
Certified Polyhedral
Decompositions of
Collision-Free Configuration
Space

International Journal of Robotics
Research
XX(X):1–45
©The Author(s) 0000
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Hongkai Dai*2, Alexandre Amice*1, Peter Werner1, Annan Zhang1, Russ
Tedrake1,2

Abstract
Understanding the geometry of collision-free configuration space (C-free) in the presence of task-
space obstacles is an essential ingredient for collision-free motion planning. While it is possible
to check for collisions at a point using standard algorithms, to date no practical method exists for
computing C-free regions with rigorous certificates due to the complexity of mapping task-space
obstacles through the kinematics. In this work, we present the first to our knowledge rigorous method
for approximately decomposing a rational parametrization of C-free into certified polyhedral regions.
Our method, called C-IRIS (C-space Iterative Regional Inflation by Semidefinite programming),
generates large, convex polytopes in a rational parameterization of the configuration space which
are rigorously certified to be collision-free. Such regions have been shown to be useful for both
optimization-based and randomized motion planning. Based on convex optimization, our method
works in arbitrary dimensions, only makes assumptions about the convexity of the obstacles in the
task space, and is fast enough to scale to realistic problems in manipulation. We demonstrate our
algorithm’s ability to fill a non-trivial amount of collision-free C-space in several 2-DOF examples
where the C-space can be visualized, as well as the scalability of our algorithm on a 7-DOF KUKA
iiwa, a 6-DOF UR3e and 12-DOF bimanual manipulators. An implementation of our algorithm is
open-sourced in Drake. We furthermore provide examples of our algorithm in interactive Python
notebooks.

1 Introduction
The notion of configuration space (C-space) has played a foundational role in robot motion planning
since its proposal in the seminal work (Lozano-Perez 1983). In the presence of obstacles in the Cartesian

1Massachusetts Institute of Technology (MIT), 2Toyota Research Institute, *equal contribution

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

https://drake.mit.edu/
https://deepnote.com/workspace/alexandre-amice-c018b305-0386-4703-9474-01b867e6efea/project/C-IRIS-7e82e4f5-f47a-475a-aad3-c88093ed36c6/notebook/2d_example_bilinear_alternation-14f1ee8c795e499ca7f577b6885c10e9
https://deepnote.com/workspace/alexandre-amice-c018b305-0386-4703-9474-01b867e6efea/project/C-IRIS-7e82e4f5-f47a-475a-aad3-c88093ed36c6/notebook/2d_example_bilinear_alternation-14f1ee8c795e499ca7f577b6885c10e9

2 International Journal of Robotics Research XX(X)

task space, a fundamental challenge is describing the collision-free C-space (C-free): the full range of
configurations for which a robot is not in collision. Prior work has taken two complementary approaches
to this problem.

The first approach attempts to find an explicit description of the C-space obstacles from their task-
space description and the inverse kinematics (IK). We refer to this approach as the negative approach, as
C-free is described as the complement of the set of C-space obstacles. In its full generality, the problem
of describing C-space obstacles is intractable (Canny 1988), and so limiting assumptions on the robot
are often made. For example, (Kavraki 1995) develops a method for computing C-space obstacles based
on the Fast Fourier Transform under the assumption that the robot can only translate in the workspace.
In (Branicky and Newman 1990), explicit descriptions of C-space obstacle due to the presence of point,
line, and planar task-space obstacles are presented for two and three degree of freedom (DOF) robots. A
thorough review of describing C-space obstacles can be found in (Latombe 2012, Chapter 3). There it is
shown that if all the task-space obstacles are described as semi-algebraic sets (i.e. as the intersection and
union of polynomial inequalities) then C-space obstacles are also semi-algebraic. This is an important
result from a complexity-theoretic standpoint as it shows that describing the C-space obstacles is at least
decidable, though still very hard.

We refer to the second approach as the positive approach, as it seeks to directly describe C-free as a
union of simpler sets. This description is attractive as a variety of optimization-based motion planning
methods can efficiently leverage such descriptions, particularly when the simpler sets are convex (Deits
and Tedrake 2015b; Schouwenaars et al. 2001; Marcucci et al. 2021, 2022).

Rapidly-exploring Random Trees (RRT) (LaValle 1998), Probabilistic Roadmaps (PRM) (Kavraki
et al. 1996), and their variants can all be considered examples of this approach, describing C-free using
piecewise-linear paths. Frequently, these methods provide probabilistic guarantees that the paths contain
no collisions via sampling along the paths. To avoid false positive claims of non-collision, rigorous
certification procedures such as (Schwarzer et al. 2004) can be used. Works such as (Verghese et al.
2022; Han et al. 2019; Wong et al. 2014) all seek to describe non-zero volume subsets of C-free. Similar
to RRTs and PRMs, these methods have the advantage of working in arbitrary configuration spaces,
make no assumptions on the C-space obstacles, and proceed via sampling. Therefore, they are typically
relatively simple to implement and quite fast in low dimensions. Unfortunately, these methods only
provide probabilistic guarantees of non-collision.

When the C-space obstacles are assumed to be convex, rigorous descriptions of C-free may be
possible, though hardness results exist. For example, in two and three dimensions with polyhedral C-
space obstacles, it is known that finding a minimal decomposition is NP-hard (Lingas 1982) to solve
exactly and even APX-hard (Eidenbenz and Widmayer 2003) to approximate*. Works such as (Lien and
Amato 2007) and (Ghosh et al. 2013) overcome these hardness results by finding decompositions that
are unions of approximately convex sets.

In arbitrary dimensions and under the assumption of known, convex C-space obstacles, C-free can be
decomposed into convex polyhedra by using the IRIS algorithm of (Deits and Tedrake 2015a). As it is
based on convex programming, IRIS is relatively fast, and is also able to generate rigorous certificates of

*A problem is said to be APX-hard if no polynomial time algorithm can achieve an approximation ratio of 1 + δ for some
δ > 0 unless P = NP .

Prepared using sagej.cls

Dai, Amice, et al. 3

non-collision. Unfortunately, it is often the case that obstacles are naturally described as convex sets in
task space, which are rarely convex in C-space.

In this work, we similarly provide a method for describing C-free using convex polyhedra in a bijective,
rational parametrization of C-space known as the tangent configuration space (TC-space). Our primary
technical contributions are two convex (specifically Sums-of-Squares (SOS)) programs which can certify
that a polyhedron in TC-space contains no collision when the obstacles are specified as convex sets in task
space. Similar to (Deits and Tedrake 2015a), we then construct certified, collision-free polytopic regions
by alternating between a pair of convex programs. Our method works in arbitrary dimensions and is the
first to our knowledge to provide rigorous certificates for non-zero volume sets in this setting. Moreover,
we provide a fast, mature implementation technique in the open-source robotics toolbox Drake†.

A conference version of this paper is published in (Amice et al. 2022), which assumes a robotic
manipulator composed of revolute joints operating in a scene where all task-space obstacles are
decomposed as a union of vertex representation (V-rep) polytopes. This journal version extends these
results in many ways.

First, we demonstrate how our approach can be extended to handle other common, non-polytopic
geometries such as spheres, capsules, and cylinders. Moreover, we describe how to extend our approach
to handle a robot composed of any of the algebraic joints: revolute, prismatic, spherical, planar, and
cylindrical. Our second technical contribution introduces a second method for certifying non-collision
inspired by the dual of the separating hyperplane approach used in the conference paper. This approach
takes the form of certifying the emptiness of a set of polynomial equations and inequalities which can
also be written as an optimization program. The third technical contribution of this work is to show
that feasibility of the optimization programs we use for certification is not only sufficient, but also
necessary for a TC-space region to be collision free provided the degree of certain polynomials are
chosen sufficiently large. Finally, we provide new examples of our algorithm deployed on various robots
including 2-DOF robots to visualize the TC-space, a robot containing a prismatic joint, and a UR3e robot
with collision geometries approximate by cylinders.

We begin in Section 2 by formally introducing our problem and our assumptions. We proceed in
Section 3 by introducing necessary mathematical background for describing our technical approach. In
Section 4, we present our most technical results: two convex programs which can certify whether a region
of TC-space is collision-free. We also state the conditions under which feasibility of these programs
are guaranteed when a proposed region is collision-free. We describe how to leverage the certification
programs to generate convex decompositions of TC-free in Section 5. We conclude in Section 6 with
examples of our algorithm deployed on various robots. We will first illustrate the algorithm on two
simple 2-DOF systems where both the task and configuration spaces can be visualized and the entire
configuration space can be quickly covered. We next demonstrate the ability of our algorithm to certify
a wide range of postures for two realistic, 7-DOF manipulators interacting with a shelf. We conclude by
showing our algorithm’s ability to scale by exploring two 12-DOF, bimanual manipulators.
Notation: Throughout the paper, we will use calligraphic letters (S) to denote sets, Roman capitals (X)
to denote matrices, and Roman lower case (x) to denote vectors. We use [N] = {1, . . . , N}, denote the

†https://drake.mit.edu/

Prepared using sagej.cls

https://drake.mit.edu/
https://drake.mit.edu/

4 International Journal of Robotics Research XX(X)

set of all multivariate polynomials in the vector of variables x as R[x], and denote the cone of Sums-of-
Squares (SOS) polynomials as Σ. Additionally, we will adopt the monogram notation of (Tedrake 2021)
for rigid transforms.

2 Problem Statement
We consider a known, task-space environment where our robot and all obstacles have been decomposed
as a union of compact, convex bodies‡ for example cylinders, capsule, spheres, or vertex representation
(V-rep) polytopes. Such collision geometries of our task space are readily available through standard
tools such as V-HACD (Mamou and Ghorbel 2009) and are often a required step for simulating any
given environment.

Our robot is a mechanism composed of N + 1 links connect via either revolute or prismatic joints
(Wampler and Sommese 2011):

• Revolute (R): a 1-DOF joint permitting revolution about an axis of symmetry. An example is a
door handle.

• Prismatic (P): a 1-DOF joint permitting translation along an axis. An example is a linear rail.

We will assume that all revolute joints are constrained from undergoing complete rotations and all
prismatic joints have bounded translation. Formally, if θ is the configuration-space variable associated
to revolute joint, then:

−π < θl ≤ θ ≤ θu < π, (1)

and if z is the configuration-space variable associated to a displacement then:

zl ≤ z ≤ zu. (2)

where the bounds θl, θu, zl, and zu are fixed constants.
Our objective is to find large, convex regions of TC-free regardless of the dimension of the

configuration space. This objective is beyond the scope of current decomposition for non-convex
spaces/objects such as V-HACD due to the dimensionality of the problem for interesting robots and
the complexity of the non-linear kinematics.

Remark 1. Our approach can handle a robot composed of any of the five algebraic joints: revolute,
prismatic, planar, cylindrical, planar, and spherical (Wampler and Sommese 2011). We restrict ourselves
to R and P joints as the other joints can be seen as a composition of these two (see appendix A for details).

3 Background
This section introduces key notions from convex analysis and algebraic geometry that will be essential
for our approach presented in Section 4. We begin by recalling some classic theorems pertaining to

‡For technical reasons, we formally assume that the bodies are compact, convex sets expressible as a Archimedean, basic
semi-algebraic sets. See Appendix B for the definition of Archimedean

Prepared using sagej.cls

Dai, Amice, et al. 5

the separation of convex bodies. We next review the Positivstellensatz, a central theorem from algebraic
geometry that forms the basis for many applications of the Sums-of-Squares method that we will leverage.
We conclude by recalling a parameterization of a robot’s forward kinematics using rational functions.

3.1 Separating Convex Bodies
In this section, we review two dual ways to check whether two compact, convex sets A and B intersect
by using convex optimization. Our certification programs in Section 4 will rely on generalizations of the
programs introduced in this section.

A well-known result from convex optimization theory is the Separating Hyperplane Theorem (Boyd
et al. 2004, Section 2.5) which states thatA and B do not intersect, if and only if there exists a hyperplane
H(a, b) = {x | aTx+ b = 0, (a, b) 6= (0, 0)} which strictly separates the two bodies. The hyperplane
H(a, b) serves as a certificate of non-intersection. Such a hyperplane is visualized in Figure 1a and is
described by the solution to program (3). Many previous works (Brossette and Wieber 2017; Lin et al.
2022) have applied the Separating Hyperplane Theorem to find a single collision-free posture; in this
paper we apply the theorem to find a convex set of collision-free postures.

Conversely, ifA and B do intersect, then it is possible to certify this by finding a point inA ∩ B. Such a
point can be found by solving the convex optimization program (4). A certificate of the infeasibility of (4)
proves that A and B do not intersect. Finding a certificate of infeasibility can be obtained by considering
the dual of (4) and is a standard notion in convex optimization (Boyd et al. 2004, Section 5.8).

A solution to program (3) has the advantage of being able to quantify the magnitude of separation
between the two bodies. Therefore, in Section 5 we will prefer to base our algorithm on a generalization
of (3). However, we will see that certain results will be easier to show by considering the infeasibility of
program (4).

We conclude by noting that programs (3) and (4) are strong alternatives; exactly one of the two
programs is feasible. The key to solving either program is to find a finite parameterization of conditions
(3a), (3b), and (4a). In Table 1, we provide a convenient reference for some common geometries.

Remark 2. Problem (3) is frequently written with non-strict inequalities (3a) and (3b) to make it
compatible with modern solvers. Such a formulation requires excluding the trivial solution (a, b) = (0, 0)
via extra constraints as well as planes which are not strictly separating. The conditions given in Table
1 accomplish both with the constraint aTx+ b ≥ 1 with x = vi for polytopic geometries and x = o for
sphere, cylinder, and capsules.

3.2 Certificates of Positivity and Infeasibility
In Section 4, we will show how to generalize programs (3) and (4) to be able to certify non-collision for
a range of robot configurations. Both generalizations will reduce to well-studied polynomial problems.
Specifically, given the set

Sg,h = {x | gi(x) ≥ 0, hj(x) = 0, i ∈ [n], j ∈ [m]},

§Strictly speaking, the formulation (3a) given for the sphere, capsule, and cylinder only enforce non-strict separation i.e.
aT x+ b ≥ 0. This can be remedied by replacing r with r + ε for any ε > 0.

Prepared using sagej.cls

6 International Journal of Robotics Research XX(X)

Find a, b

aTx+ b > 0, ∀ x ∈ A (3a)

aT y + b < 0, ∀ y ∈ B (3b)

Find x, y subject to
x ∈ A, y ∈ B (4a)

x = y (4b)

A

B
a
T x

+
b =

0

(a) If A ∩ B = ∅ then there exists a hyperplane
aT x+ b = 0 which separates the two bodies.

A B
x = y

(b) If A ∩ B 6= ∅ then there exists x ∈ A and y ∈ B
such that x = y

Figure 1. Program (3) searches for a hyperplane which separates A and B while program (4) searches for a
point in A ∩ B. Both of these are convex optimization programs, and exactly one of these programs is feasible.

where gi(x) and hj(x) are all given polynomial functions of x, then certifying the separating hyperplane
conditions (3a) and (3b) will be akin to a certifying a polynomial implication of the form

x ∈ Sg,h =⇒ p(x) ≥ 0 (5)

where p(x) is again a polynomial.
Moreover, certifying the infeasibility of (4) will be akin to certifying that

Sg,h = ∅. (6)

Both of these polynomial problems are tractable. In particular, a class of results known as
Positivstellensatz Theorems (Psatz) can be used to reduce both problems to a convex optimization
program (Parrilo 2000; Blekherman et al. 2012). In this section, we review the Psatz results that we
will use.

Our assumption (1) and (2) that our robot has joint limits implies that the subsets of TC-free we wish
to certify will be Archimedean sets, a property slightly stronger than compactness formally defined in
Appendix B. This will enable us to use a very strong Psatz Theorem for proving implications of the form
(5) known as Putinar’s Positivstellensatz.

Theorem 1. Positivstellensatz (Putinar 1993). Suppose Sg,h is Archimedean and suppose that p(x) > 0
for all x ∈ Sg,h. Then there exists polynomials φj(x), j = 0, . . . ,m and SOS polynomials λi(x), i =

Prepared using sagej.cls

Dai, Amice, et al. 7

Body aTx+ b > 0, ∀x ∈ A x ∈ A

V-rep Polytope
with vertices

{v1, . . . , vm}.
aT vi + b ≥ 1, ∀ i ∈ {1, . . . ,m}

x =

m∑
i=1

µivi,
∑
i=1

µi = 1,

µi ≥ 0

Sphere with
center o and
radius r.

aT o+ b ≥ r ‖a‖
aT o+ b ≥ 1

‖x− o‖2 ≤ r2

Capsule, the
convex hull of
two spheres with
centers o1 and o2

and radii r1 and
r2.

aT o1 + b ≥ r1 ‖a‖
aT o2 + b ≥ r2 ‖a‖
aT o1 + b ≥ 1

oµ = µo1 + (1− µ)o2

‖x− oµ‖ ≤ µr1 + (1− µ)r2

0 ≤ µ ≤ 1

Cylinder, the
convex hull of
two circles with
centers o1 and o2,
and with radii r1

and r2.

az ‖o1 − o2‖
2

+ b ≥ r1

∥∥[ax ay
]∥∥

−az ‖o1 − o2‖
2

+ b ≥ r2

∥∥[ax ay
]∥∥

aT
(
o1 + o2

2

)
+ b ≥ 1

oµ = µo1 + (1− µ)o2

vT (o1 − o2) = 0

x = oµ + v

‖v‖ ≤ µr1 + (1− µ)r2

0 ≤ µ ≤ 1

Table 1. Parameterizations of conditions (3a) and (4a) respectively for particular convex bodies. §

0, . . . , n such that:

p(x) = λ0(x) +

n∑
i=1

λi(x)gi(x) +

m∑
j=1

φj(x)hj(x). (7)

Moreover, if p(x) is any polynomial that can be expressed as in (7), then

x ∈ Sg,h =⇒ p(x) ≥ 0 (8)

As an immediate corollary, the previous theorem can be used to prove that Sg,h is empty.

Prepared using sagej.cls

8 International Journal of Robotics Research XX(X)

Theorem 2. (Parrilo 2004). Suppose Sg,h is Archimedean. Then Sg,h = ∅ if and only if there exists
polynomials φj(x) and SOS polynomials λi(x) such that

−1 = λ0(x) +
∑
i

λi(x)gi(x) +
∑
j

φj(x)hj(x). (9)

In both cases, the multiplier polynomials λ and φ serve as certificates that the conditions (5) or (6) hold.
These certificates can be searched for using a convex optimization technique known as Sums-of-Squares
(SOS) programming, a subset of semidefinite programming (SDP) (Parrilo 2000). The SOS technique
has been widely used in robotics, for example in stability verification (Tedrake et al. 2010; Majumdar
and Tedrake 2017; Shen and Tedrake 2020), reachability analysis (Jarvis-Wloszek et al. 2003; Yin et al.
2021) and geometric modeling (Ahmadi et al. 2016). In this paper, we will use SOS programming to
generate certificates that subsets of TC-space are contained in TC-free.

3.3 Rational Forward Kinematics
Our method in Section 4 will rely critically on parameterizing the forward kinematics of our robot
using polynomials. Many robots contain rotational joints and so their forward kinematics are naturally
specified as trigonometric functions. In this section, we review a standard change of variables of our robot
kinematics which will enable us to parameterize the forward kinematics as a rational function.

The forward kinematics of a rigid-body robot with N joints can be written by composing rigid
transforms (Craig 2005; Tedrake 2021). Written in homogeneous coordinates, and using the monogram
notation Tedrake (2021)¶, the pose of a frame A, expressed in the reference frame F , as a function of the
robot configuration q assumes the form:

FXA =

[
FRA(q) F pA(q)

01×3 1

]
=

∏
i∈IF,A

PiXCi(qi)
CiXPi+1 (10)

In equation (10), IF,A = {i1, . . . , in} ⊆ [N] is the set of joints lying on the kinematic chain between F
and A. We attach two frames to each joint, with Pi rigidly fixed to the parent link of the ith joint, and
Ci rigidly fixed to the child link of the same joint. The two frames Pi and Ci coincide when the joint
configuration qi = 0. The subset of configuration variables qi defines the degrees of freedom at the ith

joint, PiXCi(qi) is the relative transform of the joint after the joint moves by qi. The rigid transform
CiXPi+1 describes the physical properties of the ith link such as its length. We assume that the reference
frame F is the Pi1 , the parent frame of the first joint i1; while the frame A is Cin , the child frame of
the last joint in. || We choose to be explicit about the reference frame F at the risk of being pedantic,
as the choice of reference frame F will have important consequences for the scalability of the approach
described in Section 5 (see Appendix F.1 for a detailed discussion).

¶In monogram notation, the pose of a frame A expressed in a frame F is denoted as FXA.
||Since joint in is the last joint on this chain IF,A, we assume CinXPin+1 = I .

Prepared using sagej.cls

Dai, Amice, et al. 9

The matrices PiXCi(qi) assume the following forms (Wampler and Sommese 2011)

PiXCi(qi) =

cos(θi) − sin(θi) 0 0

sin(θi) cos(θi) 0 0

0 0 1 0

0 0 0 1

 if ith joint is Revolute

1 0 0 0

0 1 0 0

0 0 1 zi

0 0 0 1

 if ith joint is Prismatic

(11)

Expression (10) expresses the position of our robot as an multilinear trigonometric polynomial
function. Concretely, the wth component (where w ∈ {x, y, z}) of the position of A relative to F and
expressed in F is an expression of the form:

F pAw(q) =
∑
j

cjw
∏

i∈IF,A

ξij,w(qi) (12)

with ξij,w(qi) ∈ {cos(θi), sin(θi), zi}. The scalar constants cjw are determined by the robot kinematic
parameters (link length, joint axis, etc). Therefore, our configuration-space variables are

q =
⋃
i

{θi, zi}.

Multilinear trigonometric functions have many fortunate algebraic properties which we exploit
throughout this paper, the first of which will be a change of variables enabling us to write (12) as a
rational function.

Specifically, we will introduce the substitution:

ti := tan

(
θi
2

)
, (13)

which allows us to write

cos(θi) =
1− t2i
1 + t2i

, sin(θi) =
2ti

1 + t2i
.

This substitution is known as the stereographic projection (Spivak 1994) and is bijective if θi ∈ (−π, π)
which we have assumed is the case for our robotic system**. After performing this change of variables,

**An alternative approach is to write the forward kinematics pw(q) as a multilinear polynomial of indeterminates ci = cos(θi)

and si = sin(θi), with the additional constraints c2i + s2i = 1. We don’t choose this parameterization as it is hard to integrate the
volume on the quotient ring c2i + s2i = 1, ∀i. Also this parameterization requires introducing two variables ci, si for each revolute
joint, rather than one variable ti.

Prepared using sagej.cls

10 International Journal of Robotics Research XX(X)

our forward kinematics variables are

s =
⋃
i

{ti, zi}.

We refer to the configuration-space variable s as the tangent-configuration-space (TC-space) variable.
In the TC-space variable, our forward kinematics are a rational function with a polynomial numerator

and positive, polynomial denominator. This is an expression of the form

F pAw(s) =
∑
j

cjw
∏

i∈IF,A

F fAij,w(si)
F gAij,w(si)

=
F fAw (s)
F gAw(s)

, w ∈ {x, y, z}, (14)

where
F fAij,w(si)
F gAij,w(si)

∈
{

1− t2i
1 + t2i

,
2ti

1 + t2i
,
zi
1

}
.

We will abbreviate the vector quantity:

F pA(s) =
F fA(s)
F gA(s)

(15)

where F fA(s) is a vector of polynomials and F gA(s) is a single, positive polynomial. Notice that
F gA(s) > 0 since each denominator F gAij,w(si) = 1 + t2i or 1, which is strictly positive.

We emphasize again that we have assumed:

−π < θl,i ≤ θi ≤ θu,i < π,

zl,i ≤ zi ≤ zu,i.

and therefore generically sl ≤ s ≤ su component-wise.
Therefore, our substitution between q and s is bijective and so trajectories in TC-space correspond

unambiguously to trajectories in C-space. Moreover, this assumption on boundedness of our
configuration space allows us to seek collision-free regions P that are contained within Plim, a polytope
encoding our joint limit: P ⊆ Plim = {s | sl ≤ s ≤ su}.

Example 1. As an example, we consider the double pendulum (Tedrake 2022).
The pose of the tip of the second pendulum can be written as: R(θ)

px(θ)
py(θ)

0 1

 =

cos(θ1) sin(θ1) 0
sin(θ1) − cos(θ1) 0

0 0 1

1 0 0
0 1 l1
0 0 1

 ∗
cos(θ2) sin(θ2) 0

sin(θ2) − cos(θ2) 0
0 0 1

1 0 0
0 1 l2
0 0 1

Prepared using sagej.cls

Dai, Amice, et al. 11

x

y

θ1

θ2

l1

l2

Figure 2. The forward kinematics of the double pendulum described in (Tedrake 2022) can be described in
the form (10).

The difference in the sign of the trigonometric part ensures that the y-axis is pointing down. Expanding
out this product enables us to write the x coordinate of the tip of the system as:

px(θ1, θ2) = l2(sin(θ2) cos(θ1)− sin(θ1) cos(θ2)) + l1 sin(θ1)

py(θ1, θ2) = l2(sin(θ1) sin(θ2) + cos(θ1) cos(θ2))− l1 cos(θ1)

Notice that these are multilinear trigonometric polynomials, i.e. no term contains cos(θi) sin(θi). We can
perform the substitution given in (13) to express the position as a rational function:

px(t1, t2) =
2l2(t2(1− t1)2 − t1(1− t2)2) + 2l1t1(1 + t2)2

(1 + t21)(1 + t22)

py(t1, t2) =
l2(4t1t2 + (1− t1)2(1− t2)2)− l1(1− t1)2(1 + t2)2

(1 + t1)2(1 + t2)2

.

4 Certification of Set-Membership in TC-Free
In this section, we will consider the problem of certifying the non-collision of two convex bodies A and
B whose poses in task space are a function of the configuration of our robot. While programs (3) and (4)
can be used to certify non-collision between A and B for any fixed configuration, they are insufficient to
certify A and B do not intersect for all configurations in an entire region P of the configuration space.
Therefore, in Sections 4.1 and 4.2, we will show how to combine the ingredients of Section 3 to generalize
programs (3) and (4).

The presence of trigonometric functions when the forward kinematics are expressed in the variable q
precludes using SOS programming, our tool of choice. Therefore, we will assume that A(s) and B(s)

Prepared using sagej.cls

12 International Journal of Robotics Research XX(X)

are convex sets in task space with their poses expressed as rational functions in the TC-space variable s.
This can be achieved using the developments in Section 3.3. Our objective will be to certify that A(s)
and B(s) do not intersect for all s ∈ P = {s | Cs ≤ d} ⊆ Plim = {s | sl ≤ s ≤ su}.

Under these assumptions, the generalizations of (3) and (4) will respectively take the form of certifying
a polynomial implication and certifying the emptiness of a basic-semialgebraic set. We give a formulation
of each as a SOS program. We will conclude in Section 4.3 by proving that feasibility of our convex
optimization programs is both necessary and sufficient for P to be collision-free.

4.1 Parametrized Hyperplane Certificates of Non-Collision
In this section, we generalize (3) and use SOS to search for a polynomial family of hyperplanes
parametrized by the TC-space variable s which will certify the non-collision of A(s) and B(s) for all
s ∈ P = {s | Cs ≤ d}.

We begin by remarking that even if A(s) and B(s) do not collide for all s ∈ P , there may not be a
single, static hyperplaneH = (a, b) which certifies this fact. An example of this can be seen in Figure 3.

A

B

H
A

B

H

Figure 3. The convex collision geometries A(s) and B(s) are collision-free if and only if there exists a family of
hyperplanes H(s) separating the two for each configuration s0. The planes act as a certificate of non-collision.

We therefore will look for a polynomial family of hyperplanes H(s) = {x | a(s)Tx+ b(s) = 0}
parametrized by our TC-space variable s. Inspection of Table 1 shows that we must generalize

s ∈ P =⇒ aT (s) F pv(s) + b(s) ≥ 1, (16)

for particular points v specific to each of the geometries, and

s ∈ P =⇒ aT (s) F po(s) + b(s) ≥ r ‖a(s)‖ , (17)

for center o ifA(s) is either a sphere or capsule. The generalization of the conditions for the cylinder are
similar to those of the sphere and capsule, and so we defer its complete derivation to Appendix D.

To generalize (16) and (17), we recall that the position of any point A ∈ A(s) (and similarly B(s)) can
be expressed as a rational function F pA(s) =

F fA(s)
F gA(s)

where F gA(s) > 0.
Therefore, we can express (16) as:

s ∈ P =⇒ aT (s) F fv(s) + (b(s)− 1) F gv(s) ≥ 0 (18)

Prepared using sagej.cls

Dai, Amice, et al. 13

This is an polynomial implication of the form (8). As P ⊆ Plim is compact polytope, P is Archimedean
(Marshall 2008, Theorem 7.1.3) and so we can use Theorem 1 to express condition (16) as:

aT (s) F fv(s) + (b(s)− 1) F gv(s) = λ01(s) +

m∑
j=1

λj1(s)(dj − cTj s) (19)

where λj1, j = 0, . . . ,m are all SOS polynomials.
The condition (17), can be expressed as a polynomial, matrix inequality using the Schur complement††

(Boyd et al. 2004)

s ∈ P =⇒

[(
(a(s))T F fo(s) + b(s) F go(s)

)
I3 ra(s) F go(s)

r(a(s))T F go(s) (a(s))T F fo(s) + b(s) F go(s)

]
� 0. (20)

This is known as a matrix SOS condition which can be represented as a set of semidefinite constraints
(Nie 2011). Specifically, by introducing a vector auxillary variable u, we can write (20) as:

s ∈ P, uTu = 1 =⇒

uT

[(
aT (s) F fo(s) + b(s) F go(s)

)
I3 ra(s) F go(s)

r(a(s))T F go(s) (a(s))T F fo(s) + b(s) F go(s)

]
u ≥ 0 (21)

which can be expressed as the SOS condition:

uT

[(
(a(s))T F fo(s) + b(s) F go(s)

)
I3 ra(s) F go(s)

r(a(s))T F go(s) (a(s))T F fo(s) + b(s) F go(s)

]
u =

λ02(u, s) +

m∑
j=1

λj2(u, s)(dj − cTj s) + φ(u, s)(1− uTu) (22)

where λj2 are all SOS polynomials, and φ ∈ R[u, s]. We introduce the additional equality uTu = 1 to
make the set {(u, s)|s ∈ P, uTu = 1} an Archimedean set.

We are now ready to describe our convex program certifying that P is a region of TC-space containing
no collision. For each pair of bodies A(s) and B(s) which can collide in the scene, we search for a
polynomial hyperplane via the optimization program:

∀ pairs A,B Find aA,B, bA,B subject to (23a)

∀ s ∈ P, aTA,B(s)x+ bA,B(s) > 0, ∀x ∈ A(s) (23b)

∀ s ∈ P, aTA,B(s)y + bA,B(s) < 0 ∀y ∈ B(s) (23c)

λA,Bij (u, s), µA,Bij (u, s) ∈ Σ, φA,B(u, s), χA,B(u, s) ∈ R[u, s] (23d)

††We have that γ ≥ r ‖a‖ if and only if the Schur complement
[
γI3 ra

raT γ

]
� 0.

Prepared using sagej.cls

14 International Journal of Robotics Research XX(X)

where (aA,B(s), bA,B(s)) are the parameters of the polynomial hyperplane separating A and B, the
polynomials λA,Bij (s) and φA,B(s) collect all the multiplier polynomials for enforcing (23b), and µA,Bij (s)

and χA,B(s) collect all the multiplier polynomials for enforcing (23c) by using (19) and (22) depending
on the geometry ofA and B. We stress in the above program that the decision variables are the coefficients
of the polynomials aA,B, bA,B, and the multiplier polynomials. The symbols u and s are known as
indeterminates and are not explicitly searched over.

In Table 2, we summarize the conditions for enforcing (23b) and (23c) for common families of sets.
We call a feasible solution to (23) a certificate for the polytope P which we denote:

CP =
⋃

(A,B)

{aA,B(s), bA,B(s), λA,Bij (u, s), φA,B(u, s), µA,Bij (u, s), χA,B(u, s)} (24)

Body Psatz Condition for (23b)

V-rep Polytope with m vertices vi
at position F pvi(s) =

F fvi (s)
F gvi (s)

Enforce (19) for each vertex vi.

Sphere with center o at position
F po(s) =

F fo(s)
F go(s)

and radius r
Enforce (22) for the center o with radius
r. Also enforce (19) for the center o.

Capsule, the convex hull of two
spheres with centers o1 and o2 at
positions F poi(s) =

F foi (s)
F goi (s)

and
radii r1, r2

For i ∈ {1, 2} enforce (22) for center oi
with radius ri. Also enforce (19) for oi.

Cylinder, the convex hull of two
circles with centers o1 and o2,
at position F poi(s) =

F foi (s)
F goi (s)

,
lying in the plane normal to
F po1(s)− F po2(s), and with radii
r1 and r2.

See Appendix D.

Table 2. SOS conditions for the constraint (23b) and (23c) depending on the geometry of bodies A and B.

4.2 Polynomial Infeasibility Certificates
As we remarked in section 3.1, non-collision of two convex shapesA and B can be checked by certifying
the infeasibility of (4). The infeasibility of (4) can be extended to the case when the locations of A(s)

Prepared using sagej.cls

Dai, Amice, et al. 15

and B(s) are a function of s.

Certify that @ s ∈ P, x, y ∈ R3 such that (25a)
x ∈ A(s), y ∈ B(s) (25b)

x = y (25c)

An equivalent, and perhaps more instructive, way of expressing (25) is to consider the set

SP,A,B = {x, s | s ∈ P, x ∈ A(s), x ∈ B(s)} (26)

=

x, s, uA, uB
∣∣∣∣∣∣∣∣∣∣

Cs ≤ d,
γAi (s, x, uA) ≥ 0, hAj (s, x, uA) = 0

γBk (s, x, uB) ≥ 0, hBl (s, x, uB) = 0,

i ∈ [nA], j ∈ [mA], k ∈ [nB], l ∈ [mB]

 (27)

and to consider the problem

Certify that SP,A,B = ∅, (28)

In (27), γAi (s, x, uA) and hAj (s, x, uA) are the polynomials encoding the condition that x ∈ A(s)

and uA collects any extra variables needed to write this condition. Similarly, uB, γBk (s, x, uB), and
hBl (s, x, uB) encode that x ∈ B(s). We provide explicit expressions for γAi , γ

B
k and hAj , h

B
l in Table

4 (given in Appendix C) for a few common geometries.

Example 2. If A is a polytope with nA vertices given by vAi , and B is a sphere with center oB and
radius rB, then we can write

SP,A,B =

x, s, µAi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Cs ≤ d,(∏
i

F gvAi

)(
x−

m∑
i=1

µAi

(
F fvAi (s)
F gvAi (s)

))
= 0,

1−
m∑
i=1

µAi = 0,

µAi ≥ 0 ∀ i ∈ [nA],

(
F goB(s)

)2r2
B −

∥∥∥∥∥x− F foB(s)
F goB(s)

∥∥∥∥∥
2
 ≥ 0

Now, we note that SP,A,B is an Archimedean set. This implies that we can use Theorem 2 to write

(28) as an optimization problem. Denoting u = {uA, uB}, this can be written explicitly as

Prepared using sagej.cls

16 International Journal of Robotics Research XX(X)

Find λ0, λ
P
j , λ

A
j , λ

B
j , φ

A
k , φ

B
k (29a)

− 1 = λ0(s, x, u) +

n∑
j=1

λPj (s, x, u)(dj − cTj s)+

nA∑
i=1

λAi (s, x, u)γAi (s, x, uA) +

mA∑
j=1

φAj (s, x, u)hAj (s, x, uA)+

nB∑
l=1

λBl (s, x, u)γBl (s, x, uB) +

mB∑
k=1

φBk (s, x, u)hBk (s, x, uB)

(29b)

λ0, λ
P
j , λ

A
i , λ

B
l ∈ Σ (29c)

φAj , φ
B
k ∈ R[s, x, u] (29d)

We again emphasize that in program (29) the decision variables are the coefficients of
λ0, λ

P
j , λ

A
i , λ

B
l , φ

A
j , and φBk , while the symbols {x, s, u} are not decision variables but rather

polynomial indeterminates. Similar to the program in (23), a certificate of non-collision can be obtained
by solving (29) for each pair (A,B) with the multipliers acting as the certificate.

4.3 Power of the Certification Programs
In this section, we consider the power of both certification programs. Specifically, in Sections 4.1 and 4.2
we argued that feasibility of (23) and (29) are sufficient to prove that P is collision-free. In this section,
we present two theorems showing that the feasibility of these programs is also necessary.

Such a result is important given the fact that as stated, (23) and (29) are infinite dimensional and
therefore in practice must be solved by selecting a basis of finite degree for the polynomials. Other
subtleties about the power of our formulation are discussed in Appendix E. Fortunately, we can prove
that there do exist finite degrees such that both programs become feasible when P is truly collision-free.

Theorem 3. Let all multiplier polynomials from (23) have degree at least ρ and let all of the polynomials
in the parameterization of the hyperplane have degree at least κ. Suppose P ⊆ Plim is a subset of TC-
free.

Then there exists finite κ and ρ sufficiently large such that (23) is feasible.

A similar theorem can be stated for the program in (29).

Theorem 4. Let P ⊆ Plim be a compact, polytopic subset of TC-free and let all multiplier polynomials
from (29) have degree at least ρ. There exists a finite ρ sufficiently large such that (29) is feasible.

We delay the proofs and further discussion of these results to Appendix E. For now, we simply remark
that Theorems 3 and 4 assert that the certification programs presented in this section are both complete
in the sense that any collision-free polytope P can be certified with our technique.

Prepared using sagej.cls

Dai, Amice, et al. 17

5 Polyhedral Decomposition of TC-free
In this section, we describe our algorithm for rapidly generating certified, polyhedral decomposition of
TC-free. Our algorithm can be seen as a generalization of the IRIS algorithm of (Deits and Tedrake 2015a)
to non-convex TC-space obstacles and so we name it C-IRIS (Configuration-Space, Iterative Regional
Inflation by Semidefinite programming). The key idea is to iteratively grow certified convex polytopes of
increasing size around various important configurations in the TC-space. This is achieved by solving a
series of convex optimization programs. The complete algorithm is summarized in Algorithm 1.

We begin by discussing how we will measure the size of our polytopeP = {s | Cs ≤ d}. While it may
be attractive to measure the size of a polytope by its volume, it is known that computing the volume of a
half-space representation (H-Rep) polytope is #P-hard‡‡ (Dyer and Frieze 1988) and therefore intractable
as an objective. A useful surrogate for the volume ofP used in (Deits and Tedrake 2015a) is the volume of
the maximum volume inscribed ellipse of P: the set EP = {Qs+ s0 | ‖s‖2 ≤ 1} where Q is a positive-
semidefinite matrix describing the shape of the ellipsoid and s0 its center. The problem of finding the
maximum volume inscribed ellipsoid in a polytope is a semidefinite program described in (Boyd et al.
2004, Section 8.4.2).

max
Q,s0

logdetQ subject to (30a)

‖Qci‖2 ≤ di − c
T
i s0 ∀ i ∈ [m] (30b)

Q � 0 (30c)

As we wish our polytopes to cover diverse areas of TC-free, we will grow each polytopeP around some
nominal configuration ss we call the seed point. New seed points are typically chosen using rejection
sampling to obtain a point outside of the existing certified regions. The polytope P is required to contain
ss as it grows.

A maximal volume, certified polytope around ss can be obtained by solving the following optimization
program which combines the ellipsoidal program (30) with the certification program (23) from Section
4.1.

max
Q,s0,C,d,
∀(A,B)

λA,Bij , φA,B,

µA,Bij , χA,B

aA,B, bA,B

logdetQ subject to (31a)

(30b), (30c) (31b)
Css ≤ d (31c)

‖ci‖2 ≤ 1 ∀ i ∈ [m] (31d)
(23b), (23c), (23d) (31e)

‡‡#P-hard problems are at least as hard as NP-complete problems (Provan and Ball 1983).

Prepared using sagej.cls

18 International Journal of Robotics Research XX(X)

δ1 δ6

δ5

δ4
δ3

δ2

Figure 4. In (32) we search for the maximum amount the polytopes faces can be pushed away from the
current inscribed ellipse without violating the certificate found in the previous step.

The condition EP ⊂ P is given by the constraints (31b). Constraint (31c) enforces that P grows around
ss. The added constraint (31d) prevents numerically undesirable scaling. Finally, (31e) enforces that we
search for hyperplanes (aA,B(s), bA,B(s)) which separate each collision pair A(s) and B(s).

While this program is attractive as a specification, it is not convex due to bilinearity between Q and ci
in (30b) and the bilinearity between the multipliers and the defining equations of P implicit in (31e) (see
Section 4.1). This bilinearity precludes simultaneous search of the polytope P , inscribed ellipsoid EP ,
and the corresponding certificate CP . Therefore, we will approximate the solution to (31) by alternating
between two convex programs; one of which will generate certificates of non-collision and one which
will improve our polytope without violating the previous certificate.

Remark 3. It is possible to replace (31e) with the equivalent constraints from program (29). We prefer
to base our algorithm on (23) as it can be visualized (i.e. planes in the task space) and the polynomials
contain fewer indeterminates and hence the optimization problem size is smaller. Also the separating
planes approach produces separating certificates with quantifiable margins by measuring the distance
from the collision geometries to the plane in task space.

We begin by demonstrating how a certified polytopic region can be improved. Suppose that a convex
polytope P = {s|Cs ≤ d} has been certified with certificate CP and the maximum inscribed ellipse EP
has been computed using (30). A new, larger polytopeP ′ can be found by solving the convex optimization
program (32) which pushes the faces of P ′ as far away from the surface of EP without violating the
certificate CP . This procedure is visualized in Figure 4.

Prepared using sagej.cls

Dai, Amice, et al. 19

This can be achieved with the following optimization program:

max
C,d,δ,
∀(A,B)

λA,B01 , λA,B02 , φA,B

µA,B01 , µA,B02 , χA,B

aA,B, bA,B

m∏
i=1

(δi + ε0) subject to (32a)

‖Qci‖2 ≤ di − δi − c
T
i s0, δi ≥ 0 ∀ i ∈ [m] (32b)

(31c), (31d), (31e) ∀pairs (A(s),B(s)) (32c)

where ε0 > 0 is some positive constant ensuring that the objective is never 0. We recall that (32c) is either
a constraint of the form (19) or (22). We emphasize that in (32), λi1, λi2, µi1, µi2, i ≥ 1 are all fixed and
it is the variables cj and dj which are searched over.

Algorithm 1: Given an initial polytopic region P0 and seed point ss ∈ P0 for which (31) is
feasible, return a new polytopic regionPi with a maximal inscribed ellipse EPi with larger volume
than EP0

and a collision-free certificate CPi .
1 i← 0
2 do
3 CPi ← Solution of (23) with data Pi
4 EPi ← Solution of (30) with data Pi
5 (Pi+1, CPi+1

)← Solution of (32) with data (EPi , CPi)
6 i← i+ 1

7 while
(
vol(EPi)− vol(EPi−1)

)
/vol(EPi−1) ≥ tolerance;

8 return (Pi, CPi)

Our complete algorithm proceeds in three steps. First, an initial, collision-free polytope P0 containing
a seed point ss is certified using (24) to obtain CP0 . Next, the maximum inscribed ellipsoid EP0 is
computed using (30). Finally, P0 is improved using (32) to obtain a new polytope P1. This polytope
P1 has the same number of defining inequalities as P0. We iterate this process until the volume of EP
stops improving. This algorithm is formalized in Algorithm 1. Every step of this process involves solving
an convex program for which very fast, commercial solvers exist (ApS 2019; Andersen and Andersen
2000).

Remark 4. Some practical considerations for improving the runtime of Algorithm 1 are discussed in
the appendices. Specifically, in Appendix F we expand on design choices which substantially impact the
size of the optimization programs as well as which part of Algorithm 1 can be parallelized. Additionally,
in Appendix G we discuss a heuristic strategy for proposing a large, initial regions P0.

6 Results
We demonstrate the use of Algorithm 1 on systems of varying complexity. We begin with very simple
robots where both the task and configuration space can be visualized and demonstrate that our algorithm

Prepared using sagej.cls

20 International Journal of Robotics Research XX(X)

can find very large portions of TC-space and achieve near-complete coverage for simple systems in
reasonable time.

We then demonstrate the use of Algorithm 1 on various robots commonly found in industry. These
include a KUKA iiwa reaching into a shelf, a bimanual KUKA iiwa, and similar setups for the Franka
UR3. Our objective is show the scalability of our algorithm in realistic settings as well as demonstrate
the diversity of shapes our approach can handle.

A mature implementation of our algorithm is available in the open-source robotics toolbox Drake
(Tedrake and the Drake Development Team 2019). We furthermore provide examples of our algorithm
in interactive Python notebooks. Animations of various figures in this section can also be found on this
project’s website.

The implementation details of all experiments in this section, such as the choice of reference frame for
each plane, the degree of the polynomials parametrizing the hyperplanes, and the degree of the multipliers
polynomials in each program are expounded on in Appendix F.

6.1 Simple Robots
In this section, we consider two simple robots each containing only two degrees of freedom. This enables
us to visualize both the task space, as well as the configuration space. Though containing few degrees of
freedom, each environment maintains rich, realistic collision geometries.

6.1.1 Pendulum on a Rail Our first robot shown in Figure 5a consists of a single arm, shown in orange,
connected to a base via a revolute joint and placed within a box. The base of the robot is connected to
the box via a prismatic joint. The collision geometries of the robot and box are approximated using
polytopic boxes. A total of 42 pairs of geometries can collide in this scene (i.e. certifying non-collision
requires solving 42 instances of either (23) or (29)). In Figure 5b, we visualize the two dimensional
tangent configuration space of our robot with the TC-space obstacle shown in red. We emphasize the
highly non-convex shape of TC-free.

We run Algorithm 1 starting with a regular octagon of side length 0.01 centered at the configuration
(0, 0), a configuration with the arm fully extended upwards and centered in the box. We obtain a sequence
of certified polytopes of increasing size in the TC-space which are plotted in varying colors in Figure 5b.

The algorithm terminates after 86 iterations of the while loop from Algorithm 1 taking a total of 314
seconds of wall time. During the course of the algorithm, the volume of the maximum inscribed ellipsoid
improves by a factor of 83, from a starting value of 0.021 to 1.746. The improvement in the volume of
the inscribed ellipsoid, as well as the average time to solve both the certification program (23) and (32)
are reported in Figure 6a and Table 6b respectively.

After completion, we select a single random configuration within our final certified region. In Figure
5, we highlight the tip of the pendulum in black. Additionally, we color each collision body for which the
tip can collide in a separate color and plot the separating plane certificate between the tip and the body in
the same color.

6.1.2 Pinball Flipper We refer to our second system shown in Figure 7a as the pinball flipper. Each
orange arm is connected to its gray base via a revolute joint. Each collision geometry in the scene
is approximated with a box and a total of 130 collision pairs exist. We similarly plot the TC-space
in Figure 7b with the TC-space obstacle highlighted in red. In this experiment, we attempt to almost
completely cover TC-free with polytopic regions in order to enable a motion plan where the flippers

Prepared using sagej.cls

https://drake.mit.edu/
https://deepnote.com/workspace/alexandre-amice-c018b305-0386-4703-9474-01b867e6efea/project/C-IRIS-7e82e4f5-f47a-475a-aad3-c88093ed36c6/notebook/2d_example_bilinear_alternation-14f1ee8c795e499ca7f577b6885c10e9
https://alexandreamice.github.io/project/c-iris

Dai, Amice, et al. 21

(a) The pendulum on a rail robot. Each hyperplane is a
function of the TC-variable s and separates the collision
body of the same color from the tip of the robot highlighted in
black.

Prismatic Joint Position
R

ev
ol

ut
e

Jo
in

tA
ng

le

(b) The tangent configuration space of the pendulum on
a rail robot. The tangent-configuration-space obstacle is
in red. A sample of the polytopes obtained running
Algorithm 1 around the configuration (0, 0) are shown.

Figure 5. A 2-DOF robot consisting of a revolute joint at the base of the orange link and a prismatic joint
between the base and the box.

exchange positions. Overall, this scene exhibits a much more complicated TC-space obstacle as well as
substantially more collision pairs when compared to the system from Section 6.1.1.

We run Algorithm 1 seeded with octagonal regions of side length 0.01, each centered at one of 5
different configurations shown as the black dots in Figure 7b. The resulting regions are also plotted
in Figure 7b and almost completely cover the space. Though each region was initially seeded with a
polytope of the same shape, our algorithm successfully adapts the shape of each polytope to fill the space.
Our algorithm also is not conservative; it successfully finding regions which are tight to the TC-space
obstacle in all cases.

The change in volume of the maximum inscribed ellipsoid of each region is shown in Figure 8a. We
remark that the volume of each region exhibits a diverse set of behaviors over the iterations. Each region
was grown sequentially, with a total wall time to cover the space of 1439s. This wall time could easily be
improved by growing each region in parallel.

In Figure 9, we demonstrate the behavior of our certificates for various poses of our robot. In the
top panel, we highlight in black the two tips of each flipper. The current configuration is highlighted as
the green dot in the bottom panel. For each configuration, we also plot the hyperplane that proves the
separation between the two black tips. Notice that in Figures 9g, 9h, and 9i, the current configuration is

Prepared using sagej.cls

22 International Journal of Robotics Research XX(X)

(a) The volume of the maximum inscribed ellipsoids of the TC-free regions
shown in Figure 5b is plotted over iterations of Algorithm 1. This volume grows
by a factor of 83 over the course of 86 iterations Algorithm 1.

Number of colli-
sion pairs

42

Size of the largest
PSD variable

2

Average time to
solve (23)

0.191s

Average time to
solve (32)

0.423s

Wall time to grow
single region

314s

(b) Statistics dominating the run time of
Algorithm 1 for the pendulum on a rail
system. The complexity scales with the
number of collision geometries as well
as the size of the largest PSD matrix
variable for enforcing the Psatz
conditions in Programs (23) and (32).

Figure 6. The progress of Algorithm 1 on the pendulum on a rail system for a single polytopic region is
plotted. Statistics dominating the run time of the algorithm are also reported.

contained in multiple regions at once. Therefore, each hyperplane in Figure 9a - 9e is drawn in the same
color as its associated TC-space region in Figures 9f - 9j.

We draw attention to the fact that at every configuration s0 in TC-free, many different separating
hyperplanes exist. The hyperplane obtained by evaluating the output of our certifier at s0 is highly
dependent on the region which is being certified. For example, in Figure 9h, the blue region corresponds
largely to a change in the position of the left flipper, while the green region corresponds largely to a
change in the right flipper. We see in Figure 9c, that the algorithm finds different separating planes for
the blue and the green region, even for the same configuration, so as to accommodate the different range
of robot motion in each region. For the blue region, which includes a large rotation of the left flipper,
the blue plane would continue to separate the left flipper from the right flipper as the left flipper moves.
Similarly, the green plane would continue to separate the right flipper from the left as the right flipper
moves.

Prepared using sagej.cls

Dai, Amice, et al. 23

(a) The pinball flipper system consists of pendulums each
with a revolute joint between the orange link and the gray
base. All collision geometries in the scene are approximate
using boxes.

Right Flipper Joint Angle

L
ef

tF
lip

pe
rJ

oi
nt

A
ng

le

(b) The TC-space of the 2DOF pendulum flipper system.
The TC-space obstacle is shown in red. Algorithm 1 is run
for five different polytopes each initially centered around the
black dots. The polytopes output by the algorithm are plotted
in various colors. These polytopes almost fully cover TC-free
and are guaranteed to be collision-free by construction.

Figure 7. The pinball flipper system and its TC-space. Algorithm 1 is successfully able to cover TC-free with
polytopic regions. An animation of the regions growing to cover this space is available here

6.2 KUKA IIWA robot
In this section we demonstrate our algorithm deployed on the KUKA iiwa arm in two scenes relevant to
robot manipulation. The collision geometry of the iiwa is approximated as a union of convex polytopes
as are all obstacles in the scene. We begin by considering a single iiwa to demonstrate the practicality of
our algorithm before considering a bimanual manipulator to demonstrate the scalability of our approach.

6.2.1 7-DOF IIWA With a Shelf We apply Algorithm 1 to the scene shown in Figure 10: a 7-
DOF KUKA iiwa arm reaching into a shelf. Our approach successfully finds many collision-free
configurations, and we plot in green the separating hyperplane certificate between the end-effector,
highlighted in blue, and the top shelf highlighted in red.

Prepared using sagej.cls

https://alexandreamice.github.io/project/c-iris/pinball_growth.html

24 International Journal of Robotics Research XX(X)

(a) The volume of the maximum inscribed ellipsoid as the polytope is grown
around various seedpoints is improved during Algorithm 1. The final polytopes
associate to each color are shown in Figure 7b.

Number of
collision pairs

130

Size of the largest
PSD variable

2

Average time
to solve (23)

0.638s

Average time
to solve (32)

1.319s

Wall time to
grow cover

1439s

(b) Statistics dominating the run time of
Algorithm 1 for the pinball flipper system.
The complexity scales with the number
of collision geometries as well as the
size of the largest PSD matrix variable
for enforcing the Psatz conditions in
Programs (23) and (32).

Figure 8. The progress of Algorithm 1 on the pinball flipper system for each polytopic region is plotted.
Statistics dominating the run time of the algorithm are also reported.

The run time of Algorithm 1 is dominated by the certification of non-collision between the pairs
with the longest kinematic chain, as this leads to the highest degree polynomials and hence semidefinite
variables in programs (23) and (32). For this program, the largest positive semidefinite matrix variable
has 16 rows. Overall, the largest certification program (23) takes 54s to solve, while the program (32)
takes on average 8s to solve.

In Figure 11, we demonstrate the behavior of one certified region. In Figure 11a, we show that the
configurations of one of our certified polytopic region of TC-space (with 24 faces in the polytope)
corresponds to many task-space end-effector positions. The configurations from Figure 11a are drawn
from a region which grows by a factor of 10, 000 using 11 iterations of Algorithm 1. This improvement in
volume is reported in Figure 11b, where we also compare the volume of the maximum volume inscribed
ellipsoid against the volume of the polytopic region.

Prepared using sagej.cls

Dai, Amice, et al. 25

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. We approximate almost the entirety of TC-free for the robot flipper system using 5 polytopic regions.
The top panel shows the hyperplanes certifying that the two black tips of the system do not collide. The bottom
panel shows the configuration of the robot as a green dot. An example of this system undergoing a trajectory is
available here.

Figure 10. 7-DOF iiwa example. We highlight one pair of collision geometries (blue on robot gripper and red
on the shelf), together with their separating plane (green).

6.2.2 12-DOF Bimanual KUKA IIWA Example We next consider designing regions to avoid self-
collision for a robot consisting of two KUKA iiwa arms with the final joint welded (rotation of the final
joint does not change the configuration of any geometry for this robot). This robot contains 12-DOF. This
system tests the scalability of our algorithm due to the degree of the polynomials involved in the forward
kinematics, as well as the complexity of the collision geometries.

Solving the largest certification program in (23) takes 105 minutes, while the program in (32) takes
4 minutes. The increase in solve times compared to the single iiwa environment from Section 6.2.1 is
best attributed to the increase in the size of the semidefinite variables due to the larger DOF. The largest

Prepared using sagej.cls

https://alexandreamice.github.io/project/c-iris/pinball_trajectory.html

26 International Journal of Robotics Research XX(X)

(a) The configurations in our certified
regions correspond to a wide range of
task-space positions. We sample three
configurations from the same certified
region and plot the corresponding
task-space position in different colors.

0 1 2 3 4 5 6 7 8 9 10
iteration

10 12

10 11

10 10

10 9

10 8

10 7

vo
lu

m
e

Ellipsoid
Polytope

(b) A single region for the 7-DOF KUKA iiwa is grown over the course of 11
iterations of Algorithm 1. We compare the volume of the maximum volume
inscribed ellipsoid to the volume of the polytopic region at each iteration and
show that the volume improves by a factor of 10,000.

Figure 11. Algorithm 1 grows certified regions which contain configurations reaching a large portion of the
task space. We show that our algorithm is capable of growing the volume of a certified region by a factor
10,000 over the course of just 11 iterations.

semidefinite matrix in both programs have 64 rows and correspond to certifying that the two tips of the
iiwas do not collide.

Nonetheless, our algorithm again finds certified, 30-face polytopic regions of TC-space which
correspond to a wide range of task-space positions as seen in Figure 12a. Moreover, the same region
is quite tight to the TC-space obstacle; one sampled configuration in the certified region, shown in Figure
12b, corresponds to just 7.3mm of separation between the two arms.

6.3 UR3e Robot
In this section, we test our algorithm on a UR3e robot with a gripper mounted at the wrist. The robot’s
links are approximated by cylinders and we weld the gripper’s prismatic joints so that each UR3e has
a total of 6 DOFs. This section differs from the KUKA iiwa experiment in Section 6.2 due to the
introduction of non-polytopic collision geometries into the scene. Similar to Section 6.2, we test our
approach for a scene where the robot is reaching into a shelf, as well as a bimanual set up.

6.3.1 6-DOF UR3e With a Shelf In Figure 13, we consider a UR3e robot reaching into a shelf to
grasp a small box shaped object. To simulate a situation where the robot is attempting to pick up the red

Prepared using sagej.cls

Dai, Amice, et al. 27

(a) Multiple configurations of the 12-DOF, bimanual iiwa
manipulator sampled from a single certified region of
TC-free. Each configuration is shown in a separate
color.

(b) The geometries of the bimanual iiwa from Figure
12a are tightly approximated using polytopes. At one
position in the certified TC-free region, the two
geometries highlighted in red are separated by just
7.3mm.

Figure 12. Algorithm 1 finds certified polytopic regions of TC-free even for high DOF systems in reasonable
times. The algorithm is also not conservative. It finds large regions which correspond to a broad range of
task-space positions. Moreover, the regions are very tight to the TC-space obstacle, finding configurations
which lead to very small separation between the task-space objects.

object, we use Algorithm 1 to grow a certified, TC-free polytope (with 12 faces) near the object. Figure
13 shows a variety of postures sampled from the final TC-free polytope and demonstrates that within a
single region, our robot is able to reach into the shelf to grasp the object, retract away from the shelf, and
maneuver within the shelf while avoiding the object.

Similar to Section 6.2.1, the largest semidefinite variables in programs (23) and (32) has 16 rows with
program (23) taking about 56s to solve.

6.3.2 12-DOF Bimanual UR3e Finally, we demonstrate our algorithm on a dual UR3e platform shown
in Figure 14. Again, we emphasize that we are able to find large regions of TC-configuration space
which correspond to diverse positions in task space with the postures in Figure 14a and 14b being drawn
from the same certified region (a 13-face polytope). Moreover, these regions are very tight to the TC-
configuration space obstacle with the two bodies highlighted in red in Figure 14b being just 0.3mm
apart. For this example, the largest positive semidefinite matrices in (23) and (32) has 128 rows with the
largest program taking about 35 minutes to solve. This program solves faster than the analogous program
for the bimanual iiwa from Section 6.2.2 because we require fewer polynomial positivity conditions to

Prepared using sagej.cls

28 International Journal of Robotics Research XX(X)

(a) (b)

(c) (d)

Figure 13. Different postures sampled within one certified TC-space region for a UR3e robot with gripper. The
certified-region include both the gripper reaching the red box in the center of the shelf (Fig.13a), retracting
from the shelf (Fig.13c), and reaching different regions within the shelf while avoiding the red box (Fig.13b and
13d). An animation of the range of configurations attainable in this region are available here.

certify that the UR3e’s cylindrical geometries are on a given side of a plane compared to the polytopic
approximation used for the iiwa.

7 Conclusion
Understanding the complicated geometry of C-free is an essential step to designing safe, collision-free
motion plans. In this work, we presented an approach for describing a rational parametrization of C-
free, known as TC-free, using a union of polytopes. Our primary contributions are two Sums-of-Squares
program (23) and (29) which can certify that a polytopic region of TC-space is collision-free, as well
as another program (32) which finds a local improvement that increases the size of a TC-free polytope.
We prove that feasibility of our certification programs (23) and (29) are both necessary and sufficient
for proving that a polytopic region of TC-space is collision-free and we combine programs (23) and
(32) into a practical algorithm for describing TC-free as a union of certified, collision-free polytopes in
the TC-space. We deployed our algorithm on both simple and realistic environments and demonstrate

Prepared using sagej.cls

https://alexandreamice.github.io/project/c-iris/ur_single.html

Dai, Amice, et al. 29

(a) (b)

Figure 14. Top down view of two postures sampled within one certified TC-space region on the dual UR3e
platform. In the right figure we highlight the two collision geometries that are separated by only 0.3mm. A
dynamic visualization of the range of attainable postures is available by running this notebook

that Algorithm 1 finds large TC-space regions which correspond to diverse positions in task space. We
demonstrate that these regions are not conservative and very tight to the TC-space obstacle even for
12-DOF systems by showing postures with just millimeters of separation.

The presented method works for TC-spaces of arbitrary dimensions, makes only very mild assumptions
on the kinematics of our robot, and makes no assumptions about the shape of the TC-space obstacles.
Moreover, it only relies on the mild assumption that obstacles in the task space are described as unions
of convex sets, an assumption that is frequently satisfied whenever a given environment is simulated.

Such certified descriptions of TC-free find practical application in both randomized and optimization-
based collision-free motion planning algorithms, providing a means to certify safety of an entire trajectory
by checking membership in a set rather than by finite sampling which can be prone to false assertions of
safety. Moreover, the convexity of the generated regions is particularly attractive to optimization-based
methods such as the GCS framework of (Marcucci et al. 2022). Future work intends to further explore
these applications as well as practical algorithms for seeding Algorithm 1 to obtain good coverage of
TC-free with few regions.

8 Acknowledgement
This work was supported by the MIT Quest For Intelligence.

References

Ahmadi AA, Hall G, Makadia A and Sindhwani V (2016) Geometry of 3d environments and sum of squares
polynomials. arXiv preprint arXiv:1611.07369 .

Ahmadi AA, Krstic M and Parrilo PA (2011) A globally asymptotically stable polynomial vector field with no
polynomial lyapunov function. In: 2011 50th IEEE Conference on Decision and Control and European Control
Conference. IEEE, pp. 7579–7580.

Prepared using sagej.cls

https://deepnote.com/workspace/alexandre-amice-c018b305-0386-4703-9474-01b867e6efea/project/C-IRIS-7e82e4f5-f47a-475a-aad3-c88093ed36c6/notebook/dual_ur-8fc84da71e494588bbc82350826b417a

30 International Journal of Robotics Research XX(X)

Amice A, Dai H, Werner P, Zhang A and Tedrake R (2022) Finding and optimizing certified, collision-free regions
in configuration space for robot manipulators. In: Algorithmic Foundations of Robotics XV: Proceedings of the
Fifteenth Workshop on the Algorithmic Foundations of Robotics. Springer, pp. 328–348.

Andersen ED and Andersen KD (2000) The mosek interior point optimizer for linear programming: an
implementation of the homogeneous algorithm. High performance optimization : 197–232.

ApS M (2019) The MOSEK optimization toolbox for MATLAB manual. Version 9.0. URL http://docs.mosek.

com/9.0/toolbox/index.html.
Baldi L and Mourrain B (2021) On moment approximation and the effective putinar’s positivstellensatz. arXiv

preprint arXiv:2111.11258 .
Blekherman G, Parrilo PA and Thomas RR (2012) Semidefinite optimization and convex algebraic geometry. SIAM.
Boyd S, Boyd SP and Vandenberghe L (2004) Convex optimization. Cambridge university press.
Branicky M and Newman W (1990) Rapid computation of configuration space obstacles. In: Proceedings., IEEE

International Conference on Robotics and Automation. pp. 304–310 vol.1. DOI:10.1109/ROBOT.1990.125992.
Brossette S and Wieber PB (2017) Collision avoidance based on separating planes for feet trajectory generation. In:

2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). IEEE, pp. 509–514.
Canny J (1988) The complexity of robot motion planning. MIT press.
Craig JJ (2005) Introduction to robotics: mechanics and control. Pearson Educacion.
Deits R and Tedrake R (2015a) Computing large convex regions of obstacle-free space through semidefinite

programming. In: Algorithmic foundations of robotics XI. Springer, pp. 109–124.
Deits R and Tedrake R (2015b) Efficient mixed-integer planning for uavs in cluttered environments. In: 2015 IEEE

international conference on robotics and automation (ICRA). IEEE, pp. 42–49.
Dyer ME and Frieze AM (1988) On the complexity of computing the volume of a polyhedron. SIAM Journal on

Computing 17(5).
Eidenbenz SJ and Widmayer P (2003) An approximation algorithm for minimum convex cover with logarithmic

performance guarantee. SIAM Journal on Computing 32(3): 654–670.
Ferrier C (2000) Computation of the distance to semi-algebraic sets. ESAIM: Control, Optimisation and Calculus of

Variations 5: 139–156.
Ghosh M, Amato NM, Lu Y and Lien JM (2013) Fast approximate convex decomposition using relative concavity.

Computer-Aided Design 45(2): 494–504.
Gill PE, Murray W and Saunders MA (2005) Snopt: An sqp algorithm for large-scale constrained optimization.

SIAM review 47(1): 99–131.
Han Y, Zhao W, Pan J, Ye Z, Yi R and Liu YJ (2019) A configuration-space decomposition scheme for learning-based

collision checking. arXiv preprint arXiv:1911.08581 .
Jarvis-Wloszek Z, Feeley R, Tan W, Sun K and Packard A (2003) Some controls applications of sum of squares

programming. In: 42nd IEEE international conference on decision and control (IEEE Cat. No. 03CH37475),
volume 5. IEEE, pp. 4676–4681.

Kavraki LE (1995) Computation of configuration-space obstacles using the fast fourier transform. IEEE Transactions
on Robotics and Automation 11(3): 408–413.

Kavraki LE, Svestka P, Latombe JC and Overmars MH (1996) Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE transactions on Robotics and Automation 12(4): 566–580.

Latombe JC (2012) Robot motion planning, volume 124. Springer Science & Business Media.

Prepared using sagej.cls

http://docs.mosek.com/9.0/toolbox/index.html
http://docs.mosek.com/9.0/toolbox/index.html

Dai, Amice, et al. 31

LaValle SM (1998) Rapidly-exploring random trees: A new tool for path planning .
Lien JM and Amato NM (2007) Approximate convex decomposition of polyhedra. In: Proceedings of the 2007 ACM

symposium on Solid and physical modeling. pp. 121–131.
Lin X, Fernandez GI and Hong DW (2022) Reduce: Reformulation of mixed integer programs using data from

unsupervised clusters for learning efficient strategies. In: 2022 International Conference on Robotics and
Automation (ICRA). IEEE, pp. 4459–4465.

Lingas A (1982) The power of non-rectilinear holes. In: International Colloquium on Automata, Languages, and
Programming. Springer, pp. 369–383.

Lozano-Perez T (1983) Spatial planning: A configuration space approach. IEEE Transactions on Computers 100(32).
Majumdar A and Tedrake R (2017) Funnel libraries for real-time robust feedback motion planning. The International

Journal of Robotics Research 36(8): 947–982.
Mamou K and Ghorbel F (2009) A simple and efficient approach for 3d mesh approximate convex decomposition.

In: 2009 16th IEEE international conference on image processing (ICIP). IEEE, pp. 3501–3504.
Marcucci T, Petersen M, von Wrangel D and Tedrake R (2022) Motion planning around obstacles with convex

optimization. arXiv preprint arXiv:2205.04422 .
Marcucci T, Umenberger J, Parrilo PA and Tedrake R (2021) Shortest paths in graphs of convex sets. arXiv preprint

arXiv:2101.11565 .
Marshall M (2008) Positive polynomials and sums of squares. 146. American Mathematical Soc.
Nie J (2011) Polynomial matrix inequality and semidefinite representation. Mathematics of Operations Research

36(3): 398–415.
Nie J and Schweighofer M (2007) On the complexity of Putinar’s Positivstellensatz. Journal of Complexity 23(1):

135–150. DOI:10.1016/j.jco.2006.07.002.
Parrilo PA (2000) Structured semidefinite programs and semialgebraic geometry methods in robustness and

optimization. California Institute of Technology.
Parrilo PA (2004) Sum of squares programs and polynomial inequalities. In: SIAG/OPT Views-and-News: A Forum

for the SIAM Activity Group on Optimization, volume 15. pp. 7–15.
Provan JS and Ball MO (1983) The complexity of counting cuts and of computing the probability that a graph is

connected. SIAM Journal on Computing 12(4): 777–788.
Putinar M (1993) Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal

42(3): 969–984.
Rudin W (1976) Principles of mathematical analysis, volume 3. McGraw-hill New York.
Schouwenaars T, De Moor B, Feron E and How J (2001) Mixed integer programming for multi-vehicle path planning.

In: 2001 European control conference (ECC). IEEE, pp. 2603–2608.
Schwarzer F, Saha M and Latombe JC (2004) Exact collision checking of robot paths. In: Algorithmic foundations

of robotics V. Springer, pp. 25–41.
Shen S and Tedrake R (2020) Sampling quotient-ring sum-of-squares programs for scalable verification of nonlinear

systems. In: 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, pp. 2535–2542.
Spivak M (1994) Calculus Third Edition. Cambridge University Press.
Stengle G (1996) Complexity estimates for the schmüdgen positivstellensatz. Journal of Complexity 12(2): 167–174.
Sturmfels B (1994) On the newton polytope of the resultant. Journal of Algebraic Combinatorics 3(2): 207–236.
Tedrake R (2021) Robotic Manipulation. URL https://manipulation.mit.edu/pick.html.

Prepared using sagej.cls

https://manipulation.mit.edu/pick.html

32 International Journal of Robotics Research XX(X)

Tedrake R (2022) Underactuated Robotics. URL https://underactuated.csail.mit.edu.
Tedrake R, Manchester IR, Tobenkin M and Roberts JW (2010) Lqr-trees: Feedback motion planning via sums-of-

squares verification. The International Journal of Robotics Research 29(8): 1038–1052.
Tedrake R and the Drake Development Team (2019) Drake: Model-based design and verification for robotics. URL

https://drake.mit.edu.
Trutman P, Mohab SED, Henrion D and Pajdla T (2020) Globally optimal solution to inverse kinematics of 7dof

serial manipulator. arXiv preprint arXiv:2007.12550 .
Verghese M, Das N, Zhi Y and Yip M (2022) Configuration space decomposition for scalable proxy collision

checking in robot planning and control. arXiv preprint arXiv:2201.04314 .
Wampler CW and Sommese AJ (2011) Numerical algebraic geometry and algebraic kinematics. Acta Numerica 20.
Wong TH, Leach G and Zambetta F (2014) An adaptive octree grid for gpu-based collision detection of deformable

objects. The Visual Computer 30(6): 729–738.
Yin H, Arcak M, Packard A and Seiler P (2021) Backward reachability for polynomial systems on a finite horizon.

IEEE Transactions on Automatic Control 66(12): 6025–6032.

Prepared using sagej.cls

https://underactuated.csail.mit.edu
https://drake.mit.edu

Dai, Amice, et al. 33

A Algebraic Kinematics
An in depth review of algebraic kinematics and low order pairs can be found in (Wampler and Sommese
2011, Chapter 4). We include a brief review in this appendix for completeness.

A mechanism composed of N + 1 links is considered algebraic if each link is connected by one of the
following five joints:

• Revolute (R): a 1-DOF joint permitting revolution about an axis of symmetry. An example is a
door handle.

• Prismatic (P): a 1-DOF joint permitting translation along an axis. An example is a linear rail.

• Cylindrical (C): a 2-DOF joint permitting both revolution about an axis of symmetry and
independent translation along a given axis. An example is the rods of a Foosball table.

• Planar (E): A 3-DOF joint permitting translation and rotation in a two-dimensional plane. An
example is hockey puck moving on the surface of the ice.

• Spherical (S): A 3-DOF joint permitting free rotation between two links. An example is the human
shoulder.

We recall from Section 3.3 that the pose of a point A expressed in the reference frame F , written as a
function of the robot configuration q can be expressed as[

FRA(q) F pA(q)
01×3 1

]
=

∏
i∈IF,A

PiXCi(qi)
CiXPi+1 (33)

where PiXCi(qi) is a rigid transform describing the relative motion allowed by the ith joint. The matrices
PiXCi(qi) are in general restriction of the following forms

PiXCi(qi) =

cos(θi) − sin(θi) 0 xi

sin(θi) cos(θi) 0 yi

0 0 1 zi

0 0 0 1

 if ith joint is one of R, P, C, or E

[
U(ψi) 03×1

01×3 1

]
if ith joint is S

(34)

The specific restrictions for R, P, C, and E joints are given in Table 3. The matrix U is an element of
SO(3) parametrized using Euler angles {φi,x, φi,y, φi,z}.

Joint Restriction Definition of qi
R xi = yi = zi = 0 qi = {θi}
P θi = xi = yi = 0 qi = {zi}
C xi = yi = 0 qi = {θi, zi}
E zi = 0 qi = {θi, xi, yi}
S see equation (37) qi = {φi,x, φi,y, φi,z}

Table 3. parameterization of algebraic joints in terms of the matrix given in (34).

Prepared using sagej.cls

34 International Journal of Robotics Research XX(X)

We remark that the joints C, E, and S can be constructed by the composition of R and P joints.

• A C joint is a composition of an R joint and a P joint:

cos(θi) − sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 zi
0 0 0 1

 =

cos(θi) − sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 zi
0 0 0 1

 (35)

• An E joint is the composition of one R joint and two P joints

cos(θi) − sin(θi) 0 xi
sin(θi) cos(θi) 0 yi

0 0 1 0
0 0 0 1

 =

1 0 0 xi
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 yi
0 0 1 0
0 0 0 1

cos(θi) − sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1

(36)

• An S joint is the composition of three R joints expressed as Euler angles.

U(ψi) =

cos(ψi,x) − sin(ψi,x) 0
sin(ψi,x) cos(ψi,x) 0

0 0 1

cos(ψi,y) 0 − sin(ψi,y)
0 1 0

sin(ψi,y) 0 cos(ψi,y)

1 0 0
0 cos(ψi,z) − sin(ψi,z)
0 sin(ψi,z) cos(ψi,z)

(37)

Our approach presented for a robot composed of R and P joints can be extended to handle any
algebraic mechanism by consider the other algebraic joints as compositions of R and P joints.

B Definition of Archimedean

In this section we formally define the Archimedean property that appears in Theorem 1 and Theorem 2.

Definition 1. A semialgebraic set Sg = {x | gi(x) ≥ 0, i ∈ [n]} is Archimedean if there exists N ∈ N
and λi(x) ∈ Σ such that:

N −
n∑
i=1

x2
i = λ0(x) +

n∑
i=1

λi(x)gi(x)

Prepared using sagej.cls

Dai, Amice, et al. 35

C Semialgebraic Descriptions of Set Membership for Common Convex
Bodies

Body Variables Description of A(s) as a semi-algebraic set

V-rep Polytope with m vertices
vi at position F pvi(s) =
F fvi (s)
F gvi (s)

{s, x, µ}

h1(s, x, µ) =

(∏
i

F gvi

)(
x−

m∑
i=1

µi

(
F fvi(s)
F gvi(s)

))
h2(µ) = 1−

∑
i=1

µi

γi(µi) = µi, i ∈ [m]

Sphere with center o at position
F po(s) =

F fo(s)
F go(s)

and radius r {s, x} γ1(s, x) =
(
F go(s)

)2(
r2 −

∥∥∥∥x− F fo(s)
F go(s)

∥∥∥∥2
)

Capsule, the convex hull of two
spheres with centers c1 and c2
at positions F poi(s) =

F foi (s)
F goi (s)

and radii r1, r2

{s, x, µ}

F foµ

F goµ
= µ

F fo1(s)
F go1(s)

+ (1− µ)
F fo2(s)
F go2(s)

rµ = µr1 + (1− µ)r2

γ1(s, x, µ) =
(
F goµ(s)

)2(
r2µ −

∥∥∥∥x− F foµ

F goµ

∥∥∥∥2
)

γ2(µ) = µ

γ3(µ) = 1− µ

Cylinder, the convex hull of
two circles with centers o1
and o2, at position F poi(s) =
F foi (s)
F goi (s)

, lying in the plane

normal to F po1(s)− F po2(s),
and with radii r1 and r2.

{s, x, v, µ}

F foµ(s)
F goµ(s)

= µ
F fo1(s)
F go1(s)

+ (1− µ)
F fo2(s)
F go2(s)

rµ = µr1 + (1− µ)r2

h1(v, s) = vT
(
F fo1(s)
F go1(s)

−
F fo2(s)
F go2(s)

)
h2(s, x, µ, v) = x−

F foµ(s)
F goµ(s)

− v

γ1(v, µ) = r2µ − vT v
γ2(µ) = µ

γ3(µ) = 1− µ

Table 4. Parameterizations of the condition that x lies in a convex body that moves rigidly as a function of s.

Prepared using sagej.cls

36 International Journal of Robotics Research XX(X)

Figure 15. Illustration of the cylinder on one side of the plane H, with the plane normal being Ga, expressed
in the cylinders geometry frame G.

D Parametrized Hyperplane Separation Condition for the Cylinder

To derive the hyperplane separation condition for cylinder, we first attach a geometric frame G to the
cylinder, as shown in Fig.15. The cylinder’s geometric frame G’s origin coincides with the cylinder’s
center, with the z axis of the G frame along the cylinder axis. The height of the cylinder is 2h, with the
top/bottom circle radius being r1 and r2 respectively.

We first write the plane H with its parameters Ga(s),Gb(s) in the cylinder’s geometric frame G and
derive the conditions on Ga(s),Gb(s). The cylinder is in the positive side of the plane if and only if both
its top and bottom rim are on the positive side of the plane, namely

(
Ga(s)

)T r1 cosα
r1 sinα
h

+ Gb(s) ≥ 0 ∀α (38a)

(
Ga(s)

)T r2 cosα
r2 sinα
−h

+ Gb(s) ≥ 0 ∀α. (38b)

Taking the infimum of both sides with respect to α makes the above conditions equivalent to

Gaz(s)h+ Gb(s) ≥ r1

∥∥[Gax(s) Gay(s)
]∥∥ (39a)

−Gaz(s)h+ Gb(s) ≥ r2

∥∥[Gax(s) Gay(s)
]∥∥ (39b)

Prepared using sagej.cls

Dai, Amice, et al. 37

Next, we use the Schur complement, to reformulate (39a) and (39b) the positive semidefinite matrix
conditions. For example, (39a) is equivalent toGaz(s)h+ Gb(s) 0 r1

Gax(s)

0 Gaz(s)h+ Gb(s) r1
Gay(s)

r1
Gax(s) r1

Gay(s) Gaz(s)h+ Gb(s)

 � 0 (40a)

As explained in Section 4.1, this polynomial PSD condition can be reformulated as the condition

uT

Gaz(s)h+ Gb(s) 0 r1
Gax(s)

0 Gaz(s)h+ Gb(s) r1
Gay(s)

r1
Gax(s) r1

Gay(s) Gaz(s)h+ Gb(s)

u ≥ 0 ∀u. (40b)

To avoid the trivial solution Ga(s) = 0,Gb(s) = 0 (which is not in fact a separating plane), we add
the extra constraint GaT

(
Gpo1+Gpo2

2

)
+ Gb ≥ 1. Here

Gpo1+Gpo2

2 is the position of the cylinder center

expressed in the geometric frame G which coincides with the frame’s origin. Therefore
Gpo1+Gpo2

2 = 0,
and so it is sufficient to introduce the constraint

Gb(s) ≥ 1 (41)

to exclude the trivial solution Ga = 0,Gb = 0.
In our optimization program, we express the separating plane in a frame F (where the choice of frame

F is discussed in F.1), not in cylinder’s geometric frameG. Hence we need to compute Ga(s),Gb(s) from
their corresponding terms Fa(s), F b(s) expressed in frame F and the relative transform FXG between
the two frames

Ga(s) = GRF (s) Fa(s) (42a)
Gb(s) = F b(s) +

(
Fa(s)

)T F pG(s) (42b)

As described in Section 3.3, both the position F pG(s) and orientation GRF (s) are rational functions
of s. By replacing Ga(s),Gb(s) in (40b) and (41) with (42) and requiring the resulting numerator of the
rational function to be non-negative, we derive that the plane separating cylinders can be enforced via a
polynomial non-negativity condition which can be formulated as sums-of-squares condition.

E The Certification Programs are Necessary and Sufficient
In this section, we expand our discussion on the power of the certification programs presented in Sections
4.1 and 4.2. As remarked previously, Theorems 4 and 3 are necessary as programs (29) and (23) are
infinite dimensional. It is not immediately obvious that for every robot and every scene, there exists a
finite degree where in each program must become feasible when P truly contains no collisions.

A second subtlety applies specifically to (23). When generalizing (3), we argued that it was beneficial to
search for a parametric hyperplane as a function of our TC-space variable s and asserted that a polynomial

Prepared using sagej.cls

38 International Journal of Robotics Research XX(X)

parameterization was a good choice. However, it is not obvious that a polynomial parameterization is
sufficient, and perhaps we require a rational or even more complicated parameterization of the plane.

These questions about the power of SOS programming arise in other domains. For example, SOS
is commonly used to search for polynomial Lyapunov functions to prove the stability of polynomial
dynamical systems (Majumdar and Tedrake 2017). However, it is known that not every stable polynomial
dynamical system admits a polynomial Lyapunov function (Ahmadi et al. 2011), and therefore SOS
programming is a sufficient, but not necessary tool for proving the stability of dynamical systems.

Fortunately, our certification programs from 4.1 and 4.2 are indeed necessary and sufficient, in the
sense that there will always exist a finite degree such that the programs become feasible if P contains no
collision. The proof of this for the program (29) follows immediately from Theorem 2.

Proof. (of Theorem 4) Our assumptions on P, A, and B imply that SP,A,B is an Archimedean set.
Therefore, the feasibility of (29) for sufficiently high degree ρ follows immediately from “effective”
versions of Theorem 2 such as those given in (Nie and Schweighofer 2007; Baldi and Mourrain 2021)
which give explicit degree bounds.

Though the proof of Theorem 3 is more technically involved, the key idea is simple. In short, we
construct a family of continuous functions which map each TC-space configuration s ∈ P to a separating
plane. We then argue that this family of continuous functions must contain hyperplanes which are
parametrized as polynomials. Finally, we again appeal to “effective” versions of Theorem 1 such as
those given in (Nie and Schweighofer 2007; Baldi and Mourrain 2021) to show that these polynomials
can be found using SOS programming.

We proceed in steps, first establishing that the set of separating planes at a point s in TC-free is open.

Proposition 1. Let Φ(s) denote the set of strictly separating hyperplanes at the point s for bodies A(s)
and B(s) and let P be a non-empty, polytopic subset of TC-free. Then s ∈ P implies that Φ(s) is a
non-empty, open set.

Proof. By definition, a hyperplane
[
a
b

]
∈ R4 strictly separates A(s) and B(s) if and only if there exist

positive constants εA and εB such that aTx+ b ≥ εA ∀x ∈ A(s)and aTx+ b ≤ −εB ∀x ∈ B(s). Since
the bodies A(s) and B(s) are strictly separating for every point s ∈ P , the Separating Hyperplane
theorem guarantees the existence of such a vector and so Φ(s) is non-empty.

Now consider
[
a
b

]
∈ Φ(s) ⊆ R4 and its δ neighborhood

N (δ) =

{[
a
b

]
+ δ

[
va
vb

]∣∣∣∣∥∥∥∥[vavb
]∥∥∥∥ ≤ 1

}
,

with δ > 0.
We have that for all x ∈ A

(aT + δvTa)x+ (b+ δvb) ≥ εA + δ min
‖v‖≤1, x∈A

vTa x+ vb

Prepared using sagej.cls

Dai, Amice, et al. 39

and similarly for all x ∈ B

(aT + δvTa)x+ (b+ δvb) ≤ −εB + δ max
‖v‖≤1, x∈B

vTa x+ vb.

Letting Ml = min
‖v‖=1, x∈A

vTa x+ vb and Mu = max
‖v‖=1, x∈B

vTa x+ vb, we have that all planes N (δ) are

separating if

0 < δ < min

{
εA
|Ml|

,
εB
|Mu|

}
and so Φ(s) is open.

Proposition 2. Define

N (s, δ) =
⋂
‖v‖≤1

Φ(s+ δv)

For all s ∈ P there exists δmin(s) > 0, not necessarily finite such that,N (s, δ) is non-empty and open
for every 0 < δ < δmin.

Proof. Recall that the position of every point in A(s) is a continuous function of s and that the distance
from a point to a set is a continuous function (Rudin 1976). Therefore, the distance of every point inA(s)

to every element of Φ(s) changes continuously. For every δ > 0 and
[
a
b

]
∈ Φ(s) we define:

Mδ(s) := sup
‖v‖≤1

∣∣∣∣ inf
x∈A(s)

aTx+ b− inf
x∈A(s+δv)

aTx+ b

∣∣∣∣
We have that

inf
‖v‖≤1

inf
x∈A(s+δv)

aTx+ b ≥ inf
x∈A(s)

aTx+ b−Mδ(s) ≥ εA −Mδ(s)

Moreover, if δ2 < δ1, then Mδ2(s) ≤Mδ1(s). By continuity and monotonicity, Mδ(s)→ 0 as δ → 0
and so there exists δ sufficiently small such that εA −Mδ(s) > 0. A similar argument shows that δ can

be chosen sufficiently small such that the plane
[
a
b

]
continues to satisfy the separating plane conditions

for B. Therefore
[
a
b

]
∈ Φ(s+ δv) for all v such that ‖v‖ ≤ 1 if δ is chosen sufficiently small. It is clear

that choosing δ smaller continues to ensure that N (s, δ) is non-empty. Openness is immediate following
a similar argument to Proposition 1.

The above proposition enables us to establish that there exists an open family of continuous functions
f(s) such that their outputs are always separating hyperplanes.

Prepared using sagej.cls

40 International Journal of Robotics Research XX(X)

Proposition 3. Let F be the set of continuous functions mapping

f : s 7→
[
a
b

]
such that f(s) ∈ Φ(s) for all s ∈ P . The set F is non-empty and open under the pointwise metric

d(f, g) = sup
s∈P
‖f(s)− g(s)‖ .

Proof. Suppose F were empty. Then every function satisfying f(s) ∈ Φ(s) ∀s ∈ P is not a continuous
function. Namely, for every f there exists a point s0 such that for all δ > 0, f(s0) ∈ Φ(s0) but
f(s0) /∈ N (s0, δ). This contradicts the openness of N (s0, δ) for a sufficiently small δ from Proposition
2 and so F is non-empty. Openness follows from the fact that if δ > 0 is chosen sufficiently small, then
for every continuous g satisfying d(f, g) < δ, then g must also separate A(s) and B(s) for every s ∈ P .

We are now ready to prove Theorem 3

Proof. (of Theorem 3) By Proposition 3, F is a non-empty open subset of continuous functions defined
on the compact domain P . The Stone-Weierstrass theorem (Rudin 1976) states that the set of polynomial
functions on a compact domain is dense in the set of continuous functions in that domain under the

pointwise metric. Therefore, F must contain a map p : s 7→
[
a(s)
b(s)

]
such that each component is a

polynomial. This polynomial is of finite degree and is a strictly separating hyperplane and therefore
by “effective” versions of Theorem 1 such as (Nie and Schweighofer 2007; Baldi and Mourrain 2021),
there exists a Putinar certificates of finite degree certifying that p(s) is a separating hyperplane.

F Practical aspects
In this section, we discuss some practical aspects for essential for enabling Algorithm 1 to realistic
examples. These include the choice of reference frame in which to express the forward kinematics, the
selection of a finite basis for the polynomials in our SOS programs, and which aspects of 1 can be
parallelized.

F.1 Choosing the Reference Frame
The polynomial implications upon which the certification program (23) and polytope growth program
(32) are based require choosing a coordinate frame between each collision pair A and B. However, as
the collision-free certificate between two different collision pairs can be computed independently of each
other, we are free to choose a different coordinate frame to express the kinematics for each collision pair.
This is important in light of (10) and (14) that indicate that the degree of the polynomials F fAj and F gAj
are equal to two times the number of joints lying on the kinematic chain between frame F and the frame
for A. For example, the tangent-configuration-space polynomial in the variable s describing the position
of the end-effector of a 7-DOF robot is of total degree 14 when written in the coordinate frame of the
robot base. However, when written in the frame of the third link, the polynomial describing the position

Prepared using sagej.cls

Dai, Amice, et al. 41

of the end effector is only of total degree (7− 3)× 2 = 8. This observation is also used in (Trutman et al.
2020) to reduce the size of the optimization program.

The size of the semidefinite variables in (23) and (32) scale as the square of the degree of the
polynomial used to express the forward kinematics. Supposing there are n links in the kinematics chain
between A and B, then choosing the jth link along the kinematics chain as the reference frame F leads
to scaling of order j2 + (n− j)2. Choosing the reference frame in the middle of the chain minimizes this
complexity to scaling of order n

2

2 and we therefore adopt this convention in our experiments.

F.2 Basis Selection
The condition that a polynomial can be written as a sum of squares can be equivalently formulated as
an equality constraint between the coefficients of the polynomial and an associated semidefinite variable
known as the Gram matrix (Parrilo 2004). Namely, a polynomial p(s) is sums-of-squares if and only if
p(s) = z(s)TXz(s), X � 0 where z(s) is a vector of monomials andX is the Gram matrix. The number
of rows in the positive semidefinite Gram matrix equals to the size of the vector z(s). In general, a
sums-of-squares polynomial in k variables of total degree 2d requires a Gram matrix of size

(
k+d
d

)
to

represent which can quickly become prohibitively large. Fortunately, the polynomials in our programs
contain substantially more structure which will allow us to select a small-sized vector of monomials z(s),
and hence drastically reduce the size of the Gram matrices and speed up the optimization problem.

F.2.1 Polytopic collision geometry We begin with the separating plane condition for polytopic
collision geometries. Note that from (14) that while both the numerator and denominator of the forward
kinematics are of total degree 2n, with n the number of links of the kinematics chain between frame A
and F , both polynomials are of coordinate degree of at most two (i.e. the highest degree of si in any term
is s2

i). We will refer to this basis as ν(s) which is a vector containing terms of the form
∏n
i=1 s

degree(si)
i

with degree(si) ∈ {0, 1, 2} for all 3n possible permutations of the exponents degree(si).
We recall that we parametrize our hyperplane using polynomial entries. If aA,B(s) = aTA,Bη(s),

bA,B(s) = bTA,Bη(s) for some basis η in the variable s. The position of x(s) ∈ A(s) is expressed in
basis ν(s), then the left hand side of (19) can be expressed as a linear function of the basis γ(s), where
γ(s) contains all the possible entries that appear in the outer product η(s)ν(s)T .

Example 3. Suppose

η(s) =
[
1 s1 s2

]T
and

ν(s) =
[
1 s1 s2

1 s2 s2
2 s1s2 s2

1s2 s1s
2
2 s2

1s
2
2

]T
.

Then:

γ(s) =
[
1 s1 s2

1 s3
1 s2 s2

2 s3
2 s1s2 s2

1s2 s3
1s2 s1s

2
2 s2

1s
2
2 s3

1s
2
2 s1s

3
2 s2

1s
3
2

]
Namely γ(s) contains the monomials whose degree for each si is at most 3, and only one of si can have
degree 3 (hence s3

1s
3
2 is not included in γ(s)).

Prepared using sagej.cls

42 International Journal of Robotics Research XX(X)

Similarly, we must select a basis ρ(s) for our multiplier polynomials λA,Bij (s). The equality in (19)
determines the minimum necessary basis ρ(s). If the polynomial p(s) is expressed in basis γ(s), then the
minimal such basis is related to an object known in computational algebra as the Newton polytope of γ
denoted New(γ(s)) (Sturmfels 1994). Denoting the linear basis

l(s) =
[
1 s1 s2 . . . sN

]
,

then exact condition is that

New(γ(s)) = New(η(s)) + New(ν(s)) ⊆ New(ρ(s)) + New(l(s))

where the sum in this case is the Minkowski sum.
By using affine polynomials for separating plane parameters aA,B(s), bA,B(s), we know that η(s) is

the same as the linear basis l(s), then we obtain the condition that New(ρ(s)) = New(ν(s)) and since
ν(s) is a dense, even degree basis we must take ρ(s) = ν(s). A sums-of-squares polynomial in the basis
of ν(s) has Gram matrix with 2n rows. Choosing η(s) as the constant basis would in fact result in the
same condition, and therefore searching for separating planes which are linear functions of the tangent-
configuration-space variable does not increase the size of the semidefinite variables. As the complexity
of (23) and (32) are dominated by the size of these semidefinite variables, separating planes which are
linear functions changes do not substantially affect the solve time but can dramatically increase the size
of the regions which we can certify.

Because of this, we choose to parametrize all of our hyperplanes throughout our experiments as linear
functions of the TC-space variables. We stress that in general, the choice of a linearly parametrized
hyperplane, and the selection of ρ(s) to be the minimum size to match the degree of the left hand side
of (19) may not be sufficient to prove that a region P is collision-free, even if P truly is collision-free.
Indeed due of many complexity-theoretic results, we expect that in general η(s) and ρ(s) may need to
have exponentially high degree for some robots, scenes, and polytopes P (Stengle 1996). However, in
practice we have observed that the choices in this section are sufficient to certify many regions of interest,
while keeping the optimization problem size tractable for state-of-art numerical solvers.

Remark 5. Attempting to certifying that the end-effector of a 7-DOF robot will not collide with the base
using program (23) using linearly parametrized hyperplanes and choosing to express conditions (19) in
the world frame with naı̈vely chosen bases would result in semidefinite variables of size

(
7+7

7

)
= 3432.

Choosing to express the same conditions according to the discussion in Section F.1 and choosing the
basis γ(s) described in this section results in semidefinite matrices of rows at most 2d7/2e = 24 = 16. The
division by 2 comes from choosing the middle link as the expressed frame, hence halving the kinematic
chain length.

F.2.2 Non-polytopic collision geometry In this section, we use the sphere as a running example for
explaining how we choose the monomial bases for certifying separation of the non-polytopic geometries;
the monomial bases for capsules and cylinders can be derived in a similar manner.

As mentioned in (20), we need to impose

s ∈ P =⇒

[(
(a(s))T F fo(s) + b(s) F go(s)

)
I3 ra(s) F go(s)

r(a(s))T F go(s) (a(s))T F fo(s) + b(s) F go(s)

]
� 0. (43)

Prepared using sagej.cls

Dai, Amice, et al. 43

By the definition of positive semidefinite matrix §§ , we know that the 4× 4 matrix in the right of =⇒
in (43) is positive semidefinite if and only if

∀ū ∈ R3,

[
ū
1

]T [(
(a(s))T F fo(s) + b(s) F go(s)

)
I3 ra(s) F go(s)

r(a(s))T F go(s) (a(s))T F fo(s) + b(s) F go(s)

] [
ū
1

]
︸ ︷︷ ︸

σ(ū,s)

≥ 0.

(44)

We impose the following sufficient condition for (43), where P = {s|cTj (s) ≤ dj , j = 1, . . . ,m}

σ(ū, s) = λ0(ū, s) +

m∑
j=1

λj(ū, s)(dj − cTj s) (45a)

for j = 0, . . . ,m, λj(ū, s) ≥ 0 ∀ū, s. (45b)

Now we analyze the degree of the polynomial σ(ū, s) defined in (44). As mentioned in the previous
subsection, each monomial in F fo(s), F go(s) are of the form

∏n
i=1 s

degree(si)
i , degree(si) ∈ {0, 1, 2}.

Combining this with the choice of a separating plane a(s), b(s) being affine functions of s, we derive
that each monomial in σ(ū, s) is of the form ū

degree(ūj)
j

∏n
i=1 s

degree(si)
i , where degree(ūj) ∈ {0, 1, 2},

degree(si) ∈ {0, 1, 2, 3}, and at most one of degree(si) can be 3. As an example, ū2
1s

3
1s2s

2
3 is a valid

monomial in σ(ū, s) but ū1ū2 is not (because σ(ū, s) doesn’t contain the cross product between
ūj , ūk, j 6= k). Similarly, s3

1s
3
2 is not in the basis because at most one of si can have degree 3. Given

these properties on the monomials in σ(ū, s)- specifically there being no cross-product term ūj ūk, j 6= k
in σ(ū, s)- we can write the positive polynomials λj(ū, s) as the summation of three SOS polynomials

λj(ū, s) =

3∑
k=1

λj,k(ūk, s) (46a)

λj,k(ūk, s) ∈ Σ. (46b)

For each monomial in the SOS polynomial λj,k(ūk, s), the degree of ūk and si for i = 1, . . . , n is either
0, 1, or 2. Hence the number of rows in the Gram matrix in λj,k(ūk, s) is of size 2n+1. By choosing the
reference frame according to the convention from Appendix F.1, n is no larger than dN/2e where N is
the number of joints in the robot.

Remark 6. For a 6-DOF UR3erobot whose collision geometries are approximated by cylinders, to
certify the collision-avoidance between the robot and objects in the world (or self-collision), the largest
positive semidefinite matrix in our optimization problem has rows at most 2d6/2e+1 = 24 = 16, where
the division by 2 comes from choosing the middle link as the expressed link, hence halving the kinematic
chain length to d6/2e.

§§A matrix X is positive semidefinite if and only if ∀ū,
[
ū

1

]T
X

[
ū

1

]
≥ 0

Prepared using sagej.cls

44 International Journal of Robotics Research XX(X)

F.3 Parallelization
While it is attractive from a theoretical standpoint to write (23) as a single, large program it is worth
noting that it can in fact be viewed as K individual SOS programs, where K is the number of collision
pairs in the environment. Indeed, certifying whether pairs (A1,A2) are collision-free for all s in the
polytope P can be done completely independently of the certification of another pair (A1,A3) as the
constraint are not coupled between any pairs. Similarly, the search for the largest inscribed ellipsoid can
be done independently of the search for the separating hyperplanes.

Solving the certification program (23) as K individual SOS programs has several advantages. First, as
written (23) has 2(m+ 1)K

∑
i |Ai| semidefinite variables of various sizes, where m is the number of

inequalities in P and |Ai| denotes the number of inequalities required to express that body Ai is on a
particular side of the plane (see Table 4). In the example from Section 6.1.2 this corresponds to 18, 720
semidefinite variables. This can be prohibitively large to store in memory as a single program as the size
of these semidefinite variables grow. Solving for the separating plane for each pair of collision bodies
independently also enables us to determine which collision bodies cannot be certified as collision-free
and allows us to terminate our search as soon as a single pair cannot be certified. Finally, decomposing the
problems into subproblems enables us to increase computation speed by leveraging parallel processing.

The program (30) can also be solved completely independently of the certification program (23) and
is in general a much smaller SDP than any individual certification program. Therefore, lines 3 and 4 of
Algorithm 1 can be solved in parallel.

We note that (32) cannot be similarly decomposed as on this step the variables cTi and di affect all
of the constraints. However, this program is substantially smaller as we have fixed 2mK

∑
i |Ai| of the

semidefinite variables as constants and replaced them with 2m linear variables representing the polytope.
This program is much more amenable to being solved as a single program.

G Seeding Algorithm 1

Algorithm 1 must be initialized with a polytope P0 for which (23) is feasible. In principle, the alternation
proposed in Section 5 can be seeded with an arbitrarily small polytope around a collision-free seed point.
This seed polytope is then allowed to grow using Algorithm 1. However, this may require running several
dozens of iterations of Algorithm 1 for each seed point which can become prohibitive as the number of
degrees of freedom in our robot or the complexity of the scene grows. It is therefore advantageous to seed
with as large a region as can be initially certified.

Here we discuss an extension of the IRIS algorithm in (Deits and Tedrake 2015a) which uses nonlinear
optimization to rapidly generate large regions in TC-space. These regions are not guaranteed to be
collision-free and therefore they must still be passed to Algorithm 1 to be certified, but do provide
good initial guesses. In this section, we will assume that the reader is familiar with IRIS and will only
discuss the modification required to use it to grow TC-space regions. Detailed pseudocode is available in
Appendix H.

IRIS grows regions in a given space by alternating between two subproblems: SEPARATINGHYPER-
PLANES and INSCRIBEDELLIPSOID. The INSCRIBEDELLIPSOID is exactly the program described in
(Boyd et al. 2004, Section 8.4.2) and we do not need to modify it. The subproblem SEPARATINGHYPER-
PLANES finds a set of hyperplanes which separate the ellipse generated by INSCRIBEDELLIPSOID from

Prepared using sagej.cls

Dai, Amice, et al. 45

all of the obstacles. This subproblem is solved by calling two subroutines: CLOSESTPOINTONOBSTA-
CLE and TANGENTPLANE. The former finds the closest point on a given obstacle to the ellipse, while the
latter places a plane at the point found in CLOSESTPOINTONOBSTACLE that is tangent to the ellipsoid.

The original work of (Deits and Tedrake 2015a) assumes convex obstacles which enables
CLOSESTPOINTONOBSTACLE to be solved as a convex program and for the output of TANGENTPLANE
to be globally separating plane between the obstacle and the ellipsoid of the previous step. Due to the non-
convexity of the TC-space obstacles in our problem formulation, finding the closest point on an obstacle
exactly becomes a computationally difficult problem to solve exactly (Ferrier 2000). Additionally, placing
a tangent plane at the nearest point will be only a locally separating plane, not a globally separating one.

To address the former difficulty, we formulate CLOSESTPOINTONOBSTACLE as a nonlinear program.
Let the current ellipse be given as E = {Qs+ s0 | ‖s‖2 ≤ 1} and suppose we have the constraint that
s ∈ P = {s | Cs ≤ d}. Let A and B be two collision pairs and ApA, BpB be some point in bodies A
and B expressed in some frame attached to A and B. Also, let WXA(s) and WXB(s) denote the rigid
transforms from the reference framesA and B to the world frame respectively. We remind the reader that
this notation is drawn from (Tedrake 2021). The closest point on the obstacle subject to being contained
in P can be found by solving the program

min
s,ApA,BpB

(s− s0)TQTQ(s− s0) subject to (47a)

WXA(s)ApA = WXB(s)BpB (47b)
Cs ≤ d (47c)

This program searches for the nearest configuration in the metric of the ellipse such that two points in
the collision pair come into contact. We find a locally optimal solution (s?,Ap?A,

Bp?B) to the program
using a fast, general-purpose nonlinear solver such as SNOPT (Gill et al. 2005). The tangent plane to the
ellipse E at the point s? is computed by calling TANGENTPLANE, then appended to the inequalities of
P to form P ′. This routine is looped until (47) is infeasible at which point INSCRIBEDELLIPSE is called
again.

Once a region P = {s | Cs ≤ d} is found by Algorithm 2, it will typically contain some minor
violations of the non-collision constraint. To find an initial, feasible polytope P0 to use in Algorithm
1, we search for a minimal uniform contraction δ of P such that Pδ = {s | Cs ≤ d− δ ∗ 1} is collision-
free. This can be found by bisecting over the variable δ ∈ [0, δmax] and solving repeated instances of
(23).

Seeding Algorithm 1 with a P0 as above can dramatically reduce the number of alternations required
to obtain a fairly large region and is frequently faster than seeding Algorithm 1 with an arbitrarily small
polytope.

H Supplementary Algorithms
We present a pseudocode for the algorithm presented in Appendix G. A mature implementation of this
algorithm can be found in Drake¶¶.

¶¶https://github.com/RobotLocomotion/drake/blob/2f75971b66ca59dc2c1dee4acd78952474936a79/
geometry/optimization/iris.cc#L440

Prepared using sagej.cls

https://github.com/RobotLocomotion/drake/blob/2f75971b66ca59dc2c1dee4acd78952474936a79/geometry/optimization/iris.cc
https://github.com/RobotLocomotion/drake/blob/2f75971b66ca59dc2c1dee4acd78952474936a79/geometry/optimization/iris.cc#L440
https://github.com/RobotLocomotion/drake/blob/2f75971b66ca59dc2c1dee4acd78952474936a79/geometry/optimization/iris.cc#L440

46 International Journal of Robotics Research XX(X)

Algorithm 2: Given an initial tangent-configuration-space point s0 and a list of obstacles O,
return a polytopic region P = {s | Cs ≤ d} and inscribed ellipsoid EP = {s | Qs+ s0} which
contains a substantial portion of the free TC-space (but is not guaranteed to contain no collisions).

1 (C, d)← robot joint limits
2 P0 ← {s | Cs ≤ d}
3 EP0

← INSCRIBEDELLIPSOID(P0)
4 j ← number of rows of C
5 do
6 do
7 (s?,Ap?A,

Bp?B)← FINDCLOSESTCOLLISION(Pi, EPi)
8 (cTj+1, dj+1)← TANGENTHYPERPLANE(s?, EPi)
9 C ← vstack(C, cTj+1)

10 d← vstack(d, dj+1)
11 Pi ← {s | Cs ≤ d}
12 j ← j + 1

13 while FINDCLOSESTCOLLISION(Pi, EPi) is feasible;
14 EPi ← INSCRIBEDELLIPSOID(Pi)
15 i← i+ 1

16 while (vol(Ei)− vol(Ei−1)) /vol(Ei−1) ≥ tolerance;
17 return (Pi, EPi)

Prepared using sagej.cls

	1 Introduction
	2 Problem Statement
	3 Background
	3.1 Separating Convex Bodies
	3.2 Certificates of Positivity and Infeasibility
	3.3 Rational Forward Kinematics

	4 Certification of Set-Membership in TC-Free
	4.1 Parametrized Hyperplane Certificates of Non-Collision
	4.2 Polynomial Infeasibility Certificates
	4.3 Power of the Certification Programs

	5 Polyhedral Decomposition of TC-free
	6 Results
	6.1 Simple Robots
	6.1.1 Pendulum on a Rail
	6.1.2 Pinball Flipper

	6.2 KUKA IIWA robot
	6.2.1 7-DOF IIWA With a Shelf
	6.2.2 12-DOF Bimanual KUKA IIWA Example

	6.3 UR3e Robot
	6.3.1 6-DOF UR3e With a Shelf
	6.3.2 12-DOF Bimanual UR3e

	7 Conclusion
	8 Acknowledgement
	A Algebraic Kinematics
	B Definition of Archimedean
	C Semialgebraic Descriptions of Set Membership for Common Convex Bodies
	D Parametrized Hyperplane Separation Condition for the Cylinder
	E The Certification Programs are Necessary and Sufficient
	F Practical aspects
	F.1 Choosing the Reference Frame
	F.2 Basis Selection
	F.2.1 Polytopic collision geometry
	F.2.2 Non-polytopic collision geometry

	F.3 Parallelization

	G Seeding Algorithm 1
	H Supplementary Algorithms

