
Planning robust walking motion on uneven terrain via convex
optimization

Hongkai Dai1,2 and Russ Tedrake1,2

Abstract— In this paper, we present a convex optimization
problem to generate Center of Mass (CoM) and momentum
trajectories of a walking robot, such that the motion robustly
satisfies the friction cone constraints on uneven terrain. We
adopt the Contact Wrench Cone (CWC) criterion to measure
a robot’s dynamical stability, which generalizes the venerable
Zero Moment Point (ZMP) criterion. Unlike the ZMP criterion,
which is ideal for walking on flat ground with unbounded
tangential friction forces, the CWC criterion incorporates non-
coplanar contacts with friction cone constraints. We measure
the robustness of the motion using the margin in the Contact
Wrench Cone at each time instance, which quantifies the capa-
bility of the robot to instantaneously resist external force/torque
disturbance, without causing the foot to tip over or slide. For
pre-specified footstep location and time, we formulate a convex
optimization problem to search for robot linear and angular
momenta that satisfy the CWC criterion. We aim to maximize
the CWC margin to improve the robustness of the motion, and
minimize the centroidal angular momentum (angular momen-
tum about CoM) to make the motion natural. Instead of directly
minimizing the non-convex centroidal angular momentum, we
resort to minimizing a convex upper bound. We show that our
CWC planner can generate motion similar to the result of the
ZMP planner on flat ground with sufficient friction. Moreover,
on an uneven terrain course with friction cone constraints, our
CWC planner can still find feasible motion, while the outcome
of the ZMP planner violates the friction limit.

I. INTRODUCTION

The first and foremost objective in humanoid control is to
enable the robot to walk robustly without falling over. There
has been a lot of progress in achieving this goal in recent
years. For example, in the DARPA Robotics Challenge, the
robot could traverse different types of terrain, including
flat ground, tilted cinderblocks, and stairs [20], [11]. The
planning approach in the aforementioned works relies on the
venerable Zero Moment Point (ZMP) criterion[29], which
asserts that if the center of pressure lies strictly within the
foot support region, then the feet will not tip over [27]. Since
its introduction almost half a century ago, the Zero Moment
Point has gained great attention due to its simplicity. There
has been a lot of research to plan the robot CoM trajectory,
so as to satisfy the ZMP criterion [16], [10], [9], [28].

Although widely adopted, ZMP criterion has some severe
limitations. First, it assumes that the feet are on flat ground.
Second, it only guarantees that the feet will not tip over,
by enforcing the normal contact force to point upward; it
cannot restrain the feet from sliding, since the ZMP criterion
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Fig. 1: Robot walking over uneven terrain course with
friction cones (cyan)

ignores the friction cone constraint, and assumes that the
tangential friction force can be infinite. Thus even if the ZMP
lies strictly within the support region, the robot can still fall
down due to foot sliding.

In this paper we will adopt the Contact Wrench Cone
(CWC) criterion, which requires that the total contact wrench
lying within its admissible set, called the Contact Wrench
Cone [15], [31]. In [15] it is proved that this criterion is
equivalent to ZMP criterion when the feet are on flat ground
with sufficient friction forces; moreover it can incorporate
non-coplanar contact with friction cone constraints. There
has been some work to plan a feasible motion using this
criterion through non-convex optimization [7], [14]. In this
paper, we aim to plan a robust motion with the CWC criterion
through convex optimization.

The CWC notion can be used to determine not only
the feasibility of a given motion, but also to measure its
robustness. We adopt the robustness metric proposed by
Barthelemy et al. [2], to quantify the capability of the robot
to resist external force/torque (wrench) disturbance without
breaking static contact. We call this metric the Contact
Wrench Cone margin. Barthelemy et al. showed how to
compute this robustness metric for a given motion; we will
aim to explicitly optimize this metric by searching over the
motion.

In [5], Caron et al. formulated a convex optimization
problem to maximize the CWC margin, with given robot
path (joint angles at each time sample), and search over
the time intervals between each samples. In this paper,
we will suppose that the footstep locations and timing are
pre-specified, and we will search for the robot CoM and
momentum trajectories through convex optimization.

Our key contribution in the paper is to formulate the CoM



Fig. 2: The linearized friction cones at each corner of the
feet.

and momentum generation problem as a convex optimization
problem, rather than a non-convex problem, presented in the
previous work [19], [14].

We will give a brief introduction on Contact Wrench
Cone and its margin in Sec II. In Sec III we present the
convex optimization problem to search for the robot CoM
and momenta (linear and angular momentum). In Sec IV
we will demonstrate the results for robot walking on flat
ground (IV-A) and on a tilted terrain course with friction
cone constraints (IV-B). We will conclude the paper in Sec.V.

II. BACKGROUND

The Contact Wrench Cone (CWC) can be used as a
generalized stability criterion for robots making multiple
contacts, subject to friction cone constraints [15], [31]. In
this section, we will describe how to compute the CWC,
how to enforce the stability criterion, and how to measure
the robustness of the motion using this cone.

A. Computing Contact Wrench Cone

The contact wrench cone (CWC) is the admissible set of
the total contact wrench, which is computed by summing
up the individual contact wrenches at each contact location.
A wrench is the concatenation of a force and a torque.
When we use linearized Coulomb friction cone model, we
can compute the explicit form of the CWC. To illustrate
how to obtain this explicit form, consider robot feet making
multiple contacts, as shown in Fig. 2. At contact location pi,
the edges of the friction cone are eji , j = 1, . . . , ne. Each
edge is equivalent to a wrench (force/torque) wji expressed
in the world coordinates

wji =

[
eji

pi × eji

]
(1)

where × is the cross product between two 3-dimensional
vectors.

According to the Coulomb friction model, when the con-
tact point sticks to the ground, the contact force at each
individual point pi is a non-negative combination of the
edges eji of that friction cone. Thus for a robot making
n contacts at location pi, i = 1, . . . , n, the total contact
wrench is the non-negative combination of the wrenches wji

corresponding to every friction cone edge. As a result, the
set of the total contact wrench is the convex cone of wji

CWC = ConvexCone(wji ) i = 1, . . . , n, j = 1, . . . , ne (2)

where ConvexCone is the function to compute the con-
vex cone combination, i.e., ConvexCone(wji . . . , w

j
i ) ={∑

i,j λ
j
iw

j
i | λ

j
i ≥ 0

}
.

With pre-specified footstep locations generated by a foot-
step planner [8], [32], [21], the contact locations pi and the
friction cone edges eji will both be given. Thus we can
compute the Contact Wrench Cone as a conic polyhedron
using (2), where wji are the candidate extreme rays of this
conic polyhedron. This polyhedron can also be described by
its facets, in the following form

CWC =
{
w|aTkw ≤ 0, k = 1, . . . , nf

}
(3)

where nf is the number of facets in this polyhedron. ak ∈
R6 is the normal vector of each facet. We can use the
double description method [12] to convert this cone from
the description with extreme rays (2) to the description with
facets (3) [5]. Without loss of generality, we can assume
that the normal vector ak of each facet has unit length.
In the subsequent sections we will represent CWC as the
intersection of halfspaces, as in (2). As we will see in sub-
sections II-B and II-C, this representation empowers us to
easily measure the stability and robustness of a motion using
Contact Wrench Cone.

B. Stability Criterion

We can use the Contact Wrench Cone to enforce a
stability criterion for a walking robot [15], [31], that the
total contact wrench has to lie within this cone. According
to Newton’s law, since the robot is only subject to contact
forces and gravitational force, the total contact wrench should
be equal to the rate of the robot momenta (linear and angular
momentum) subtracting the gravitation wrench. As a result,
the following inclusion condition should hold[

mr̈

k̇O

]
︸ ︷︷ ︸

rate of robot momenta

−
[

mg
r ×mg

]
︸ ︷︷ ︸

gravitational wrench

∈ CWC (4)

where m is the robot mass, r ∈ R3 is the CoM of the robot,
kO ∈ R3 is the robot angular momentum about the origin of
the world coordinate. g = [0 0 − 9.81]T is the gravitational
acceleration.

This Contact Wrench Cone criterion (4) is an extension
of the Zero Moment Point (ZMP) criterion. When the feet
are on flat ground with unbounded tangential friction force,
the CWC criterion is equivalent to the ZMP criterion, as
proved by Hirukawa et al. [15]. On the other hand, the CWC
criterion holds when the contact locations are not co-planar.
It also explicitly considers the friction cone constraints. As
a result, it guarantees that the feet will not slide or tip over.

The CWC criterion is only a sufficient condition for a
motion being dynamically feasible. It ignores the torque
limits at each individual joints. Fortunately, many humanoids



are equipped with powerful actuators at all joints, so the joint
torque limits are not violated in many cases. As a result, we
can focus on the constraints on the 6 un-actuated degrees
of freedom (DoF). The motion of these un-actuated DoFs is
feasible if it satisfies the CWC criterion.

C. Contact Wrench Cone Margin

The Contact Wrench Cone can be used to determine not
only the feasibility of a motion, but also its robustness. To
this end, we use the notion of Contact Wrench Cone margin,
defined as follows [2], [5]

Definition 1. Contact Wrench Cone margin is the smallest
magnitude of the wrench disturbance being applied at a
certain location, that the robot cannot resist, given the
contact locations and friction cone constraints.

A similar robustness metric has been used by the grasping
community, to measure the quality of a force closure grasp
[17], [6].

Algebraically, the Contact Wrench Cone margin is the
maximum value of ε, such that the contact wrench superim-
posed with the disturbance wrench is still within the Contact
Wrench Cone, as long as the magnitude of the disturbance
wrench is no larger than ε. Namely

Bε ⊂ CWC (5)

where Bε =


[
mr̈

k̇O

]
−
[

mg
r ×mg

]
︸ ︷︷ ︸

contact wrench

+T (pw)w

∣∣∣∣∣∣∣∣∣w
TQww ≤ ε2


where Qw ∈ R6×6 is a symmetric matrix to encode the
norm in the wrench space. pw is the pre-specified location
where the disturbance wrench w is applied. T (pw) ∈ R6×6

is the transformation matrix that maps the wrench at pw to
an equivalent wrench at the origin

T (pw) =

[
I3×3 03×3
bpwc× I3×3

]
(6)

where bpwc× ∈ R3×3 is the skew symmetric matrix that
represents the cross product with pw. This skew-symmetric
matrix has the following form for a vector x ∈ R3.

bxc× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (7)

Geometrically, the Contact Wrench Cone margin is the
maximum radius of the ellipsoid Bε defined in (5), such that
the ellipsoid is centered at the contact wrench, contained
inside the Contact Wrench Cone.

Physically, the Contact Wrench Cone margin measures the
capability of the robot to resist external wrench disturbance.
We adopt it as the robustness metric for a walking motion. In
this paper, we aim to explicitly optimize the robustness of the
walking robot, by searching for the motion that maximizes
the Contact Wrench Cone margin.

We can compute the Contact Wrench Cone margin ε
analytically, as the smallest distance in the wrench space,

from the contact wrench to each facet of the Contact Wrench
Cone

ε = min
k=1,...,nf

āTk

[
mr̈ −mg

k̇O − r ×mg

]
(8)

where āk = −[aTk T (pw)Q−1w TT (pw)ak]−
1
2 ak is a given

vector, as the contact location, the friction cone and the
disturbance location are all pre-specified. The CWC margin
can be equivalently formulated as the maximal value of the
optimization problem

max
ε

ε (9)

s.t ε ≤ āTk
[
mr̈ −mg

k̇O − r ×mg

]
, k = 1, . . . , nf (10)

In Section III, we will use this formulation (10) to search
for robot motion r, r̈, k̇O in order to maximize the Contact
Wrench Cone margin.

III. APPROACH

In this section, we will present a convex optimization
problem to generate robot CoM and angular momentum
trajectories. We will show that we can maximize the Contact
Wrench Cone margin to improve the robustness of the mo-
tion, and also to minimize the centroidal angular momentum
(the angular momentum about the CoM) to make the motion
more natural.

A. Time discretization and integration

To formulate the motion planning problem as an optimiza-
tion problem, we first discretize the motion by taking N time
samples. We search for the snapshots of the motion at each
time knot through optimization, and then interpolate between
the time samples to generate the trajectories. At the ith time
sample, the variables we will optimize over include
• The CoM position r[i] and its derivatives ṙ[i], r̈[i].
• The angular momentum about the world origin kO[i]

and its derivative k̇O[i].
• The Contact Wrench Cone margin ε[i].

The square bracket [i] indicates the time index. In the
following sections, we will omit the time index when there
is no ambiguity.

We suppose the timing of each knot is pre-specified by the
footstep planner. We denote the given time interval between
the ith and i + 1th knot point as dt[i]. To interpolate the
trajectory with snapshots at each time knot, we impose time
integration constraints on the CoM, the angular momentum,
and their derivatives. In this paper, for simplicity, we choose
the backward Euler integration on CoM acceleration r̈,
the mid-point interpolation for CoM velocity ṙ, and the
backward Euler integration for the rate of angular momentum
k̇O.

∀i = 1, . . . , N − 1


ṙ[i+ 1]− ṙ[i] = r̈[i+ 1]dt[i]

r[i+ 1]− r[i] = 1
2 (ṙ[i] + ṙ[i+ 1])dt[i]

kO[i+ 1]− kO[i] = k̇O[i+ 1]dt[i]

(11)



The time integration constraints above ((11)) are
all linear constraints on the decision variables
r[i], ṙ[i], r̈[i], kO[i], k̇O[i].

B. Centroidal Angular Momentum

In order to generate natural walking motion, we need to
regulate robot’s angular momentum [25], [30], [14], [18].
We aim to track a desired centroidal angular momentum
(momentum about the CoM). It is common to choose zero
centroidal angular momentum as the reference trajectory. As
some human experiments show that the centroidal angular
momentum is kept small during walking [13]. In this paper,
for simplicity we aim to minimize the centroidal angular
momentum. Our approach is also applicable when the desired
centroidal angular momentum is non-zero.

The centroidal angular momentum kG ∈ R3 can be
computed from robot angular momentum about the world
origin kO, and robot CoM r and ṙ.

kG = kO −mr × ṙ (12)

We aim to minimize |kG|1, the L1 norm of the centroidal
angular momentum kG. This norm can be formulated as the
maximal value among linear functions of kG

|kG|1 = max
i=1,...,8

αTi kG (13)

where αi ∈ R3, i = 1, . . . , 8, αi = [±1,±1,±1]T .
Unfortunately, the centroidal angular momentum com-

puted as in (12) is not a convex function of the decision vari-
able kO, r, ṙ. Specifically it involves the non-convex product
between CoM position r and its velocity ṙ. As a result,
in order to plan the motion through convex optimization,
we cannot minimize the L1 norm of the centroidal angular
momentum directly; instead, we will minimize a convex
upper bound of the L1 norm of kG. We will show by
minimizing this upper bound, we can effectively minimize
|kG|1.

One such upper bound of |kG|1 can be obtained by
considering the CoM bound. With pre-specified footstep
locations, the admissible region of the CoM is also bounded,
due to robot kinematics. We notice that the bounds on CoM
r will introduce an upper bound on |kG|1, by replacing r in
product r × ṙ with some appropriate value on the boundary
of the CoM admissible region. To see this, we consider the
two types of admissible regions, either a polytope (Fig. 3a)
or an ellipsoid (Fig. 3b).

1) Polytopic CoM region: For a polytopic admissible re-
gion Pr with nr vertices v1, . . . , vnr

(Fig. 3a), this polytope
can also represented using its facets

Pr : {r|Arr ≤ br} (14)

where each row of Ar is the transpose of the normal vector
on each facet of polytope Pr. (14) are linear constraints on
CoM position r.

When the admissible region for the CoM is a polytope Pr
as in Fig. 3a, an upper bound of |kG|1 can be obtained by
replacing the CoM r with one vertex of the polytope. To see

(a) Polytopic CoM region

(b) Ellipsoidal CoM region

Fig. 3: Footstep locations and the admissible region for CoM.

The optimal value of linear programming is 
always obtained at the vertices

Fig. 4: Linear programming

this, we formulate the following optimization problem P1

to minimize the L1 norm of centroidal angular momentum,
with optimal value p∗1.

P1 : p∗1 = min
ṙ,kO
r∈Pr

max
i=1,...,8

αTi (kO −mr × ṙ) (15)

An upper bound of p∗1 is obtained if we maximize over
CoM position r first, and then minimize over the rest of
the variables. This new optimization problem P2 has optimal
value p∗2.

P2 : p∗2 = min
ṙ,kO

max
r∈Pr

max
i=1,...,8

αTi (kO −mr × ṙ) (16)

p∗2 ≥ p∗1 since (16) maximizes over CoM position r, where
(15) minimizes over it.

An important observation is that we can explicitly compute
the maximization over r within polytope Pr. From linear
programming, we know that the maximization of a linear
function within a polytope is always obtained at one vertex
of the polytope, as shown in Fig. 4. We can thus replace
the CoM r with each vertex of the polytope, and take the
maximal value among all these substitutions as an upper



bound of |kG|1. Namely, we transform p∗2 in (16) as

P2 : p∗2 = min
ṙ,kO

max
i=1,...,8
r∈Pr

αTi (kO −mr × ṙ) (17a)

= min
ṙ,kO

max
i=1,...,8
j=1,...,nr

αTi (kO −mvj × ṙ) (17b)

where vj , j = 1, . . . , nr are the vertices of the polytope Pr.
To write the upper bound of |kG|1 in (17b) as a convex

constraint, we introduce a slack variable s to represent the
upper bound, with the following linear constraints

s ≥ αi(kO −mvj × ṙ) ∀i = 1, . . . , 8, j = 1, . . . , nr (18)

(18) are linear, and thus convex. We can minimize s, the
upper bound of centroidal angular momentum, with these
linear constraints.

2) Ellipsoidal CoM region: If the ellipsoidal admissible
region (Fig. 3b) is used, we formulate this ellipsoid Br as

Br = {r|(r − r∗)TQr(r − r∗) ≤ 1} (19)

where r∗ is the center of the ellipsoid. (19) is a convex
quadratic constraint on CoM position r. It can also be
formulated as a second-order cone constraint [1].

Similar to the polytope case, we can obtain an upper
bound of the L1 norm of the centroidal angular momentum,
with this ellipsoidal admissible region. We define minimizing
|kG|1 as the optimal value p∗1 of the following optimization
problem.

P1 : p∗1 = min
ṙ,kO
r∈Br

max
i=1,...,8

αTi (kO −mr × ṙ) (20)

We define a new optimization problem P2 to first maxi-
mize over the CoM within the ellipsoid

P2 : p∗2 = min
ṙ,kO

max
i=1,...,8
r∈Br

αTi (kO −mr × ṙ) (21a)

= min
ṙ,kO

max
i=1,...,8

(
αTi kO + max

r∈Br

mαTi (ṙ × r)
)

(21b)

= min
ṙ,kO

max
i=1,...,8

(
αTi kO +mαTi (ṙ × r∗)

+m
√
ṙT bαicT×Q−1r bαic×ṙ

)
(21c)

where bαic× ∈ R3×3 is the skew-symmetric matrix repre-
senting the cross product with αi, as defined in (7).

The equality from (21b) to (21c) holds because the
maximization of a linear function over an ellipsoid can be
computed explicitly. A simple example is maxxT x≤1 c

Tx =√
cT c.
To write the upper bound p∗2 in (21c) as a convex con-

straint, we introduce a slack variable s to represent the upper
bound, with the following constraints

s− αTi kO −mαTi (ṙ × r∗) ≥

m
√
ṙT bαicT×Q−1r bαic×ṙ ∀i = 1, . . . , 8 (22)

The left-hand side of (22) is a linear function of decision
variables s, kO, ṙ, the right-hand side of (22) is a weighted
2-norm of variable ṙ, thus (22) is a second-order cone
constraint, which is a special convex constraint.

The relaxation of the original non-convex function P1 to
the convex upper bound in P2 can also be interpreted through
robust optimization [3]. We can regard CoM position r as the
uncertain parameter of the optimization problem P1, and we
want to minimize the worst-case value of P1 under parameter
uncertainty. This worst-case value is an upper bound of p∗1,
and we can compute the upper bound through a convex
optimization. For more details on robust optimization, the
readers can refer to [3], [4].

To summarize III-B, we aim to minimize the centroidal
angular momentum in order to obtain a natural walking
motion. To this end, we minimize a convex upper bound
of the L1 norm of centroidal angular momentum |kG|1, by
leveraging the admissible region on CoM position. When
the admissible region is a polytope, we can minimize |kG|1
through linear programming; when the region is an ellipsoid,
we can minimize |kG|1 through second-order conic program-
ming.

C. Objective function

We propose three parallel goals for the optimization prob-
lem

1) Maximizing the Contact Wrench Cone margin ε to
make the motion robust.

2) Minimizing the upper bound of L1 norm of centroidal
angular momentum s to make the motion natural.

3) Minimizing the CoM acceleration r̈ to make the mo-
tion smooth.

Thus we formulate the objective function as a weighted sum
of ε, s and r̈

min
r,ṙ,r̈,

kO,k̇O,
ε,s

N∑
i=1

−cεε[i] + css[i] + cr̈ r̈[i]
T r̈[i] (23)

where cε, cs, cr̈ are all positive constants.
The constraints for the optimization problems include the

time integration constraints (11), the CWC margin constraint
(10), the CoM bound constraints (14) or (19), the centroidal
angular momentum upper bound constraint (18) or (22).
The problems end up being Quadratic Programming if we
approximate the CoM admissible region with a polytope, or
a second-order conic programming if we approximate it with
an ellipsoid.

IV. RESULTS

In this section, we will show that our Contact Wrench
Cone (CWC) planner can generate a robust walking motion
with CoM and angular momentum trajectories. We tested
two types of terrain using an Atlas robot model [23]. Our
result is very similar to that of a Zero Moment Point (ZMP)
planner when the robot walks on flat ground, since the
Contact Wrench Cone criterion is equivalent to the Zero



Moment Point criterion on flat ground with sufficient friction.
We also show that when planning walking motion on an
uneven terrain course with friction cone constraints, our
CWC planner can generate feasible motion, while the result
of the ZMP planner violates the friction cone constraints.

A. Walking on flat ground

For a robot walking on flat ground with friction coefficient
equals to 1, we compare the results of the CWC planner to
that of the ZMP planner [28]. We use either a polytopic
admissible region or an ellipsoidal admissible region for the
CoM. The ZMP planner attempts to minimize the distance
from the ZMP to the center of the support region on the
ground. At each time sample, we set the disturbance point
pw is the center of the feet region. The admissible region is
centered at 0.8m above the middle of the feet region; it is
either a box of size 0.3m × 0.3m × 0.1m, or an ellipsoid
with axes length 0.3m× 0.3m× 0.1m.

We first compare the CoM trajectories on the flat ground,
shown in Fig. 5. The result of the CWC planner is close to
that of the ZMP planner. We point out here that unlike the
Linear Inverted Pendulum model used for the ZMP planner,
which requires the CoM height being a constant; for the
CWC planner, we do not have that constraint, and the CoM
height changes in Fig. 5. When using polytopic CoM region,
the CoM height descents in Fig. 5a occur during the single
support phase of the robot.

We draw the centroidal angular momentum coming out
of the CWC planners, together with its upper bound in Fig.
6. The magnitude of the centroidal angular momentum is
small. It is in the same scale as the human experiment data,
reported in [13]

We also draw the Contact Wrench Cone margin of both
CWC and ZMP planner results in Fig. 7. The peaks cor-
respond to the double support phase; when there are more
contact points, the Contact Wrench Cone is enlarged, thus
the margin is increased.

The trajectory comprises of 549 time samples, and the
optimization problem has 9333 decision variables. We use
an Intel i7 machine with Mosek 8 beta[22]. The solver time
is 3.5 seconds for a polytopic admissible CoM region, and
1.8 seconds for an ellipsoidal admissible CoM region.

We show the scalability of the computation time in Fig.8.
The computation time scales almost linearly w.r.t the number
of time samples.

B. Tilted terrain course

We also test the planners on uneven terrain with friction
cone constraints. We modify the terrain course from the
DARPA Robotics Challenge [26], with friction coefficient
being 0.4. This terrain course is visualized in Fig. 9. With
the pre-specified foot locations from a footstep planner [8],
we first obtain a CoM trajectory from the ZMP planner [28].
When we examine the ZMP trajectory by computing the
corresponding contact force, we observe that at some time
samples, the ground reaction force falls outside of the friction
cone, as shown in Fig. 10a . Thus the robot foot would
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Fig. 5: CoM trajectories in three axes
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Fig. 6: L1 norm of centroidal angular momentum, and its
upper bound on flat ground
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Fig. 7: Contact Wrench Cone margin on flat ground
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Fig. 8: Scalability of computation time

slide when executing this plan, resulting in the robot falling
over. This problem is caused by ZMP planner’s ignorance of
friction cone on uneven ground.

As a comparison, we run our CWC planners on the
same terrain course. The CoM trajectories are visualized in
Fig. 9. These trajectories from the CWC planners are quite
different from the ZMP planner’s result. We also examine
the contact force at the same moment when that from the
ZMP planner violates the friction cone constraint, visualized
in Fig. 10b,10c; the friction force from the CWC planner
stays within the friction cone.

We draw the centroidal angular momentum from the CWC
planner, together with its upper bound in Fig. 11. The
centroidal angular momentum is kept small, and it’s in the

CoM trajectory from ZMP planner
CoM trajectory from CWC planner with polytopic admissible region
CoM trajectory from CWC planner with ellipsoidal admissible region

Fig. 9: Tilted terrain, the pre-specified footsteps (black rect-
angles) and CoM trajectories

(a) ZMP planner (b) CWC planner, poly-
topic CoM region

(c) CWC planner, ellip-
soidal CoM region

Fig. 10: Contact force (red) and the friction cone (blue).
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Fig. 11: Centroidal angular momentum and its upper bound
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same scale as the flat ground walking case in Fig. 6.
Finally, we draw the CWC margin from each planner

result. As we mentioned before, the result of the ZMP
planner violates the friction cone constraints. This agrees
with the CWC margin being negative for some time samples
in the ZMP planner result. On the contrary, the margins
stay uniformly positive for the results of the CWC planner.
Thus the CWC planner can successfully plan feasible motion
satisfying the friction cone constraints on uneven terrain,
while the ZMP planner can fail.

The trajectory comprises of 268 time samples. The opti-
mization problem has 4556 decision variables. The solver
time is 7.5s for polytopic CoM admissible region with
Gurobi solver [24], and 2.1s for ellipsoidal CoM admissible
region with Mosek 8 beta [22].

V. CONCLUSION AND DISCUSSION

In this paper, we present a planner to optimize the
robot CoM motion and angular momentum. We formulate
a convex optimization problem to maximize the Contact
Wrench Cone (CWC) margin, which measures the robustness
of the motion. We also minimize the centroidal angular
momentum to make the motion more robust. Since the
centroidal angular momentum is a non-convex function, we
resort to minimizing a convex upper bound. We show that
our Contact Wrench Cone planner generates results similar



to that of the Zero Moment Point planner on flat ground
with sufficient friction. On a tilted terrain course with friction
cone constraints, our CWC planner successfully generates a
feasible motion, while the result of the ZMP planner violates
the friction cone constraints.

One candidate extension of this paper is to consider a
tighter upper bound of the L1 norm of the centroidal angular
momentum. In sub-section III-B we obtain an upper bound
by considering the bounds on the CoM position. We can
alternatively obtain another upper bound by considering the
bounds on the CoM velocity. A tighter upper bound is the
minimal value between these two upper bounds. We can
minimize this minimal value between two upper bounds
using mixed-integer convex optimization.

Another candidate extension is to include hand contact
with the environment, as Caron et al. did in [5]. We did not
use hand contact in this work, as it is tricky to model the
contact force constraint for hand contact, as the hand contact
region might not be a flat surface as the feet.
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