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Abstract In this paper we present a novel formulation of the inverse kinematics (IK)
problem with generic constraints as a mixed-integer convex optimization program.
The proposed approach can solve the IK problem globally with generic task space
constraints, a major improvement over existing approaches, which either solve the
problem in only a local neighborhood of the user initial guess through nonlinear
non-convex optimization, or address only a limited set of kinematics constraints.
Specifically, we propose a mixed-integer convex relaxation on non-convex SO(3)
rotation constraints, and apply this relaxation on the inverse kinematics problem.
Our formulation can detect if an instance of the IK problem is globally infeasible,
or produce an approximate solution when it is feasible. We show results on a 7-
joint arm grasping objects in a cluttered environment, and a quadruped standing on
stepping stones. We also compare our approach against the analytical approach for
a 6-joint manipulator. The code is open-sourced at drake.mit.edu [29].

1 Introduction

The inverse kinematics (IK) problem is one of the most fundamental problems in
robotics. The problem is to find robot postures, so as to satisfy certain kinematic
constraints. Traditionally the kinematic constraints are on the end-effectors, such as
hand reaching a certain location with a given orientation. More recently applications
have required more complex constraints in the task space, such as grasping a mug
on the table while keeping the robot free from collision (Fig 1a).

Solving the IK problem is quite challenging, as it requires solving a set of non-
linear equations involving products of trigonometric functions (sin/cos). There have
been tremendous efforts to solve the inverse kinematics problem[11, 21, 24, 5], and
they can be coarsely categorized as analytical or numerical. The analytical approach
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(a) (b)

Fig. 1: Our IK solver finds a collision free grasping posture for the KUKA IIWA
arm (left), and a posture for Little Dog standing on stepping stones (right).

solves the kinematics equations as polynomials of sine and cosine and can produce
closed-form solutions. It is widely known that many manipulators with 6 Degree of
Freedoms (DoFs) allow analytical solution for the end effector to reach a specified
position with a given orientation [26, 20]. More generally, Diankov et al. introduced
IKfast, which can find inverse kinematics solutions for more complicated robots,
but the set of kinematics constraints it can handle is still limited [16]. Since the
analytical approach solves the inverse kinematics problem by computing roots of
polynomial equations, it does not permit inequality constraints on the link poses [2],
which occur frequently when planning postures for certain tasks. This shortcoming
makes it hard to handle general task space constraints involving inequalities, such
as “putting the hand between the two boxes on the table”.

On the other hand, the numerical approach can solve inverse kinematics problems
for complicated robots with generic constraints. This approach formulates an inverse
kinematics problem as a general non-convex nonlinear optimization problem, and
calls gradient-based nonlinear solvers to handle these non-convex constraints [25,
13, 17, 4, 9]. The drawback of this approach is that the solution heavily relies on
the user-supplied initial seed. Because the nonlinear optimization typically solves
the problem locally around the initial seed, hence it can get trapped in some locally
infeasible region and never reach the solution far away. As a result, when these
non-convex nonlinear solver reports the problem is infeasible, it only asserts local
infeasibility, providing no guarantee on the global solution [6]. We will show that
our approach can significantly improve the robustness and success rate of the IK
solver, over the gradient-based nonlinear optimization approach.

We shall use a numerical approach to the IK problem with generic constraints,
while also obtain the global solution. Instead of formulating the problem through
non-convex nonlinear optimization, we instead consider a mixed-integer convex op-
timization formulation, which does not require an initial seed, and can provide a
global solution [8], such as a certificate of global infeasibility. The non-convexity of
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the IK problem originates from the non-convixity of SO(3) constraints on rotation.
If we choose to represent rotation with a matrix R = [u1 u2 u3] ∈R3×3, this rotation
matrix should satisfy the following constraints

uT
i ui = 1 (Unit length) (1a)

uT
i u j = 0 if i 6= j (Orthogonality) (1b)

ui×u j = uk, (1c)

where (i, j,k) = (1,2,3),(2,3,1) or (3,1,2) in (1c). We choose the rotation matrix
as the orientation representation, since the position of a point attached to a body is a
linear expression of the body rotation matrix; on the other hand, the position would
be a nonlinear expression, if we were to represent orientation using other forms,
such as unit quaternions or angle-axis.

Obviously the orientation constraint SO(3) (1a)-(1c) is non-convex. Take con-
straint (1a) as an example: geometrically, the convex combination of two points on
the surface of a unit sphere, lies strictly in the interior of the unit sphere. Alge-
braically, an equality constraint is non-convex, if it includes quadratic terms such as
ui(1)2 in (1a), or bilinear terms like ui(1)u j(1) in (1b).

Various convex relaxations for SO(3) constraints have been proposed. Saunder-
son et al. proved that the convex hull of the set of rotation matrices can be described
by a positive semidefinite constraint, a special type of convex constraint [27]. In [12]
this convex relaxation is exploited to solve the IK problem through a sequence of
convex optimizations. The drawback of this approach [12] is that the convex hull
of the rotation matrix is a rather loose relaxation of SO(3). For example, the matrix[
u1,0,0

]
= 0.5

[
u1,u2,u3

]
+ 0.5

[
u1,−u2,−u3

]
is in the convex hull for any rota-

tion matrix
[
u1,u2,u3

]
. Hence quite often the relaxed convex program is too loose

to detect global infeasibility of the original IK problem. To overcome this, we seek
a tighter mixed-integer convex relaxation of the SO(3) constraint.

Our intuition is that instead of considering the convex hull of all rotation matri-
ces as in [27], we divide the range of the rotation matrices into smaller intervals,
and compute the convex hull of each small interval to obtain a tighter approxima-
tion. We can then constrain the approximated rotation matrix to be within one of
the convex hulls. This approach is inspired by Deits et.al. [14], in which the orienta-
tion constraint SO(2) in 2D is approximated by mixed-integer linear constraints. In
a similar fashion, we replace (1a)-(1c) with mixed-integer convex (quadratic) con-
straints, as a relaxation of the original non-convex SO(3) constraints. This relaxation
allows the inverse kinematics problem to be formulated as a mixed-integer convex
optimization program, which is amenable to the branch-and-bound algorithm by
branching on integer variables, and can be solved efficiently by modern solvers [1].
Like convex optimization, mixed-integer convex optimization also does not rely on
the initial seed, and warrants global solution [28, 7]. With the rapid advancement in
numerical solvers, mixed integer convex optimization becomes increasingly popular
in robotics [30, 22, 15]. In this paper we show that our approach can either produce
an approximate solution to the inverse kinematics problem, or prove the problem is
globally infeasible for generic constraints.
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2 Background

In this section we briefly review how to relax a non-convex quadratic constraint as
mixed-integer convex constraints, which will be used to relax the non-convex SO(3)
constraint on the rotation matrix (1a)-(1c).

Consider a non-convex quadratic constraint

{z|a≤ zT Qz+ cT z≤ b}, (2)

where the matrix Q is not necessarily positive semidefinite. This quadratic constraint
contains bilinear product terms like xy, visualized in Fig 2a -2b. It is NP-hard to
obtain an exact global optimal solution to this non-convex problem, but there has
been a lot of research on obtaining an approximated one through mixed-integer-
convex optimization [23, 19]. The key idea is to partition the range of each variable
into smaller intervals, and replace the bilinear term xy with a linear term which
approximates xy inside each interval. To see this geometrically, we draw the surface
of w = xy in Fig 2 within x ∈ [0,1],y ∈ [0,1]. We then partition the range [0,1]
into two intervals, with interval i as [φi,φi+1]. The convex hull of w = xy in interval
x ∈ [φi,φi+1],y∈ [φ j,φ j+1] is a tetrahedron. We can then relax the constraint w = xy,
with the constraint that the point (x,y,w) lies within one of the tetrahedrons. We will
use some binary variables to determine within which tetrahedron the point lies.

(a) (b)

(c) (d)

Fig. 2: 2a,2b: w = xy surface in the range x ∈ [0,1],y ∈ [0,1] from two perspectives. In 2c,2d we
divide the range [0,1] into two intervals, with (φ0,φ1,φ2) = (0,0.5,1), and compute the convex
hull of the surface in each interval x ∈ [φi,φi+1],y ∈ [φ j,φ j+1]. Each convex hull is a tetrahedron
drawn in distinct colors.
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To enforce that (x,y,w) falls into one of the convex hulls, we rely on the special
ordered set of type 2 (sos2) constraint [3], defined as follows

Definition 1. Special ordered set of type 2: λ = (λ0, . . . ,λn) ∈ Rn+1 is in sos2, if

∑
i

λi = 1,λi ≥ 0 (3a)

∃ j ∈ 0, ...,n−1, s.t λi = 0 ∀i 6= j, i 6= j+1. (3b)

Namely at most two entries in λ can be strictly positive, these two entries must
be consecutive in their ordering.

The sos2 constraint is often used to formulate a piecewise linear approximation
to a nonlinear function. For example in Fig 3, we approximate f (x) with a new
variable w satisfying [

x
w

]
= ∑

i
λi

[
φi

f (φi)

]
, λ is in sos2 (4)

(4) forces the point (x,w) to be on the black lines in Fig 3.

Fig. 3: A piecwise linear function (black lines) approximating the nonlinear function f (x) (red
curve).

We can formulate the sos2 (3) as mixed-integer linear constraints by introduc-
ing auxiliary binary variables. In this paper we adopt the formulation proposed in
[31], which introduces log2 n binary variables. We refer the readers to [31] for more
details on sos2 constraint.

To impose the constraint that (x,y,w) is in one of the tetrahedron in Fig 2c-2d,
we introduce auxiliary continuous variables γ ∈ R(n+1)×(n+1),α ∈ Rn+1,β ∈ Rn+1

with the additional constraints

x = ∑
i

αiφi, y = ∑
j

β jφ j (5a)

w = ∑
i

∑
j

γi, jφiφ j (5b)

∑
j

γi, j = αi, ∑
i

γi, j = β j, γi, j ≥ 0 (5c)

α,β are in sos2 . (5d)
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Constraint (5d) is formulated as mixed-integer linear constraints with auxiliary
binary variables.

To summarize, for a non-convex quadratic constraint (2), we can replace the bi-
linear term xy with w satisfying (5), and obtain mixed-integer convex constraints as
a relaxation of the original non-convex constraint.

3 Approach
As explained in Section 1, the non-convexity of the inverse kinematics problem
originates from the non-convexity of the SO(3) constraint. In order to obtain a global
solution to this non-convex problem, in sub-section 3.1, we first relax the SO(3)
constraint (1a)-(1c), to a set of mixed-integer convex constraints, using the technique
described in Section 2. Then in sub-section 3.2, we formulate the inverse kinematics
problem by searching over the link poses (position/orientation) satisfying both the
kinematic constraints, and the relaxed SO(3) constraint introduced in sub-section
3.1. Finally, we project the approximated rotation matrices to the SO(3) manifold to
obtain the angle of each joint within the joint limits.

3.1 Rotation constraint relaxation
We aim to find a matrix R̄ ∈ R3×3 satisfying a relaxation of the SO(3) constraint
(1a)-(1c). To this end, we cut the range [−1,1] into n small intervals. The quadratic
constraints (1b)-(1c) can be relaxed by replacing each bilinear term with a new
variable approximating the bilinear term within each interval, described by (5).

To relax the unit length constraint uT
i ui = 1 (1a), we first introduce auxiliary

variables wi ∈ R3,λ i, j ∈ Rn+1 satisfying[
ui( j)
wi( j)

]
=

n

∑
k=0

λ
i, j
k

[
φk
φ 2

k

]
, λ

i, j is in sos2. (6)

Constraint (6) forces the point (ui( j),wi( j)) to be on the black lines in Fig 4, for
n = 4 case. Namely wi( j) is an upper-bound of ui( j)2. We can thus relax the unit
length constraint (1a) as

uT
i ui ≤ 1 (7a)

wi(1)+wi(2)+wi(3)≥ 1. (7b)

Geometrically, constraint (7a) forces the rows/columns of the rotation matrix to
be within the unit sphere, while constraint (7b) pushes the row/column vector from
inside the unit sphere, such that the Euclidean length of the row/column vector is
bounded from below.

While the generic technique introduced in section 2 can already approximate
the orthogonality constraint, it is desirable to introduce an additional relaxation,
because enforcing the solution to live in the intersection of different relaxations
can only improve its approximation quality. We thus impose the following convex
(quadratic) constraints as a relaxation to the orthorgonal constraint (1b)
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Fig. 4: The range of ui( j) is cut into 4 intervals, with (φ0,φ1,φ2,φ3,φ4) = (−1,−0.5,0,0.5,1).
The adjacent two points (φi,φ

2
i ) and (φi+1,φ

2
i+1) are connected with the black straight line. We

introduce an auxiliary variable wi( j) to be on the black lines, as an upper bound of the red curve
ui( j)2. The unit length constraint ∑ j ui( j)2 = 1 is relaxed as ∑ j zi( j) = 1, where zi( j) lies within
the shaded cyan region, as a relaxation of the red curve ui( j)2.

|ui±u j|22 ≤ 2, (8)

where ui,u j are two distinctive rows/columns of the matrix R̄, | • |2 is the l2 norm
of a vector. Constraint (8) is equivalent to |uT

i u j| ≤ 1
2 (2− uT

i ui− uT
j u j). When

the vectors ui,u j are “close to” the unit sphere (due to the constraint (7a)-(7b)),
constraint (8) approximates the orthogonal constraint uT

i u j = 0. Similarly we can
impose the convex constraint |u1±u2±u3|22 ≤ 3 as an relaxation of the orthogonal
constraint, where u1,u2,u3 are all three rows/columns of R̄.

The non-convex SO(3) constraint is thus relaxed to a set of mixed-integer convex
quadratic constraints. These mixed-integer convex constraints are readily handled
by modern numerical solvers such as Gurobi [1].

3.2 Inverse kinematics formulation
We aim to solve the inverse kinematics problem by finding the pose of each link.
The pose of link i can be represented by rigidly attaching a frame to the link, with the
position W pi ∈ R3 and the rotation matrix W Ri, where the right subscript i denotes
it is link i’s frame we are interested in, the left superscript W indicates the quantity
is expressed in the world frame. In Fig 5, we illustrate the kinematics relationship
between two links connected by a revolute joint. We will express this kinematics
relation as constraints on the position W pi and orientation W Ri of link i relative to
and expressed in the world frame, and the position/orientation of its parent link i−1.
A joint frame J is rigidly attached to the parent link i− 1, and coincides with the
child link frame, when the joint angle qi = 0. We denote the fixed translation of joint
frame to the parent link frame as i−1pJ . The joint axis is expressed as i−1ẑi in the
parent link (i−1)’s frame, and iẑi in the child link i’s frame. Since the position and
direction of joint axis is invariant under rotation about this axis, we can impose the
following constraints on the poses of the parent and child links

W pi =
W pi−1 +

W Ri−1
i−1pJ (9a)

W Ri−1
i−1ẑi =

W Ri
iẑi (9b)
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Axis i-1

Link i-1

Link i

Axis i

Fig. 5: The kinematics relation between adjacent link i−1 and i [11]. The frame with axes x̂i, ŷi, ẑi
is rigidly attached to the child link i, the position of the frame origin is pi. Without loss of generality
we can assume the rotation axis i is along the z axis ẑi. Similarly for the parent link i−1. The joint
frame J with axes x̂J , ŷJ , ẑJ is rigidly attached to the parent link i− 1; this joint frame coincides
with the child link frame when the joint angle qi = 0.

(9) are linear constraints on the decision variables W Ri, W Ri−1, W pi, W pi−1.
We also handle the angle limits on the revolute joint. Without loss of generality,

we assume that angle limits for joint i are −α ≤ qi ≤ α . In order to enforce this
joint limit constraint with only link poses as decision variables, we consider a unit
length vector x̂J , perpendicular to the joint axis ẑi, and how it relates to itself before
and after joint rotation. For example in Fig 5, rotating the i’th joint by qi transforms
the unit length vector x̂J to x̂i. The joint limit constraint |qi| ≤ α can be imposed as

|∠(W x̂J ,
W x̂i)| ≤ α ⇔ W x̂T

J
W x̂i ≥ cosα ⇔

∣∣W x̂J−W x̂i
∣∣
2 ≤ 2sin

α

2

⇔
∣∣W Ri−1

i−1x̂J−W Ri
ix̂i
∣∣
2 ≤ 2sin

α

2
(10)

where ∠(·, ·) is the angle between two vectors. i−1x̂J is the given unit length vector
fixed and expressed in the parent i−1 frame, and ix̂i is the given unit length vector
fixed and expressed in the child i frame. Equation (10) is a convex (quadratic) con-
straint on the decision variables (parent and child link orientations). The joint limit
constraint (10) would be tight if W Ri,

W Ri−1 satisfied SO(3) constraints exactly.

Fig. 6: The visual illustration of the joint limit constraint
(10). The red chord is the difference between x̂J and an-
other vector, obtained by rotating x̂J about an axis by an-
gle α . The chord’s length is 2sinα/2. x̂J− x̂i should have
shorter length than the red chord, since the angle qi be-
tween these two vectors is smaller than α .

To impose collision avoidance constraints, we use a similar formulation as [15].
We segment the free space into convex polytopes Pi, i = 1, . . . ,Np, with the vertices
ofPi denoted as vi,1, . . . ,vi,mi . A point is collision free if it is in one of the polytopes.
We impose the following mixed-integer convex constraints to enforce the point Q,
on link k with coordinates kpQ in the link frame, to be collision free
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W pk +
W Rk

kpQ =
Np

∑
i=1

mi

∑
j=1

λi, jvi, j (11a)

zi =
mi

∑
j=1

λi, j,
Np

∑
i=1

zi = 1 (11b)

λi, j ≥ 0, zi is binary (11c)

zi is the binary variable indicating within which polytope the link point Q stays.
With the mixed-integer convex relaxation on SO(3) (sub-section 3.1), and the

kinematic constraints in sub-section 3.2, we can solve the IK problem through
mixed-integer convex (quadratic) optimization, to find the body positions and an ap-
proximated solution to the body orientations. If the mixed-integer convex program
is infeasible, it proves that the original unrelaxed IK problem is globally infeasible.

3.3 Reconstruct joint angle by projecting back to SO(3)
After obtaining the approximated solution to the body orientations through the
mixed-integer convex optimization, we need to recover the value of each joint angle.
Since the solution to the body orientation does not satisfy the SO(3) constraint ex-
actly, we project the approximated solution to the rotation constraint, starting from
the root link. If the link is floating, then the optimal projected solution is obtained as
UV T, where R̄ =UΣV T is the SVD of R̄, as proved in [18]. On the other hand, if the
link is connected to its parent link through a revolute joint, we project W RT

i−1
W R̄i

onto SO(3) with the given rotation axis and angle limits, where W Ri−1 is the rota-
tion matrix of the parent i− 1 link, computed by doing forward kinematics using
the recovered posture from the root to the i−1 link. To project W RT

i−1
W R̄i, we find

the joint angle qi such that the joint rotation matrix R(i−1ẑi,qi) has the minimal er-
ror to W RT

i−1
W R̄i under the joint limits (Fig 5). R(i−1ẑi,qi) ∈ SO(3) means rotating

by angle qi about the axis i−1ẑi. Algebraically, the optimal qi is the solution to the
following program

min
qi

∣∣∣R(i−1ẑi,qi)−W RT
i−1

W R̄i

∣∣∣
F

(12a)

s.t −α ≤ qi ≤ α. (12b)

In the objective function | · |F is the matrix Frobenius norm, |X |F =
√

trace(XT X).
R(i−1ẑi,qi) can be computed from the Rodriguez Formula below

R(i−1ẑi,qi) = I3×3 + sinqibi−1ẑic×+(1− cosqi)bi−1ẑic2×, (13)

where bi−1ẑic× ∈R3×3 is the skew-symmetric matrix, representing the cross product
with the vector i−1ẑi.

Substituting equation (13) into the optimization objective (12a), we can analyti-
cally obtain the optimal qi as
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if ∃k ∈ Z,−α +β ≤ π

2 +2kπ ≤ α +β , qi =
π

2 +2kπ−β

else:
if sin(−α +β )≥ sin(α +β ), qi =−α

if sin(−α +β )< sin(α +β ), qi = α.

(14)

where β = atan2
(
−trace(MTA2), trace(ATM)

)
,A = bi−1ẑic×,M =W RT

i−1
W R̄i. Note

that at value π/2+ 2kπ − β the derivative of the objective (12a) is zero, i.e., it is
the optimal solution to (12a) without the joint limits (12b). The optimal solution is
truncated to the joint bounds if π/2+2kπ−β is outside of the angle limits. qi in (14)
is the optimal joint angle within the joint limits, that minimizes the projection error
from the mixed-integer convex optimization solution, to SO(3) with a given rotation
axis and angle bounds. We thus obtain a posture as the approximated solution to the
inverse kinematics problem.

4 Results
We present the results on the SO(3) relaxation and the inverse kinematics algorithm.
The programs run on 64 bit Intel Xeon CPUs with Gurobi 7.5 [1] as the solver.

4.1 Tightness of rotation matrix relaxation
We first show the tightness of our mixed-integer convex relaxation of the SO(3)
constraint on the rotation matrix. If R̄ ∈ R3×3 satisfies the relaxed constraints, then
we know that |R̄v|2 ≈ |v|2 ∀v∈R3, and ∠(R̄v1, R̄v2)≈∠(v1,v2). Geometrically the
relaxation allows the transformation v→ R̄v to change the length of a vector, and to
perturb the angle between two vectors. In this section we show how much shorter
the transformed vector can be, and also derive a bound on the angle error.

We find the global optimum to two mixed-integer convex optimization programs,
to determine the tightness of the relaxation. First we compute the global minimum of
minR̄,i |R̄ei|2, where ei is the unit length vector with ei(i) = 1. To determine the angle
error, we compute the global minimum minR̄ in relaxation,i6= j |R̄ei+ R̄e j|2. If we denote
this global minimum as d, we obtain loose bounds on the angle after transformation
as 180◦− arccos(d2/2−1)≤ ∠(R̄ei, R̄e j)≤ arccos(d2/2−1). We compute the er-
ror bounds on the relaxation, by partitioning the range [−1,1] into N = 2,4 or 6
intervals, with φi =−1+2i/N. The results are in Table 1. The last column with in-
finite number of binary variables is the ideal R̄ ∈ SO(3) case without any relaxation.
The bounds on |R̄ei|2 and |R̄ei + R̄e j|2 are tight, but the bound on the angle in the
last row of the table is not tight.

# of intervals 2 4 6 ∞

minR̄,i |R̄ei|2 0.57735 0.90453 0.95784 1
minR̄,i, j

∣∣R̄ei + R̄e j
∣∣
2 0.60302 1.22474 1.32667 1.414

∠(R̄ei, R̄e j)−90◦ [−54.90◦,54.90◦] [−14.47◦,14.47◦] [−6.89◦,6.89◦] [0◦,0◦]

Table 1: The tightness on the mixed-integer convex relaxation on SO(3).
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As the number of intervals increases, the convex hull of xy in each interval is
closer to the bilinear product. As a result in Table 1, the minimal length of R̄ei
increases, and the bound on the angle error shrinks, leading to a tighter relaxation of
SO(3). In the inverse kinematics problem, we choose to cut [−1,1] into 4 intervals,
as a compromise between computation speed and relaxation accuracy.

4.2 Inverse Kinematics
We first show that our inverse kinematics approach can find postures for compli-
cated kinematics constraints including inequalities, such as those arising from the
task “grasping a mug on the table in the cluttered environment” in Fig 7. We show
two distinct postures found by Gurobi on the mixed-integer convex optimization
programs. These two postures have different sets of active binary variables. We use
a KUKA IIWA arm and a Schunk gripper with 7 total joints. The kinematics con-
straints are

• The middle point between the two fingers should be on the axis of the mug. The
middle point should be above the table, and lower than the top rim of the mug.

• The y axis on the hand should be horizontal.
• The links and the gripper should be collision free.

Fig. 7: KUKA IIWA arm grasping a mug on the table with two different postures. The green line
is the y axis of the hand which should stay horizontal. The mesh files of the objects are obtained
from Shapenet [10].

We also show that our approach can prove the global infeasibility of some kine-
matics constraints. In Fig 8, we impose the task constraint that the hand should grasp
the wine bottle, by keeping its center on the green line segment, and its orientation
aligned with the bottle’s longitudinal axis. In the left plot the mixed-integer program
is solved successfully, while in the right plot with the fridge on the table, the addi-
tional collision avoidance constraint causes the mixed-integer convex program to be
globally infeasible. The solver takes 0.75 seconds to detect the global infeasibility.

For more complicated robots like LittleDog (Fig 9), we show that our approach
can find a posture of the robot with each leg on one of the stepping stones. This
constraint is imposed similar to the collision avoidance constraint (11a)-(11c), but
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Fig. 8: KUKA IIWA arm grasping the wine bottle. On the left, the IK problem is solved success-
fully. The center of the hand is constrained to be on the green line segment. On the right, with the
fridge on the table, the mixed-integer convex program proves there is no posture that can satisfy
the same grasping constraint, while keeping the robot from colliding with the fridge.

replacing the vertices in each polytope with the top corners of each stepping stone.
In Fig 9b the mixed-integer convex IK spends 0.25s to determine that there does
not exist a posture for the robot to put each of its toes on one of the violet stepping
stones, while avoiding the red obstacles.

(a) LittleDog stands on stepping stones. Com-
putation takes 15s for this 18 DoF quadruped.

(b) Mixed-Integer Convex IK proves it infeasi-
ble to put each foot on one of the stepping stone
(violet), while avoiding the red obstacles.

Fig. 9

To get some statistics on our mixed-integer convex IK approach, we test its per-
formance on an ABB IRB140 arm with 6 DoF, for which the IK problem can be
solved analytically [11]. In Fig 10, we show the results of running both analytical
and mixed-integer convex IK on the robot. In each column of the figures, an IK prob-
lem is solved to determine whether the end effector will reach a sampled location
with the given orientation. There are three categories of the solutions

• Green dot. Both analytical and mixed-integer convex IK find the solution.
• Blue dot. Both analytical and mixed-integer convex IK prove global infeasiblity.
• Red dot. Analytical IK proves the problem is infeasible, but mixed-integer con-

vex IK thinks the problem is feasible, due to the relaxation.
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We first analyze the tightness of the relaxation. The red dots, which imply loose
relaxation on the SO(3), form a thin layer between the unreachable blue dots, and
the reachable green dots. Only 2.43% of all the samples are red. For all the kine-
matically unreachable points (red and blue), 94.72% of them are detected as global
infeasible in our mixed-integer IK solver; on the other hand, SDP relaxation of the
SO(3) constraint, proposed in [27, 12], can detect only 42.23% of infeasibility. This
huge difference demonstrates that our mixed-integer convex relaxation of SO(3)
constraint is a lot tighter than the SDP relaxation.

We also examine the computation time of the mixed-integer convex IK, together
with the quality of the approximated solution. In Fig 11 we show the histogram
of the mixed-integer convex IK computation time for the green dots (both IK ap-
proaches can find the solution). 95.1% of samples are solved within 10s, and the
average computation time is 4.2s. In Fig 12 after reconstructing the posture from
the mixed-integer convex IK, we compute the end effector pose error from the re-
constructed posture to the sampled pose, to demonstrate how much relaxation error
is brought into the approximated IK solution. Most of the solutions have less than
5cm of position error, and less than 2◦ of orientation error. The solutions with large
pose error all have some joints with active joint limits. This large error occurs be-
cause the joint limit constraint (10) would be tight only if the link orientation matri-
ces W Ri−1,

W Ri were on SO(3). With our mixed-integer convex relaxation on SO(3),
the angle π/2+2kπ−β in (14), where the derivative of the objective function (12a)
would be zero, falls outside of the joint limits. So the reconstructed joint angle is
instead truncated to its angle limits ±α . This truncation can cause large cost in the
projection error (12a), resulting in significant deviation in the end effector pose.

In Fig 13a, 13b we draw the histograms of the computation time, when the mixed-
integer convex IK proves global infeasibility. In 86.05% cases the computation takes
less than 0.1s.

Finally, we solve the inverse kinematics program for the samples in Fig 10a, 10b
through nonlinear optimization [17]. We first set the initial seed as the postures in
10a and 10b, and then solve the nonlinear optimization again, but replace the initial
seed with the reconstructed posture from the mixed-integer convex IK. The success
rate of the nonlinear IK solver increases from 85.67% to 100%. This improvement
demonstrates that the approximate solution from the mixed-integer convex IK can
always serve as a good initial seed for the nonlinear optimization program.

5 Conclusion and Discussion
In this paper we propose a mixed-integer convex relaxation of the non-convex SO(3)
constraint, and formulate a mixed-integer convex optimization program to solve the
inverse kinematics problem globally with generic constraints. We show that this
relaxation is relatively tight, and our IK approach can either produce an approximate
solution, or prove that the solution does not exist globally. We demonstrate results
when applying our approach on manipulators and quadruped robots.

Currently the computation time is a lot slower than the gradient-based nonlinear
optimization approach, and the reconstructed posture can violate the kinematic con-
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(a) (b)

(c) (d)

(e) (f)

Fig. 10: The results of running both analytical and mixed-integer convex IK on an ABB IRB140
arm. We take 9321 sample points in an 1 m3 cube. The robot end effector is required to reach each
sampled location with two different given orientations. The desired orientation of the end effector
is shown in silver color next to the coordinate axes in the bottom left of the figure. The green dots
correspond to positions for which both IK approaches obtain the solution. The blue dots correspond
to positions for which both IK approaches guarantee global infeasibility. The red dots correspond
to the gap for which the analytical IK proves that the problem is infeasible, while the mixed-integer
convex IK thinks the problem is feasible under relaxation. In the first row of the figures we show
all three colors of dots. In the last two rows we highlight each color of the dots separately.



Title Suppressed Due to Excessive Length 15

0 5 10 15 20 25 30
time (s)

0

50

100

150

200

250

co
un

t

Fig. 11: Histogram on mixed-integer IK com-
putation time, for all the green dots in Fig 10a,
10b
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Fig. 12: The end effector pose error for the re-
constructed posture from mixed-integer convex
IK solver, for all the green dots in Fig 10a, 10b

0 5 10 15 20 25 30
time (s)

0

1000

2000

3000

4000

5000

6000

co
un

t

(a) Histogram on mixed-integer IK computation
time, when it proves global infeasibility.
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(b) A zoomed in view of the histogram in Fig
13a for samples with computation time ≤ 0.1s.

Fig. 13

straints with large errors. We are working on improving the accuracy of the solution,
and reducing the computation time.

We would like to thank our colleagues at Toyota Research Institute and Robot
Locomotion Group for the valuable discussions.
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