An Architecture for Online Affordance-based
Perception and Whole-body Planning

Maurice Fallon, Scott Kuindersma, Sisir Karumanchi, Matthew Antone, Toby Schneider,
Hongkai Dai, Claudia Pérez D’Arpino, Robin Deits, Matt DiCicco, Dehann Fourie,
Twan Koolen, Pat Marion, Michael Posa, Andrés Valenzuela, Kuan-Ting Yu,

Julie Shah, Karl Tagnemma, Russ Tedrake and Seth Teller
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
32 Vassar Street
Cambridge, MA 02139

Abstract

The DARPA Robotics Challenge Trials held in December 2013 provided a landmark demon-
stration of dexterous mobile robots executing a variety of tasks aided by a remote human
operator using only data from the robot’s sensor suite transmitted over a constrained, field-
realistic communications link. We describe the design considerations, architecture, imple-
mentation and performance of the software that Team MIT developed to command and
control an Atlas humanoid robot. Our design emphasized human interaction with an effi-
cient motion planner, where operators expressed desired robot actions in terms of affordances
fit using perception and manipulated in a custom user interface. We highlight several im-
portant lessons we learned while developing our system on a highly compressed schedule.

1 Introduction

Since the start of the DARPA Robotics Challenge (DRC) in early 2012, we have worked as a team toward
the realization of a software system for a human-scale robot that, given only limited communication with its
human operators, can perform useful tasks in complex and unfamiliar environments—first in the simulation
environment of the Virtual Robotics Challenge (VRC) in May 2013 and later in the physical DRC Trials.
This paper describes the key ideas underlying our technical approach to the DRC, and the architecture
that we adopted as we moved from conception to implementation. We elucidate several key components of
our system—the human-robot interface, the perception, planning, and control modules, and the networking
infrastructure—to illustrate how our approach met the requirements of the DRC Trials in December 2013.
Finally, we look back on the previous two years both to give a sense of the experience of competing, and to
draw useful lessons for the final DRC competition and for the field.

There are several key ideas behind our approach. The first is that, since the system includes a human
operator in communication with the robot, the robot need not be fully autonomous. We chose to allocate
the traditional executive (high-level task planning) functions to the operator, along with the responsibility
to partition high-level plans into smaller sequences for autonomous execution by the robot. We aimed to
encompass sequences of varying complexity, from small motions, such as would be executed by a conventional
teleoperated robot, through primitive actions such as stepping, reaching, grasping and lifting, and finally to
sub-tasks such as walking, fetching and using tools.

Our second key idea is to frame all operation of the robot in terms of operator-perceived affordances, or
environmental elements that hold possibilities for action (Gibson, 1977). We adopted an interface metaphor
in which the operator first helps the robot perceive and interpret a task-salient affordance in its surroundings,
then commands the robot to act in terms of this conveyed affordance. For example, to turn a valve, the
operator first coarsely indicates the valve wheel in the currently available sensor data; the system responds
by fitting an adjustable valve wheel template to this data. Once the operator is satisfied that the system has
an actionable model of the valve wheel, s/he can command the robot to turn the valve. Templates can also
incorporate valuable information provided by the system designers well in advance, such as manipulation
stances or grasp locations likely to be successful. In this way our system factors some of the challenging and
expensive aspects of on-line motion planning into an off-line phase.

The third key idea is to combine optimization with human input. For perception, a human operator provides
the rough morphology, location, and attitude of each affordance, after which the system uses optimization
to fit parameters more precisely to sensor data. In footstep planning, the operator provides a goal and a
maximum number of footsteps, and an optimizer fills in suitable footsteps given the terrain estimated by
the perception system. In multi-contact planning, the human operator provides sequence points at which
contacts are made and broken, mitigating the combinatorial complexity of algorithmic planning.

Beginning in March 2012, when we first heard that a new DARPA Challenge was being mounted, we gathered
key people and system components. The lead PI (Teller) and co-lead (Tedrake) were joined by a perception
lead (Fallon), a planning and control lead (Kuindersma), and a manipulation lead (Karumanchi). We incor-
porated two key software modules from previous projects: LCM (Huang et al., 2010), a lightweight message-
passing infrastructure and tool set for visualizing and logging streaming sensor data, and Drake (Tedrake,
2014), a powerful MATLAB toolbox for planning, control, and analysis using nonlinear dynamical systems.
LCM was developed as part of MIT’s 2006-7 DARPA Urban Challenge (DUC) effort, and has since been
released as open-source and used for a wide variety of projects both within and outside of MIT. Drake was
initially developed by Tedrake and his research group to provide the planning and control infrastructure for
numerous legged robot and UAV projects; we have now released this code as open-source as well.

DARPA’s time-line for the Challenge was highly compressed. Each team first had to choose the track in
which to compete: Track A teams would develop both hardware and software, whereas Track B teams
would develop software only, and upon successful qualification in a simulation environment, would receive a
humanoid robot from DARPA. Excited by the opportunity to use a Boston Dynamics machine, we chose to
compete as a Track B team.

Although our team brought considerable relevant experience to the project, we had very little direct exposure
to humanoid robots. There were only 8 months between the kick-off meeting in October 2012—where we
received our first draft of the rules—and the Virtual Robotics Challenge in June 2013; we subsequently
received our Atlas robot on August 12, 2013, and had to compete again, this time with the real robot, only
four months later. In this brief period, we developed substantial components of our system from scratch
(including, for instance, an optimization-compatible kinematics and dynamics engine, and a complete user
interface) and integrated complex existing software. Many of us made considerable personal sacrifices for
the project, devoting countless hours because we believed it was an incredible and unique opportunity.

1.1 Prior Work

Depending on how one defines the scope of the DRC, prior work can be interpreted very broadly — spanning
all of humanoid, disaster response and emergency robotics research.

Tracked robots such as iRobot’s Packbot (Yamauchi, 2004) have been used to explore disaster situations,
including in the Fukushima Daiichi disaster (which motivated the DRC). Others such as Tohoku University’s
Quince have been paired with quad-rotors to demonstrate collaborative situational awareness (Michael et al.,
2012), but broadly speaking robotics have been unable to make a major contribution beyond passively

observing the scene.

Furthermore the possibility of robots operating entirely autonomously and providing comparable capability
to human-teleoperated systems seems remote indeed. Accepting these limitations, efforts have been made
to standardize testing of robotic capability and to quantify progress (Sheh et al., 2014), which has in turn
contributed to the definition of the DRC tasks. Additionally field reports have benchmarked the usage of
teleoperated robots after disasters such as the World Trade Center attack (Casper and Murphy, 2003) and
the Tohoku earthquake (Matsuno et al., 2014).

Separately, humanoid research has been on going for some decades (Kemp et al., 2008), As the DRC pro-
gresses participants have moved to build upon this research but also to provide an industrial manipulation
capability absent in the previous generation of humanoids. Publications by participants include (Alunni
et al., 2004) which described a system in which a human can remotely guide a Hubo robot to manipulate
a valve. (Dellin et al., 2014) analyses the performance of the CHIMP robot (CMU) at the DRC Trials in
a manner similar to our own analysis (see Section 7) illustrating task execution that requires considerable
time for fitting (or fixturing), planning and teleoperation — which varies between tasks. They also noted
that operation speed and success was correlated with operator training.

2 Overview of the Atlas Robot

Figure 1: The platform consisted of the Atlas humanoid robot (left, photo credit: Boston Dynamics) which
could be combined with a variety of hands or hooks via machined mounting plates. Right, clockwise: the
iRobot and Robotiq hands, a hook for climbing, a 15cm wrist extender and a pointer for pushing buttons.

Atlas is a full-scale, hydraulically-actuated humanoid robot manufactured by Boston Dynamics. The robot
stands approximately 188cm (6ft 2in) tall and has a mass of approximately 155kg (3411b) without hands
attached. It has 28 actuated degrees of freedom (DOFs): 6 in each leg and arm, 3 in the back, and 1 neck
joint. A tether attached to the robot supplies high-voltage 3-phase power for the on-board electric hydraulic
pump, distilled water for cooling, and a 10Gbps fiber-optic line to support communication between the robot
and field computer. Despite its considerable size, the robot is capable of moving quickly due to its ability to
produce large forces (up to several hundred N-m in the leg joints) at high bandwidth.

Several sensor signals are available for integration with perception and control algorithms. Joint position,
velocity, and force measurements are generated at 1000Hz on the robot computer and transmitted back to
the field computer at 333Hz. Joint positions are reported by linear variable differential transformers (LVDTS)
mounted on the actuators; velocities are computed through numerical differentiation of the position signals.
Joint forces are estimated using pressure sensors in the actuators. In addition to the LVDT sensors, digital

encoders mounted on the neck and arm joints give low-noise position and velocity measurements. A 6-axis
IMU mounted on the pelvis produces acceleration and rotation measurements used for state estimation. Two
6-axis load cells are mounted to the wrists, and arrays of four strain gauges, one in each foot, provide 3-axis
force-torque sensing.

Atlas has four primary behavior modes: balancing, stepping, walking, and user mode. The balancing mode
provides basic dynamic balance capabilities where the pelvis pose and upper body DOFs are under operator
control. The stepping behavior provides a basic walking capability that is driven by inputs specifying desired
step locations and leg swing trajectories. The walking behavior is a faster and more dynamic locomotion
mode, but because it is significantly less accurate and predictable than stepping, we did not use it in the
DRC Trials. Finally, user mode puts all joint-level control under the command of the operator.

The Multisense SL sensor head was manufactured by Carnegie Robotics and consists of a stereo camera
and a spindle-mounted Hokuyo UTM-30LX-EW planar LIDAR. T'wo Point Grey Blackfly cameras with 185-
degree fish-eye lenses were mounted on the upper torso for improved situational awareness. We also used a
microphone located on the head to detect acoustic events (in particular drilling sounds).

2.1 Hands and End Effectors

We used a variety of end effectors that mounted directly onto the robot’s wrist force sensors (Figure 1). The
rules of the competition allowed us to change end effectors between tasks, so long as the robot carried all
of its hands for all tasks. These included two types of actuated hands, the iRobot Dexter Hand and the
Robotiq 3-Finger Adaptive Gripper. While the iRobot hand provided useful tactile sensing in its fingers and
palm, the ruggedness of these sensors was unfortunately insufficient for our aggressive daily testing. We also
used inert hooks and dowels in tasks that required large contact forces such as ladder climbing.

2.2 Kinematic Reachability and Sensor Coverage

The robot’s arms have only six DOF's and its sensor head can pitch up and down but cannot yaw sideways.
The arm kinematics and limited sensor head field of view played a role in shaping the solutions we devised
to the manipulation problems faced in the DRC Trials. To obtain a rough idea of the robot’s manipulation
“sweet spot,” we sampled 155 right-arm configurations, and rendered the end effector workspace using iso-
contours in Figure 2. Here red regions have the highest reachability score (~75 distinct sampled orientations)
and blue the lowest (~5 or fewer distinct sampled orientations). In the left figure the horizontal field of view
of the right head camera is shown.

One significant practical effect of limited reachability and sensor coverage on task development was that most
object manipulation occurred outside the view of the high resolution head cameras. As a result, we were
forced to rely heavily upon the low-resolution images produced by the situational awareness cameras and
LIDAR. The relatively short length of the arms also made picking up objects on the ground while standing
nearly impossible. We therefore opted to use 15 cm wrist extenders for the debris task, in which a longer
reach was advantageous.

2.3 Kinematic calibration

Precise and accurate positioning of the end effector was a critical capability for many of the Trials tasks
involving manipulation. Combined with high-fidelity perception, accurate reaching reduced or eliminated
the need for manual adjustment of the end effector by the operator. To minimize forward kinematic error,
we performed detailed calibration of the upper body joints. The arm and neck joints are each outfitted with
two position sensors: a LVDT mounted on the actuator and a digital encoder on the linkage. Since the
LVDTs are noisier and subject to up to two degrees of backlash in the linkage, we chose to calibrate the

Figure 2: Visualization of the kinematic reachability of the robot from inferior (left), anterior (center), and
medial (right) perspectives. We uniformly sampled 15 angles in the feasible range of each of the 6 right arm
joints, divided the reachable workspace into 20 x 20 x 20 bins, and assigned each bin a score based on how
many distinct end effector orientations it contained.

encoders and use them for forward kinematic positioning.

The kinematic calibration procedure of the n upper body joints was straightforward: VICON markers were
placed on the upper torso of the robot and M markers on each of the end effectors. Data was collected
from N different representative poses of the upper body. In the spirit of (Khalil and Dombre, 2004), and
assuming that the initial calibration of the encoders was roughly correct, we then solved the unconstrained
minimization problem:

N

" = argmin _ [[é(q; +gc) — |, (1)
a€R™

where ¢ : R” — RM ig the Cartesian position of the end effector markers, relative to the robot torso, as
predicted by the forward kinematics, ¢; € R™ are the measured, pre-calibration joint angles, x; € R®M are
the VICON measured marker positions, and g. € R™ are the proposed encoder offsets.

The calibrated offset ¢* was then added to all encoder measurements to provide more accurate joint angle
estimation. This calibration procedure reduced forward kinematic error averaging approximately 0.5cm
(from more than 3cm originally), although error was dependent on the specific robot posture.

Despite calibration, uncertainty remained in the absolute encoder positions after the robot was powered off
and on. To account for this, the post-calibration positions of the encoders were measured and recorded at
known joint limits. Upon robot start-up, an automated routine moved the joints to these known positions
and updated the calibration data.

2.4 Perception calibration

Perception in the Trials primarily relied on (1) a pair of cameras in binocular stereo configuration mounted
on the head; (2) a laser range scanner mounted on a rotating spindle on the head; and (3) a pair of wide-FOV
cameras mounted on the chest. In order to place data from these sensors into a common reference frame for
fusion and operator situational awareness, it was necessary to determine accurate geometric relationships
among them.

The head stereo cameras and laser were factory calibrated, though we modified the rigid laser-to-spindle
and spindle-to-camera transformations slightly to achieve better scan-to-scan and scan-to-scene consistency.
This was achieved by collecting stereo depth maps and laser scans of a calibration target while rotating
the spindle through 360 degrees. Nonlinear least squares optimization via Levenberg-Marquardt algorithm

Figure 3: Head sensor calibration refinement. (a) Image of our calibration target acquired by the left
head camera. (b) Post-calibration rendering of left head camera image projected onto LIDAR point cloud,
demonstrating accurate alignment between laser and camera. (c¢) Side view of 360-degree LIDAR point cloud
sweep before spindle calibration; flat surfaces (ground, target planes) appear doubled due to slight spindle
misalignment. (d) Coherence of flat surfaces improves after spindle calibration.

determined the transformations that minimized laser point dispersion on the three mutually distinct surfaces
of the target (Figure 3).

We determined each chest camera’s intrinsic lens parameters (focal length, projection center, and fish-eye
distortion profile) by applying a variant of Hartley’s parameter-free radial calibration method (Hartley and
Kang, 2007) to images of a known planar pattern, which enabled very accurate rectification over the entire
field of view as well as synthetic planar projections that were more easily interpreted by the operator
(Figure 4). We determined each camera’s extrinsic rigid pose with respect to the robot’s torso by first
aligning it with the head, then inferring the camera-to-torso transformation via forward kinematics. The
algorithm discovered SIFT feature matches between the head and chest cameras’ overlapping fields of view,
and associated each matched feature with a laser return, thus producing a set of 3D-to-2D correspondences.
A PuP (resection) solver wrapped in a RANSAC outer loop then used these correspondences to find a robust

Figure 4: Fisheye lens rectification. (a) Raw image from left chest camera exhibits severe fish-eye distortion
and is difficult to interpret at the periphery. (b,c) After lens calibration, images can be rectified to produce
arbitrary virtual viewpoints with minimal distortion.

Figure 5: Chest camera alignment. (a) SIFT feature matches extracted between head image (top) and
left /right chest camera images (bottom) used to align the sensor frames. (b,c) LIDAR points pseudo-colored
by distance (top) and texture-mapped with chest camera images (bottom), demonstrating accurate alignment
between head and chest data.

solution for the pose of each chest camera (Figure 5).

3 Software System Overview

The system we developed for the DRC Trials consisted mainly of software created during the simulation
phase of the competition (Tedrake et al., 2014). Some components, such as the IK engine (Section 4.1) and
height map software (Section 3.2.3), transferred to the physical robot without modification, while some task-
specific planning interfaces, the model fitting interface (Section 5.1), and various controllers were developed
after the Atlas robot arrived.

Our multi-process software infrastructure involves modules communicating with one another in soft real-time
using Lightweight Communication and Marshalling (LCM) message passing (Huang et al., 2010). LCM is
implemented using UDP and supports a variety of language bindings, pairing well with our code base which
was a heterogeneous mixture of C, C++, Python, Java and MATLAB. Communication contracts between
processes were instantiated as LCM message definitions, which allowed independent development of modules.

3.1 System Layout

Our system architecture is illustrated in Figure 6 with its network layout defined by DARPA’s competition
rules. The robot’s on-board computation resources were reserved for Boston Dynamics’ proprietary software,
communicating over a 10 GB/s fiber-optic network with a series of field computers. This released teams
from current computational constraints under the assumption that these field computers will eventually be
transferred onto the robot in a future platform.

The human operators were separated physically from the robot (including the field computers) and had
limited communication with it. Typically, two team members (one primary operator and one perception
operator) interacted with the robot using standard Linux workstations that comprised the Operator Control
Unit (OCU). Additional machines could be easily connected to the LCM network as required to monitor
performance or run motion planners. LCM communication was unrestricted within the OCU and robot
sub-networks; by contrast, data transmitted between the networks was carefully managed (Section 3.3).

Components
(via drivers and fiber)

Multisense Head
and Chest Cameras

Robot Hands

Atlas Robot

Raw Sensor Data
L v

Joint Position and Velocity,
Pelvis Pose Estimates (333Hz) |

oint Commands (333Hz
1

)

Image Snapshot
& Compression

Map Collator
and Server

State

> Controller

Synchronization

l

Compressed Range and Camera Imagery (On Request)"

Collated Robot State (4Hz)

Committed Plans

Field Computer ‘

MIT Network Shaper

Restricted Link

A4

_

Operator Control Unit ‘

MIT Network Shaper

) |
Committed p|an5l— Robot State and Perception Data—l

Manipulation PIanner|
Footstep Planner Planner _ |
Constraints
Task Planners __Candidate
Plans

Motion Planning
User Interface

Model Fitting

Affordance Server

User Interface

Figure 6: The major software components of our system. A series of processes running on the robot collated
kinematic and perception sensor data, and responded to operator requests for LIDAR and imagery (green).
The operators interpreted this data (pink) and formulated motion plans (purple), which were executed by
the robot controller (purple). Data was transmitted across DARPA’s restricted link by our network shaper

software (ochre).

One design feature of our system was that, because all message channels on the OCU and field computer
were consistent, we could collapse the system back to a single machine by removing the network separation
between the OCU and field computer. Therefore, during typical lab testing developers would operate the
robot solely from the field computer with high-frequency, low-latency communication which allowed us to
directly compare envisaged and actual execution of plans.

As the competition approached we limited ourselves to always using our network shaping software so as to
transmit less data between the robot and the OCU and to add realistic latency, but by design operators
observed no major difference except for having decreased resolution point clouds, reduced quality imagery
and lower frequency robot state information.

3.2 Major Components

In this section we describe the major components of our system and their interactions at a high level.
Subsequent sections treat these components individually in detail.

3.2.1 Atlas Interface

Boston Dynamics provided each competing team with a minimal software interface to the core Atlas robot
(colored blue in Figure 6), which included the ability to command the robot at a behavioral level (to
dynamically walk, statically step or balance) as well as at a low level (to control all 28 actuators).

Messages from the on-board robot computer arrived at 333Hz over a fiber-optic Ethernet at a typical band-
width of 1.1MB/sec, providing data on the progress of these high-level commands as well as lower-level
sensor and system readings. Upon receipt of this data, our system combined (green) the robot’s pelvis pose
and velocity estimate with joint sensor data from each component, incorporating calibrated upper body joint
encoder data (Section 2.3) with hand and head joint angles. This represented our core robot state, which
was a primary input to all other system components.

3.2.2 Sensors

The stereo cameras on the sensor head (blue) provided uncompressed color images and disparity maps at 30
Hz at a resolution of 1024x512 (or about 13 pixels per degree) at a maximum data rate of about 100MB/sec.
Two situational awareness cameras, located on the upper torso, provided a hemispherical view of the scene
at much lower resolution (1280x1024 or about 4 pixels per degree). By comparison the spinning Hokuyo
sensor provided 1081 range returns per scan at 40 scans per second for a total of 340kB/sec. Data streams
from all devices were accessed via the fiber-optic ethernet, mildly compressed, and retransmitted internally
to our robot-side LCM network. The total sustained data rate within the robot-side LCM network was
about 5MB/sec from about 4,000 individual messages per second.

3.2.3 Perception Data Server

The Perception Data Server (PDS) collected, processed, and disseminated raw sensor feeds from the robot’s
on-board head camera, chest cameras, and laser scanner. The server maintained a time-tagged history of
recent data, including 3D LIDAR point clouds, minimally compressed color images, and stereo disparity
maps, which could then be requested by the operator or by other system components for analysis and
visualization. Broadly, two types of views—3D snapshots and images—were supported.

Downlink bandwidth limitations necessitated trade-offs between data size and fidelity; the PDS was there-
fore designed to support a number of different representations and compression strategies that could be
customized to suit particular tasks. Due to unknown network reliability—in particular, the possibility of

Product Resolution (pixels) Compression Size (bytes)
low-quality head image | 256x136 (4x downsample) jpeg 50% qual 4,900
high-quality head image | 512x272 (2x downsample) jpeg 50% qual 16,200

low-quality chest image | 256x320 (4x downsample) jpeg 50% qual 7,600
foveated image chip <200x200 (no downsample) | jpeg 70% qual 4,700
workspace range map 200x200 (1-2 cm spacing) 8-bit quant, zlib | 8,300
terrain height map 200x133 (3 cm spacing) 8-bit quant, zlib | 8,600

Table 1: Compression strategies for the most frequently used data products. Typical message sizes from the
competition (in bytes) are reported at right.

§

by

R

3
o

Figure 7: Sample composite views of raw laser range data. From left to right: a height map of uneven terrain
acquired during the Walking task, and its decoded 3D point cloud representation; a range map and decoded
point cloud of the workspace in front of the robot acquired during the Debris task.

dropped messages—we chose to adopt a stateless paradigm in which each unit of data sent from the robot to
the operator was independent, so that loss of a particular message would be quickly ameliorated by subse-
quent successful transmission. Although this design choice precluded the use of temporal compression (e.g.,
H.264 video encoding) and sometimes resulted in transmission of redundant information, it proved to be
quite robust and simple to implement, and provided low-latency situational awareness to the operator. A
summary of the most commonly requested products is provided in Table 1.

The most recent laser range data was accumulated within a sliding temporal window of roughly 10 seconds
(and typical used only when stationary due to state estimation drift). However, rather than sending raw
laser returns or point clouds to the operator, the PDS consolidated a subset of scans into a single customized
“view” that reduced redundancy, especially along the spindle rotation axis where point density was very high.
View specification comprised a number of parameters, including spatiotemporal volume (in the form of time
range and bounding half-planes), format (range image, height map, re-sampled point cloud, or octree), data
source (raw LIDAR, filtered LIDAR, or stereo disparity), viewpoint, and resolution. Each view also carried
an associated spatial transformation describing the geometric relationship between its data and the world
coordinate system. Once formed, the view was encoded for transmission at the specified message frequency
via tunable spatial quantization and lossless zlib compression. Figure 7 depicts typical height and range
maps produced by the server.

Raw color images from the head and chest cameras were also cached and transmitted upon request. The
PDS could adjust spatial downsampling, JPEG image quality, and message frequency to accommodate link
constraints; it could also send an accompanying high-resolution, low-compression image chip covering a small
operator-specified region of interest, which was reassembled at the operator station to form a foveated image
without consuming substantial additional bandwidth (Figure 13).

Field Computer Subsystems

LCM UDP Multicast ¢

Goby2
DCCL
MIT Network Shaper MAC
UDPDriver
uoe_§ v v v
1
5 Local Tunnel (;CZJ\;J:'::/ VPN & Cloudsim “Mini-Maxwell”
k- (tc netem) P “Router” Network
g netem) emulator
2 Testing (single Testing (multi-
& computer) computer) VRC Contest DRC 2013 Trials
uop§ v v v
‘ MIT Network Shaper ‘ Goby2 | ’

LCM UDP Multicast i

Operator Control Unit Subsystems

Figure 8: Detailed view of the networking components of the MIT DRC software system (full system in
Fig. 6). To simulate network degradations that might occur between operators and robot in a disaster zone,
various tools were used to artificially restrict throughput and increase latency. The IP tunnels shown on the
left were developed by our team to perform full robot simulations before the contest tools were completed.
To transfer data efficiently between the OCU and the robot, compression (source encoding) and queuing was
performed by the network shaper. Packets were transmitted using UDP to avoid the overhead of TCP.

3.3 Networking

Communication between the OCU and the robot was highly restricted in the DRC Trials, in order to simulate
the effects of a real network in a disaster zone. To add some time variance to the channel, two bands were
created by the contest designers representing a relatively high quality link (1Mbps throughput and 50ms
one-way latency) and a more degraded link (100Kbps throughput and 500ms one-way latency). These bands
were used in the competition in alternation, with DARPA swapping the band in use for the other band once
per minute.

To address the throughput restrictions, we developed a tool called the network shaper that used source
encoding, decimation, and priority queuing of messages destined to travel between the OCU and the robot.
This tool relied on the Goby2 communications library, which was originally developed for very low-rate
underwater acoustic data links (where average throughput is on the order of 100 bits per second), and was
thus suitable for extension to this somewhat higher data-rate regime. Goby?2 includes the Dynamic Compact
Control Language (DCCL) which is an interface description language (IDL) coupled with a set of extensible
source encoders for creating very small messages by taking into account the precise bounds of the data values
to be transmitted in a given message’s fields. Goby?2 is discussed in detail in another paper submitted to this
special issue.! The modest amount of added latency was ameliorated by the operator developing each plan
locally and transmitting it to the robot, which executed the plan autonomously as described in Section 4.

Throughput and latency limits were implemented using a separate computer (the “Mini-Maxwell” developed
by InterWorking Labs) with a network bridge running Linux and the network emulator (“netem”) traffic
queuing discipline (“qdisc”) which can be manipulated (in testing) with a traffic control (“t¢”) tool. The
particular implementation used for the competition incorporated large buffers that held 10 seconds of data
after the throughput limit was reached. Since this buffer length was 1-2 orders of magnitude greater than
the latency introduced by the under-capacity link, timely operator response required ensuring that the

1We will add the appropriate citation if both papers are accepted.

throughput limit was never reached. Since the buffers were so large, it was not feasible to automatically
detect available throughput by measuring packet loss, as the discovery time would be on the order of the
network band alternation time. Thus, the network shaper autonomously detected the current band in use
by measuring the latency of every packet and rate-limited all outgoing packets to avoid exceeding the Mini-
Maxwell’s buffers.

This approach was effective until the latency/bandwidth settings were accidentally switched by the contest
operators, such that the 1IMbps throughput regime was paired with 500ms latency setting and the 100Kbps
throughput paired with 50ms latency. During the 100Kbps band, data would fill the buffers of the Mini-
Maxwell, leading to ten-second latencies at the OCU. To compensate during these periods (we were not aware
of this inadvertent switch until the run began), the operator was able to use the data request functionality
in our interface to manually throttle downlink bandwidth and avoid saturating the buffers. This experience
stresses the importance of properly designing the underlying network link between the OCU and robot, and
has led us to believe that small buffers would be preferable for avoiding artificially high latencies and for
rapid automatic detection of network throughput. While the settings of the Mini-Maxwell were outside the
control of our team for the competition, a real disaster-zone network could easily be designed to have modest
buffers, as unlike physical effects such as latency and packet loss, buffering is an intentionally designed aspect
of a network.

Figure 8 shows a diagram of the system components related to networking. For testing purposes, we developed
our own restricted network tool (also based on “netem” over a layer 3 IP tunnel) that could allow single or
multiple machine simulations of the entire operator/robot system.

3.4 System Management

In the VRC we utilized two robot-side computers (focused on control and perception respectively) and up to
three base-side Uls, while in the DRC Trials our control and perception subsystems ran on a single robot-side
computer.

To manage this distributed computing architecture we utilized another tool developed during the DUC called
procman (Leonard et al., 2008). Via a simple user interface, called procman sheriff, operators could launch
our system on each of the host machines (called deputies) with a single mouse click, monitor memory usage
and process behavior, and manage computation load. Procman also allowed us to easily keep track of the
robot model configurations we used in different tasks.

Because of the restricted communication channel, we modified procman to ensure that no recurring band-
width usage occurred: a summary of the system status was delivered only upon a detected change, rather
than continuously, and process names were hashed rather than being sent in plain text.

4 Motion Planning

Our planning infrastructure enabled us to pose and solve a wide variety of motion planning problems. The
two key components of our approach were an efficient, optimization-based inverse kinematics (IK) engine
and an automated footstep planner. The former allowed us to describe the requirements for a given motion
in terms of a library of kinematic constraints. Our IK engine translated these constraints into a nonlinear
program that was then solved to yield a feasible motion plan. The footstep planner converted user-specified
navigation goals into a sequence of footsteps that respected constraints on the relative placement of successive
footsteps. This section describes the capabilities of these planners, which provided the language into which
our user interface translated the user’s intent.

4.1 Efficient inverse kinematics engine

Our specification for a kinematic motion planner required that it be efficient, i.e. capable of producing feasible
whole-body plans for Atlas in much less than a second, and expressive, i.e. capable of reasoning about a variety
of constraints and goals. Although efficient Jacobian-based algorithms for computing local IK solutions exist
(e.g., (Buss, 2004)), they cannot easily incorporate arbitrary objectives and constraints. Therefore, we cast
IK as a nonlinear optimization problem that we solved locally using an efficient implementation of sequential
quadratic programming (SQP). Results generated by the IK engine were of one of two types: 1) a single
robot configuration, or 2) a smooth time-indexed trajectory of configurations.

Single-shot IK: For a single configuration problem, the objective was to minimize the weighted Ly distance
from a nominal configuration,

arg min (qm,m — q)TW(Qnom, - q)a
qe]Rn
subject to
filg) <bs, i=1,...,m,

where ¢pom € R™ is a nominal configuration of the robot in generalized coordinates (for Atlas, n = 34), and
filg) : R - R, i =1,...,m is a set of kinematic constraint functions. This type of optimization can be
used to, e.g., find a configuration for reaching to some target position while remaining as close as possible
to the current standing posture.

Trajectory optimization: For many problems of interest, finding a single configuration is not sufficient.
Rather we would like the robot to achieve a complete motion that is smooth and respects some set of (possibly
time-varying) constraints. To generate configuration trajectories in this way, we formulated an optimization
problem over a finite set of configurations, or knot points, interpolated with a cubic spline. The trajectory
optimization problem had the form

k

argmin Y (Gnom.j — 3)" W (@nom.; — @) + 4 Wods + @) Wadj,

qi,--qk j=1

subject to
Fildns o a) b, i=1,....m,

where additional costs associated with the generalized accelerations and velocities at each knot point were
added to promote smooth trajectories.

The API to the IK solver allowed the user to specify a variety of constraints to flexibly generate whole-body
configurations and trajectories. The supported constraint types included:

e joint limits
e pose of end effector in world/robot frame (bilateral and unilateral)

e cone (gaze) constraints of end effector in world/robot frame

distance between two coordinate frames

e center of mass position and quasi-static constraints

e linear configuration equalities (e.g., left/right symmetry)

Here “end effector” should be interpreted to be any frame attached to a rigid body. For trajectory optimiza-
tion, it was also possible to specify time windows during which subsets of constraints were active.

IK problems were solved using an efficient SQP implementation that exploits structure shared between most
problem instances. Due to the tree-structure of the robot’s kinematics, the constraint gradients are often
sparse. For example, a constraint function on foot pose is unaffected by changes in the position of the torso
DOFs. Using SNOPT (Gill et al., 2002), we were able to solve single-shot IK problems in approximately
10ms and find smooth motion trajectories with 5 knot points in 0.1s to 0.2s. As discussed in Section 7.1,
this was essential to enable on-line planning of entire motions.

During the competition we took advantage of the presence of the user by not automatically detecting collisions
or planning around obstacles. Also on occasion, the solver was not able to find feasible plans, for example
when commanded to reach to unreachable locations. When a plan which would result in collision or was
unable to reach its goal was proposed, the user was then required to make adjustments to the constraints or
to plan around the obstacle and resubmit the request to the planner. (In Section 8.3 we discuss our future
plans to incorporate obstacle avoidance within our planning optimization.)

Figure 9: Relaxation of reaching plans to the affordance (blue) by the robot (grey). Left: a pre-grasp
reaching goal (yellow) just reachable (red) after automatic relaxation in position and orientation (by 2 cm
and 3 degrees respectively in this case). Right: if the operator was unhappy with the relaxation, the reaching
goal could be manually repositioned until precisely reachable. Here the planner is simultaneously solving for
the 6 joints of the arm and the 3 back joints.

Optionally, the planner could successively relax constraints, such as the end effector pose, until a feasible
plan was found. In this case, the feasible plan would be returned to the user along with information about
the degree of relaxation. An example of a relaxed plan is illustrated in Figure 9. It was common for our
operators to relax reaching plans in the debris moving task. With many of the pieces placed below the
robot’s knees, there where many cases where an ideal placement of the robot’s hand flat against a debris
piece was not possible forcing the execution of a sub-optimal grasp.

4.2 Planner Classes

To promote faster and more predictable interaction between the operator and the IK engine, we developed
several planning classes that employed canonical sets of constraints and objective functions. This allowed
the operator to succinctly specify inputs to the planner through the user interface (Section 5) rather than
having to completely construct planning problems before each action.

The manipulation planner responded to end effector goals generated by the operator. The input could be
of the form “reach to this hand pose,” which was converted to a position and orientation constraint on
the active end effector at the final time. In this case, the manipulation planner returned a time-indexed
joint-angle trajectory from the robot’s current posture to one that satisfied those constraints. The operator
could specify the behavior of the rest of the body during the reach by selecting from two planner modes:

one that kept all other end effector poses fixed, and one that allowed whole-body motion.

It was also possible to input a trajectory of end effector goals to generate a manipulation plan. For example,
as illustrated in Section 5.2.2, the operator could request a valve turning plan by simply rotating a valve
affordance with a grasped hand attached, hence defining a desired end effector trajectory.

The end-pose planner responded to operator requests for a feasible configuration from which to perform a
manipulation. Given a time-indexed set of end effector goals, the end-pose planner used the IK engine to
simultaneously search for a smooth manipulation trajectory and a feasible constant standing posture from
which the manipulation could be executed. This posture could then be used in turn to generate appropriate
walking goals so that desired manipulation could be carried out after the robot finished walking to the object
of interest.

The whole-body planner responded to inputs containing desired footstep locations, a set of end effectors to
keep fixed, and high-level motion parameters such as desired foot clearance over the terrain map or bounds
on pelvis sway. This planner generated smooth, whole-body configuration trajectories that satisfied the foot
and end effector pose constraints in addition to quasi-static constraints that kept the robot’s center of mass
ground projection within the support polygon of the feet. This planner was used in the DRC Trials to climb
the ladder.

Finally, the posture planner was the simplest planner. Its input was a desired joint configuration for the
robot, for which it would return a smooth trajectory from the current configuration to the goal. This planner
was useful for moving to a pre-scripted joint configuration that, e.g., retracted the right arm close to the
body to enable subsequent movement through a tight space.

4.3 Footstep Planning

Somewhat separate from the IK-based planners, the footstep planner was used to determine automatic
footstep placement given a high-level goal from the human operator, as well as detailed input from the
user about the specific location of a particular footstep if required. Specifically, given the robot’s current
configuration and a desired goal pose expressed as a position and orientation on the surface of the perceived
terrain, the footstep planner computed a sequence of kinematically-reachable and safe step locations to bring
the robot’s final standing position as close as possible to the goal, while allowing easy operator adjustment
of the plan. The planner minimized the total number of steps required to reach the goal by exhaustively
searching over all numbers of steps between a user-specified minimum and maximum, typically one and ten
respectively, and choosing the plan with the fewest steps which still reached the goal (or the plan which came
the closest to the goal if none could reach it). Each search for a plan with a fixed number of steps required
only about 10 ms, so exhaustive enumeration over a variety of numbers of steps was not prohibitive.

Kinematic reachability of a foots<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>