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Abstract—We present a method to learn compositional pre-
dictive models from image observations based on implicit object
encoders, Neural Radiance Fields (NeRFs), and graph neural
networks. NeRFs have become a popular choice for representing
scenes due to their strong 3D prior. However, most NeRF
approaches are trained on a single scene, representing the
whole scene with a global model, making generalization to novel
scenes, containing different numbers of objects, challenging.
Instead, we present a compositional, object-centric auto-encoder
framework that maps multiple views of the scene to a set of latent
vectors representing each object separately. The latent vectors
parameterize individual NeRF models from which the scene can
be reconstructed and rendered from novel viewpoints. We train
a graph neural network dynamics model in the latent space to
achieve compositionality for dynamics prediction. A key feature
of our approach is that the learned 3D information of the scene
through the NeRF model enables us to incorporate structural
priors in learning the dynamics models, making long-term pre-
dictions more stable. For planning, we utilize RRTs in the learned
latent space, where we can exploit our model and the implicit
object encoder to make sampling the latent space informative
and more efficient. In the experiments, we show that the model
outperforms several baselines on a pushing task containing many
objects. Video: https://dannydriess.github.io/compnerfdyn/

I. INTRODUCTION

Learning models from observations that predict the future
state of a scene is a fundamental concept for enabling an agent
to reason about necessary interventions with the environment
to achieve a desired goal. A major challenge in learning such
predictive models is that raw observations of our world such
as image sequences are usually high-dimensional. Therefore,
a common approach is to map the observation space into a
lower-dimensional latent vector representation of the scene via
an auto-encoder structure. Based on those latent vectors, a
dynamics model can be learned that predicts the next latent
state, conditioned on potential actions an agent takes. An
intuition behind this approach is that if a latent vector is
sufficient to reconstruct the observations of the scene, then
it contains enough information about the objects in the scene
to be able to learn a dynamics model on top of it as well.

While an auto-encoder structure combined with a latent
dynamics model is a general approach that is applicable for a
large variety of tasks, it raises multiple challenges.

On the one hand, scenes in our world are composed of mul-
tiple objects. Obtaining a dataset that contains combinatorics
of different numbers of objects is often prohibitive. Therefore,
a latent vector with a fixed size has difficulties in generalizing

(a) Initial scene with goal (b) Final achieved execution

(c) Initial scene with goal (d) Final achieved execution

Fig. 1: Planning scenario with learned model. The goal is to
move the blue and yellow boxes in their respective shaded
areas. (a) and (c) are the initial observations, (b) and (d) show
the achieved goal at the end of the planning/execution loop.

over different and changing numbers of objects in the scene
than it has been trained on, both due to the limited capacity
of a fixed-size vector and lack of diversity in the training
distribution. This limits the generalization capabilities of such
approaches.

On the other hand, image observations are 2D, but the
3D structure of our world is essential for many tasks to
reason about the underlying physical processes governing the
dynamics the model should predict. Dealing with occlusions,
object permanence, and ambiguities in 2D views is challenging
for 2D image representations.

Moreover, many forward predictive models in visual ob-
servation spaces suffer from instabilities in making long-term
predictions, often manifested in blurry image predictions [15].

One way to address these issues is to incorporate inductive
biases and structural priors in the model architectures. For
instance, recently, Li et al. [38] propose to utilize learned
Neural Radiance Fields (NeRFs) [42] as a decoder within an
auto-encoder model for learning dynamics models in a latent
space. NeRFs exhibit strong structural priors about the 3D
world, leading to increased performance over 2D baselines.
However, the approach of [38] represents the whole scene as
a single latent vector, which we found insufficient for scenes
composed of multiple and changing numbers of objects, both
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in terms of the representation and the dynamics model.
In the present work, we aim to overcome these challenges by

incorporating inductive biases on the compositional nature of
our world and its underlying 3D structure both in learning the
latent representations themselves and the dynamics model. We
propose a compositional, object-centric auto-encoder frame-
work whose latent vectors are used to learn a compositional
forward dynamics model in that learned latent space based on
graph neural networks (GNN).

More specifically, we learn an implicit object encoder that
maps image observations of the scene from multiple views to a
set of latent vectors that each represent an object in the scene
separately. These latent object encodings then parameterize
individual NeRFs for each object. We apply compositional
rendering techniques to synthesize images from multiple view-
points, which forces the object-centric NeRF functions and the
corresponding latent vectors to learn precise 3D configurations
of the constituting objects.

This 3D inductive bias both in the encoder and the com-
positional NeRF decoder enables us to incorporate priors
from the models’ own predictions about objects interactions
into learning the GNN dynamics model, making long-term
dynamics predictions more stable.

In our evaluations, we focus on the rigid body case and con-
sider a pushing scenario for scenes containing many objects.
We show through comparisons that non-compositional auto-
encoder frameworks and non-compositional dynamics models
struggle with this task, while our framework generalizes well
over different numbers of objects than during training and is
capable of generating sharp and stable long-term predictions.
Relative to more traditional multibody system identification
[68], these models learn the geometry of unknown objects
in addition to (implicitly) learning the inertial and frictional
parameters.

Utilizing the structure of the model, we can generate
informative samples for planning with a Rapidly Exploring
Random Tree (RRT) in the latent space, enabling us to solve
a challenging box sorting task from visual input.
To summarize, our main contributions are

• A compositional scene encoding framework that uses
implicit object encoders and NeRF decoders for each
object, forcing the view-invariant latent representation
to learn about the 3D structure of the problem in a
composable way.

• A factored dynamics model in the latent space as a graph
neural network (GNN), exploiting the compositional na-
ture of the scene representation and an adaptive adjacency
matrix estimated from the model itself to yield stable
long-term predictions.

• An RRT-based method to plan sequential object manipu-
lations in the latent space, which exploits the 3D implicit
object encodings and 3D predictions of the model.

We demonstrate the performance of the approach in terms
of image reconstruction error, dynamics prediction error, and
planning, generalizing strongly over different numbers of ob-

jects than during training. Refer to https://dannydriess.github.
io/compnerfdyn/ for video results.

The rest of the paper is organized as follows. After review-
ing related work in Sec. II, we briefly describe NeRFs for the
purposes of this work in Sec. III. Then Sec. IV gives details
about the encoder/decoder model and Sec. V is devoted to
the graph neural network dynamic model in the latent space.
Finally, in Sec. VI, we discuss how we can utilize RRTs in
the latent space for planning.

II. RELATED WORK

A. Learning Dynamics Models for Compositional Systems

Graph neural networks (GNNs) have shown great promise
in introducing relational inductive bias [4] and modeling the
dynamics of compositional systems consisting of interactions
between multiple objects [3, 8, 35, 57, 19, 63]. Follow-up
works extend the graph-structured neural dynamics models to
large-scale dynamical systems represented using particles and
meshes [43, 34, 36, 72, 58, 52]. People have also tried to model
compositional systems directly from visual observation by first
detecting objects using a perception module and then modeling
their interactions for future prediction [81, 27, 75, 82, 55,
71, 86]. Our method differs from prior work by learning
compositional scene representations grounded in 3D space
directly from visual observations without any assumptions
on object labels. Our novel combination of implicit object
encoders and graph-based neural dynamics models reflects the
structure of the underlying scene, which endows our agent
with excellent generalization ability in handling complicated
compositional dynamic environments.

B. NeRF for Compositional and Dynamic Scenes

The recent advances on neural implicit representations (or
neural fields [78]) have demonstrated widespread success
in applications like 3D shape and image synthesis [41, 51,
48, 64]. Notably, Neural Radiance Fields (NeRF) extend on
previous advances and show impressive results on novel-view
synthesis [42]. Initial NeRF approaches were trained on a
single scene without generalization. Prior works have since
proposed to modify NeRF and other neural scene represen-
tations to make them applicable to compositional environ-
ments [20, 65, 47, 84, 16], but there they typically focus on
applications like object discovery and 3D scene editing without
considering the dynamics of object interactions. People have
also extended NeRF to enable view synthesis from a sparse
set of views [83], as well as modeling dynamic scenes by
learning implicitly represented flow fields or time-variant la-
tent codes [54, 49, 13, 79, 50, 46, 70, 39, 77, 47, 33]. However,
prior works for dynamic environments typically interpolate
over a single time sequence and would not be able to handle
scenes of different initial configurations or different input
action sequences, limiting their use in downstream planning
and control tasks. Li et al. [38] addressed this issue by
combining NeRF with an auto-encoding framework and mod-
eling the dynamics over the latent space. Yet they employed
a one-dimensional latent vector as the scene representation,
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which we will show would fail at modeling compositional
systems. In contrast, our method considers a graph-based scene
representation to capture the structure of the underlying scene
and achieves a significantly better generalization performance
than [38].

C. Model-Based Planning in Robotic Manipulation

Model-based planning algorithms typically build a dynamics
model of the environment and then use the model to plan the
agent’s behavior in order to minimize some task objectives. We
can roughly categorize the methods by whether the model is
constructed from first principles (i.e., physical rules) or learned
from data (i.e., data-driven models). Physics-based models
typically require complete information about the objects’ ge-
ometry and the system’s state [26, 85, 9, 69, 24], which limits
their applicability in robotic manipulation tasks involving
unknown object models and partially observable states. Data-
driven methods, on the other hand, learn a dynamics model
directly from the robot’s interaction with the environment
and have shown impressive results in manipulation tasks
ranging from closed-loop planar pushing [5] to complicated
dexterous manipulation [44]. Many of the data-driven plan-
ning frameworks learn dynamics models directly from visual
observation based on representations defined at different levels
of abstraction, such as pixel space [17, 14, 59, 15, 67, 10],
3D volumetric space [80], signed-distance fields [12, 66, 76],
keypoint space [32, 40, 37], and low-dimensional latent
space [74, 23, 22, 60]. Approaches commonly employ an
image reconstruction loss [23, 22], an self-supervised time
contrastive loss [62], or jointly train a forward and an inverse
dynamics model [2] to make sure that the representation
encodes meaningful information about the environment. Our
method takes a step forward by learning graph-based latent
representations from visual observations. The learned model
accurately encodes the underlying 3D contents, allowing our
learned model to achieve precise manipulation of composi-
tional environments and generalize outside the training distri-
bution, i.e. to scenes with more (and less) objects than during
training.

D. Implicit Models in Robotics

Implicit models in robotics in a broader sense have been
explored, for example, for grasping [6, 30, 73, 28]. Analytic
signed distance functions are used in [25, 53, 12] for trajectory
optimization. In [1], the 3D reconstructions of a scene via a
learned NeRF model enable to plan collision free trajectories
through the scene.

Our previous work proposed to learn dynamics models
[12] and more general constraints [12, 21] for manipulation
planning with objects being represented as signed-distance
functions or other learned implicit functions. One assumption
in [12] and [21] is that signed-distance values are available
for supervision during training. The present work, in contrast,
directly operates on RGB images without explicit 3D shape
supervision. Therefore, our proposed approach can represent

color and not only shape, which allows us to solve tasks where
the color of objects is relevant.

III. BACKGROUND ON NEURAL RADIANCE FIELDS

This section summarizes Neural Radiance Fields (NeRFs)
for the purposes of this work. For details, we refer to the
original publication [42]. The general idea of NeRF is to learn
a function f that predicts, at a 3D world coordinate x ∈ R3,
the (emitted) RGB color value c(x) ∈ R3 and volume density
σ(x) ∈ R≥0.

Based on the learned (σ(·), c(·)) = f(·), an image from
an arbitrary view and camera configuration can be rendered
by determining the color C(r) ∈ R3 of each pixel along its
corresponding camera ray r(α) = r(0) + αd through

C(r) =

∫ αf

αn

Tf (r, α)σ(r(α))c(r(α)) dα (1)

with

Tf (r, α) = exp

(
−
∫ α

αn

σ(r(s)) ds

)
. (2)

Here, r(0) ∈ R3 is the camera origin, d ∈ R3 the pixel
dependent direction and αn, αf ∈ R the near and far bounds
within an object is expected, respectively. The function f
is a fully-connected neural network and the integrals in (1)
and (2) are estimated by a simple quadrature rule, see [42],
which make the whole rendering process differentiable and
hence trainable with stochastic gradient descent. In most
NeRF formulations, f takes a view direction as an additional
input, which is beneficial to reconstruct reflections and other
lighting effects. For the scenario we consider in this work, we
found that incorporating view directions was not necessary
and therefore omitted them. Including a view direction is a
straightforward extension to what we present here.

IV. ENCODING SCENES WITH COMPOSITIONAL
IMAGE-CONDITIONED NEURAL RADIANCE FIELDS

A. Overview

Assume that a scene is observed by RGB images Ii ∈
R3×hI×wI , i = 1, . . . , V from V many camera views and that
the scene contains m objects j = 1, . . . ,m. We further assume
to have access to the camera projection matrices Ki ∈ R3×4

for each view and binary masks M i
j ∈ {0, 1}hI×wI of each

object j in view i.
Given those posed images and masks, the goal is to learn an

encoder Ω that fuses the information of the objects observed
from the multiple views into a set of latent vectors z1:m by
querying Ω on the individual masks M1:V

j such that

zj = Ω
(
I1:V ,K1:V ,M1:V

j

)
∈ Rk (3)

represents each object j separately in order for a learned
decoder D to be able to reconstruct an image

I = D(z1:m,K) (4)
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Fig. 2: Overview of the image-conditioned compositional NeRF autoencoder structure. Each object j = 1, . . . ,m is observed
in terms of RGB images Ii of the scene from multiple views i = 1, . . . , V with corresponding object masks M i

j and camera
matrices Ki. These inputs are encoded with the implicit object encoder Ω for each object separately, yielding latent vectors
zj for each object j (Sec. IV-B and IV-B). The weights of the object encoder Ω are shared between all objects. Further, the
workspace set X where the implicit object feature functions yj(·) within the encoder Ω are queried are the same for all objects.
Refer to Sec. IV-C for the latter and Fig. 3, which shows the details of Ω. The set of latent vectors of all objects z1:m is
rendered into an image for an arbitrary view specified by K via compositional NeRF rendering (Sec. IV-D).

for arbitrary views specified by the camera matrix K from
the set of latent object representations z1:m. See Fig. 2 for a
visualization of this autoencoder structure.

Both the object encoder and the decoder will be realized as
implicit functions, which we will describe in more detail in
the following.

B. Representing Objects as Image-Conditioned Implicit Func-
tions

Instead of learning Ω defined in (3) as a direct mapping from
images, camera matrices and masks to the latent vectors, we
first encode each object in the scene as a feature-valued func-
tion over 3D space, conditioned on the image observations.
This allows us to incorporate multiple views of the object
naturally, as well as to exploit the known behavior under 3D
affine transformations, as we will discuss later in Sec. IV-F
and V-C.

All object encodings are based on the same feature encoder

E(Ii,Ki(x)) ∈ Rno (5)

that outputs an no-dimensional feature vector from the image
Ii of view i at a 3D world coordinate x ∈ R3 (see Fig. 3b).
This is realized by first projecting x into camera coordinates

Ki(x) =
(
ui(x), vi(x), di(x)

)T ∈ R3, (6)

where ui(x), vi(x) are pixel coordinates in the image plane
and di(x) ∈ R is the depth of x from the camera origin.
Therefore, E is a function of the camera coordinates only and
hence not a function of absolute world coordinates directly.

Using bilinear interpolation, the encoder E(Ii,Ki(x)) first de-
termines the RGB values of Ii at (ui(x), vi(x)) which are then
passed through a dense multi-layer perceptron neural network
(MLP). Parallel to this, a dense MLP encoding of Ki(x) is
computed. The concatenated outputs of both MLPs define the
encoding feature vector E(Ii,Ki(x)). Similar architectures
of computing such pixel features from world coordinates have
been proposed, e.g. in [83, 56, 21] for the single object case.

Intuitively, E(Ii,Ki(x)) is a feature vector computed from
what can be seen of the world at x in the image Ii from
viewpoint i, taking into account its location relative to the
camera origin of the view i, which is important not only to
enable the model to reason about the 3D geometry, but also
to enable us to obtain a functional representation of a specific
object j. Namely, we define the feature function for object j
by summing over the individual views i,

yj(x) =
1

p(x)

∑

i: Ki(x)∈Mi
j

E(Ii,Ki(x)) ∈ Rno (7)

with

p(x) =
∑

i: Ki(x)∈Mi
j

1 . (8)

Importantly, for a specific x, this sum only takes those views
i into account, where the object j can be seen, i.e., where the
camera coordinates Ki(x) of x are within the object’s mask
M i
j . We additionally define that if p(x) = 0, then yj(x) = 0 ∈

Rno , meaning if an object is not observed from any view at x,
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(c) Volumetric object encoder Φ (Sec. IV-C). The object feature function yj of
object j is evaluated on the discretized workspace set Xh which produces an
object feature voxel grid yj

(
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)
that is turned into the latent vector zj ∈ Rk

via a 3D convolutional network.

Fig. 3: Visualization of the internals of the implicit object encoder Ω as a function of the RGB image observations I1:V ,
their camera matrices K1:V , and object masks M1:V

j of the object j for views i = 1, . . . , V , as well as the workspace set
X . (a) visualizes how the implicit object feature function aggregates the observations from different views into the feature at
the query point x ∈ R3 (world coordinates) by taking into account the object masks M i

j in the different views. (b) shows the
architecture of the feature encoder E (5) inside of yj (7). (c) is the volumetric object encoder Φ that turns yj into the latent
vector zj ∈ Rk (Sec. IV-C).

the corresponding feature vector is zero. An advantage of this
formulation is that it naturally handles occlusions in different
views and fuses the observations from different camera views
consistently. Fig. 3a visualizes (7).

C. Volumetric Latent Object Encoder Network

Given the implicit object descriptor function yj(·) of ob-
ject j, we turn it into a latent vector zj ∈ Rk representing
object j with another network Φ which we call the volumetric
latent object encoder. Formally, zj = Φ(yj) is a function of
the object function. As discussed in [12], learning a function of
a function can be realized with neural networks by evaluating
yj on a workspace set volume as follows.

1) Workspace Set: We assume that the interactions in the
scene happen within a workspace set X ⊂ R3 that is large
enough to contain all objects (one can think of a bounding box
for the whole workspace). This workspace set is discretized as
the voxel grid Xh ∈ Rd×h×w. For a visualization of X refer
to Fig. 6 (red shaded box).

2) Function of Functions with 3D Convolutions: The object
descriptor functions are then evaluated on Xh which produces

an object feature voxel grid that is processed with a 3D
convolutional neural network leading to the latent vector
zj ∈ Rk, i.e.

zj = Φ(yj) = CNN(yj(Xh)). (9)

Note that the same workspace set Xh is used for all objects.
In summary, the object encoder

z1:m = Ω
(
I1:V ,K1:V ,M1:V

1:m ,Xh
)

(10)

maps posed images from multiple views, object masks and
the workspace set Xh to the latent vectors. The resulting zj’s
contain not only the appearance information of the objects,
but also their spatial configurations in the scene with respect
to other objects.

Note that the model does not rely on absolute coordinates.
The only relevant quantities are the relative coordinates be-
tween the cameras and the workspace set center, which is
translational invariant. Further, the fact that the voxel grid
Xh has a finite resolution does not imply that the resulting
object representation is limited to the same resolution, since



the model predicts feature values at the voxel locations, which
can contain more information about the object.

D. Decoder as Compositional, Conditional NeRF Model

Compared to the standard NeRF formulation (Sec. III)
where one single model is used to represent the whole scene,
we associate separate NeRFs with each object, meaning that
the NeRF for object j

(σj(x), cj(x)) = fj(x) = f(x, zj) (11)

is conditioned on zj for j = 1, . . . ,m. σj is the density and
cj the color prediction for object j, respectively. To turn those
f1:m back into a global NeRF model that can be rendered to
an image, we sum the individual predicted object densities

σ(x) =

m∑

j=1

σj(x) (12)

and obtain the colors as their density weighted combination

c(x) =
1

σ(x)

m∑

j=1

σj(x)cj(x). (13)

These composition formulas have been proposed multiple
times in the literature, e.g. [45, 65]. This composition forces
the individual NeRFs to learn the 3D configuration of each
object individually and therefore ensures that each fj only
predicts the object where it is located in the 3D space.

To summarize, the compositional NeRF-decoder DNeRF
takes the set of latent vectors z1:m for objects j = 1, . . . ,m
and the camera matrix K for a desired view as input to render

I = DNeRF(z1:m,K). (14)

Since we only represent the objects and not the background
as NeRFs, rendering the composed NeRF will yield an image
with the background subtracted.

In the experiments, we investigate the importance of the
decoder being both compositional and a NeRF.

E. Training

The auto-encoder framework is trained end-to-end on an
L2 image reconstruction loss. Since, as mentioned, solely the
objects are represented as NeRFs and not the background, we
compute the union of the masks of the individual objects

M i
tot =

m∨

j=1

M i
j (15)

and define the target image in a view as Ii ◦ M i
tot with ◦

denoting the element-wise product.
A known issue of NeRF is its computational efficiency [65],

since for every pixel all fj’s have to be queried on many points
along the camera ray. We make two simple, but important,
improvements to reduce the computational demand.

First, the near and far bounds αn, αf are determined indi-
vidually for each camera ray such that only those points along
the rays that are within the workspace set X are considered.
This is a reasonable assumption since we assumed that the

objects are in the workspace set in the first place. That way,
the computational efficiency is already greatly increased by
reducing the number of points where functions fj’s have to
be queried.

Moreover, as the scenes we consider in our experiments
(see for example Fig. 6) are composed of multiple smaller
objects, when masking out the background, the majority of
pixels in each view is black and therefore does not contain
information about the scene, although the model is evaluated
on those areas. To further decrease the number of points
where the NeRFs have to be queried, we only consider those
rays for a view that pass through the mask of at least one
object in that view. It turned out, however, that training only
on rays that go through Mtot leads to blurry reconstructions,
since there is no loss indicating that the objects should end
outside of the masks. In order to resolve this, we enlarge the
combined mask M i

tot of a view with a convolution operation
by a few pixels. We denote this enlarged masked by M̂ i

tot.
Together, these techniques ensures that the model learns sharp
object boundaries, while significantly reducing the number of
considered rays and required NeRF evaluations. See Fig. 4 for
a visualization of this procedure.

These considerations lead to the following training objective
of DNeRF and Ω for a view i

Li =
∑

(u,v)∈M̂i
tot∥∥(Ii ◦M i

tot

)
uv
−DNeRF

(
Ω
(
I1:V ,K1:V ,M1:V

1:m ,Xh
)
,Ki

)
uv

∥∥2
2
.

(16)

During training, we randomly sample a view from the dataset
for each mini-batch and update the parameters of DNeRF and
Ω using the ADAM optimizer [31].

Another side effect of training on the enlarged masks M̂ i
tot

only is that it improved the training stability and reconstruction
qualities of the model. Indeed, when we trained the model
on the whole image, depending on the weight initialization
of the network, the model sometimes very quickly converged
to a state where it only predicted a black image, since the
majority of pixels are actually black and hence a low loss
could be achieved. Training on the enlarged masks prevents
this reliably.

F. Novel Scene Generation and Rigid Transformations

The compositional formulation of our model makes it trivial
to add and remove objects from the scene. Furthermore, since
the proposed object representation yj is a function of a 3D
coordinate, we can rigidly transform objects in the workspace
by applying a rigid transformation [12]. Let R(q) ∈ R3×3

and s(q) ∈ R3 be a rotation matrix and translation vector as
a function of q ∈ R7 (translation + quaternion), respectively.
Then,

yj
(
R(q)T ( · − s(q))

)
(17)

is the object feature function transformed by q. Consequently,
evaluating the transformed yj on Xh with Φ from (9) leads to a



(a) Scene observation Ii (b) Training target Ii◦M̂ i
tot with enlarged

mask. White area: no rays are considered
(c) Prediction by learned model rendered
everywhere and not only at the masks

Fig. 4: Visualization of the training target for an example scene in the training dataset. Same scene as in Fig. 6.

new latent vector that represents the object j being transformed
by q, which we denote with

T (q)[zj ] = Ω
(
I1:V ,K1:V ,M1:V

j , R(q)T (Xh − s(q))
)
. (18)

Please note the slight abuse of notation here, the term
R(q)T (Xh − s(q)) has to be understood elementwise for each
entry in Xh.

Composing scenes via rigid transformations applied to the
input of the individual NeRFs f has been considered before,
e.g. in [45]. However, transforming a NeRF by applying the
rigid transformation to its x input only leads to changes in the
rendered visual space, i.e. it has, in particular, no influence
on the latent vectors of the objects. Since we want the latent
vectors to represent not only the appearance of an individual
object, but the geometric information of the object within the
scene which is crucial for our downstream dynamics prediction
task, just transforming the NeRF models is not sufficient.

V. LATENT DYNAMICS MODEL WITH GRAPH NEURAL
NETWORKS

Due to the compositional nature of the scenarios we con-
sider, we require a dynamics model that maintains the capabil-
ities of our auto-encoder to generalize over changing numbers
of objects, for which graph neural networks (GNNs) are a
natural choice.

A. Propagation Network

The general idea behind learning dynamics models with
GNNs is to associate each object in the scene with a node
in a graph, which, in our case, means that each node in the
graph is a latent vector zj . Edges between the nodes indicate
if objects interact, e.g. by exchanging forces due to contact.
As argued in [35], applying a simple GNN to the problem of
dynamics prediction is problematic, since interactions caused
at one node can influence not only the neighboring nodes, but
higher-order neighbors. For example, if three objects touch, the
effects of applying a force at the first object have to propagate.
The scenarios we consider in the experiments contain multiple
objects such that more than two objects can interact in one
time step. To take this into account, we use a message passing
architecture inspired by [35].

Let zi and zj be the latent vectors of objects i and j. An
edge encoder network Fe determines a feature

eij = Fe(zi, zj) ∈ Rne (19)

describing the interaction between the objects i, j. An adja-
cency matrix A ∈ {0, 1}m×m has entry Aij = 1 if object i is
influenced by object j. Assume the state of all latent vectors
zt1:m at time t is known. The node propagator network Fz
recursively is queried L many times to propagate the state
zt1:j to the next time step t+ 1 as follows:

l = 1, . . . , L : lzi
t+1 = Fz

(
zti ,

∑

j : l−1At
ij=1

l−1etij
)

(20)

with 0zi
t+1 = zti ,

letij = Fe
(
lzi

t+1, lzj
t+1
)

for l = 0, . . . , L−
1 and the final new predicted state zt+1

i = Lzt+1
i .

B. Adjacency Matrix from Learned Model

The adjacency matrix A in the GNN dynamics model (20)
plays an important role in indicating which objects interact.
While a dense adjacency matrix, i.e. a graph where each
node is connected to every other node implying that each
object interacts with all other objects in the scene, would in
principle work as the network could figure out from the latent
representations itself which objects interact, we found that the
long-horizon prediction performance is greatly increased if A
is more selective in reflecting which objects actually interact
(refer to the experiments in Sec. VII-D). This is especially
relevant for compositional scenes as considered in this work
where there are many objects, but which often do not interact
with each other in every timestep.

A central question is how the adjacency matrix can be
obtained from the observations of the scene without manually
specifying it. Due to our model having strong 3D priors, we
can exploit the density prediction σj as defined in (11) for each
object to determine the adjacency matrix from the models’ own
predictions during training and planning. In order to do so, for
a threshold κ ≥ 0, the collision integral

Sij =

∫

X
[σ(x, zi) > κ][σ(x, zj) > κ] dx (21)
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Fig. 5: Visualization of the forward prediction Algorithm 1. After the initial scene observation is encoded into the latent vectors
z01:m, the GNN dynamic model is used to forward predict the evolution of the latent vectors in time for actions qt from the
initial observation only. These actions rigidly transform the articulated objects (in the experiments the pusher), leading to z̄t1:m
which is the input to the GNN to produce zt+1

1:m. The adjacency matrix for the GNN dynamics model is estimated from the
density prediction σ(·, zj) for all objects from the predicted zj at each time step, see Sec. V-B. The predicted latent vectors
zt1:m at time t can be used to render images from arbitrary views or to reconstruct the scene.

over the density predictions of the learned NeRF model for
objects i and j indicates if the two objects overlap or not.
A similar integral as in (21) has been proposed in [12] to
estimate collisions from signed-distance functions. Based on
this integral, we define the entries of the adjacency matrix
between objects i and j as

Aij =

{
1 Sij > 0

0 else
, (22)

which implies that only those objects that are or are close to
being in contact potentially interact. Estimating A this way
takes the actual geometry of the objects in the scene into
account. In relation to the node propagation network (20), this
means that the adjacency matrix at step l of the propagation
becomes a function of the node encodings itself, i.e.

lAtij = lAtij
(
lzi

t+1, lzj
t+1
)
. (23)

For training the GNN, however, changing the adjacency matrix
during prediction is not differentiable. Therefore, we compute
the adjacency matrices from the model such that they are
constant within one time-step as follows. We first compute
an occupancy grid

Sj = [σ(Xh, zj) > κ] ∈ {0, 1}d×h×w (24)

for each object j over the discretized workspace set Xh and
then apply a 3D convolution operation on Sj with a kernel
consisting of only ones to expand the occupancy grid. The
now constant within one time-step t entries lAtij = Atij for all
l = 0 . . . , L − 1 are then determined by checking if there is
a voxel cell where both enlarged Si and Sj have value one.
The size of the convolution kernel is chosen large enough

such that the adjacency matrix is not going to change within
one timestep. This allows for a trade-off between sufficient
sparsity of A while ensuring that all objects that potentially
interact have corresponding entries in A.

In the experiments in Sec. VII-D, we investigate the influ-
ence on the prediction performance for multiple different ways
of predicting/using the adjacency matrix.

C. Actions

So far, the way we have formulated the graph neural
network dynamics model in Sec. V-A does not contain a notion
of actions. Instead, we interpret an action as a modification to
a node in the graph and train the GNN to predict the state of
the nodes at the next time step as a result to this modification.
This allows us to not explicitly distinguish between controlled
and uncontrolled/passive objects.

In order to realize modifications to a node and hence to
incorporate actions in the first place, we exploit the fact
that our object encoder is an implicit function of 3D world
coordinates. Assume that the object j is articulated by a
known rigid transformation q ∈ R7, which is the action. As
described in Sec. IV-F, via (18) we can transform the object’s
latent vector ztj into the transformed z̄tj = zt+1

j = T (q)[zj ],
which is kept constant during the propagation step of (20), i.e.
controlled nodes are excluded from the dynamics prediction,
as their evolution is known through z̄tj .

D. Quasi-Static Dynamics

If we assume quasi-static dynamics, meaning that the next
system state only depends on the current latent state z1:m
without history and immediate actions (refer to the discussion



Algorithm 1 Forward Prediction Model
1: Input: Initial observation of the scene in terms of I1:V ,
K1:V , M1:V

1:m , action sequence q1:T , index a of the articu-
lated object

2: z11:m = Ω
(
I1:V ,K1:V ,M1:V

1:m

)

3: for all t = 1, . . . , T do
4: 0z1:m

t+1 = zt1:m
5: 0za

t+1 = z̄ta = T (qt)[z
t
a]

6: for all l = 1, . . . , L do
7: ∀i,j, i 6=a : lAtij = lAtij

(
lzi

t+1, lzj
t+1
)

8: ∀i,j i6=a : letij = Fe
(
lzi

t+1, lzj
t+1
)

9: ∀i 6=a lzit+1 = Fz

(
zti ,
∑
j : l−1At

ij=1
l−1etij

)

10: end for
11: zt+1

i = Lzti
12: zt+1

i = zti if ∀j=1,...,m, j 6=i : Aij = 0
13: Use zt+1

1:m, e.g. render it from arbitrary views
14: end for

in the last paragraph Sec. V-C about the notion of actions
in this work), we can further increase the long-term stability
by utilizing the adjacency matrices estimated by the learned
model. When an object is not involved in any interactions with
other objects, then, under quasi-static assumptions, it does not
change between time steps, i.e. its latent vector stays constant,
which means we can set

zt+1
i = zti if ∀j=1,...,m, j 6=i : Aij = 0. (25)

The condition ∀j 6=i : Aij = 0 means that the node associated
with zi in the graph has no incoming edges. As we will show
in the experiments (Sec. VII-D), this can greatly increase the
stability for long-term open-loop model predictions as it will
prevent drift in objects that do not take part in any interaction
with other objects.

E. Training

We first train the compositional NeRF auto-encoder frame-
work on training data, which gives us a dataset of trajectories
of latent vectors. The GNN dynamics model is then trained
on the one-step mean squared error between zt+1

1:m and zt1:m of
samples of such trajectories using the ADAM optimizer.

F. Forward Prediction Algorithm

Algorithm 1 summarizes the forward prediction procedure.
The algorithm is visualized in Fig. 5. Starting from a single
initial observation of the scene in terms of the images I1:V

from V many views and the objects masks M1:V
1:m of the m

many objects, Algorithm 1 predicts the latent vectors zt1:m
at times t = 1, . . . , T for all objects in the scene given a
desired action sequence q1:T of rigid transformations applied
to object a. At every point t in time, the scene can be rendered
from arbitrary view points from the predicted zt1:m. Note that
the masks of the objects are required only for the initial
observation, i.e. no mask prediction has to be performed as
compared to [80].

In line 2, the initial object encodings from the scene
observation are computed. Line 5 applies the action to the
object with index a. Lines 6-10 then perform the prediction
step of the GNN in the latent space using message passing.
Crucially, in line 7, the adjacency matrix is estimated from
the current predictions during message passing (Sec. V-B).
Note that here the original collision integral (21), computed
on the grid Xh, can be used without enlarging the intermediate
occupancy grids, since, if during the message passing step
objects interact that previously did not, it will be captured,
as A is estimated in every step of the message passing part.
This leads to further increased prediction stability, as we will
show in the experiments. Finally, in line 12, objects that
have not interacted with other objects as predicted by the
adjacency matrix are kept at their previous latent state (quasi-
static assumption from Sec. V-D)

VI. PLANNING

In this section, we describe our planning and control al-
gorithm to manipulate objects in scenes using the learned
scene encoding and dynamics model to achieve a desired goal.
The main part of the planning algorithm is an RRT in the
latent space. Such latent space RRTs have been considered,
for example, in [29]. One central question here is how one can
sample in the latent space effectively, since a uniform random
sample in the latent space not necessarily is a valid (and/or
uniform) sample in the original space. In [29], they assume to
have access to a set of valid latent vectors from which they
can sample. In contrast, we can produce valid samples in the
latent space directly by exploiting the properties of our model.

On a high level, our model iteratively perceives multi-view
images of the scene, finds a plan using a Latent-Space RRT
(LS-RRT) based on the forward predictions of the model
over a long horizon, and then executes the found plan with
Model-Predictive Control (MPC) [7] for a shorter horizon.
We describe the algorithm here with the pushing scenario as
considered in the experiments (see Sec. VII-A) in mind.

A. Planning

Algorithm 2 summarizes the LS-RRT algorithm. We grow a
tree in the latent space, starting at the latent vector z0 = z01:m
that represents the current state of the environment, encoded
by the implicit object encoder Ω from the current visual ob-
servation of the scene. In standard RRTs, a target is uniformly
sampled in the configuration space to steer the growth of the
tree towards a Voronoi bias. To introduce a particular goal-
targeted sampling bias and as we do not have an inverse
model or steering function, we modify the standard approach
as follows:

In a latent space RRT, sampling uniformly in the latent
space does neither guarantee that the samples are from the
latent space manifold nor that they explore the original space.
Therefore, we sample random targets g ∼ Gsampler not in the
latent space directly, but only in the space of center of mass
configurations of all objects, which is of dimension 2m in the
experiments (objects and pusher). In this way, we can design



Algorithm 2 Latent-Space RRT
1: Input: Initial latent vector z0, action space {q}, metric d,

sparse goal cost function Cg .
2: Initialize tree T with z0 as the root.
3: while time remains do
4: Sample a target g ∼ Gsampler
5: Find nearest zprop = arg minz∈T d(z, g)
6: Sample action q randomly
7: Execute action q in learned forward model with Algo-

rithm 1 to get new latent vector znext
8: Add znext into the tree T, record action q and its parent
zprop

9: if goal Cg(znext) fulfilled then
10: return the action sequence from z0 to znext
11: end if
12: end while

a sampling distribution Gsampler biased to target configurations
that have low costs, i.e., more objects within the goal region,
or targets in which the articulated object (the pusher in the
experiments) is close to one of the objects, inducing a bias
for interaction. This sampling distribution and cost evaluation
Cg is possible because we can apply rigid transformations
to the objects through our object encoder being an implicit
function, since, for a sampled random target, we have to move
the objects to this target to check the cost on the transformed
configuration. Further, the metric d to select the expanded node
is the L2-norm in the full configurations between g and the
centers-of-masses computed from z. Using the predictions of
the NeRF model, we can estimate (under homogeneous density
assumption) the center of mass of an object with latent vector
zj as

xcom
j (zj) =

∫
X x · [σ(x, zj) > κ] dx∫
X [σ(x, zj) > κ] dx

, (26)

i.e. d(z, g) = ‖xcom
1:m(z)− g‖2. Note that the sampling distribu-

tion, cost function evaluation and metric calculation are done
solely based on predictions of the model.

Finally, as we do not have an inverse dynamics model or
other kinds of steering function, we expand the tree using
a random action q, similar to plain control trees. However,
our goal-targeted node selection ensures that the tree expands
effectively.

B. Model-based Control

Although our model achieves impressive performance over
a long horizon, the accumulated prediction errors may still
lead to a failure when executing the plans open-loop. We
therefore apply an MPC scheme, which in each cycle feeds
the current visual observation into the model, samples and
select actions that match the plan (in terms of the center-of-
mass metric) within a short horizon predicted by the learned
dynamics model. If there is a significant mismatch between the
plan and current observation, the LS-RRT is used again to find
a new long-term plan starting from the current observation.

Fig. 6: Example scene. The red shaded box visualizes the
workspace set volume X . The green coordinate systems denote
the camera origins and view directions. The red cylinder is the
pusher that is actuated.

VII. EXPERIMENTS

In the experiments, we focus on a pushing task in scenarios
with multiple objects on a table, see, e.g. Fig. 6 or 4 for such
scenes. For a quantitative analysis and comparison to multiple
baselines, we investigate the forward prediction error of the
model both in the image space (Fig.10) and, for baselines that
use a compositional NeRF decoder, the error in predicting the
center of mass of the objects (Fig. 9) over long-horizons. In all
plots of Fig. 9 and Fig. 10, the blue curve corresponds to our
proposed framework as summarized in Algorithm 1. Sec. VII-J
presents planning and execution results for a challenging box
sorting task.

Please refer to https://dannydriess.github.io/compnerfdyn/
for videos showing the reconstructions of the model, novel
scene generation, forward predictions of the model and plan-
ning/execution results for the box sorting task.

A. Setup

We consider a rigid-body scenario with multiple objects on a
table, see Fig. 6 for an example. In all cases, the red cylinder is
the pusher that is articulated in order to push the other objects
around.

This scenario is challenging due to multiple reasons. First,
it is composed of many objects, which implies not only a
broad scene distribution, but especially also that many objects
can interact. The mechanics of such multi-body pushing is
non-trivial, since, for instance, contact can be established and
broken between the objects at multiple phases of the motion.
Contact between multiple objects at the same time can occur.
Furthermore, we do not assume that the red pusher starts in
contact with an object. Hence, if a task implies that an object
should be pushed, long-term predictions inherently have to be
made in order to establish contact, before any object movement
is registered.

The workspace is an area of 40 cm × 40 cm × 10 cm
and we choose Xh ∈ R10×40×40, i.e. a resolution of 1
cm. All scenes in the training data contain 4 box-shaped
objects of randomly sampled sizes, positions and orientations

https://dannydriess.github.io/compnerfdyn/


(5 dimensional parameter space for each of the 4 objects) and
one cylinder-shaped object with randomly sampled position.
To generate the training data, we randomly sample one of the
4 objects and then move the red pusher towards the center of
this chosen object (with Gaussian noise added to the direction
vector in each time step) until either the pusher leaves the
workspace, in which case a new target object is chosen, or
an object is pushed outside the workspace, in which case
the data collection for this scene is terminated and a new
scene is sampled. In total, the training dataset contains 5752
scenes with an average sequence length of 17. We generate 3
test datasets for evaluating the reconstruction and prediction
performance which contain 2, 4, and 8 objects, respectively,
plus the pusher. There are 312 scenes for each test dataset,
generated with a different random seed than the training data.
As visualized in Fig. 6 by the green coordinate systems, we
choose 4 camera views for each scene.

B. Network Architectures

The dimension of the latent vectors zj is k = 64 for each
object. All hidden activation functions are ReLUs.

The MLP that encodes the projected coordinate (see Fig.3b)
of the implicit object feature encoder E has one layer with
output dimension 32. The other MLP in E has 2 hidden layers
with 128 units each and an output dimension of no = 64.

The volumetric feature encoder Φ (Sec. IV-C and Fig. 3c)
consists of three 3D convolutional layers with kernel size 3
and channel size 128, each. Layers 2 and 3 have strides of
2. After the convolutional layers, the output is flattened and
processed with 3 dense layers with 300 hidden units each.

The NeRF network f first lifts the 3D input to 64 dimen-
sions with an MLP, where it is concatinated with the latent
vector z. This is followed by 3 hidden layers with 300 units
each. For the density output σ, we use a softplus activation
and a sigmoid for the color outputs c.

Both the edge encoder Fe and the node propagator network
Fz have 3 hidden layers with 256 units each.

C. Reconstruction/Prediction Performance and Generaliza-
tion to Different Numbers of Objects

Fig. 8a shows the predictions of the model forward unrolled
in time for an action sequence of the red pusher, i.e. applying
Algorithm 1 to an initial scene observation. Despite the move-
ments in this scene leading to multiple object interactions,
even after 38 time steps, the rendered predictions from the
model are still sharp and reflect the underlying dynamics. By
utilizing the estimated adjacency matrix, there is little drift in
the objects, leading to long-term prediction stability.

Due to its compositional nature, our model generalizes to
scenes that contain more or less objects than in the training
set. For example, in Fig. 7, eight objects plus the pusher are
observed and reconstructed with high quality, although during
training the model has seen only and exactly 4 objects. This
holds true not only for the observed views (Fig. 7a), but also
for novel ones (Fig. 7b).

Our proposed method outperforms all baselines in the
reconstruction and prediction error, see following sections for
a more detailed, quantitative discussion and Figs. 9, 10, and
11.

D. Importance of Estimating the Adjacency Matrix

In Sec. V-B, we have proposed how the adjacency matrix
of the GNN can be estimated from the density predictions of
the learned NeRFs and that under quasi-static assumptions this
estimated adjacency matrix can further be exploited to increase
the long-term stability of the predictions, cf. Sec. V-D. Here we
investigate the consequences of utilizing the adjacency matrix
this way by comparing the full Algorithm 1 to:

1) Not exploiting quasi-static assumption: In this case, line
12 of Algorithm 1 is not used, i.e. the latent vectors of all
objects, even when they do not interact with other objects
as estimated through the model, are updated using the model
forward predictions.

2) Adjacency matrix estimation not during message pass-
ing: Here, we estimate the adjacency matrix only at the
beginning of the message passing step, i.e. before line 6
in Algorithm 1. In order to ensure that it can still capture
all object interactions that might occur during the message
passing step, we enlarge the determined occupancy grids
exactly the same way as for training, see the discussion in
Sec.V-B. The effects of this are that objects that are close to
each other but do not interact still have entries in A indicating
that they interact, which means slight errors in the predictions
accumulate and lead to drift, although the object would not
move in reality.

3) Dense adjacency matrix: We further consider a dense
adjacency matrix, i.e. where the network has to figure
out from the latent vectors themselves if objects interact.
Preventing drift in this case is considerably harder.

In all these comparisons, the rest of the method remains the
same, i.e. same object encoder, same GNN, same composi-
tional NeRF decoder.

In Fig. 9 one can see the mean error of the model predicting
the center of mass, computed from its density predictions
of the NeRFs for each object according to (26), over the
number of steps predicted into the future on the test dataset
for different numbers of objects in the scene.

As one can see in Fig. 9a, for the two object case, the
choices of how the adjacency matrix is used, as long as it is
not a dense one, are not significant. For the 4 (Fig. 9b) and 8
(Fig. 9c) object case, however, our proposed utilization of the
adjacency matrix, i.e. estimating it during propagation steps
and using it to exploit the quasi-static assumption, leads to a
significant increase in performance. This can be explained by
the fact that utilizing the adjacency matrix as we propose leads
to significantly less drift. Especially with the dense adjacency
matrix, the predictions are very unstable for all, the 2, 4, and
8 object case. Fig. 8b shows this qualitatively. In the 8 object
case, the predictions with the dense A are basically useless



ground truth, observed views

reconstruction by our model

(a) Reconstructions on observed views

ground truth, novel views

reconstruction for novel views based on views of (a)

(b) Novel view synthesis from latent vectors computed from the views in (a)

Fig. 7: Generalization to more objects (8 objects plus 1 pusher) than during training. The scenes in the training dataset contain
exactly 4 objects and one pusher. The top row in (a) corresponds to the observed scene from different views; the bottom row
is the reconstruction by our method. The bottom row in (b) is the reconstruction of novel views (top row ground truth) with
the latent vectors computed from the views in the top row of (a).

(a) Predictions with our method

(b) Predictions with dense adjacency matrix baseline Sec. VII-D3

(c) Predictions with CNN decoder baseline Sec. VII-G

Fig. 8: Forward predictions of the model when applying an action sequence to the red pusher after observing the scene only
initially. The column on the right corresponds to the prediction after 38 steps. As one can see, with our proposed method in
(a), the predictions are very sharp, even after 38 steps, while the dense adjacency matrix version (Sec. VII-D3) in (b) leads to
drifting objects until the predictions are not useful anymore. The CNN decoder baseline Sec. VII-G is even worse, such that
after only a few steps the predictions are of little use. Note that multiple object interactions happen in this scene.
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(c) 8 objects in the scene

Fig. 9: Performance comparison in terms of mean center of mass prediction error of the objects over the number of prediction
steps into the future on test data containing different numbers of objects. The center of mass is estimated from the density
prediction of the NeRF corresponding to each object according to (26). One prediction step corresponds to a 2 cm movement
of the pusher, i.e. for 50 steps the pusher has moved 1 m. For the MLP dynamics model in (b), it at some point did not predict
all objects anymore, which meant no center of mass could be calculated further. Our method outperforms all baselines.

after only a few time-steps, showing that it has overfitted to
the number of 4 objects as in the training data.

E. Importance of GNN – Comparison to Dense Dynamic
Models

Replacing the GNN with a fully connected MLP that
predicts the whole set of latent vectors zt+1

1:m = FMLP(zt1:m)
from the previous zt1:m leads to even worse performance than
with a dense adjacency matrix within a GNN regarding the
center of mass forward prediction capabilities as shown in
Fig. 9b. Obviously, this model cannot generalize to more
objects than during training due to its fixed size input.

F. Advantages of Implicit Object Encoder – Comparison to
CNN Encoder

Here we exchange the implicit object encoder with a 2D
CNN object encoder. The resulting auto-encoder framework
is very similar to the architecture of [65]. More specifically,
we encode each masked image observation with a 2D CNN to
produce a feature vector. The feature vectors from the different
views are aggregated into the final latent vectors for each
object. We use the encoder architecture from [38], but adjust it
to the compositional multi-object case by incorporating object
masks. Since this encoder is not an implicit function of X , we
cannot modify the latent vectors by applying rigid transforma-
tions and hence need to encode the actions differently. In order
to do so, we train a separate MLP network that predicts the
latent vector of the pusher resulting from applying an action
to it. This gives the modified za for line 5 in algorithm 1
for the CNN encoder baseline. The rest of the architecture,
i.e. the GNN, the compositional NeRF decoder, estimating the

adjacency matrix during message passing from the model, etc.,
stays the same.

As can be seen in Fig. 9a and Fig. 10, replacing the proposed
implicit object encoder with a CNN encoder, the performance
is better compared to the other baselines, but still clearly worse
than with the proposed method.

G. Comparison to 2D Baselines – Importance of NeRF as
Decoder

In this section, we replace the NeRF decoder with a 2D
image decoder based on a transposed convolutional network to
investigate the importance NeRFs. We use the same architec-
ture for the decoder, which we call DCNN, as the CNN baseline
in [38]. This decoder takes as input one single latent vector
and the camera matrix, i.e. I = DCNN(z,K). In order to make
it compositional, we aggregate the set of latent vectors z1:m
from Ω with a mean operation and then pass the aggregated
feature through an MLP to produce the single z (with 4 times
the dimension of zj) for DCNN. The rest of the architecture, i.e.
the implicit object encoder in particular and the GNN, stays
the same. Since there is no clear way to estimate the adjacency
matrix from DCNN, we use a dense adjacency matrix for the
GNN.

As one can see in Fig. 10, the long-term prediction perfor-
mance of the CNN decoder is significantly worse than with
a compositional NeRF model as the decoder, especially when
asking for numbers of objects that differ from the training
distribution. Qualitatively, one can see in Fig. 8c that not only
the initial reconstruction is much less sharp compared to the
NeRF-based models, but especially also that even after only a
few time-steps, the predictions with the CNN decoder are of
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Fig. 10: Performance comparison in terms of mean absolute image error between the reconstructed image from the predicted
latent vectors over the number of time steps into the future and the corresponding ground truth image observations, averaged
over the test dataset for scenarios containing 2, 4, and 8 objects (plus the pusher). One prediction step corresponds to 2 cm
movement, i.e. for 50 steps the pusher has moved 1 m.

little use.

H. Comparison to Global Scene Representation Baselines

Finally, we compare to two other baselines where the scene
is represented globally with one single latent vector per time-
step. The dynamics model for these baselines is an MLP
zt+1 = FMLP(zt, q) that takes the action q as an additional
input. Therefore, the model also implicitly has to determine
which object is the pusher where the action is applied to.

1) Global Latent Variable Model with Global NeRF De-
coder: This baseline is very similar to [38], i.e. we use a
CNN encoder, but for the whole scene, producing one latent
vector which conditions a single NeRF that tries to reconstruct
the whole scene.

2) Global Latent Variable Model with 2D CNN Auto-
Encoder: The 2D CNN auto-encoder baseline uses both a 2D
CNN encoder and 2D CNN decoder as well as a single latent
vector representing the whole scene. Such frameworks have
been used many times in the literature, e.g. [74, 23, 22, 60].
We use the same CNN decoder DCNN from Sec. VII-G that
now takes the single latent vector directly as input. As the
encoder, we use the one from [38].

Fig. 10 shows that both global baselines struggle with our
scenarios as they contain multiple objects that interact.

I. Summary of Performance Comparisons

In the previous sections, we have shown that our method
outperforms all other baselines both in terms of pure recon-
struction error (as can be seen in Fig. 10 by the error after
zero prediction steps, i.e. in the initial configuration of each
test scene) and its ability to perform long term predictions
for action sequences forward unrolled on the model’s own
predictions. Estimating the adjacency matrix from the model
itself is important for long-term stability as it prevents objects

from drifting away. Too large drift makes future predictions
for a pushing task meaningless.

Since the reconstruction error of our proposed method from
observations without any dynamics is already better than
the baselines, the question arises if the increased prediction
performance compared to the baseline is just an artifact of
the lower reconstruction error. To investigate this, we show in
Fig. 11 the error in the image space between the reconstruction
when having access to the observations at each time step and
the reconstruction from the predicted latent vectors into the
future after observing the scene only once at the beginning.
This shows the increase in error relative to the reconstruction
process. The results indicate that not solely the reconstruction
process itself is the reason for the better performance, but that
the structural choices of the proposed framework also enable
to learn the underlying dynamics more precisely.

J. Planning and Execution Results on Box Sorting Task

To demonstrate the effectiveness of the learned model, we
utilize it to solve a challenging box sorting task, where the
red pusher needs to push the blue and yellow boxes into their
corresponding goal regions as shown in Fig. 1. This task is
in part inspired by the object sorting task in [18]. The cost
function Cg in Algorithm 2 determines how many objects are
outside of their goal region, which is computed for each object
j from their corresponding density σj and color cj predictions
of the model itself. The goal is fulfilled if all objects are in
their respective goal regions.

This object-sorting task is challenging for multiple reasons.
First, the dynamics of pushing is non-trivial [26, 85, 11, 61].
In our particular case, many objects potentially interact, which
further complicates the setup. Pushing one object could undo
an object that is already at the goal, hence a greedy strategy
of just pushing the objects straight to the goal region would
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Fig. 11: Relative prediction error, i.e. error in image space
between reconstruction when having access to observations at
each time step and the reconstruction from the predicted latent
vectors into the future after observing the scene only in the
beginning.

fail. In addition, movements, i.e. actions, of the pusher do
usually not immediately lead to a change in the cost function,
since contact with the object from a suitable side has to be
established, for which it is often necessary for the pusher to
move around objects [12, 61]. Therefore, applying planning
methods that are too local like a cross-entropy method would
fail for this scenario. Our prediction model combined with
the LS-RRT algorithm solves these tasks efficiently, just from
image observations of the scene, see Fig. 1 and the video. In
the first row of Tab. I, we show the total size of the exploration
trees for solving the tasks for scenes that contain 1 to 6 objects.

As a baseline comparison, we consider planning with
a GNN that uses a fully connected adjacency matrix
(Sec. VII-D3) to understand the importance of a precise
dynamics model. From the second row of Tab. I, one can
see that planning with a dense A either fails to find a solution
as the pusher may not be able to move the object correctly,
or generates a plan that is tough to follow in the simulation
environment. The reason for this is that with a dense A,
as shown in Fig. 8b, the model induces too much drift of
objects that do not interact, which makes planning for pushing
scenarios extremely difficult. Objects can also drift closer or
away again to/from the goal by model errors.

Finally, we compare the LS-RRT with a naive control tree
algorithm, where we still use our full model, but only sample
random nodes in the tree to extend. As shown in the last row
of Tab. I, though the planner can find a path to push a single
object, it fails to solve tasks containing more objects within the
timeout. This demonstrates the benefits of our object encoder
being an implicit function and being able to relate information
in the 3D world in terms of center of mass predictions via
the learned NeRFs to the latent vectors, both of which make
planning much more efficient compared to naive control trees.

Number of Objects 1 2 4 6

RRT with full model 256 2341 23819 85022
RRT with dense A NS FE FE NS
Control tree with full model 24019 NS NS NS

TABLE I: Number of samples to find a solution with the latent
space RRT planning algorithm for scenarios containing 1, 2, 4,
and 6 objects. NS means no solution found within 105 samples.
FE means failed to execute the found plan for 10 times.

VIII. CONCLUSION

Purely visual dynamics models are of high interest to both,
the computer vision and robotics community, as they avoid
making explicit shape and scene model assumptions and imply
end-to-end perception. However, to support manipulation plan-
ning and reasoning we need models that generalize strongly
over objects and provide stable long-term predictions. In this
paper we proposed a system that introduces 3D structural and
compositional priors at various levels, namely compositional
NeRFs, 3D implicit object encoders, and compositional GNNs
dynamics with an adaptive adjacency matrix. Together our
system exhibits significantly stronger long-term prediction per-
formance compared to multiple baselines without these priors
or without compositional scene representations, and supports
using a latent space RRT planner to solve a challenging box
rearrangement task.

We have shown generalization over different numbers of
objects, notably up to two times more than during training.

We have considered rigid body dynamics in this work
only. However, we believe that the insights can be extended
to deformable scenarios as well, although we anticipate that
other planning methods or extensions to RRT might become
necessary.

ACKNOWLEDGEMENTS

This research has been supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC 2002/1 “Science
of Intelligence” – project number 390523135. Danny Driess
thanks the International Max-Planck Research School for
Intelligent Systems (IMPRS-IS) for the support. The authors
thank Valentin Hartmann for discussions regarding RRTs.

REFERENCES

[1] Michal Adamkiewicz, Timothy Chen, Adam Caccavale,
Rachel Gardner, Preston Culbertson, Jeannette Bohg, and
Mac Schwager. Vision-only robot navigation in a neural
radiance world. IEEE Robotics and Automation Letters,
2022. doi: 10.1109/LRA.2022.3150497.

[2] Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra
Malik, and Sergey Levine. Learning to poke by poking:
Experiential learning of intuitive physics. arXiv preprint
arXiv:1606.07419, 2016.

[3] Peter W Battaglia, Razvan Pascanu, Matthew Lai, Danilo
Rezende, and Koray Kavukcuoglu. Interaction networks



for learning about objects, relations and physics. arXiv
preprint arXiv:1612.00222, 2016.

[4] Peter W Battaglia, Jessica B Hamrick, Victor Bapst,
Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[5] Maria Bauza, Francois R Hogan, and Alberto Rodriguez.
A data-efficient approach to precise and controlled push-
ing. In Conference on Robot Learning, pages 336–345.
PMLR, 2018.

[6] Michel Breyer, Jen Jen Chung, Lionel Ott, Siegwart
Roland, and Nieto Juan. Volumetric grasping network:
Real-time 6 dof grasp detection in clutter. In Conference
on Robot Learning, 2020.

[7] Eduardo F Camacho and Carlos Bordons Alba. Model
predictive control. Springer science & business media,
2013.

[8] Michael B Chang, Tomer Ullman, Antonio Torralba, and
Joshua B Tenenbaum. A compositional object-based
approach to learning physical dynamics. arXiv preprint
arXiv:1612.00341, 2016.

[9] Danny Driess, Jung-Su Ha, and Marc Toussaint. Deep
visual reasoning: Learning to predict action sequences
for task and motion planning from an initial scene image.
arXiv preprint arXiv:2006.05398, 2020.

[10] Danny Driess, Jung-Su Ha, Russ Tedrake, and Marc
Toussaint. Learning geometric reasoning and control for
long-horizon tasks from visual input. In International
Conference on Robotics and Automation (ICRA). IEEE,
2021.

[11] Danny Driess, Jung-Su Ha, and Marc Toussaint. Learning
to solve sequential physical reasoning problems from a
scene image. The International Journal of Robotics Re-
search (IJRR), 2021. doi: 10.1177/02783649211056967.

[12] Danny Driess, Jung-Su Ha, Marc Toussaint, and Russ
Tedrake. Learning models as functionals of signed-
distance fields for manipulation planning. In Conference
on Robot Learning (CoRL), 2021.

[13] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenen-
baum, and Jiajun Wu. Neural radiance flow for 4d
view synthesis and video processing. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 14324–14334, 2021.

[14] Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey
Levine. Self-supervised visual planning with temporal
skip connections. In CoRL, pages 344–356, 2017.

[15] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie
Xie, Alex Lee, and Sergey Levine. Visual foresight:
Model-based deep reinforcement learning for vision-
based robotic control. arXiv preprint arXiv:1812.00568,
2018.

[16] Cathrin Elich, Martin R Oswald, Marc Pollefeys, and
Joerg Stueckler. Weakly supervised learning of multi-
object 3d scene decompositions using deep shape priors.

arXiv preprint arXiv:2010.04030, 2020.
[17] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsu-

pervised learning for physical interaction through video
prediction. arXiv preprint arXiv:1605.07157, 2016.

[18] Pete Florence, Corey Lynch, Andy Zeng, Oscar A
Ramirez, Ayzaan Wahid, Laura Downs, Adrian Wong,
Johnny Lee, Igor Mordatch, and Jonathan Tompson.
Implicit behavioral cloning. In Proceedings of the 5th
Conference on Robot Learning. PMLR, 2022.

[19] Niklas Funk, Georgia Chalvatzaki, Boris Belousov, and
Jan Peters. Learn2Assemble with Structured Representa-
tions and Search for Robotic Architectural Construction.
In Proceedings of the 5th Conference on Robot Learning.
PMLR, 2022.

[20] Michelle Guo, Alireza Fathi, Jiajun Wu, and Thomas
Funkhouser. Object-centric neural scene rendering. arXiv
preprint arXiv:2012.08503, 2020.

[21] Jung-Su Ha, Danny Driess, and Marc Toussaint. Learning
neural implicit functions as object representations for
robotic manipulation. arXiv preprint arXiv:2112.04812,
2021.

[22] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. Dream to control: Learning behaviors
by latent imagination. arXiv preprint arXiv:1912.01603,
2019.

[23] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben
Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels. In
International Conference on Machine Learning, pages
2555–2565. PMLR, 2019.

[24] Valentin Noah Hartmann, Andreas Orthey, Danny Driess,
Ozgur S Oguz, and Marc Toussaint. Long-horizon multi-
robot rearrangement planning for construction assembly.
arXiv preprint arXiv:2106.02489, 2021.

[25] Kris Hauser. Semi-infinite programming for trajectory
optimization with non-convex obstacles. The Interna-
tional Journal of Robotics Research, 2018.

[26] François Robert Hogan and Alberto Rodriguez. Feedback
control of the pusher-slider system: A story of hybrid
and underactuated contact dynamics. arXiv preprint
arXiv:1611.08268, 2016.

[27] Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li Fei-Fei,
and Juan Carlos Niebles. Learning to decompose and
disentangle representations for video prediction. arXiv
preprint arXiv:1806.04166, 2018.

[28] Jeffrey Ichnowski, Yahav Avigal, Justin Kerr, and
Ken Goldberg. Dex-nerf: Using a neural radiance
field to grasp transparent objects. arXiv preprint
arXiv:2110.14217, 2021.

[29] Brian Ichter and Marco Pavone. Robot motion planning
in learned latent spaces. IEEE Robotics and Automation
Letters, 4(3):2407–2414, 2019.

[30] Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang,
and Yuke Zhu. Synergies between affordance and geom-
etry: 6-dof grasp detection via implicit representations.
arXiv preprint arXiv:2104.01542, 2021.



[31] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[32] Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebas-
tian Borgeaud, Malcolm Reynolds, Andrew Zisserman,
and Volodymyr Mnih. Unsupervised learning of object
keypoints for perception and control. Advances in neural
information processing systems, 32:10724–10734, 2019.

[33] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Si-
mon Green, Christoph Lassner, Changil Kim, Tan-
ner Schmidt, Steven Lovegrove, Michael Goesele, and
Zhaoyang Lv. Neural 3d video synthesis. arXiv preprint
arXiv:2103.02597, 2021.

[34] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenen-
baum, and Antonio Torralba. Learning particle dynamics
for manipulating rigid bodies, deformable objects, and
fluids. arXiv preprint arXiv:1810.01566, 2018.

[35] Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenen-
baum, Antonio Torralba, and Russ Tedrake. Propagation
networks for model-based control under partial observa-
tion. In 2019 International Conference on Robotics and
Automation (ICRA), pages 1205–1211. IEEE, 2019.

[36] Yunzhu Li, Toru Lin, Kexin Yi, Daniel Bear, Daniel
Yamins, Jiajun Wu, Joshua Tenenbaum, and Antonio
Torralba. Visual grounding of learned physical models.
In International conference on machine learning, pages
5927–5936. PMLR, 2020.

[37] Yunzhu Li, Antonio Torralba, Anima Anandkumar, Di-
eter Fox, and Animesh Garg. Causal discovery in physi-
cal systems from videos. Advances in Neural Information
Processing Systems, 33, 2020.

[38] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit
Agrawal, and Antonio Torralba. 3d neural scene rep-
resentations for visuomotor control. In Conference on
Robot Learning, pages 112–123. PMLR, 2022.

[39] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver
Wang. Neural scene flow fields for space-time view
synthesis of dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6498–6508, 2021.

[40] Lucas Manuelli, Yunzhu Li, Pete Florence, and Russ
Tedrake. Keypoints into the future: Self-supervised
correspondence in model-based reinforcement learning.
arXiv preprint arXiv:2009.05085, 2020.

[41] Lars Mescheder, Michael Oechsle, Michael Niemeyer,
Sebastian Nowozin, and Andreas Geiger. Occupancy net-
works: Learning 3d reconstruction in function space. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4460–4470, 2019.

[42] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for
view synthesis. In European conference on computer
vision, pages 405–421, 2020.

[43] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick
Haber, Li Fei-Fei, Joshua B Tenenbaum, and Daniel LK

Yamins. Flexible neural representation for physics pre-
diction. arXiv preprint arXiv:1806.08047, 2018.

[44] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and
Vikash Kumar. Deep dynamics models for learning dex-
terous manipulation. In Conference on Robot Learning,
pages 1101–1112. PMLR, 2020.

[45] Michael Niemeyer and Andreas Geiger. Giraffe: Repre-
senting scenes as compositional generative neural feature
fields. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021.

[46] Michael Niemeyer, Lars Mescheder, Michael Oechsle,
and Andreas Geiger. Occupancy flow: 4d reconstruc-
tion by learning particle dynamics. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 5379–5389, 2019.

[47] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt,
and Felix Heide. Neural scene graphs for dynamic
scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2856–
2865, 2021.

[48] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape represen-
tation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 165–
174, 2019.

[49] Keunhong Park, Utkarsh Sinha, Jonathan T Barron,
Sofien Bouaziz, Dan B Goldman, Steven M Seitz, and
Ricardo Martin-Brualla. Nerfies: Deformable neural
radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5865–
5874, 2021.

[50] Keunhong Park, Utkarsh Sinha, Peter Hedman,
Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf:
A higher-dimensional representation for topologically
varying neural radiance fields. arXiv preprint
arXiv:2106.13228, 2021.

[51] Songyou Peng, Michael Niemeyer, Lars Mescheder,
Marc Pollefeys, and Andreas Geiger. Convolutional
occupancy networks. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part III 16, pages 523–540. Springer,
2020.

[52] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez,
and Peter W Battaglia. Learning mesh-based simulation
with graph networks. arXiv preprint arXiv:2010.03409,
2020.

[53] Samuel Pfrommer, Mathew Halm, and Michael Posa.
Contactnets: Learning of discontinuous contact dynamics
with smooth, implicit representations. Conference on
Robot Learning, 2020.

[54] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,



pages 10318–10327, 2021.
[55] Haozhi Qi, Xiaolong Wang, Deepak Pathak, Yi Ma, and

Jitendra Malik. Learning long-term visual dynamics with
region proposal interaction networks. arXiv preprint
arXiv:2008.02265, 2020.

[56] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo
Morishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-
aligned implicit function for high-resolution clothed hu-
man digitization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2304–
2314, 2019.

[57] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias
Springenberg, Josh Merel, Martin Riedmiller, Raia Had-
sell, and Peter Battaglia. Graph networks as learnable
physics engines for inference and control. In Interna-
tional Conference on Machine Learning, pages 4470–
4479. PMLR, 2018.

[58] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias
Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
Learning to simulate complex physics with graph net-
works. In International Conference on Machine Learn-
ing, pages 8459–8468. PMLR, 2020.

[59] Connor Schenck and Dieter Fox. Perceiving and rea-
soning about liquids using fully convolutional networks.
The International Journal of Robotics Research, 37(4-5):
452–471, 2018.

[60] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hu-
bert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore
Graepel, et al. Mastering atari, go, chess and shogi by
planning with a learned model. Nature, 588(7839):604–
609, 2020.

[61] Ingmar Schubert, Danny Driess, Ozgur S. Oguz, and
Marc Toussaint. Learning to execute: Efficient learning
of universal plan-conditioned policies in robotics. In
NeurIPS 2021 - Neural Information Processing Systems,
2021.

[62] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jas-
mine Hsu, Eric Jang, Stefan Schaal, Sergey Levine,
and Google Brain. Time-contrastive networks: Self-
supervised learning from video. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 1134–1141. IEEE, 2018.

[63] Tom Silver, Rohan Chitnis, Aidan Curtis, Joshua Tenen-
baum, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
Planning with Learned Object Importance in Large Prob-
lem Instances using Graph Neural Networks. arXiv
preprint arXiv:2009.05613, 2020.

[64] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
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