sliding the complementarity constraints from (8) become:

0 < cn, 0 < ct , 0 < λ (13)

The first inequality derives from the fact that at contact the distance constraint is
equal to zero so its dual must be greater than zero. To understand the second and
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third inequalities we point out that since we have sliding contact then vk+1 must
have at least one component that is not perpendicular to the tangent plane spanned
by D and so max−divk+1 ≤ λ where di are the columns of D. This directly implies
that 0 < λ and the second inequality comes from the fact that since 0 < λ then
µcn = eT ct which implies that 0 < ct .

Utilizing the inequalities from (13) we revisit (8) and write it with cn, ct and λ

as variables:  JT
n M−1Jn JT

n M−1Jt 0
JT

t M−1Jn JT
t M−1Jt 1

µ −1 0

 cn
ct
λ

=−

 JT
n b

JT
t b
0

 (14)

where:

b = vk +hM−1(−∇V − k(q,v)+Fext) (15)

M−1 = diag{ 1
m
,

1
m
,

1
I
}, ∇V = diag{0,mg,0}, Fext =

[
Fx Fy τ

]T
ω̃ =

 0 −θ̇ 0
θ̇ 0 0
0 0 0

 , R =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 , k =

 0
0

ω̃RI0RT ω

=

0
0
0


and we can solve for cn and ct to arrive at:

cn = m
ẏk +θkJy,k−hg+ h

m (Fy +h m
I τ)

1+
(

J2
y,k +µJx,kJy,k

)
m
I

=
ct

µ
(16)

At this stage we have explicitly solved for the contact forces as functions of the
inertial properties, geometry of contact and pre-contact kinematic measurements.
To perform identifiability analysis we require an equation that is strictly a function
of kinematic measurements and inertial properties so we replace the values derived
for cn and ct into the equation of motion (3): ẋk+1− ẋk

ẏk+1− ẏk +hg
θ̇k+1− θ̇k

=
ẏk + θ̇kJy,k−hg+ h

m (Fy +h m
I τ)

1+
(

J2
y,k +µJx,kJy,k

)
m
I

 µ

1
m
I

(
Jy,k +µJx,k

)
+h

 Fx
m
Fy
m
τ

I


(17)

We can further manipulate (17) to yield the linear mapping:

Y =ΨΘ (18)

where:

Y =

[ ẋk+1− ẋk
ẏk+1− ẏk +hg

]
−
[

µ

1

](
ẏk + θ̇kJy−hg

)
θ̇k+1− θ̇k
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ψ1 =

hFyµ +hFx
hFy
0

 , ψ2 =

hJyτ

[
µ

1

]
+
(

J2
y,k +µJx,kJy,k

)
h
[

Fx
Fy

]
(Jy +µJx)hFy +hτ

 (19)

ψ3 = (Jy +µJx)

 −Jy

[
ẋk+1− ẋk

ẏk+1− ẏk +hg

]
ẏk + θ̇kJy−hg−

(
θ̇k+1− θ̇k

)
Jy

 , ψ4 =

 0
0

(Jy−µJx)hJyτ


Ψ =

[
ψ1 ψ2 ψ3 ψ4

]
Θ =

[ 1
m

1
I

m
I

m
I2

]T
Equation (18) is linear in the inertial parameters and assuming that Θ is the un-
known vector of inertial parameters then, given samples of Y and Ψ , we can set up
a constrained least squares estimation problem to determine m and I. Furthermore
with the mass and moment of inertia identified we can infer the contact forces from
(16), and conclude that the uniquely identifiable set is {m, I,cn,ct}. Assuming exter-
nalforces (excluding gravity) are set to zero then ψ1 = 0, ψ2 = 0 and ψ4 = 0 which
means that the only identifiable parameter is m/I. Replacing the value of m/I into
(16) we can find ct/m and cn/m therefore the set of parameters that we can estimate
uniquely in this case is {m/I,ct/m,cn/m}.

4.2 Sticking Contact Mode

During sticking contact the complementarity constraints in (8) become:

0 < cn, 0 < ct , λ = 0 (20)

The first inequality is direct consequence of being in contact, as in the previous
case. Since we are in sticking contact then a tangential force must exist to prevent
sliding, therefore ct must be greater than zero. A less intuitive justification can be
garnered by considering the complementarity constraints of (8) and noting that since
the velocity post contact will not have a component within the tangential plane of
contact then DT vk+1 = 0. In this scenario either eT ct = µcn which implies that fric-
tional force is at its boundary and the analysis will follow as in Section 4.1 or that
eT ct ≤ µcn which implies that the frictional force lies inside the friction cone. Note
that simply requiring that DT vk+1 = 0 will result in λ = 0. Where the frictional force
lies inside the boundary of its maximum, the LCP formulation from (8) simplifies
to: [

JT
n M−1Jn JT

n M−1Jt
JT

t M−1Jn JT
t M−1Jt

][
cn
ct

]
+

[
JT

n b
JT

t b

]
= 0 (21)

We solve for cn and ct and replace expressions from (15):
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cn
ct

]
=

−m
1+ m

I

(
J2

y + J2
x
) [1+ m

I J2
x −m

I JxJy
−m

I JxJy 1+ m
I J2

y

][
ẏk−hg+ θ̇kJy +

h
m (Fy +

m
I τJy)

ẋk + θ̇kJx +
h
m (Fx +

m
I τJx)

]
(22)

Replacing the expressions for contact forces into the equation of motion (3), and
rearranging we have:

Y =

 ẋk+1 + θ̇kJx
ẏk+1 + θ̇kJy
θ̇k+1− θ̇k

 , ψ1 =

−
(
J2

y + J2
x
)

ẋk+1 + J2
x ẋk + JxJy (ẏk−hg)

−
(
J2

y + J2
x
)

ẏk+1 + JxJyẋk + J2
y (ẏk−hg)

−
(
J2

y + J2
x
)

θ̇k+1− Jxẋk− Jy (ẏk−hg)


ψ2 = h

−FxJ2
y +FyJxJy− Jxτ

FxJxJy− J2
x Fy− Jyτ

−FxJx−FyJy + τ

 , ψ3 =

 0
0

−(J2
x + J2

y )hτ

 , ψ4 = h

Fx
Fy
0


Θ =

[ m
I

1
I

m
I2

1
m

]T
, Ψ =

[
ψ1 ψ2 ψ3 ψ4

]
(23)

By careful inspection we conclude that the inertial parameters m and I are uniquely
identifiable in the presence of known external forces (excluding gravity) and we
can infer contact forces from (22). Furthermore, if external forces are non-existent
then ψ2 = ψ3 = ψ4 = 0 and in this case only the ratio of mass to second moment
of inertia and the ratio of contact forces to the mass of the object are identifiable.
These results are consistent with sliding contact mode.

5 Examples: Block and Ellipse

In this section we apply the identifiability analysis in Section 4.1 and Section 4.2 to
two examples: 2-D block and 2-D ellipse undergoing free-fall and colliding with a
fix flat surface perpendicular to the direction gravity. We use two data sets validating
the derivations: i) simulated data using a numerical implementation of time-stepping
LCP and ii) experimental data recorded with a high speed camera. In both scenarios
we measure the position, orientation and velocities of the bodies as they interact
with the environment and attempt to identify the inertial parameters.

5.1 Identification Formulation

We consider a rigid body as in Fig. 2 at contact, denoting pre-impact time step as k
and post impact time step as k+1: ẋk+1

ẏk+1
θ̇k+1

=

 ẋk
ẏk
θ̇k

+h

 0
−g
0

+ cn

m

 0
1

m
I Jy

+ ct

m

 1
0

m
I Jx

 (24)
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Fig. 3: 2D Block in Free-Fall Fig. 4: 2D Ellipse Schematic

Since we are interested in the inertial parameters and assume that no known external
forces (except gravity) act on the object during contact, from our analysis we can
identify m/I. With this in mind a simple manipulation of (24) yields the least squares
optimization problem:

min
x
||Y −Ax||2 (25)

where: Y = θ̇k+1− θ̇k, A = (ẋk+1− ẋk)Jx− (ẏk+1− ẏk +hg)Jy, x =
m
I

The solution of (25) yields an estimate of m/I. So far we have been agnostic to the
shape of the rigid body, we note that the shape of the object will affect the choice of
the contact Jacobian and will be case specific, in the subsequent sections we derive
expressions for the contact Jacobians of the block and ellipse.

5.1.1 2D Block

The block (Fig. 3) is modeled as a 2D square with length a, angle of rotation θ ,
center of mass at location (x,y), mass m and second moment of inertia I. We define
the distance of the lowest vertex to the ground as a function of the configuration of
the block:

φn = min

(
f1(q) = y− a√

2
cos(π/4−θ)

f2(q) = y− a√
2

cos(π/4+θ)

f3(q) = y+ a√
2

cos(π/4−θ)

f4(q) = y+ a√
2

cos(π/4+θ)


)

(26)

where fi(q) denotes the vertical distance of vertex i to the ground as a function of
the height of the center of mass of the block y and it orientation θ .

We derive the contact Jacobians by differentiating (12). We assume that the low-
est vertex is f1(q) and that we observe a single point contact, i.e., curvature does not
play a role, which means that ∂β

∂θ
= 0. Invoking (12) with this constraint and noting
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that β = π/4 and l = a/
√

2 for vertex 1, the normal and tangential Jacobians are:

Jn =
[

0 1 − a√
2

sin(π/4−θ)
]T

, Jt =
[

1 0 a√
2

cos(π/4−θ)
]T

(27)

Note that for a simple case such as the square, we could arrive at the same expression
for the contact Jacobians simply by taking the partials of the contact constraints with
respect to the configurations:

h(q) =

[
y− a√

2
cos(π/4−θ)

x− a√
2

sin(π/4−θ)

]
, Jn =

∂h1(q)
∂q

, Jt =
∂h2(q)

∂q
(28)

5.1.2 2D Ellipse

The ellipse, depicted in Fig. 4, is geometrically interesting because of the relative
curvature between the surfaces in contact. Unlike the block, contact dynamics are
very sensitive to orientation. Small perturbations of the object’s orientation when in
contact produces small changes to the contact location. We parametrize the perime-
ter curve of the ellipse by angle β , denote the major and minor radii of the ellipse
with a and b, and refer to the contact point by C. The angle θ denotes the orientation
of the ellipse with respect to line QC which for our purpose is the surface of contact.
To compute the Jacobian from (12) we use geometry to relate β and θ :

tan(π−θ) =−b
a

cotβ

∂

∂θ−−→ ∂β

∂θ
=−a

b
1+ tan2(π−θ)

1+ cot2(β )
(29)

We can write the distance of any point on the perimeter of an ellipse from its
center as:

l(β ) =
ab√

b2 cos2 β +a2 sin2
β

∂ l
∂θ−−→ ∂ l

∂θ
=

ab(b2−a2)sin2β

2
√

(b2 cos2 β +a2 sin2
β )3

∂β

∂θ
(30)

Which allows us to find the expression for ∂ l/∂θ . With these expressions we can
can complete the optimization of (25).

5.2 Results from Simulated Data

To demonstrate the identification procedure we implemented a time-stepping LCP
script to simulate a block and an ellipse with unit mass (kg), coefficient of restitution
of 0.6 bouncing on a flat rigid fixed surface that lies perpendicular to the direction of
the gravitational field and has 0.7 coefficient of friction. The ratio of mass to second
moment of inertia for the block and ellipse are 6 (m2) and 0.8 (m2) respectively. To
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generate data, both bodies were given a random set of initial positions and velocities
and the simulation was run 100 times. Traces of example trajectories for the block
and ellipse are shown in Fig. 5 and Fig. 6.

Fig. 5: 2D Block Trace Fig. 6: 2D Ellipse Trace

We added gaussian noise∼N (0,σ2) to the simulated data collected (configura-
tions and velocities) where σ is a function of signal to noise ratio. We then used the
resulted signals to to calculate m/J following the least squares formulation in (25).

Table 1 shows the numerical results of the optimization as a function of signal
to noise ratio where the first column denotes the mean error between predicted and
actual m/J value, the second column denotes the percent error and the final col-
umn denotes the magnitude of the noise on measurements. We see good agreement
between the predicted and true parameter with low levels of noise and a steady dete-
rioration of prediction as noise is increased. We attribute the increasing error mostly
to the contact Jacobians. Poor evaluation of these variables results in poor behavior
prediction, which makes it difficult to estimate parameters.

Table 1: 2D Block Numerical Simulation and Identification Results

Block Ellipse Noise

Mean Error (m2) ± Std. % Error Mean Error (m2) ± Std. % Error S.N.R. (dB)

-0.021 ± 0.097 -0.35 -0.031 ± 0.101 -0.31 40
-0.125 ± 0.311 -2.083 -0.136 ± 0.443 -2.34 30
-0.659 ± 0.912 -10.98 -0.712 ± 0.820 -11.71 20
-3.491 ± 1.366 -58.197 -4.891 ± 1.938 -80.44 10
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Fig. 7: Experimental Setup Fig. 8: Frame from Ellipse Drop

Fig. 9: Regression Results: Block, horizontal
axes: A vertical axes: Y

Fig. 10: Regression Results: Ellipse, horizontal
axes: A vertical axes: Y

5.3 Results from Experimental Data

To further validate the identifiability analysis we constructed the experimental setup
in Fig. 7. We used two flat sheets of glass with support spacers to constraint in the
plane the motion of a falling object. For objects we used a 3D printed square of
2in side and an ellipse with major and minor radii of 1.5in and 1in. For observing
the motion objects we used AprilTags [14] and a Fastec TS3 (Fastec Imaging Corp,
San Diego, CA) high speed camera recording at 500 fps, which proved relatively
sufficient to extract positions and orientations of the objects and velocity estimates
by low-pass filtering and differentiation. For each drop experiment we considered
the first 3 bounces and, and using the recovered configurations and velocities we
evaluated the contact Jacobians and formed the optimization in (25).

Fig. 9 and Fig. 10 show the regression results from the data collected. We note
the very good agreement between the identified and true inertial parameter m/I. Part
of the discrepancies can be attributed to small errors due to friction and jittering of
the objects as they slide over the glass and small deformations during contact. The
glass and the gap between were chosen to minimize friction and undesired motions
such as rotations out of plane, but small disturbances are difficult to prevent. The
deformations at contact were very small due to the rigidity of the objects but small
amounts of deformation may mean inaccuracies in the actual contact Jacobian and
can influence identification.



Identifiability Analysis of Planar Rigid-Body Frictional Contact 15

6 Conclusions and Future Work

In this paper we investigated the problem of identifiability of inertial parameters and
contact forces for a rigid body as it interacts with the environment through contact.
The problem was broken down into the scenarios of sticking and sliding contact,
with and without the presence of known external forces acting on the body (other
than gravity). We showed that given a time history of the kinematic measurements of
the object, i.e. its positions, orientations and derivatives of these quantities, without
external force the parameters identifiable are the ratio of mass moment of inertia to
mass of the object, and the ratio of the tangential and normal forces to mass. We also
demonstrated that a known external force (other than gravity) acting on the object
during the contact phase, can help in decouple the mass and mass moment of inertia,
as well as the tangential and normal forces.

We validated the identifiability analysis on two planar free-falling rigid bod-
ies undergoing frictional impact with the environment and showed that the results
proved to be consistent with the predictions made by the identifiability analysis.
The analysis was performed under assumptions which constitute the limitations of
the work and serve as possible motivation for future efforts in this type of analysis.
Future work could address issues such as increasing the number of simultaneous
contacts, the number of rigid bodies, articulated rigid bodies, and extending the for-
mulation to incorporate uncertainties in geometry.

References

[1] Anitescu M, Potra FA (1997) Formulating Dynamic Multi-Rigid-Body Con-
tact Problems with Friction as Solvable Linear Complementarity Problems.
Nonlinear Dynamics 14(3):231–247

[2] Anitescu M, Potra FA (2002) A time-stepping method for stiff multibody dy-
namics with contact and friction. International Journal for Numerical Methods
in Engineering 55(7):753–784

[3] Atkeson CG (2012) State estimation of a walking humanoid robot. In: 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,
pp 3693–3699
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