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Abstract

In this thesis, we seek to plan a robust motion for robot with multiple non-coplanar
contact on the environment. When the robot interacts with the environment through
contact, it relies on the contact forces to generate the desired acceleration. The
contact forces have to satisfy some physical constraints, such as lying within the
friction cones. These constraints limit the robot acceleration. The robustness of the
motion can be measured as the margin to the boundary of these constraints. By
planning motion with a large preserved margin, we enable the robot to withstand
large disturbance in the online motion execution.

In this thesis, we adopt the notion of contact wrench set to approximate the
constraints on the robot dynamics. The margin of such set measures the capability
of the motion to perfectly resist external wrench disturbance. We plan robust motion
to increase this contact wrench set margin.

We present two planners to improve this robustness metric. For the first simple-
model planner, we pre-specify the contact locations, and it generates a Center of Mass
trajectory and an angular momentum trajectory, by solving a convex optimization
problem. We show that this planner has similar output as the widely-used walking
pattern generator that relies on Zero Moment Point (ZMP) on flat ground. Moreover,
it can plan feasible motion on uneven ground with friction cone limits, while the ZMP
planner fails.

For the second planner with robot whole-body model, we will search for the contact
location and the robot whole-body motion simultaneously. We show that we can
improve the robustness metric through certain non-convex optimization techniques.
We apply our planner to three problems: 1) force closure grasp optimization, 2) static
posture optimization, 3) trajectory optimization, achieving improved performance for
all of them.

Thesis Supervisor: Russ Tedrake
Title: Professor
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Chapter 1

Introduction

We have observed fast progress in robotics in recent years. For example, in DARPA

Robotics Challenge, the human pilot can remotely control the robot to perform a

variety of tasks, such as driving a car, getting off a car, openning a door, turning a

valve, etc. All these tasks require the robot to make contact with the environment.

One lesson we learned from the challenge, is that robustness is the key to success.

There are many aspects of robustness for robot motion. For example, for robots

that do not get in contact with the environment, such as drones and underwater

vehicles, a robust motion is the one such that the robot can dodge obstacles even under

uncertainties. This "avoiding contact" problem can be analyzed through a geometric

approach, by studying the distance to collision under uncertainties [107, 105]. On the

other hand, for robots interacting with the environment through contacts, such as the

Atlas robot (Fig.1-1a) or Little Dog (Fig.1-1b), they can only move their Center of

Mass by controlling the contact forces, thus the robot has to exploit contacts to control

its dynamics. As a result, the robustness of the motion is not just a geometric problem

anymore, but rather a dynamical problem depending on the contact conditions [104,

142, 169, 23].

For dynamical systems, some of the robustness metrics, such as 𝐿2 gain, require

looking into the future dynamics, to evaluate the disturbance effect in the long hori-

zon [180, 179, 27]. Such robustness metrics can be computational intractable, for

complicated systems with nonlinear dynamics, such as humanoid robots. Instead in
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(a) Atlas from Boston Dynamics Inc
(b) Little Dog from Boston Dynamics Inc

this thesis, we will consider robustness metric that does not involve integration the

future dynamics, but focuses on each individual time instance separately. This allows

us to handle complicated robots with nonlinear dynamics.

For a robot moving in the environment, at every time instance, the contacts

impose constraints on the robot dynamics. For example, when walking on the flat

ground, the normal contact force has to point upward, so the robot Center of Mass

acceleration cannot be larger than the gravitational acceleration in the downward

direction, so the acceleration of the robot has to be kept within a constraint set. If

the acceleration falls outside this constraint set, then the robot cannot maintain its

current contact condition, but instead loses contact by either tipping over or sliding.

This could cause undesirable behaviors, such as the robot losing balance and falling

down. To this end it is desirable to preserve some margin to the boundary of that set

when planning the motion, such that the robot can instantaneously endure certain

disturbance, without leaving that constrained set. In this thesis, we will compute an

approximation of such set explicitly, as well as the margin of this constraint set. We

will maximize this margin through optimization to achieve robustness.

1.1 Contribution

In this thesis, we present novel optimization-based approaches to plan a robust mo-

tion for a robot making multiple non-planar contacts with the environment. There

are two distinct approaches to improve the robustness of a multi-contact robot and to

20



Planner Contact locations Time Kinematics Optimization type
1 pre-specified pre-specified simple Center of Mass model convex
2 optimizing optimizing whole-body model non-convex

Table 1.1: Comparison on two planners

prevent it from falling under external disturbances. One approach is to quickly change

the contact location by moving the feet or the hands [153, 136, 87], this approach is

computationally challenging, as it needs to predict effect on the future dynamics by

changing the contact condition; the other approach is not to move the contact loca-

tion, but instead attempt to stick to the planned contact location while moving the

robot limbs and torso, as commonly used in ZMP-type walking [78, 145]. Compared

to changing contact location, the second approach is more conservative, but computa-

tionally much more tractable. Here we will use this more conservative approach. We

regard a planned motion being more robust if it is less vulnerable to losing planned

contact with the environment. We adopt the idea of Contact Wrench Set (CWS)

margin [5, 66] as the robustness metric, which measures the smallest magnitude of

the wrench disturbance, that would cause the robot to lose contact.

We formulate two different planners to improve this robustness metric through

numerical optimization, and we highlight the features of each planner in Table.1.1.

To the best of our knowledge, this is the first work to optimize robust motion, aiming

to improve the contact wrench set margin.

The first planner generates a center of mass trajectory for pre-specified contact

locations, as shown in Fig. 1-2. The objective of this planner is to maximize the mar-

gin, and minimize the centroidal angular momentum during walking. Such walking

pattern is generated through solving a convex optimization problem. We compare

the results with the motion generated using the popular Zero Moment Point (ZMP)

criteria. We will show that this planner generates similar motion as the ZMP planner

on the flat ground; moreover, on an unevern terrain course with friction cone con-

straints, this planner can generate feasible motion, while the motion coming out from

ZMP planner violates the friction cone constraints.

The second planner searches for the contact locations and the robot whole-body

21



Figure 1-2: Center of Mass trajectory and pre-specified footsteps on tilted blocks

Figure 1-3: Grasp optimization

motion simultaneously, while maximizing the robustness margin. Unlike in the first

planner case, in which we pre-specify the contact locations, the problem becomes

non-convex when we are optimizing over the contact locations. We show that we can

either solve this non-convex problem as a nonlinear optimization problem, or through

sequential semidefinite programming. We highlight three applications of this planner:

∙ To optimize a force closure grasp (Fig.1-3).

∙ To find a robust posture in static equilibrium (Fig.1-4).

∙ To optimize a trajectory with with non-planar multi-contact locations (Fig.1-5).
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(a) Static Posture for Little Dog on step-
ping stones. The blue region is the sup-
port region for Center of Mass projection
(red dot).

(b) Static Posture for Atlas with foot and
left hand contact. The robot stretches its
legs and arms to maximize the support
region (blue).

Figure 1-4: Static posture optimization to maximize the support region

1.2 Outline

In Chapter 2, we review the related work on planning robust motion with contact,

in walking and grasping community. In Chapter 3, we explain the Contact Wrench

Set margin idea developed by previous researchers. We will use this margin as the

robustness metric in the thesis. In Chapter 4, we describe a motion planner that

can optimize this robustness metric when the contact locations are pre-specified.

We show that our planner generates similar Center of Mass trajectory as the ZMP

planner on the flat ground, and it can successfully plan the CoM motion on uneven

ground, when the ZMP planner fails. In Chapter 5, we present a planner that can

search over the contact locations and robot motion simultaneously, so as to optimize

the robustness margin. We first demonstrate how to compute such metric when

the contact locations are not given, then we adopt two approaches to optimize such

metric, one through nonlinear optimization, and the other formulation as a sequential

semidefinite programming. We demonstrate the application of this planner on three

problems, the force closure grasp optimization, the static posture optimization, and

trajectory optimization. We conclude the thesis, and discuss the possible future
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(a) Initial posture (b) step 1

(c) step 2 (d) Final posture

Figure 1-5: A snapshot of a trajectory that Atlas walks over a trap with hands and
foot contact
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extensions in Chapter 7.
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Chapter 2

Related Work

There has been a lot of research in planning motion with multiple contacts, for a

variety of robots; including humanoids [80, 78, 89, 59, 60, 115, 36], multi-leg robots

[139, 17, 152, 139, 46, 127, 81, 171], and robot hands [118, 119, 140] . We will in-

troduce some stability/robustness metrics used in these applications, including Zero

Moment Point (ZMP) for humanoid walking, 𝜖-ball for hand grasping, support region

for multi-leg robot maintaining static posture, and finally the contact wrench set

margin that extends the previous three metrics. We will then briefly introduce some

motion planning techniques, including trajectory optimization and sample-based mo-

tion planning.

2.1 Robustness metric

2.1.1 Zero Moment Point

Proposed by Vukobratovic more than four decades before [166, 165], Zero Moment

Point (ZMP) criteria is the most widely used stability/robustness metric for humanoid

robots [82, 22, 65, 42]. It guarantees that for a robot walking on flat ground with large

enough friction, the foot will not tip over if the Center of Pressure from the ground

reaction force lies within the convex hull of the foot contact region. The Center of

Pressure coincides with the Zero Moment Point (ZMP), namely the point at which
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the moments around the horizontal axes are zero [148]. In order to keep the foot

on the ground without tipping over, the robot can either control its Center of Mass

motion, or use some angular momentum, to make sure the Zero Moment Point lies

within the convex hull of foot region.

Zero Moment Point can also be used to measure the robustness of walking motion

on flat ground. When the ZMP is far away from the boundary of the convex hull of foot

contact region, the robot can resist large wrench disturbance without tipping over;

or equivalently the robot can withstand large variation in its acceleration. Thus it is

desirable to control the robot acceleration, so as to keep its ZMP close to the center

of the convex hull of foot contact region, and the distance to the center of the foot

region is used as a robustness metric to external wrench disturbance [78, 156, 95, 94].

There exist abundant research to plan robot motion based on ZMP [166, 61]. In

their seminal work [80], Kajita et al. proposed a linear inverted pendulum model, such

that the Zero Moment Point can be computed as a linear function from the Center

of Mass (CoM) dynamics. This clever formulation opens the gate to fast planning of

CoM motion using ZMP as the stability criteria [78, 170, 35, 34, 156]. In Chapter

4 we will present a planner that can also quickly compute the CoM motion using a

different robustness metric, on situations where ZMP planner fails.

Though conceptually simple, ZMP has some major limitations. It is ideal for

flat ground walking with unconstrained horizontal friction forces. However, when the

robot walks on uneven ground, the two feet are in different surfaces. It does not

hold any more that the ZMP should lie within the convex hull of the foot region.

Moreover, without bounds on the tangential friction forces, ZMP ignores the friction

cone constraints. So on a slippery ground, even if the ZMP lies within the convex hull

of foot contact region on the flat ground, the feet can still slide on the ground if the

robot requires too large horizontal tangential force to accelerate. Thus ZMP criteria

is broken for walking on uneven terrain, subject to friction cone constraints. Also

ZMP is not suitable for motion requiring hand and foot contact coordination, such as

climbing a ladder with hand rails [89, 104, 91], or pushing against a wall [142]. There

has been some work to extend ZMP to non-coplanar contacts [149], or with friction
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Figure 2-1: Support region of a 3-leg robot, by Bretl [17]

coefficient taken into consideration [79], but inherently ZMP lacks the ability to fully

capture the dynamic effect of non-coplanar contacts with friction cone constraints.

So we seek for other stability criteria that can readily tackle more general cases than

ZMP can.

2.1.2 Support region for static equilibrium

For robot in static posture, it is widely known in order to maintain static equilibrium,

the projection of Center of Mass should lie within the foot support region [108, 17, 59].

The support region is a two-dimensional region on the ground; it coincides with the

convex hull of the foot contact region if the contacts are all on the flat ground, but

can be significantly deviant from the foot contact region, when the contacts are on

uneven ground, as shown in Fig. 2-1.

While support region can incorporate non-coplanar contacts with friction cone

constraints, it assumes that the robot is in static equilibrium with no linear or angular

29



acceleration, thus it is not suitable for dynamic motion. We will show later that

the support region is a special case for the contact wrench set criteria that we will

introduce in Chapter 3.

When the contact locations are pre-specified, computing the support region is

formulated as a convex optimization problem, which could be solved efficiently. On

the other hand, if we need to search for the contact locations, the problem becomes

non-convex, thus a lot harder than the pre-specified contact case. In this thesis,

we will demonstrate how we can search for the contact locations through numerical

optimization.

2.1.3 𝜖-ball in force closure grasp

Grasping inherently involves multiple non-coplanar contacts, with friction cone con-

straints at contact locations. Among the various type of grasps, force closure grasp

measures the robustness to external wrench disturbance. A grasp achieves force clo-

sure if it can resist arbitrary external wrench disturbances, with contact forces within

the friction cone at each contact location [43, 119, 129, 118].

A commonly used metric to measure the quality of a force closure grasp is called

𝜖-ball, which measures the magnitude of the smallest wrench disturbance that the

grasp cannot resist, with bounded total contact forces [43, 85, 112, 14, 141].

The 𝜖-ball metric handles multiple contact with friction cone constraints. Al-

though initially used for grasping in static equilibrium, it could also handle non-static

case, by adding a “task wrench" to the analysis [102, 58]. We will see that the contact

wrench set margin metric, which we will use primarily in this thesis, is equivalent to

the 𝜖-ball for grasping with motion.

When the contact locations are given, this metric can be readily computed through

a convex optimization problem [54, 15, 56, 55]. However if we need to search for the

contact locations in order to maximize the 𝜖-ball, the problem becomes non-convex,

which was solved previously through gradient-based nonlinear optimization approach,

with carefully defined sub-gradient [103]. We will show that our approach can search

over the contact locations with smooth gradient, instead of sub-gradient.
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2.1.4 Contact wrench set margin

Contact Wrench Set (CWS) criteria is the conceptual generalization of the afore-

mentioned three criteria. It was proposed by the walking community, to determine

feasibility of dynamic motion, with multiple non-coplanar contact and friction cone

constraints [169, 67]. The contact wrench set is the allowable set of total wrench

aggregated from contact forces at each individual contact location. The CWS criteria

states that the total contact wrench, computed from the robot motion, should lie with

the contact wrench set [169]. Hirukawa et al. proved that the Contact Wrench Set

criteria is equivalent to Zero Moment Point criteria on the flat ground with infinite

friction forces, thus they call CWS as Adios-ZMP [67]. We will give a mathematical

formulation of the contact wrench set in Section 3.2.

There has been a lot of work to plan a feasible motion using the contact wrench

set criteria, to determine whether or not the contact wrench lies within the contact

wrench set. Herzog et al. planned the robot total linear and angular momentum

trajectory with pre-defined contact locations [64]. Escande et al. presented a planner

that generates the robot whole-body motion with pre-defined contact locations [38].

Dai et al. used nonlinear optimization to plan the whole-body motion together with

the contact location at the same time, by considering the contact wrench set at the

Center of Mass coordinate [28]. In [20]. Caron et al. showed they can plan a time-

optimal trajectory with pre-defined contact locations and fixed whole-body postures,

through convex optimization.

Apart from using contact wrench set as the feasibility criteria, we can also leverage

it to measure the robustness of the motion, by defining the margin of the set. The

contact wrench set margin metric is directly inspired by the 𝜖-ball idea in grasping

literature, defined as the smallest wrench disturbance that the robot cannot resist,

without losing contact [5]; thus the CWS margin measures the robustness of a motion

to the external wrench disturbance. Barthelemy et al. showed how to compute the

contact wrench set margin for pre-specified linearized friction cone of a given motion.

Caron et al. [20] demonstrated how to test if a static posture has a desired margin
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in the contact wrench set. We will present the formulation on contact wrench set

margin in Section 3.4.

The aforementioned previous works either use contact wrench set to plan a feasible

motion, or to compute the contact wrench set margin for a given motion, without

optimizing the margin. In this thesis, we will plan robust motion and/or the contact

locations, to increase this margin. To the best of our knowledge, this is the first work

that attempts to optimize the motion using this robustness metric.

It is worth mentioning that the contact wrench set criteria is only a necessary

condition on the feasibility of a motion[169, 142, 28]. Apart from the friction cone

constraints, the robot dynamics is also constrained by the actuator torque limits.

When computing the contact wrench set, we assume that any contact force within

the friction cone can be applied on the robot. On the other hand, the robot cannot

sustain large contact force without exceeding its actuator torque limits. Thus by

ignoring the joint torque limits, the contact wrench set criteria is not a sufficient

condition for dynamic feasibility. Fortunately, we notice that for many robots such

as Atlas, the motor are strong enough, such that it is reasonably to ignore the torque

limits to simplify the planning problem.

2.2 Motion Planning

There are two dominating approaches in motion planning, the sample-based approach,

and the optimization-based approach. We give a brief overview of the two approaches

here.

2.2.1 Sample-based motion planning

In sample-based motion planning, the algorithm first draws samples in the robot

sample space, then efficiently determines if the sample is feasible, and connects

the feasible samples to generate a path for the robot [100]. Usually a secondary

smoothing algorithm should be applied to achieve continuous motion [172]. Some

popular sample-based motion planning techniques, such as Probabilistic Roadmap
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(PRM) [3, 83, 68] or Rapidly-exploring Random Tree (RRT) [98, 97, 99], guarantee

to find a path through narrow passages with probabilistic completeness. The sample-

based approach has been applied to a variety of robots, such as arm manipulators

[154, 31, 9, 123], humanoids [92, 93, 160], quadruped robots [152, 150] or hands [8, 32].

Although widely used, the motion generated from sample-based approach is usually

not smooth enough. In this thesis, we will adopt the optimized-based approach.

2.2.2 Optimization-based motion planning

In optimization-based motion planning, we cast the planning problem as an opti-

mization problem. In this optimization problem, the decision variables are the finite

number of parameters of the robot motion (for example, the velocity and postures

at some discretized knots); the constraints in the optimization include the physical

requirement on the robot, such as kinematics and/or dynamics equations, collision-

free condition; the objective of the optimization encodes the robot desired behav-

iors, such as minimum energy or maximum robustness. The optimization problem

is then solved through a numerical procedure [12, 13, 125, 164, 33]. It is possi-

ble to synthesize smooth dynamical motions for an arsenal of robots, thanks to

the fast progress of numerical solvers [47, 77, 19, 167]. Examples include one-link

spacecrafts [57, 37], muti-joint robots such as mobile manipulators [126], humanoids

[142, 86, 28, 73, 173, 151, 64, 62], running robots [132, 131, 113, 26, 27, 51, 69, 163, 143]

and multi-finger hands [131, 114, 96, 25].

For a simple robot model, such as a point-mass model, or just the feet of the robot

[29], the optimization problem can be convex, and can be solved very efficiently [16].

For a more complicated robot model, the optimization problem generally becomes

non-convex and nonlinear, thus computationally more difficult than the convex one.

For example, when the whole-body kinematics model of a multi-link robot is consid-

ered, the constraints are generally non-convex, due to the nonlinear structure of the

kinematics, especially the link orientation [39, 28, 151]. The non-convex optimization

procedure can end up with local minima or infeasibility [10]. To overcome the local

infeasibilty problem, in Chapter 5, we will use a sequential semidefinite programming
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approach to solve the non-convex nonlinear problem. This approach can generate a

global infeasibility certificate. In this thesis, we will show that we can search for the

motion of a simple model using convex optimization in Chapter 4, and of a whole-body

model with full kinematics using non-convex optimization in Chapter 5.
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Chapter 3

Contact Wrench Set

In this chapter, we give a detailed explanation on the contact wrench set notion and its

margin,proposed by previous researchers [169, 67, 5, 89, 178]. The Contact Wrench Set

(CWS) is introduced to determine if the motion is dynamically feasible with multiple

contacts and friction cone constraints [169]. This notion is a generalization of the

popular Zero Moment Point idea, and it is called “Adios-ZMP" by some researchers

[67]. Apart from using Contact wrench set as a necessary condition to determine the

feasibility of a motion, researchers also use its margin to measure the robustness of

the motion, to external wrench disturbance [5, 20].

We will focus on the situation when the robot has multiple non-coplanar contact

with the environment, as shown in Fig.3-1, with the set of allowable contact force

drawn at each contact point.

3.1 Contact force model

In this paper, we consider the Coulomb friction model, that the contact force stays

within a cone. Both the nonlinear friction cone and the linearized friction cone will

be used in this thesis (Fig.3-2). For each friction cone, we use the unit length vector

𝑐 to represent the direction of the normal force. When using the nonlinear friction
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Figure 3-1: Atlas with multiple non-coplanar contacts.

cone model with friction coefficient 𝜇, the constraint on the contact force 𝑓 is that

𝑓 ∈ ℱ𝒞 = {𝑓 :
√︀
𝜇2 + 1𝑓𝑇 𝑐 ≥ |𝑓 |} (3.1)

When the friction cone ℱ𝒞 is fixed, Eq.(3.1) is a second-order cone constraint on

contact force 𝑓 , which is a special type of convex constraint [2].

When using the linearized friction cone, with edges 𝑒1, . . . , 𝑒𝑛𝑒 , the constraint on

the contact force is

𝑓 ∈ ℱ𝒞 = ConvexCone(𝑒1, . . . , 𝑒𝑛𝑒) (3.2)

where ConvexCone(𝑥1, . . . , 𝑥𝑛) is the convex cone defined as ConvexCone(𝑥1, . . . , 𝑥𝑛) =

{
∑︀𝑛

𝑖=1 𝜆𝑖𝑥𝑖, 𝜆𝑖 ≥ 0}. Eq.(3.2) is a linear constraint on the contact force 𝑓 .

When the robot hand or finger is in contact with the environment, to protect the

brittle fingers, we constrain the magnitude of the contact force. To this end, we use

a bounded convex polytope as the constrained set for hand contact force, as shown
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Figure 3-2: A nonlinear friction cone (blue) and the linearized friction cone (red).
The unit length cone axis 𝑐 is the direction of the normal contact force. 𝑒1, . . . , 𝑒4 are
the four edges of the linearized friction cone.

Figure 3-3: The contact force stays within the polytope 𝒮, with vertices 𝑒0, . . . , 𝑒4

in Fig 3-3. And the constraint on the contact force is that

𝑓 ∈ 𝒮 = ConvexHull(𝑒0, . . . , 𝑒𝑛𝑒) (3.3)

where 𝑒𝑖 is the i’th vertex of the grasp polytope 𝒮. 𝑒0 =
[︁
0 0 0

]︁𝑇
. ConvexHull(𝑥1, . . . , 𝑥𝑛)

is the convex hull set ConvexHull(𝑥1, . . . , 𝑥𝑛) = {
∑︀𝑛

𝑖=1 𝜆𝑖𝑥𝑖, 𝜆𝑖 ≥ 0,
∑︀𝑛

𝑖=1 𝜆𝑖 ≤ 1}.

Although we only discuss the Coulomb friction model on contact forces in this

thesis, our approach can be readily applied to other contact models, that permits

torque being applied at contact. As long as the constraint set is either a cone, or a

bounded polytope that contains the wrench being zero.

3.2 Computing Contact Wrench Set

To compute the Contact Wrench Set (CWS) from individual contact force constraint

set, we first compute the wrench set for each individual contact. To do so, we choose

some fixed coordinate system, and we compute the contact wrench 𝑤 from contact
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force 𝑓 and contact location 𝑝

𝑤 =

⎡⎣ 𝑓

𝑝× 𝑓

⎤⎦ (3.4)

× is the cross product.

We can compute the set of wrenches subject to the contact force constraint in

section 3.1. If we use the linearized friction cone (Eq.(3.2)), the set of contact wrench

from that single contact force is a linear cone 𝒦

𝑤 ∈ 𝒦 = ConvexCone

⎛⎝⎡⎣ 𝑒1

𝑝× 𝑒1

⎤⎦ , . . . ,

⎡⎣ 𝑒𝑛𝑒

𝑝× 𝑒𝑛𝑒

⎤⎦⎞⎠ (3.5)

When we use the nonlinear friction cone (Eq.(3.1)), the set of contact wrench for

that single contact force is a nonlinear cone 𝒦

𝑤 ∈ 𝒦 =

⎧⎨⎩𝑤

⃒⃒⃒⃒
⃒⃒𝑤 =

⎡⎣ 𝑓

𝑝× 𝑓

⎤⎦ ,
√︀

𝜇2 + 1𝑓𝑇 𝑐 ≥ |𝑓 |

⎫⎬⎭ (3.6)

When we use the polytope constraint to bound the magnitude of the contact force

as in Eq.(3.3), the set of contact wrench from this single contact force is a polytope

set 𝒫 in the wrench space

𝑤 ∈ 𝒫 = ConvexHull

⎛⎝⎡⎣ 𝑒0

𝑝× 𝑒0

⎤⎦ , . . . ,

⎡⎣ 𝑒𝑛𝑒

𝑝× 𝑒𝑛𝑒

⎤⎦⎞⎠ (3.7)

Suppose the robot is in contact with the environment, with 𝑛1 of those contact

locations subject to friction cone constraint, and 𝑛2 of those locations subject to

bounded polytope constraint on the contact force, we can first compute the wrench

set for each individual contact locations using Eq.(3.5),(3.6),(3.7); the aggregated

contact wrench should lie within the Contact Wrench Set (CWS), as the Minkowski
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sum of each individual wrench set

𝐶𝑊𝑆 = 𝒦1 ⊕ . . .⊕𝒦𝑛1 ⊕ 𝒫1 ⊕ . . .⊕ 𝒫𝑛2 (3.8)

where𝒜⊕ℬ is the Minkowski sum of sets𝒜,ℬ, such that𝒜⊕ℬ = {𝑎+𝑏|𝑎 ∈ 𝒜, 𝑏 ∈ ℬ}.

It is worth mentioning here that the Contact Wrench Set is a convex set once the

contact locations are fixed, since it is the Minkowski sum of several convex sets. We

will use this convexity property in Chap.5.

3.3 Stability Criteria

Contact Wrench Set can be used as an approximated universal stability criteria to

determine if a motion is feasible or not [67]. When interacting with the environment,

the robot dynamics is only affected by the contact wrench from each contact location,

and the gravitational wrench. As a result, the total wrench applied on the robot is the

sum of the gravitational wrench and the contact wrench. According to Newton’s law,

the robot rate of momentum equals to the total wrench, thus we have the condition

(3.9)

ℎ̇− 𝑤𝑔 ∈ 𝐶𝑊𝑆 (3.9)

where ℎ ∈ R6 is the robot total momentum, computed from the robot state [41, 122,

121, 168]. The momentum ℎ includes both the linear momentum 𝑙 ∈ R3 and the

angular momentum 𝑘 ∈ R3, ℎ = [𝑙𝑇 𝑘𝑇 ]𝑇 . The gravitational wrench 𝑤𝑔 is computed

from the robot Center of Mass (CoM) position 𝑟

𝑤𝑔 =

⎡⎣ 𝑚g

𝑟 ×𝑚g

⎤⎦ (3.10)

where g ∈ R3 is the gravitational acceleration.

Notice that the condition (3.9) is just a necessary condition for the motion to be

39



dynamically feasible. Apart from the contact force constraints, the robot dynamics

is also subject to actuator torque limits. Thus a contact wrench within the contact

wrench set might not be feasible, since corresponding acceleration ℎ̇ could require

actuator torques exceeding the torque limits. On the other hand, torque limits are

the only constraints the motion might violate, when the motion satisfy the contact

wrench set criteria in Eq.(3.9). The reason is that for the robot we analyze in this

thesis, there is always one actuator for each joint of the robot. Since all joints are

fully-actuated, the only un-actuated degrees of freedom (DOF) in the robot, is its

6-DOF floating base. The constraints on the 6 un-actuated DOF is equivalent to

Eq.(3.9), that depends on external contact force, not the joint torques. Thus once

the contact wrench is within the contact wrench set, we can always compute the joint

torques using the inverse dynamics, although the torques might not satisfy the joint

torque limits. Fortunately many robots, such as Atlas, have very powerful actuators.

Thus it is reasonable to ignore the torque limits in planning for many cases. We can

always add the joint torque limits back to the planning problem, after we get a first

solution that ignores the torque limits.

The Contact Wrench Set is a generalization of Zero Moment Point, to non-coplanar

multi-contact case. It is equivalent to Zero Moment Point when the robot walks on

flat ground, with friction coefficient being infinite [67]. In such case, the Contact

Wrench Set is unrestricted in the horizontal forces and vertical torque axes. We can

restrict our discussion to the remaining three axes of vertical force and horizontal

torques, and the constraint set becomes a three dimensional cone. It can be shown

that a slice of this cone is the same as the support region of the foot, after scaling

and rotation, and the conventional ZMP stability criteria that ZMP stays within the

support region, is the same as saying that the desired contact wrench ℎ̇ − 𝑤𝑔 stays

within the Contact Wrench Set [67], as shown in Fig. 3-4.
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Figure 3-4: The slicing of the Contact Wrench Set is the same as the support region
after scaling and rotation. ZMP lies within the support region is the same as desired
contact wrench ℎ̇− 𝑤𝑔 stays within the Contact Wrench Set. [67]

3.4 Contact Wrench Set Margin

The Contact Wrench Set can be used to determine not only the feasibility of the

motion, but also how robust the motion is. In the flat ground walking case, people

plan the desired ZMP to be away from the boundary of the support region, so as to

prevent the foot from slipping [78, 156]. In force closure grasping, the robustness of

the grasp is measured by the smallest wrench disturbance that the grasp cannot resist

with bounded contact forces, called 𝜖-ball [85, 112]. The contact wrench set margin

is directly inspired by the 𝜖-ball used in the grasping literature, and it is defined as

follows, as proposed by Barthelemy et al. in [5]

Definition 1. Contact Wrench Set Margin is the smallest magnitude of the wrench

disturbance, that the robot cannot resist, given the contact locations and contact force

constraint.

Algebraically, we define the contact wrench set margin as the maximum value of 𝜖,

such that the contact wrench plus the disturbance wrench is still within the Contact
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Wrench Set, as formulated in the following condition:

ℬ𝜖 = {ℎ̇− 𝑤𝑔 + 𝑇 (𝑝𝑤, 𝐼3×3)𝑤|𝑤𝑇𝑄𝑤𝑤 ≤ 𝜖2} ⊂ 𝐶𝑊𝑆 (3.11)

where 𝑇 (𝑝𝑤, 𝐼3×3) ∈ R6×6 is a transformation matrix, that transforms a wrench distur-

bance being applied at a point 𝑝𝑤, to the equivalent wrench in the origin of the world

coordinate. The parameterization of such transformation matrix, with coordinate

translation 𝑥 ∈ R3 and rotation matrix 𝑅 ∈ 𝑠𝑜(3) is

𝑇 (𝑥,𝑅) =

⎡⎣ 𝑅 03×3

⌊𝑥⌋×𝑅 𝑅

⎤⎦ (3.12)

where ⌊𝑥⌋× ∈ R3×3 is the skew-symmetric matrix representing the cross product

⌊𝑥⌋× =

⎡⎢⎢⎢⎣
0 −𝑥3 𝑥2

𝑥3 0 −𝑥1

−𝑥2 𝑥1 0

⎤⎥⎥⎥⎦ (3.13)

Namely, for all wrench disturbance 𝑤, satisfying its weighted 2-norm 𝑤𝑇𝑄𝑤𝑤 ≤ 𝜖2,

when such wrench disturbance is applied at point 𝑝𝑤, the robot can perfectly resist

such disturbance with some appropriate contact forces.

Geometrically, the contact wrench set margin is illustrated in Fig.3-5. The contact

wrench set margin is the radius of the largest ellipsoid centered at the desired wrench

ℎ̇− 𝑤𝑔, and being contained in the Contact Wrench Set.

It is worth mentioning here that the value of the contact wrench margin does not

depend on the choice of the coordinate frame. To see this, it is straightforward that

for any wrench transformation matrix 𝑇 (𝑥,𝑅), we always have

ℎ̇− 𝑤𝑔 + 𝑇 (𝑝𝑤, 𝐼)𝑤 ∈ 𝐶𝑊𝑆 ⇔ 𝑇 (𝑥,𝑅)(ℎ̇− 𝑤𝑔 + 𝑇 (𝑝𝑤, 𝐼)𝑤) ∈ 𝑇 (𝑥,𝑅)𝐶𝑊𝑆

(3.14)
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Figure 3-5: Contact Wrench Set Margin

where

𝑇 (𝑥,𝑅)𝐶𝑊𝑆 = {𝑇 (𝑥,𝑅)𝑤|𝑤 ∈ 𝐶𝑊𝑆} (3.15)

𝑇 (𝑥,𝑅)𝐶𝑊𝑆 means to transform the Contact Wrench Set under linear mapping

𝑇 (𝑥,𝑅). Namely, Eq.(3.14) asserts that the transformed wrench is inside the Con-

tact Wrench Set after transformation, if it is inside the Contact Wrench Set before

transformation. On the other hand, the value of the contact wrench set will depend

on the point 𝑝𝑤 where the wrench disturbance is applied. In this thesis, we either

pre-specify the location of 𝑝𝑤, or set it to be equal to some point on the robot, for

example, the Center of Mass location.

Our goal is to find the motion of the robot, and possibly the contact locations,

such that the contact wrench set margin is maximized. i.e., the robot can resist larger

wrench disturbance while still perfectly tracking the desired motion.
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Chapter 4

Planning with given contacts

4.1 Introduction

In this chapter, we will present our planner that generates robot Center of Mass tra-

jectory and angular momentum trajectory, with given contact locations. Our goal is

to maximize the contact wrench set margin to make the motion robust, and to min-

imize the centroidal angular momentum to make the motion natural. We formulate

this problem as a convex optimization problem to solve it efficiently. Contrary to the

prevailing Zero Moment Point approach that works best on flat ground with infinite

friction coefficient, we show our approach can work on uneven terrain, and can plan

feasible trajectory where the ZMP approach would fail.

4.2 Approach

4.2.1 Time integration

To plan a trajectory, we first discretize it by taking 𝑁 time samples, and we denote

the time interval between the 𝑖′𝑡ℎ time knot and the 𝑖+ 1′𝑡ℎ time knot as 𝑑𝑡[𝑖], these

time steps are given, thus not part of the decision variables. We aim to find the

Center of Mass location 𝑟, the velocity �̇�, the acceleration 𝑟, the angular momentum

in the world frame 𝑘𝑂 and its derivatives �̇�𝑂, at every knot point. We choose the
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backward Euler integration on Center of Mass acceleration 𝑟, mid-point integration

on Center of Mass velocity �̇�, and backward Euler integration on the rate of angular

momentum in the world frame �̇�𝑂.

∀𝑖 = 1, . . . , 𝑁 �̇�[𝑖]− �̇�[𝑖− 1] = 𝑟[𝑖]𝑑𝑡[𝑖− 1] (4.1a)

𝑟[𝑖]− 𝑟[𝑖− 1] =
1

2
(�̇�[𝑖] + �̇�[𝑖− 1])𝑑𝑡[𝑖− 1] (4.1b)

𝑘𝑂[𝑖]− 𝑘𝑂[𝑖− 1] = �̇�𝑂[𝑖]𝑑𝑡[𝑖− 1] (4.1c)

Eq. (4.1a)-(4.1c) are linear constraints on decision variables 𝑟[𝑖], �̇�[𝑖], 𝑟[𝑖], 𝑘𝑂[𝑖], �̇�𝑂[𝑖].

We could use other integration or interpolation method for smaller discretization

error, such as higher order Runge-Kutta method [18] or direct collocation method

[57]. The backward-Euler integration approach is chosen here in simplicity.

In the subsequent subsections, we will impose the constraints on the robot kine-

matics and dynamics. Such constraints should be satisfied for every knot point, and

we ignore the time indices [𝑖] when there is no ambiguity.

4.2.2 Computing Contact Wrench Set Given Contacts

In this chapter, we suppose the contact location at each time step is given, possibly

from some footstep planners [30, 111, 177]. Also, we restrict to linearized friction

cone in this chapter. With these assumptions, the Contact Wrench Set is fixed given

as a linear cone at every time step, as shown in Fig. 4-1.

We assume for the i’th contact point 𝑝𝑖, its friction cone edges are 𝑒𝑗𝑖 , 𝑗 = 1, . . . , 𝑛𝑒.

Thus we can compute the Contact Wrench Set from contact locations and friction

cone edges, and it is the linear cone spanned by the rays in the wrench space, each

ray corresponds to the wrench computed from one friction cone edge.

𝐶𝑊𝑆 = ConvexCone

⎛⎝⎡⎣ 𝑒𝑗𝑖

𝑝𝑖 × 𝑒𝑗𝑖

⎤⎦⎞⎠ ,∀ 𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛𝑒. (4.2)
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Figure 4-1: Footsteps with linearized friction cones

With the numeric procedures such as double description method [44] or Q-hull [4],

we can transform the representation of the Contact Wrench Set, from a convex hull

to an intersection of halfspace constraints.

𝐶𝑊𝑆 = {𝑤|𝑎𝑇𝑖 𝑤 ≤ 0, 𝑖 = 1, . . . , 𝑛𝑎} (4.3)

where 𝑎𝑖 ∈ R6 is the normal vector on each facet of the Contact Wrench Set, pointing

outward, 𝑛𝑎 is the number of facets of the Contact Wrench Set.

As we mentioned in Section 3.3, a necessary condition for a feasible robot motion,

is that the wrench ℎ̇− 𝑤𝑔, computed from the robot momentum ℎ and gravitational

wrench 𝑤𝑔, lies within the contact wrench set.

𝑎𝑇𝑖 (ℎ̇− 𝑤𝑔) ≤ 0, 𝑖 = 1, . . . , 𝑛𝑎 (4.4)

where the momentum and gravitation wrench are computed from the robot Center

of Mass position 𝑟, and its rate of angular momentum around the origin of the world

frame �̇�𝑂

ℎ̇ =

⎡⎣𝑚𝑟

�̇�𝑂

⎤⎦ , 𝑤𝑔 =

⎡⎣ 𝑚g

𝑟 ×𝑚g

⎤⎦ (4.5)
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𝑚 is the mass of the robot, and g ∈ R3 is the gravitational acceleration.

Combining Eq. (4.4)(4.5), we obtain the linear constraints on the robot states

𝑟, 𝑘𝑂 and their derivatives, such that the motion is feasible in the sense that the

contact wrench is within the Contact Wrench Set.

𝑎𝑇𝑖

⎡⎣ 𝑚𝑟 −𝑚g

�̇�𝑂 − 𝑟 ×𝑚g

⎤⎦ ≤ 0, 𝑖 = 1, . . . , 𝑛𝑎 (4.6)

To compute the contact wrench set margin, we need to define the point where the

wrench disturbance is applied at each time step. We denote that point as 𝑝𝑤. In the

example of this thesis, we set that point to be the center of the support region, but

any point near the robot should be reasonable. As we introduced in Chapter.3, the

contact wrench set margin is defined as the magnitude of the disturbance, such that

the wrench ball ℬ𝜖 is within the Contact Wrench Set

ℬ𝜖 = {ℎ̇− 𝑤𝑔 + 𝑇 (𝑝𝑤, 𝐼)𝑤|𝑤𝑇𝑄𝑤𝑤 ≤ 𝜖2} ⊂ 𝐶𝑊𝑆 (4.7)

where 𝑇 (𝑝𝑤, 𝐼) ∈ R6×6 is the matrix that transforms a wrench at 𝑝𝑤 to the origin of

the world coordinate frame, defined in Eq. (3.12).

The contact wrench set margin can be computed as the scaled smallest distance

from contact wrench ℎ̇− 𝑤𝑔 to each facet of the Contact Wrench Set, formulated as

𝜖𝑚𝑎𝑥 = min
𝑖=1,...,𝑛𝑎

�̄�𝑖

⎡⎣ 𝑚𝑟 −𝑚g

�̇�𝑂 − 𝑟 ×𝑚g

⎤⎦where �̄�𝑖 = −
[︀
𝑎𝑇𝑖 𝑇 (𝑝𝑤, 𝐼)𝑄−1

𝑤 𝑇 𝑇 (𝑝𝑤, 𝐼)𝑎𝑖
]︀− 1

2 𝑎𝑇𝑖

(4.8)

The contact wrench set margin in Eq. (4.8) is the point-wise minimum among lin-

ear functions of 𝑟, 𝑟 and �̇�𝑂, and thus a concave piecewise linear function of the

robot states and their time derivatives. Maximizing this concave function becomes a

convex problem. We introduce a slack variable 𝜖 together with the following linear

constraints, to represent the contact wrench set margin. We will maximize this slack
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(a) Polytope region for Center of Mass (b) Ellipsoidal region for Center of Mass

Figure 4-2: Bounds on Center of Mass position.

variable 𝜖

0 ≤ 𝜖 ≤ �̄�𝑖

⎡⎣ 𝑚𝑟 −𝑚g

�̇�𝑂 − 𝑟 ×𝑚g

⎤⎦ ∀𝑖 = 1, . . . , 𝑛𝑎 (4.9)

4.2.3 Bounds on Center of Mass Position

We want to encode some simple kinematic constraints into our planner, by constrain-

ing the region within which the Center of Mass should stay. Given the footsteps

locations, we can infer the region of Center of Mass using robot leg kinematics. In

this thesis, we constrain the Center of Mass position to be within either a polytope

(Fig. 4-2a) or an ellipsoid (Fig. 4-2b), relative to the location of the foot; with the

given foot locations, the region of the Center of Mass will also be defined.

If the polytope region 𝒫𝑟 for Center of Mass is used, as in Fig 4-2a, we can

represent such polytope in two ways, both as a convex hull representation using the

vertices (Eq. (4.10)), and a halfspace representation using the facets (Eq. (4.11)).

𝑟 ∈ 𝒫𝑟 =ConvexHull(𝑣1, . . . , 𝑣𝑛𝑟) (4.10)

={𝑟|𝐴𝑟𝑟 ≤ 𝑏𝑟} (4.11)

In this case, we impose linear constraints on Center of Mass 𝑟 through Eq. (4.11).
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The convex hull representation (Eq. (4.10)) will be used in Section 4.2.4 when we

discuss the centroidal angular momentum.

If the ellipsoidal region ℬ𝑟 for Center of Mass is used, as in Fig 4-2b, we also

formulate the ellipsoid in two ways, as the sub-level set of a quadratic form (Eq.

(4.12)),

𝑟 ∈ ℬ𝑟 ={𝑟|(𝑟 − 𝑟*)𝑇𝑄𝑟(𝑟 − 𝑟*) ≤ 1} (4.12)

where 𝑄𝑟 ∈ R3×3 encodes the geometric shape of the ellipsoid. 𝑟* is the center of the

ellipsoid. The constraint (4.12) is a convex constraint on Center of Mass 𝑟, and can

be formulated as a second-order cone constraint [16].

4.2.4 Centroidal Angular Momentum

We can control the contact forces through two ways, either by accelerating the Center

of Mass, or changing the robot angular momentum. In the real application, control-

ling large angular momentum is generally less preferred, since the integral of the

angular momentum is not meaningful, it does not corresponds to any physical orien-

tation [124, 121]. It is also observed that in human walking, the centroidal angular

momentum (angular momentum around the Center of Mass) is kept small [130, 63],

the experimental results are plotted in Fig. 4-3. Thus in ZMP planning approach,

the centroidal angular momentum is often set to be zero, and the robot is simplified

as a point mass model with only linear momentum [78, 156]. So in this thesis, to

plan a reasonable walking trajectory, we also aim to minimize the centroidal angular

momentum, denoted as 𝑘𝐺.

The centroidal angular momentum 𝑘𝐺 can be computed from the robot state 𝑘𝑂

(angular momentum around origin of the world coordinate) and robot Center of Mass

𝑘𝐺 = 𝑘𝑂 −𝑚𝑟 × �̇� (4.13)

the centroidal angular momentum is a non-convex function in Eq. (4.13), as it con-
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Figure 4-3: Normalized centroidal angular momentum for human walking experi-
ments. The normalization factor is the product of the human mass (M), the walking
velocity (V) and CoM height (H) [63]. The solid line is the mean value, the dashed
lines are one standard deviation from the mean.

tains the product 𝑟 × �̇�.

In order to preserve the convexity of the problem, we exploit the structure in

Eq. (4.13). We notice that although non-convex, 𝑟 × �̇� is bilinear ; namely, when

fixing either 𝑟 or �̇�, the function is linear. Also the Center of Mass 𝑟 is bounded, as

described in Section 4.2.3. With this structure bear in mind, instead of minimizing

centroidal angular momentum directly, we will attempt to minimize an upper bound

of the centroidal angular momentum in the remainder of this section.

In this thesis, we choose to minimize the 𝐿1 norm of the centroidal angular mo-

mentum, namely

|𝑘𝐺|1 =|𝑘𝑥
𝐺|+ |𝑘

𝑦
𝐺|+ |𝑘

𝑧
𝐺| (4.14)

= max
𝑖=1,...,8

𝜔𝑇
𝑖 𝑘𝐺 (4.15)

where 𝜔𝑖 ∈ R3 = [𝜔𝑥
𝑖 𝜔𝑦

𝑖 𝜔𝑧
𝑖 ]𝑇 , each entries of 𝜔𝑖 is either 1 or −1. There are 8 possible

combinations for 𝜔𝑖. The 𝐿1 norm of 𝑘𝐺 is the maximum of the linear functions 𝜔𝑇
𝑖 𝑘𝐺.
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The optimal value of linear programming is 
always obtained at the vertices

Figure 4-4: Linear programming

Eq.(4.14) is a convex piecewise linear function of 𝑘𝐺.

Centroidal Angular Momentum with Polytope Center of Mass Region

When the Center of Mass 𝑟 is constrained to stay within the polytope 𝒫𝑟, a convex

upper bound of the centroidal angular momentum |𝑘𝐺|1 is obtained by replacing 𝑟

in Eq. (4.13) by the vertices of the polytope 𝒫𝑟 = ConvexHull(𝑣1, . . . , 𝑣𝑛𝑟), and take

the maximum out of them. Namely

|𝑘𝐺|1 =|𝑘𝑂 −𝑚𝑟 × �̇�|1

= max
𝑖=1,...,8

𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑟 × �̇�)

≤ max
𝑖=1,...,8

max
𝑟∈𝒫𝑟

𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑟 × �̇�) (4.16)

= max
𝑖=1,...,8

max
𝑗=1,...,𝑛𝑟

𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑣𝑗 × �̇�) (4.17)

where each entry of 𝜔𝑖 is either 1 or −1, as defined in (4.15).

Geometrically, the equality in Eq. (4.17) holds because for a linear program-

ming problem (linear objectives and linear constraints), the optimal value is always

obtained at one of the vertices of the constrained polytope, as shown in Fig. 4-4, thus

max
𝑟∈𝒫𝑟

𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑟 × �̇�) = max

𝑗=1,...,𝑛𝑟

𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑣𝑗 × �̇�) (4.18)

We can write Eq. (4.17) with the slack variable 𝑠 ∈ R3 to represent the upper
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bound of the centroidal angular momentum 𝐿1 norm

𝑠 ≥ 𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑣𝑗 × �̇�) ∀𝑖 = 1, . . . , 8. 𝑗 = 1, . . . , 𝑛𝑟 (4.19)

With the inequality in Eq. (4.19), 𝑠 becomes an upper bound of the centroidal

angular momentum 𝐿1 norm. The constraint on this upper bound is convex on

the variables 𝑘𝑂, �̇�, 𝑠 (Eq. (4.19)). Instead of minimizing the non-convex centroidal

angular momentum norm directly, we can minimize this convex upper bound function.

This upper bound might not be tight, since it ignores other constraints on Center

of Mass. For example, if we have bounds on the center of mass velocity, then the

Center of Mass position cannot be too distant from each other in the adjacent time

steps. Anyway, we will show by minimizing this upper bound, the actual centroidal

angular momentum is effectively kept small.

Robust Optimization Perspective

The relaxation we presented in the previous subsection in Sec.4.2.4 can be understood

from the robust optimization perspective. In order to minimize the 𝐿1 norm of the

centroidal angular momentum, we can consider to minimize an upper bound.

The 𝐿1 norm of the centroidal angular momentum is written as

P1 : 𝑝*1 = min
𝑟,𝑘𝑂,𝑠,�̇�

𝑠 (4.20)

s.t 𝑠 ≥ 𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑟 × �̇�) ∀𝑖 = 1, . . . , 8 (4.21)

𝑟 ∈ 𝒫𝑟 (4.22)

where 𝑠 ∈ R represents centroidal angular momentum 𝐿1 norm.

We can define a min-max optimization problem P2, in which we maximize over 𝑟

in the inner loop, so as to get rid of 𝑟 in the outer loop, and to make the problem
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convex.

P2 : 𝑝*2 = min
𝑘𝑂,𝑠,�̇�

max
𝑟∈𝒫𝑟

𝑠 (4.23)

s.t 𝑠 ≥ 𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑟 × �̇�) ∀𝑖 = 1, . . . , 8 (4.24)

Apparently 𝑝*1 ≤ 𝑝*2, due to the maximization over 𝑟 in the inner loop of P2. In robust

optimization, problem in the form as P2 can be regarded as the robust counterpart

of a linear programming problem, with 𝑘𝑂, 𝑠, �̇� as decision variables, and 𝑟 being

the uncertain parameter in this linear programming problem. When the uncertain

parameter is in a polytope 𝒫𝑟, it is known that P2 is a linear optimization problem

[6, 7, 11]. Section A.1 in appendix gives a brief overview on robust optimization.

Using robust optimization, it can be shown that P2 is equivalent to

P2 : 𝑝*2 = min
𝑘𝑂,𝑠,�̇�

𝑠 (4.25)

s.t 𝑠 ≥ 𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑣𝑗 × �̇�) ∀𝑖 = 1, . . . , 8. 𝑗 = 1, . . . , 𝑛𝑟 (4.26)

Thus we get the same constraint as Eq. (4.19).

Centroidal Angular Momentum with Ellipsoidal Center of Mass Region

When the Center of Mass is constrained within the ellipsoid ℬ𝑟, like what we present

in the polytope case, we can similarly find a convex function as an upper bound

of the non-convex centroidal angular momentum, and we can efficiently minimize

this convex upper bound. Like we showed in the previous sub-section, we can also

use robust optimization to formulate this upper bound as a special type of convex

problem, specifically a second-order cone problem. We will show how we can derive

such formulation in this sub-section.

Algebraically, we aim to minimize the 𝐿1 norm of centroidal angular momentum,

when the Center of Mass is within the ellipsoid ℬ𝑟, as the following optimization
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problem P1

P1 : 𝑝*1 = min
𝑟,𝑠,𝑘𝑂,�̇�

𝑠 (4.27)

s.t 𝑠 ≥ 𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑟 × �̇�) ∀𝑖 = 1, . . . , 8 (4.28)

𝑟 ∈ ℬ𝑟 = {𝑟|(𝑟 − 𝑟*)𝑇𝑄𝑟(𝑟 − 𝑟*) ≤ 1} (4.29)

𝑝*1 is the optimal value of the non-convex optimization problem.

The optimal value 𝑝*1 of problem P1 is smaller than the optimal value of problem

𝒫2, in which we maximize over Center of Mass 𝑟 first, and then minimize over the

rest of the variables

P2 : 𝑝*2 = min
𝑠,𝑘𝑂,�̇�

max
𝑟∈ℬ𝑟

𝑠 (4.30)

s.t 𝑠 ≥ 𝜔𝑇
𝑖 (𝑘𝑂 −𝑚𝑟 × �̇�) ∀𝑖 = 1, . . . , 8 (4.31)

The motivation of relaxing the minimization problem in P1 to the min-max prob-

lem in P2, is to remove the variable 𝑟 in the optimization problem, so as to make the

problem convex. In the inner maximization step, the maximization is satisfied if and

only if

𝑠 ≥ 𝜔𝑇
𝑖 (𝑘𝑂 + 𝑚⌊�̇�⌋×𝑟) ∀𝑟 ∈ ℬ𝑟. 𝑖 = 1, . . . , 8 (4.32)

⌊�̇�⌋× ∈ R3×3 is the skew-symmetric matrix representing the cross product with �̇�, as

defined in (3.13).

We show that Eq. (4.32) imposes several second-order cone constraints on 𝑘𝑂, 𝑟

and 𝑠. To see this, we take one inequality of Eq. 4.32 as an example

𝑠 ≥ 𝜔𝑇
𝑖 (𝑘𝑂 + 𝑚⌊�̇�⌋×𝑟) ∀𝑟 ∈ ℬ𝑟 (4.33a)

⇔𝑠− 𝜔𝑇
𝑖 𝑘𝑂 ≥ max

𝑟∈ℬ𝑟

𝑚𝜔𝑇
𝑖 ⌊�̇�⌋×𝑟 (4.33b)

⇔𝑠− 𝜔𝑇
𝑖 𝑘𝑂 ≥ 𝑚𝜔𝑇

𝑖 ⌊�̇�⌋×𝑟* + 𝑚
√︁

𝜔𝑇
𝑖 ⌊�̇�⌋𝑇×𝑄−1

𝑟 ⌊�̇�⌋×𝜔𝑖 (4.33c)
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The condition from Eq. (4.33b) to Eq. (4.33c) holds because we can compute in

close form the optimal value of maximizing a linear function subject to ellipsoidal

constraints. A simple example is max𝑥𝑇 𝑥≤1 𝑐
𝑇𝑥 =

√
𝑐𝑇 𝑐.

Eq. (4.33c) is a second-order cone constraint on 𝑘𝑂, �̇� and 𝑠. Likewise, we can

write all other inequalities in Eq. (4.32) as second order cone constraints. As a result,

the upper bound 𝑝*2 can be computed from the following second-order cone program

P2 : 𝑝*2 = min
𝑘𝑂,�̇�,𝑠

𝑠 (4.34)

s.t 𝑠− 𝜔𝑇
𝑖 𝑘𝑂 −𝑚𝜔𝑇

𝑖 ⌊�̇�⌋×𝑟* ≥ 𝑚
√︁

𝜔𝑇
𝑖 ⌊�̇�⌋𝑇×𝑄−1

𝑟 ⌊�̇�⌋×𝜔𝑖 ∀𝑖 = 1, . . . , 8 (4.35)

To summarize, we can minimize an upper bound of the centroidal angular momen-

tum as a convex function. If the admissible region of Center of Mass is a polytope,

the convex problem is a linear programming problem; if the admissible region is an

ellipsoid, the convex problem is a second-order cone problem. Both can be solved

efficiently.

4.2.5 Cost function

The constraints of the optimization problems are presented in the previous sections in

the time integration (Eq. (4.1a)-(4.1c)), the contact wrench set margin (Eq. (4.9)),

the Center of Mass region (Eq. (4.11) if using polytope region, or Eq. (4.12) if using

ellipsoidal region) , and the centroidal angular momentum upper bound (Eq. (4.19) if

using polytope region, or Eq. (4.35) if using an ellipsoidal region). These constraints

are either linear constraints or second-order cone constraints.

The objectives for this planner include

∙ Maximize the contact wrench set margin.

∙ Minimize the upper bound of the centroidal angular momentum.

∙ Smooth motion.
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Thus the cost can be formulated as

min
𝑟,�̇�,𝑟,𝑠,𝜖,𝑘𝑂,�̇�𝑂

∑︁
𝑖

𝑐𝑠𝑠[𝑖]− 𝑐𝜖𝜖[𝑖] + 𝑐𝑟𝑟[𝑖]𝑇 𝑟[𝑖] (4.36)

where 𝑐𝑠, 𝑐𝜖, 𝑐𝑟 ∈ R are positive scalars representing the weighting of cost on centroidal

angular momentum, CWS margin and CoM acceleration respectively. The objective

(Eq. (4.36) is a convex quadratic function of the decision variables.

To summarize, the planner is a convex Quadratic Programming problem when

the Center of Mass region is a polytope, or a second-order cone prgramming problem

when the Center of Mass region is an ellipsoid. Both can be solved efficiently by

modern numeric solvers [120, 116].

4.3 Result

We show the results of our planner for robot walking on flat ground and uneven terrain

course. We compare with the ZMP planner used in [156], which aims to minimize the

distance from the ZMP to the center of the foot contact region. We will show that

the Contact Wrench Set (CWS) planner generates similar result as the ZMP planner

on the flat ground; and on uneven terrain course where ZMP planner fails, the CWS

planner can still work.

The footsteps locations are generated by the footstep planner [30]. The time of

foot contact is determined by simple heuristics on leg swing speed.

4.3.1 Flat ground walking

On the flat ground, we compute the CoM trajectory using the CWS planner, with

both polytope CoM region and Ellipsoidal CoM region. The result from the Contact

Wrench Set (CWS) planner is very similar to the ZMP planner, as shown in Fig.

4-5, 4-6 and 4-7. This similarity is expected because the Contact Wrench Set is a

generalization of ZMP support region in the flat ground case.

The spikes in Fig. 4-6 occur during the double support phase. This makes sense
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(b) CWS planner with ellipsoidal CoM region.

Figure 4-6: Contact Wrench Set margin for flat ground walking.

since the Contact Wrench Set is larger when the robot transit from single support

phase to double support, and thus the margin increases.

We also show that the Contact Wrench Set planner keeps the centroidal angular

momentum small, as shown in Fig. 4-8. The centroidal angular momentum is nor-

malized by a constant as the product of robot mass, the walking speed and the CoM

height. These values are in the same magnitude (or smaller than) the values from

human experiments [63].

We solved the optimization problem on an Intel Core i7 machine. The computation

time for this trajectory is 9 seconds when we use a polytope CoM region, and 6.2

seconds when we use an ellipsoidal region. The trajectory has 397 knot points. The

optimization problem has 7543 decision variables.

4.3.2 Walking on uneven terrain course

We also test our planner on an uneven ground, as shown in Fig. 4-9. This is the

terrain course used in the DARPA Robotics Challenge [135]. We set the friction cone
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Figure 4-7: CoM trajectory for flat ground walking.
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Figure 4-8: The normalized centroidal angular momentum. The normalizing factor
is the robot mass (M) times velocity (V) and com height (H), as used in [63].
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Figure 4-9: Tilted cinderblocks terrain with given footsteps

time (s)
0 10 20 30 40 50 60

w
re

n
ch

 m
a
g
n
it

u
d
e

-100

-50

0

50

100

150

200

250
Contact Wrench Set Margin

(a) Contact wrench set margin (b) Friction cone (blue region) and con-
tact force (red arrow)

Figure 4-10: Result from ZMP planner on terrain course

coefficient to 0.4 in this test.

The motion coming out of the ZMP planner is infeasible. We draw the contact

wrench set margin from the ZMP planner in Fig. 4-10a, some of the margins are

negative, indicating that the friction cone constraints are violated. Also, we draw the

friction force and friction cone around time 29s; the friction force falls outside of the

friction cone, as shown in Fig. 4-10b. This would cause the robot to tip over when

executing the planned motion. The failure occurs since the ZMP planner does not

take friction cones or non-coplanar contacts into consideration.

As a comparison, the CWS planner generates feasible motion that satisfies the

friction cone constraints. We draw the contact wrench set margin in Fig. 4-11. The

margin is always positive. In Fig. 4-12, we also show the friction cones and the

contact forces, at the same time sample as in Fig. 4-10b. The friction force lie within

the friction cone, using the CWS planner.

We also compare the CoM trajectories from ZMP and CWS planners. In Fig. 4-13,

we draw the CoM horizontal trajectories, together with the projection of footsteps.
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Figure 4-11: Contact Wrench Set Margin on the terrain course

(a) CWS planner with polytope CoM re-
gion

(b) CWS planner with ellipsoid CoM re-
gion

Figure 4-12: Friction cone (blue region) and contact force (red arrow) on the terrain
course
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Figure 4-13: Horizontal CoM trajectories on the terrain course

We also draw the CoM trajectory in each 𝑥𝑦𝑧 axes in Fig. 4-14. The CoM motion

from the CWS planner involves less swaying in the 𝑦 axes, along which the robot sways

left and right. The terrain course together with the CoM trajectories are shown in

Fig. 4-15.

We show that the CWS planner also generates a centroidal angular momentum

trajectory with small magnitude, as plotted in Fig. 4-16. We normalize it with robot

mass (M), robot velocity (V) and CoM height (H), as in Herr’s paper [63]. The

normalized centroidal angular momentum on the terrain course has larger magnitude

than the results from human experiments on the flat ground, but still in the same

scale.
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Figure 4-14: CoM trajectory in 𝑥𝑦𝑧 axes on the terrain course
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Figure 4-15: CoM trajectories on the terrain course
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Figure 4-16: Normalized centroidal angular momentum on the terrain course
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We solve the optimization problem on an Intel Core i7 machine for the Contact

Wrench Set Planner. The planner with the polytope CoM region takes 9 seconds,

while that with the ellipsoidal CoM region takes 5.6 seconds. The trajectories have

272 sample points, with 5168 decision variables.

64



Chapter 5

Planning while searching for contacts

In this chapter, we will present our planner to search for robust robot whole-body mo-

tion and the contact locations, such that the contact wrench set margin is maximized

through optimization. We will show that the structure of this optimization problem

allows us to solve it with two different approaches, either to solve it through sequential

semidefinite programming, or as a general nonlinear optimization problem. We then

apply our planner to three problems 1) force closure grasp optimization. 2) static

posture optimization, and 3) trajectory optimization, and improve the robustness of

the motion through optimization.

5.1 Computing Contact Wrench Set Margin

In the previous section 4.2.2, we can compute the contact wrench set margin using

the facets of the contact wrench set (Eq.(4.8)), when the contact locations are pre-

specified, and the contact force is subject to linearized friction cone constraint. When

the contact locations are not given, or when we want to use the nonlinear friction

cone, we cannot use this formulation to compute the margin, for two reasons

∙ When using the linearized friction cone and search for the contact locations,

in order to compute the distance from the contact wrench ℎ̇ − 𝑤𝑔 to the facet

of the linear wrench cone, we need to transform the cone from representation

using its rays (V-representation), to the representation using the facet normals
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(H-representation). Such transformation does not have a closed form represen-

tation, since we do not know which ray would be the extreme ray, i.e., the ray

on the boundary of the cone, when we are changing those rays by searching

over contact locations. In fact, the transformation from V-representation of a

polyhedron to its H-representation is not always differentiable, and the gradient-

based optimization solver would be profoundly unhappy if we had to use such

non-differentiable transformation within optimization.

∙ When using nonlinear friction cones, the Contact Wrench Set is not a linear

cone, thus we cannot compute the margin as the distance to the facet in the

closed form.

Our goal in this section is to compute a lower bound of the contact wrench set margin

as a differentiable function, and we will maximize such lower bound through opti-

mization.

As shown in Chapter 3, the Contact Wrench Set (CWS) is always a convex set

for every fixed contact locations. The contact wrench ℎ̇ − 𝑤𝑔 has a margin 𝜖, if and

only if an ellipsoid ℬ𝜖 is contained in the Contact Wrench Set, as defined previously

in Eq.(3.11)

ℬ𝜖 = {ℎ̇− 𝑤𝑔 + 𝑇 (𝑝𝑤, 𝐼)𝑤|𝑤𝑇𝑄𝑤𝑤 ≤ 𝜖2} ⊂ 𝐶𝑊𝑆 (5.1)

Geometrically, we can interpret the set inclusion (5.1) using halfspace. As illus-

trated in Fig.5-1. We can think of the interpretation conversely, on the condition

when the ellipsoid ℬ𝜖 is not a subset of Contact Wrench Set.

Corollary 1. The ellipsoid ℬ𝜖 being not a subset of the Contact Wrench Set, is

equivalent to the existence of a halfspace ℋ, such that the halfspace contains the

Contact Wrench Set, but does not contain the ellipsoid.

ℬ𝜖 ̸⊂ 𝐶𝑊𝑆

⇔∃ℋ = {𝑤|𝑎𝑇𝑤 + 𝑏 ≥ 0}, s.t ℋ ⊃ 𝐶𝑊𝑆,ℋ ̸⊃ ℬ𝜖
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(a) ℬ𝜖 ⊂ 𝐶𝑊𝑆 if and only if for all halfs-
pace ℋ contains 𝐶𝑊𝑆, the same halfspace
contains ℬ𝜖.

(b) ℬ𝜖 ̸⊂ 𝐶𝑊𝑆 if and only if there exists a
halfspace ℋ that contains 𝐶𝑊𝑆, but does
not contain ℬ𝜖.

Figure 5-1: Contact Wrench Set margin, interpreted using halfspace

Corollary 1 is illustrated in Fig.5-1b. The corollary is true because a convex set is

the intersection of all halfspaces that contains the set [16], so we consider the halfspace

that contains the convex Contact Wrench Set in Fig.5-1b.

Conversely, Corollary 1 is equivalent to the following corollary

Corollary 2. The ellipsoid ℬ𝜖 is a subset of Contact Wrench Set, if and only if for

any halfspace ℋ that contains the Contact Wrench Set, the same halfspace ℋ also

contains the ellipsoid ℬ𝜖.

ℬ𝜖 ⊂ 𝐶𝑊𝑆

⇔ (∀ℋ ⊃ 𝐶𝑊𝑆 ⇒ ℋ ⊃ ℬ𝜖)

The symbol ⇒ in Corollary 2 means that if the condition on the left-hand side of

⇒ is true (∀ℋ ⊃ 𝐶𝑊𝑆), then the condition on the right-hand side of ⇒ will also be

true (ℋ ⊃ ℬ𝜖). Thus ⇒ is read as "implies". Corollary 2 is illustrated in Fig.5-1a.

The structure of the Contact Wrench Set permits us to study the algebraic condi-

tion on the halfspace. As explained in Chapter 3 (Eq.(3.8)), the Contact Wrench Set

is the Minkowski sum 𝐶𝑊𝑆 = 𝒦1 ⊕ . . . ⊕ 𝒦𝑛1 ⊕ 𝒫1 ⊕ . . . ⊕ 𝒫𝑛2 , where 𝒦𝑖 is a cone

in the wrench space, computed from the friction cone at the i’th contact point; and
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𝒫𝑗 is a polytope in the wrench space, computed from the bounded linearized friction

cone the j’th contact point.

We first decompose the Contact Wrench Set as the Minkowski sum of a cone

𝒦1⊕ . . .⊕𝒦𝑛1 , and a polytope 𝒫1⊕ . . .⊕𝒫𝑛2 , and we consider the following lemma:

Lemma 1. A halfspace ℋ = {𝑤|𝑎𝑇𝑤 + 𝑏 ≥ 0} contains the Minkowski sum of a cone

𝒦 and a set 𝒫, where 0 ∈ 𝒫, if and only if the halfspace contains the cone and the

set separately. i.e.,

ℋ ⊃ 𝒦 ⊕ 𝒫 ⇔ (ℋ ⊃ 𝒦,ℋ ⊃ 𝒫) (5.2)

Proof. The ⇒ direction is obvious, just replace either 𝒦 or 𝒫 with element 0. For

the ⇐ direction,

ℋ ⊃ 𝒦 ⇔

⎧⎪⎨⎪⎩𝑎𝑇𝑢 ≥ 0 ∀𝑢 ∈ 𝒦

𝑏 ≥ 0

(5.3)

ℋ ⊃ 𝒫 ⇔ 𝑎𝑇𝑣 + 𝑏 ≥ 0 ∀𝑣 ∈ 𝒫 (5.4)

Eq.(5.3) and (5.4) together means

𝑎𝑇 (𝑢 + 𝑣) + 𝑏 ≥ 0 ∀𝑢 ∈ 𝒦, 𝑣 ∈ 𝒫 (5.5)

namely, ℋ ⊃ 𝒦 ⊕ 𝒫 .

Using Lemma 1, we can assert that the Contact Wrench Set is contained in the

halfspace ℋ, if and only if ℋ ⊃ (𝒦1 ⊕ . . . ⊕ 𝒦𝑛1), and ℋ ⊃ (𝒫1 ⊕ . . . ⊕ 𝒫𝑛2). We

can further investigate the condition that a halfspace contains the Minkowski sum of

cones

Lemma 2. A halfspace contains the Minkowski sum of two cones, if and only if the
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halfspace contains each cone individually. Namely

ℋ ⊃ (𝒦1 ⊕𝒦2)⇔

⎧⎪⎨⎪⎩ℋ ⊃ 𝒦1

ℋ ⊃ ℋ2

(5.6)

The proof is straightforward and we will ignore it.

With both Corollary 2, Lemma 1 and 2, we have the following theorem on the

contact wrench set margin.

Theorem 1. A wrench ℎ̇−𝑤𝑔 has a margin no smaller than 𝜖 in the Contact Wrench

Set 𝐶𝑊𝑆 = 𝒦1 ⊕ . . . ⊕ 𝒦𝑛1 ⊕ 𝒫1 ⊕ . . . ⊕ 𝒫𝑛2, if and only if for any halfspace ℋ =

{𝑤|𝑎𝑇𝑤 + 𝑏 ≥ 0} that satisfies

⎧⎪⎨⎪⎩ℋ ⊃ 𝒦𝑖, 𝑖 = 1, . . . , 𝑛1

ℋ ⊃ 𝒫1 ⊕ . . .⊕ 𝒫𝑛2

(5.7)

that same halfsapce also contains the ellipsoid ℬ𝜖 = {ℎ̇−𝑤𝑔+𝑇 (𝑝𝑤, 𝐼)𝑤|𝑤𝑇𝑄𝑤𝑤 ≤ 𝜖2}

ℋ ⊃ ℬ𝜖 (5.8)

We will analyze the algebraic condition for the set inclusions in Theorem 1. The

algebraic condition of ℋ ⊃ ℬ𝜖 can be readily formulated as

ℋ ⊃ ℬ ⇔ 𝑎𝑇 (ℎ̇− 𝑤𝑔) + 𝑏 ≥ 𝜖
√︀
𝑎𝑇𝑇 (𝑝𝑤, 𝐼)𝑄−1

𝑤 𝑇 (𝑝𝑤, 𝐼)𝑇𝑎 (5.9)

As we already explained in Chapter 3 (Eq.(3.7)), the polytope 𝒫𝑖 is parameterized

using the vertices of the polytope

𝒫𝑖 = ConvexHull(𝑣1𝑖 , . . . , 𝑣
𝑛𝑒
𝑖 ) (5.10)
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where the vertex 𝑣𝑗𝑖 is computed from the contact location 𝑝𝑖 and the edge of the

friction cone 𝑒𝑗𝑖 as

𝑣𝑗𝑖 =

⎡⎣ 𝑒𝑗𝑖

𝑝𝑖 × 𝑒𝑗𝑖

⎤⎦ (5.11)

The Minkowski sum 𝒫1⊕ . . .⊕𝒫𝑛2 is a new polytope, parameterized as a convex hull

𝒫1 ⊕ . . .⊕ 𝒫𝑛2 = ConvexHull(
∑︁
𝑖

(𝑣𝑙𝑖𝑖 )⏟  ⏞  
𝑣𝑗

), 𝑙𝑖 ∈ {1, 2, . . . , 𝑛𝑒} (5.12)

namely, we compute the Minkowski sum of the polytopes 𝒫𝑖, where the vertices of

the summed polytope is the sum of one vertex from each polytope, and there are 𝑛𝑛2
𝑒

possible vertices in the summed polytope 𝒫1 ⊕ . . . ⊕ 𝒫𝑛2 . For notation simplicity,

we denote the vertices of this summed polytope as 𝑣𝑗, 𝑗 = 1, . . . , 𝑛𝑛2
𝑒 . The algebraic

condition of ℋ ⊃ 𝒫1 ⊕ . . .⊕ 𝒫𝑛2 is

ℋ ⊃ 𝒫1 ⊕ . . .⊕ 𝒫𝑛2 ⇔ 𝑎𝑇𝑣𝑗 + 𝑏 ≥ 0,∀𝑗 = 1, . . . , 𝑛𝑛2
𝑒 (5.13)

For the cone𝒦𝑖, when we use the linearized friction cone𝒦𝑖 = ConvexCone(𝑣1𝑖 , . . . , 𝑣
𝑛𝑒
𝑖 )

where 𝑣𝑖 is defined in Eq.(5.11), the condition that halfspace ℋ contains the cone 𝒦𝑖

is that

ℋ ⊃ 𝒦𝑖 ⇔

⎧⎪⎨⎪⎩𝑎𝑇𝑣𝑗𝑖 ≥ 0,∀𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛𝑒

𝑏 ≥ 0

(5.14)
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When we use the nonlinear friction cone 𝒦𝑖 =

⎧⎨⎩
⎡⎣ 𝑓

𝑝𝑖 × 𝑓

⎤⎦⃒⃒⃒⃒⃒⃒√︀1 + 𝜇2𝑓𝑇 𝑐𝑖 ≥
√︀

𝑓𝑇𝑓

⎫⎬⎭,

the condition that the halfspace ℋ contains the cone 𝒦𝑖 is that

ℋ ⊃ 𝒦𝑖 ⇔

⎧⎪⎨⎪⎩𝑎𝑇𝐺(𝑝𝑖)𝑐𝑖 ≥ 𝜇
√︀

𝑎𝑇𝐺(𝑝𝑖)(𝐼3×3 − 𝑐𝑖𝑐𝑇𝑖 )𝐺(𝑝𝑖)𝑇𝑎

𝑏 ≥ 0

(5.15)

where 𝐺(𝑝𝑖) ∈ R6×3 is the matrix that transforms a force into a wrench at the origin

of the world frame

𝐺(𝑥) =

⎡⎣ 𝐼3×3

⌊𝑥⌋×

⎤⎦ (5.16)

An alternative interpretation of the condition (5.14) and (5.15) is that 𝑎 ∈ 𝒦*
𝑖 , 𝑏 ≥ 0,

where 𝒦*
𝑖 is the dual cone of 𝒦𝑖 [16].

With the algebraic formulation on set inclusions (Eq.(5.9),(5.13),(5.14)), when we

use the linearized friction cone, Theorem 1 is formulated algebraically as saying when

the for all 𝑎, 𝑏 satisfying the condition on the left-hand side of ⇒, it implies that 𝑎, 𝑏

satisfy the condition on the right-hand side of ⇒ in Eq.(5.17)

𝑎𝑇𝑣𝑗𝑖 ≥ 0,∀𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛𝑒

𝑏 ≥ 0

𝑎𝑇𝑣𝑗 + 𝑏 ≥ 0,∀𝑗 = 1, . . . , 𝑛𝑛2
𝑒

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭⇒ 𝑎𝑇 (ℎ̇− 𝑤𝑔) + 𝑏 ≥ 𝜖
√︀

𝑎𝑇𝑇 (𝑝𝑤, 𝐼)𝑄−1
𝑤 𝑇 (𝑝𝑤, 𝐼)𝑇𝑎

(5.17)
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Another way to think of the implication in Eq.(5.17) is that if we fix the values of

𝑣𝑗𝑖 , 𝑣
𝑗
𝑖 , ℎ̇, 𝑤𝑔 and 𝑝𝑤, then the following optimization problem is infeasible

min
𝑎,𝑏

0

s.t 𝑎𝑇 (ℎ̇− 𝑤𝑔) + 𝑏 ≥ 𝜖
√︀

𝑎𝑇𝑇 (𝑝𝑤, 𝐼)𝑄−1
𝑤 𝑇 (𝑝𝑤, 𝐼)𝑇𝑎

𝑎𝑇𝑣𝑗𝑖 ≥ 0,∀𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛𝑒

𝑏 ≥ 0

𝑎𝑇𝑣𝑗 + 𝑏 ≥ 0,∀𝑗 = 1, . . . , 𝑛𝑛2
𝑒

From Putinar’s Positivstellensatz [137], it is advantageous to write the left-hand side

of ⇒ in Eq.(5.17) as a compact set on 𝑎, 𝑏. Since the condition in Eq.(5.17) is

homogeneous in 𝑎, 𝑏, thus we can scale 𝑎, 𝑏 uniformly. It can be easily seen that the

condition (5.17) is equivalent to the following condition, where the left-hand side of

⇒ becomes compact, by constraining that 𝑎𝑇𝑇 (𝑝𝑤, 𝐼)𝑄−1
𝑤 𝑇 (𝑝𝑤, 𝐼)𝑇𝑎 = 1

𝑎𝑇𝑣𝑗𝑖 ≥ 0,∀𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛𝑒

𝑏 ≥ 0

𝑎𝑇𝑣𝑗 + 𝑏 ≥ 0,∀𝑗 = 1, . . . , 𝑛𝑛2
𝑒

𝑎𝑇𝑇 (𝑝𝑤, 𝐼)𝑄−1
𝑤 𝑇 (𝑝𝑤, 𝐼)𝑇𝑎 = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
⇒ 𝑎𝑇 (ℎ̇− 𝑤𝑔) + 𝑏 ≥ 𝜖 (5.18)

All the expressions in (5.18) are polynomials with 𝑎, 𝑏 as indeterminates, and 𝑣𝑗𝑖 , 𝑣
𝑗
𝑖 , 𝑝𝑤, ℎ̇, 𝑤𝑔

are coefficients of the polynomials. A sufficient condition for condition (5.18) is the

existence of some polynomials 𝑙𝑖(𝑎, 𝑏), satisfying the following conditions.

𝑙0(𝑎, 𝑏) * (𝑎𝑇 (ℎ̇− 𝑤𝑔) + 𝑏− 𝜖)− 𝑙1(𝑎, 𝑏)(𝑎
𝑇𝑇 (𝑝𝑤, 𝐼)𝑄−1

𝑤 𝑇 (𝑝𝑤, 𝐼)𝑇𝑎− 1)

−𝑙𝑖𝑗2 (𝑎, 𝑏) * (𝑎𝑇𝑣𝑗𝑖 )− 𝑙3(𝑎, 𝑏) * 𝑏− 𝑙𝑗4(𝑎
𝑇𝑣𝑗𝑖 + 𝑏) is sos (5.19a)

𝑙0(𝑎, 𝑏)− 1 is sos (5.19b)

𝑙𝑖𝑗2 (𝑎, 𝑏), 𝑙3(𝑎, 𝑏), 𝑙
𝑗
4(𝑎, 𝑏) is sos (5.19c)
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where a polynomial 𝑝(𝑥) is sos is abbreviated of 𝑝(𝑥) is a Sum of Squares polynomial

(sos). A polynomial being sos is a sufficient condition of 𝑝(𝑥) ≥ 0 ∀𝑥. It can be eas-

ily seen that the existence of the polynomials 𝑙0(𝑎, 𝑏), 𝑙1(𝑎, 𝑏), 𝑙
𝑖𝑗
2 (𝑎, 𝑏), 𝑙3(𝑎, 𝑏), 𝑙

𝑗
4(𝑎, 𝑏)

certifies the implication in Eq.(5.18), and thus shows that the contact wrench margin

is no less than 𝜖. The polynomials 𝑙𝑖(𝑎, 𝑏) are called Lagrangian multipliers, and this

is a common trick in Sum of Squares verification [128, 157].

It is well known that a polynomial being Sum of Squares, is equivalent to a cer-

tain matrix being positive semidefinite (A brief explanation is given in Appendix

A.2). The entries of this matrix and the coefficients of the polynomial should satisfy

some linear constraints. Thus the sos conditions in Eq.(5.19a)-(5.19c) indicate that a

sufficient condition for a contact wrench ℎ̇ − 𝑤𝑔 having a margin no smaller than 𝜖,

is that there exist some polynomials 𝑙𝑖(𝑎, 𝑏), such that the polynomials of Eq.(5.19a)-

(5.19b) are Sum of Squares. The entries of these polynomials are functions of the

contact position 𝑝𝑖, the contact wrench ℎ̇ − 𝑤𝑔, and coefficients of the polynomials

𝑙𝑖. So Eq.(5.19a)-(5.19c) will be interpreted as several matrix inequalities on decision

variable 𝑝𝑖, ℎ̇, 𝑤𝑔 and coefficients of 𝑙𝑖. We will search for these variables to satisfy

these matrix inequalities.

When we use nonlinear friction cone instead of linearized friction cone, we just

need to replace Eq.(5.14) with (5.15) in (5.19a)-(5.19c), and we end up with the

following sos conditions

𝑙0(𝑎, 𝑏)(𝑎
𝑇 (ℎ̇− 𝑤𝑔) + 𝑏− 𝜖)− 𝑙1(𝑎, 𝑏)(𝑎

𝑇𝑇 (𝑝𝑤, 𝐼)𝑄−1
𝑤 𝑇 (𝑝𝑤, 𝐼)𝑇𝑎− 1)

− 𝑙𝑖2(𝑎, 𝑏)(𝑎
𝑇𝐺(𝑝𝑖)𝑐𝑖)− 𝑙𝑖3(𝑎, 𝑏)

(︀
(𝑎𝑇𝐺(𝑝𝑖)𝑐𝑖)

2 − 𝜇2(𝑎𝑇𝐺(𝑝𝑖)(𝐼3×3 − 𝑐𝑖𝑐
𝑇
𝑖 )𝐺(𝑝𝑖)

𝑇𝑎)
)︀

− 𝑙4(𝑎, 𝑏)𝑏− 𝑙𝑗5(𝑎
𝑇𝑣𝑗𝑖 + 𝑏) is sos (5.20a)

𝑙0(𝑎, 𝑏)− 1 is sos (5.20b)

𝑙𝑖2(𝑎), 𝑙𝑖3(𝑎, 𝑏), 𝑙4(𝑎, 𝑏), 𝑙
𝑗
5(𝑎, 𝑏) is sos (5.20c)

Again the constraints (5.20a)-(5.20c) is equivalent to the existence of some positive

semidefinite matrices, such that the matrix inequalities corresponding to (5.20a)-

(5.20c) are satisfied.
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We will see in Section 5.3.1 and 5.4.1 that we have more variations on the condi-

tions when computing the contact wrench set margin, but they all share the general

form that some matrix inequalities have to be satisfied, and these matrices are func-

tions of contact position 𝑝𝑖, the contact wrench ℎ̇−𝑤𝑔, and coefficients of polynomials

𝑙𝑖(𝑎, 𝑏).

5.2 Solving kinematic/dynamic constraints with con-

tact wrench set margin

To find the robot motion such that its contact wrench set margin is maximized, we

will formulate an optimization problem with two types of constraints

1. Contact wrench set margin constraint as in Eq.(5.19a)-(5.19c). Such constraints

are matrix inequalities, typically solved as linear matrix inequalities (LMI) if

the matrix inequalities are also linear in decision variables.

2. Kinematic and dynamic constraints of robot. These are vector-valued non-

convex differentiable constraints, typically solved by gradient-based nonlinear

optimization.

We need to solve these two types of constraints together, while conventionally they

are solved separately as different type of optimization problems. Here we propose two

approaches to unify these two types of constraints:

1. To solve the matrix inequalities as vector-valued nonlinear differentiable con-

straints.

2. To solve the vector-valued nonlinear constraints as matrix inequalities.

We will show each approach in the subsequent two sections.
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5.2.1 Solve matrix inequality as nonlinear differentiable con-

straints

A simple way to enforce the matrix inequality 𝑀 ⪰ 0, is to write it as the product of

a matrix and its transpose

𝑀 ⪰ 0⇔𝑀 = 𝑁𝑁𝑇 (5.21)

where 𝑀 ∈ R𝑛×𝑛. Without lose of generality, we can assume that 𝑁 ∈ R𝑛×𝑛 is an

upper triangular matrix, namely 𝑁𝑖𝑗 = 0 if 𝑖 > 𝑗. There are 𝑛(𝑛+1)
2

non-zero entries

in the upper triangular matrix 𝑁 , so for each psd matrix 𝑀 ∈ R𝑛×𝑛, we introduce
𝑛(𝑛+1)

2
new variables, and we replace the psd matrix 𝑀 by 𝑁𝑁𝑇 as in Eq.(5.21). This

parameterization of psd constraint has smooth gradient over entries of 𝑁 , and thus

can be solved by gradient-based nonlinear optimization solvers. This trick allows us

to combine the matrix inequalities as in contact wrench margin computation, with

the kinematic and dynamic constraints of the robot, and to solve them together as

nonlinear optimization problem.

5.2.2 Solve nonlinear constraints as matrix inequalities

There exists a technique to solve certain type of nonlinear optimization, as matrix

inequalities, called Bilinear Matrix Inequality (BMI). A general form of BMI is the

following matrix inequality on variables 𝑥

𝐹0 +
∑︁
𝑖

𝑥𝑖𝐹𝑖 +
∑︁
𝑖,𝑗

𝑥𝑖𝑥𝑗𝐹𝑖𝑗 ⪰ 0 (5.22)

where 𝐹𝑖, 𝐹𝑖𝑗 ∈ R𝑛×𝑛 are all given matrices. Unlike the linear matrix inequality

𝐹0 +
∑︀

𝑖 𝑥𝑖𝐹𝑖 ⪰ 0 that is a convex function of 𝑥, the bilinear matrix inequality is non-

convex, but it can be solved iteratively by a sequence of semidefinite programming

problems [71]. We give a brief introduction on BMI and the algorithm in the Appendix

A.3.
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Axis i-1

Link i-1

Link i

Axis i

Figure 5-2: [24] A link frame X̂𝑖−1, Ŷ𝑖−1, Ẑ𝑖−1 is attached to link 𝑖 − 1, link frame
X̂𝑖, Ŷ𝑖, Ẑ𝑖 is attached to link 𝑖. Ẑ𝑖−1, Ẑ𝑖 are the revolute axes of the joints. The axis
frame X̂0

𝑖 , Ŷ
0
𝑖 , Ẑ0 is attached to the joint 𝑖, and is fixed in the link frame 𝑖− 1. The

axis frame 𝑖 and the link frame 𝑖 share the frame origin and Ẑ𝑖 axis, the latter frame
is obtained by rotating the former by angle 𝜃𝑖 around the Ẑ𝑖 axis.

A rich class of vector-valued nonlinear constraints can be formulated as bilinear

matrix inequality. For example, when 𝐹𝑖, 𝐹𝑖𝑗 are all scalars, Eq.(5.22) represents the

general non-convex quadratic constraints. We will show that the kinematic constraints

can be formulated as BMIs.

BMI is used extensively in control literatures [144, 159, 53]. We will use this tool

in motion planning with kinematic constraints.

Kinematic constraints as bilinear matrix inequalities

We will show in this section, such kinematic constraints can be formulated as BMIs,

using robot maximal coordinates.

We illustrate the kinematic chain between two links, welded by a revolute joint

as in Fig.5-2. The orientation of the link frame 𝑖 − 1, 𝑖 are represented by unit

quaternions 𝑞𝑖−1, 𝑞𝑖, and the position of frame origins are 𝑝𝑖−1, 𝑝𝑖 ∈ R3 respectively.

The transformation from the axis frame 𝑖 to the link frame 𝑖−1 is fixed, with a given

unit quaternion 𝑧𝑖−1,𝑖 for the rotation, and a given vector 𝑝𝑖−1,𝑖 for the translation,
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both expressed in link frame 𝑖 − 1. We introduce two additional variables 𝑐𝑖, 𝑠𝑖, to

represent cos 𝜃𝑖
2
, sin 𝜃𝑖

2
respectively. The rotation of the axis 𝑖 is thus expressed by the

unit quaternion 𝑧𝜃𝑖 = 𝑐𝑖 + 0i + 0j + 𝑠𝑖k. The relationship between link frame 𝑖 − 1

and 𝑖 are

𝑝𝑖 =𝑅(𝑞𝑖−1)𝑝𝑖−1,𝑖 + 𝑝𝑖−1 (5.23a)

𝑞𝑖 =𝑞𝑖−1 ⊗ 𝑧𝑖−1,𝑖 ⊗ 𝑧𝜃𝑖 (5.23b)

𝑞𝑖 ⊗ 𝑞*𝑖 =1, 𝑞𝑖−1 ⊗ 𝑞*𝑖−1 = 1 (5.23c)

where 𝑅(𝑞𝑖−1) is the rotation matrix for unit quaternion 𝑞𝑖−1.

𝑅(𝑧) =

⎡⎢⎢⎢⎣
𝑧22 + 𝑧21 − 𝑧24 − 𝑧23 2𝑧2𝑧3 − 2𝑧1𝑧4 2𝑧2𝑧4 + 2𝑧1𝑧3

2𝑧2𝑧3 + 2𝑧1𝑧4 𝑧23 + 𝑧21 − 𝑧22 − 𝑧24 2𝑧3𝑧4 − 2𝑧1𝑧2

2𝑧2𝑧4 − 2𝑧1𝑧3 2𝑧3𝑧4 + 2𝑧1𝑧2 𝑧24 + 𝑧21 − 𝑧22 − 𝑧23

⎤⎥⎥⎥⎦ (5.24)

⊗ is the Hamilton product for quaternions, defined as

𝑞 ⊗ 𝑝 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑞1𝑝1 − 𝑞2𝑝2 − 𝑞3𝑝3 − 𝑞4𝑝4

+(𝑞1𝑝2 + 𝑞2𝑝1 + 𝑞3𝑝4 − 𝑞4𝑝3)i

+(𝑞1𝑝3 − 𝑞2𝑝4 + 𝑞3𝑝1 + 𝑞4𝑝2)j

+(𝑞1𝑝4 + 𝑞2𝑝3 − 𝑞3𝑝2 + 𝑞4𝑝1)k

⎞⎟⎟⎟⎟⎟⎟⎠ (5.25)

In Eq.(5.23c), we denote 𝑞* as the conjugate of quaternion 𝑞. Eq.(5.23c) means that

the quaternion has unit length, so they can represent orientation in 3D.

The constraints on 𝑐𝑖, 𝑠𝑖 are

𝑐2𝑖 + 𝑠2𝑖 = 1 (5.26a)

𝑐𝑖 ∈ range
(︂

cos
𝜃𝑖
2

)︂
, 𝑠𝑖 ∈ range

(︂
sin

𝜃𝑖
2

)︂
, 𝜃𝑖 ∈ [𝜃𝑖, 𝜃𝑖] (5.26b)

where constraint (5.26a) guarantees that 𝑐𝑖, 𝑠𝑖 are the values of cosine and sine func-

tions of a certain angle, and constraint (5.26b) encodes the joint limits [𝜃𝑖, 𝜃𝑖] for axis
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𝑖. Constraints (5.23a)-(5.26b) encode kinematics chain that welds the adjacent links.

Constraint (5.23a)-(5.23c) and (5.26a),(5.26b) are all bilinear matrix inequalities.

So we can combine the kinematics problem and the contact wrench set margin compu-

tation, and solve them together using a sequential semidefinite programming approach

described in Appendix A.3.

In the remaining sections of this chapter, we will see that more motion plan-

ning problems can be formulated as BMIs, and thus can be solved by the sequential

semidefinite programming approach.

In the next sections, we will see we can apply the approaches described in this

chapter to different motion planning problems, including 1) Force closure grasping,

2) Static posture optimization and 3) Trajectory optimization. We will formulate

the nonlinear constraints as BMIs in force closure grasping, while for the other two

problems, we will solve the matrix inequalities using nonlinear optimization.

5.3 Force Closure Grasp Optimization

We have been talking about Contact Wrench Set margin. In grasping, we can achieve

infinite margin if the contact locations achieve force closure, with unbounded contact

forces within the friction cone. The quality of a force closure grasp is measured by

the contact wrench set margin with bounded total contact forces. We will apply our

optimization approach to search for an optimal force closure grasp in this section.

5.3.1 Force closure grasp

Force closure, which measures the ability of a grasp to resist wrench disturbances,

is an important property in grasping and has an extensive literature [119, 118]. A

commonly observed fact is that synthesis of force closure grasps is a non-convex op-

timization problem, mostly due to the fact that computing the torque on an object

involves a bilinear product between contact locations and contact forces. As a re-

sult, most approaches resort to gradient-based non-convex nonlinear optimization to

synthesize a force closure grasp [21]. On the other hand, when fixing the contact lo-
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cations, checking if the given contact locations achieve force closure becomes a convex

optimization problem [15, 54]. Moreover, several grasp metrics have been introduced

to measure the quality of a force closure grasp. These involve computing the smallest

wrench that the grasp cannot resist with bounded contact forces [85, 43, 112]. Liu

et al. optimized the contact locations based on this metric by solving a min-max

problem through nonlinear optimization, using certain sub-gradient function [103].

The force closure property for 𝑛 grasp points 𝑝𝑖 ∈ R3, 𝑖 = 1, ..., 𝑛, is achieved

when these grasp points can resist arbitrary external wrenches with contact forces 𝑓𝑖

at point 𝑝𝑖 lying within the friction cone. Mathematically, force closure is formulated

as the existence of 𝑝𝑖 and 𝑓𝑖 satisfying the following constraints:

𝐺𝐺′ ⪰ 𝛼𝐼6×6 (5.27a)

𝐺𝑓 = 0 (5.27b)

𝑓𝑖 ∈ int(ℱ𝒞𝑖) (5.27c)

𝑝𝑖 ∈ 𝒮𝑖 (5.27d)

where

𝐺 =

⎡⎣ 𝐼3×3 𝐼3×3 . . . 𝐼3×3

⌊𝑝1⌋× ⌊𝑝2⌋× . . . ⌊𝑝𝑛⌋×

⎤⎦ , (5.28)

⌊𝑝𝑖⌋× is the skew-symmetric matrix representing the cross product ⌊𝑝𝑖⌋×𝑓𝑖 = 𝑝𝑖 × 𝑓𝑖,

𝛼 is a small given positive scalar, constraint (5.27a) is the same as 𝐺 being full rank;

𝑓 = [𝑓𝑇
1 𝑓𝑇

2 . . . 𝑓𝑇
𝑛 ]𝑇 ∈ R3𝑛; int(ℱ𝒞𝑖) is the interior of the friction cone ℱ𝒞𝑖 at grasp

point 𝑝𝑖, and 𝒮𝑖 is the admissible contact region of grasp point 𝑝𝑖 (for example, the

surface of the object being grasped).

We note that condition (5.27a) is quadratic on 𝑝𝑖, and (5.27b) is bilinear on 𝑝𝑖 and

𝑓𝑖. Unlike some existing approaches that fix the contact points 𝑝𝑖 and search only

contact force 𝑓𝑖 through convex optimization, we can search both 𝑝𝑖 and 𝑓𝑖 simultane-

ously by solving these BMIs through sequential SDP, as introduced in Section A.3.1.

In the following two subsections, we will show that friction cone constraint (5.27c)
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Figure 5-3: A nonlinear friction cone (blue) and the linearized friction cone (red).

and contact region constraint (5.27d) can also be formulated as BMIs.

5.3.2 Friction cones

The Coulomb friction cone constraints introduced in 3.1 (Fig.5-3) can also be for-

mulated as BMIs. For the 𝑖𝑡ℎ friction cone ℱ𝒞𝑖, we will constrain 𝑐𝑖 to have unit

length:

𝑐𝑇𝑖 𝑐𝑖 = 1. (5.29)

If we use the nonlinear friction cone, then 𝑓𝑖 ∈ int(ℱ𝒞𝑖) is equivalent to

𝑓𝑇
𝑖 𝑐𝑖 >

1√︀
𝜇2 + 1

|𝑓𝑖|, (5.30a)

where 𝜇 is the fixed friction coefficient.

If 𝑐𝑖 was fixed, constraint (5.30a) would be a Second-order cone constraint on 𝑓𝑖,

which is a special type of psd constraint [2]. By searching both 𝑐𝑖 and 𝑓𝑖, constraints

(5.29)(5.30a) are both BMIs on variables 𝑐𝑖 and 𝑓𝑖.

If ℱ𝒞𝑖 is a linearized friction cone with 𝑛𝑒 edges, to compute its edges, we can

first construct a cone ℱ𝒞0 that has unit axis 𝑐0 = [0 0 1]𝑇 , with edges 𝑒10, 𝑒
2
0, . . . , 𝑒

𝑛𝑒
0 .

Without loss of generality we suppose the projection of the edge onto the normal

direction has unit length, 𝑐𝑇0 𝑒
𝑗
0 = 1, 𝑗 = 1, . . . , 𝑛𝑒. The edge 𝑒𝑗0 can be computed using

the friction coefficient and 𝑐0, thus they are fixed. The linearized friction cone at 𝑥𝑖

with cone axis 𝑐𝑖 , can be obtained by appropriately rotating cone ℱ𝒞0 such that cone

axis 𝑐0 is aligned with 𝑐𝑖. A rotation can be parameterized with a unit quaternion 𝑧𝑖,
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satisfying constraints:

𝑧𝑖 ⊗ 𝑧*𝑖 =1 (5.31a)

𝑐𝑖 =𝑅(𝑧𝑖)𝑐0 (5.31b)

where ⊗ is the Hamiltonian product between quaternions. 𝑧*𝑖 is the conjugate of 𝑧𝑖,

and 𝑅(𝑧𝑖) ∈ R3×3 is the rotation matrix corresponding to 𝑧𝑖, each entry in 𝑅(𝑧𝑖) is

a second-order polynomial of 𝑧𝑖 (Eq.(5.24)) [146]. Applying the same rotation to the

friction cone edges 𝑒𝑗0 generates the friction cone edges 𝑒𝑗𝑖 at 𝑥𝑖.

𝑒𝑗𝑖 =𝑅(𝑧𝑖)𝑒
𝑗
0, 𝑗 = 1, . . . , 𝑛𝑒. (5.32)

The contact force 𝑓𝑖 is a positive weighted sum of the edges of the friction cone:

𝑓𝑖 =
𝑛𝑒∑︁
𝑗=1

𝑤𝑗
𝑖 𝑒

𝑗
𝑖 , 𝑤𝑗

𝑖 > 0 (5.33)

Constraints (5.31a)-(5.33) involve only bilinear terms of the decision variables 𝑧𝑖, 𝑤𝑗
𝑖 , 𝑒

𝑗
𝑖 ,

and thus can be posed as a BMI.

5.3.3 Contact geometries

In this section, we consider four types of objects to be grasped, including convex

polyhedra (Fig.5-4,5-5), spheres, ellipsoids and cylinders (Fig.5-6). The constraints

on contact point 𝑝𝑖 and contact normal 𝑐𝑖 are straight-forward for the sphere, ellipsoid

and cylinder, since the contact surfaces for these geometries are all parameterized by

quadratic functions. Thus the constraints on 𝑝𝑖 and 𝑐𝑖 are also quadratic, and can be

solved as BMIs. When the object is a polyhedron, and the grasp is free to choose any

facets, the problem becomes trickier to handle, and we will discuss it below.

For a convex polyhedron 𝒫 = ConvexHull(𝑣1𝑝, . . . , 𝑣
𝑁𝑝
𝑝 ) (The red box in Fig.5-4),

where 𝑣𝑖𝑝 is the 𝑖𝑡ℎ vertex of the polyhedron, we want to avoid contacts lying at edges

or corners of the polyhedron, since these contact locations be unstable and the object
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Figure 5-4: The polyhedron 𝒫
to be grasped. The admissible
contact regions are the shrunk
regions on each facets (blue re-
gion).

Figure 5-5: The shrunk polyhe-
dron 𝒫𝑠 obtained as the convex
hull of the blue regions, which
are the shrunk regions on each
facets as in Fig.5-4.

Figure 5-6: The
cylinder to be
grasped, the
blue surface is
the grasp region.

Figure 5-7: A point is on the boundary of a convex set, if and only if a hyperplane
supports the set at that point.

can slide out of the grasp. Thus the admissible contact regions are given as the shrunk

surface regions (blue shades). We then construct a shrunk polyhedron (Fig.5-5) as

the convex hull of the shrunk surface regions (blue shades). The shrunk polyhedron

is given as 𝒫𝑠 = {𝑥|𝐴𝑠𝑥 ≤ 𝑏𝑠}; this H-representation of a polyhedron can be readily

computed from its vertices [181]. To constrain 𝑝𝑖 lying on one of the shrunk surface

regions, we use the fact that a point is on the surface of a convex object, if and

only if a supporting hyperplane intersects the object at that point (Fig.5-7). Thus

we introduce a supporting hyperplane {𝑥|𝑐𝑇𝑖 𝑥 + 𝑑𝑖 = 0}, where 𝑐𝑖 is the axis of the

friction cone, and the constraints:

∙ The grasp point 𝑝𝑖 is on the hyperplane

𝑐𝑇𝑖 𝑝𝑖 + 𝑑𝑖 = 0 (5.34)
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∙ All vertices of the original polyhedron 𝒫 lie on one side of the hyperplane, and

the normal vector 𝑐𝑖 points outward from the polyhedron

𝑐𝑇𝑖 𝑣
𝑗
𝑝 + 𝑑𝑖 ≤ 0 ∀𝑗 = 1, . . . , 𝑁𝑝 (5.35)

∙ The grasp point lies within the shrunk polyhedron 𝒫𝑠

𝐴𝑠𝑝𝑖 ≤ 𝑏𝑠 (5.36)

Geometrically, constraints (5.34)-(5.36) state that 𝑐𝑇𝑖 𝑥 + 𝑑 = 0 is a supporting hy-

perplane of the polyhedron 𝒫 , and the supporting point 𝑝𝑖 is not at edges or corners

of the polyhedron, so 𝑐𝑖 has to coincide with one of the face normals. We want to

highlight that we do not specify on which facet the contact lies; by searching over

𝑐𝑖, 𝑝𝑖 and 𝑑𝑖, the optimization program will determine the contact facets by itself.

Constraints (5.35)(5.36) are linear on 𝑝𝑖, 𝑐𝑖 and 𝑑𝑖. Constraint (5.34) is a BMI on 𝑝𝑖

and 𝑐𝑖.

5.3.4 𝜖-ball

The 𝜖-ball metric proposed by Kirkpatrick [85] measures the smallest magnitude of

wrench disturbance that cannot be resisted, given an upper bound on the total contact

forces. We will derive the conditions to compute the 𝜖-ball for grasping under total

contact force, similar to what we have shown in Sec.5.1.

For contact point 𝑝𝑖, 𝑖 = 1, . . . , 𝑛, and linearized friction cone, whose edges are

𝑒𝑗𝑖 , 𝑗 = 1, . . . , 𝑛𝑒, we define the wrench set𝒲 as the set of wrench that can be resisted

by those contact points, when the total normal contact forces on all contact points

are bounded by 1.

𝐶𝑊𝑆 = ConvexHull(𝑣𝑗𝑖 ), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛𝑒, where 𝑣𝑗𝑖 =

⎡⎣ 𝑒𝑗𝑖

𝑝𝑖 × 𝑒𝑗𝑖

⎤⎦ . (5.37)
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If nonlinear fiction cone is used, then the Contact Wrench Set is computed as follows

𝐶𝑊𝑆 =

⎧⎨⎩
𝑛∑︁

𝑖=1

𝜆𝑖

⎡⎣ 𝑓𝑖

𝑝𝑖 × 𝑓𝑖

⎤⎦⃒⃒⃒⃒⃒⃒ (1 + 𝜇2) ≥ 𝑓𝑇
𝑖 𝑓𝑖, 𝑓

𝑇
𝑖 𝑐𝑖 = 1, 𝜆𝑖 ≥ 0,

𝑛∑︁
𝑖=1

𝜆𝑖 ≤ 1

⎫⎬⎭ (5.38)

If 𝐶𝑊𝑆 contains the origin in the wrench space, then force closure is achieved.

We will suppose that the disturbance wrench is applied at the origin of the world

coordinate.

Using the same halfspace interpretation as we explained in Sec.5.1, the contact

wrench margin is no smaller than 𝜖, if and only if the following implication holds,

that if 𝑎, 𝑏 satisfy the condition on the left-hand side of ⇒, then 𝑎, 𝑏 would satisfy

the condition on the right-hand side of ⇒.

∙ If using the linearized friction cone,

(𝑣𝑗𝑖 )
𝑇𝑎 + 𝑏 ≥ 0,∀𝑖, 𝑗

𝑎𝑇𝑄−1
𝑤 𝑎 = 1

⎫⎬⎭⇒ 𝑏 ≥ 𝜖. (5.39)

∙ If using the nonlinear friction cone,

𝑎𝑇𝐺(𝑝𝑖)𝑐𝑖 + 𝑏 ≥ 𝜇
√︀

𝑎𝑇𝐺(𝑝𝑖)(𝐼3×3 − 𝑐𝑖𝑐𝑇𝑖 )𝐺(𝑝𝑖)𝑇𝑎

𝑎𝑇𝑄−1
𝑤 𝑎 = 1

⎫⎬⎭⇒ 𝑏 ≥ 𝜖. (5.40)

Like we present in Sec.5.1, the implication in (5.39) and (5.40) holds, if there exists

some polynomials 𝑙𝑖(𝑎, 𝑏), that satisfy the following Sum of Squares (sos) condition

∙ If using linearized friction cone

𝑙0(𝑎, 𝑏)(𝑏− 𝜖)− 𝑙1(𝑎, 𝑏)(𝑎
𝑇𝑄−1

𝑤 𝑎− 1)

−
∑︁

1≤𝑖≤𝑛

∑︁
1≤𝑗≤𝑛𝑒

𝑙𝑖,𝑗2 (𝑎, 𝑏)((𝑣𝑗𝑖 )
𝑇𝑎 + 𝑏) is sos (5.41a)

𝑙0(𝑎, 𝑏)− 1 is sos (5.41b)

𝑙𝑖,𝑗2 (𝑎, 𝑏) is sos ∀𝑖, 𝑗 (5.41c)
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∙ If using nonlinear friction cone

𝑙0(𝑎, 𝑏)(𝑏− 𝜖)− 𝑙1(𝑎, 𝑏)(𝑎
𝑇𝑄−1

𝑤 𝑎− 1)−
𝑛∑︁

𝑖=1

𝑙𝑖2(𝑎, 𝑏)(𝑎
𝑇𝐺(𝑝𝑖)𝑐 + 𝑏)

−
𝑛∑︁

𝑖=1

𝑙𝑖3(𝑎, 𝑏)
(︀
(𝑎𝑇𝐺(𝑝𝑖)𝑐𝑖 + 𝑏)2 − 𝜇2(𝑎𝑇𝐺(𝑝𝑖)(𝐼3×3 − 𝑐𝑖𝑐

𝑇
𝑖 )𝐺(𝑝𝑖)

𝑇𝑎)
)︀

is sos

(5.42a)

𝑙0(𝑎, 𝑏)− 1 is sos (5.42b)

𝑙𝑖3(𝑎, 𝑏), 𝑙
𝑖
2(𝑎, 𝑏) is sos ∀𝑖 (5.42c)

where 𝑙𝑖(𝑎, 𝑏) are polynomials on indeterminates 𝑎, 𝑏.

Since constraints (5.41a)-(5.41c) and (5.42a)-(5.42c) are sufficient conditions of

(5.37) and (5.38), for 𝑝𝑖 and 𝑒𝑗𝑖 satisfying constraints (5.41a)-(5.42c), 𝜖 is a lower

bound of its 𝜖-ball metric. To maximize 𝜖, we can use either bilinear alternation

(Algorithm 1) or binary search (Algorithm 2).

Algorithm 1 Bilinear alternation

Start with a force closure grasp 𝑝𝑖, 𝑒𝑗𝑖 , 𝑐𝑖 found using approach described in sections
5.3.1-5.3.3, set 𝜖 = 0, search for 𝑙𝑖(𝑎, 𝑏) that satisfy the sos conditions (5.41a)-
(5.41c) and (5.42a)-(5.42c). These are linear matrix inequalities, and can be solved
by convex semidefinite programming.
while 𝑟 ¬ converged do

1. At iteration 𝑘, fix 𝑝𝑖, 𝑐𝑖, 𝑙0(𝑎, 𝑏) in constraint (5.41a) or (5.42a), search for
𝑙𝑖(𝑎, 𝑏), 𝑖 ̸= 0 and 𝜖 to maximize 𝜖, subject to constraints (5.41a),(5.41c) or
(5.42a),(5.42c). This optimization is a semi-definite programming problem.
It finds an ellipsoid contained in the Contact Wrench Set.

2. Fix 𝜖 and 𝑙𝑖(𝑎, 𝑏), 𝑖 > 1 to the solution in step 1, find feasible
𝑝𝑖, 𝑐𝑖, 𝑙0(𝑎, 𝑏), 𝑙1(𝑎, 𝑏) that satisfy (5.41a),(5.41b),(5.42a),(5.42b) and the
kinematics and contact location constraints on 𝑝𝑖, 𝑐𝑖, as described in in
section 5.3.3, 5.2.2. This is a BMI problem. It finds grasp points 𝑝𝑖 and
friction cone axis 𝑐𝑖, such that the grasp quality is no worse than that in
the previous iteration. The solution 𝑝𝑖, 𝑐𝑖, 𝑙0(𝑎, 𝑏) will be used in step 1 in
the next iteration.

end while

In the bilinear alternation, the 𝑘𝑡ℎ iteration is guaranteed to obtain an objective 𝜖

that is at least as good as the previous iteration, since a solution to step 2 in iteration
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𝑘 is also feasible for step 1 in both iteration 𝑘 and 𝑘 + 1; also 𝜖 cannot increase to

infinity. Hence the bilinear alternation will terminate with convergence to an optimal

value, possibly just a local optimum. It is a common strategy in the SDP literature

[128, 157, 106].

Algorithm 2 Binary search

Start with 𝜖 = 0, and 𝜖 to be some big value, 𝜖 = 𝜖+𝜖
2

.
while 𝜖 ¬ converged do

1. Fix 𝜖, search for the coefficients of 𝑙𝑖(𝑎, 𝑏), 𝑝𝑖, 𝑐𝑖 together, subject to con-
straints (5.41a)-(5.41c) or(5.42a)-(5.42c) and the kinematics and contact
location constraints on 𝑝𝑖, 𝑐𝑖 in section 5.2.2,5.3.3. This is a BMI problem.
If the problem converges, set the lower-bound 𝜖 = 𝜖; otherwise set the
upper-bound 𝜖 = 𝜖.

2. 𝜖 = 𝜖+𝜖
2

, go to step 1.
end while

The binary search algorithm needs to deal with psd constraints of larger size than

that in bilinear alternation, since it involves the product of 𝑙𝑖(𝑎, 𝑏) and 𝑐𝑖, 𝑝𝑖. Thus the

binary search algorithm takes longer time to solve each SDP. Experimentally, we find

that the binary search algorithm is less susceptible to local minima than the bilinear

alternation alone.

5.3.5 Results

Force closure contact

We first show that we can synthesize a feasible solution to achieve force closure in

this sub-section, we will later demonstrate the results to optimize the force closure

grasp in the next sub-section.

We show the results of finding force closure contact locations on different geome-

tries in Fig.5-8. We also show the time scalability w.r.t number of contacts in Fig.5-9,

5-10, and number of polyhedron facets in Fig.5-11. When we increase the number of

contacts (Fig.5-9, 5-10), the size of the largest psd constraints remains the same, and

the number of psd constraints increases linearly. As expected, the computation time

in each SDP scales linearly (Fig.5-10); and empirically we observe that the number
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Figure 5-8: Force closure contacts on different geometries. The upper row uses non-
linear friction cone, the lower row uses linearized friction cone. For the polyhedron
(column 3), the contact facets are not specified by the user beforehand.
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Figure 5-9: Scalability
w.r.t number of contacts
on a 30 facets polyhe-
dron.
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Figure 5-11: Scalability
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test with 4 contacts.

of SDP calls remains almost constant (Fig.5-9). As a result, the total computation

time scales linearly w.r.t number of contacts. On the other hand, the number of

polyhedron facets does not affect the size or the number of the psd constraints, so

the total computation time remains almost constant (Fig.5-11).

Kinematics

We will first show that we can solve the inverse kinematics (IK) problem by formulat-

ing it as BMIs, and the sequential semidefinite programming can generate certificate

for global infeasibity in some cases. Here we focus on the IK problem only, and do

not include the force closure grasping. The inverse kinematics problem is solved for
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reachable point, sequential SDP converge to 
unreachable point, infeasible in rank relaxed SDP
cannot decide, feasible in rank relaxed SDP, 
does not converge to

Figure 5-12: Robot arm reachability.
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Figure 5-13: Histogram on number of
SDP calls.

an ABB IRB140 arm with a Robotiq hand, with 15 joints in total. To evaluate how

effective the algorithm is as solving this inverse kinematics problem, in Fig.5-12 we

take 10000 samples within the 0.6m x 0.6m x 0.6m box in the shaded region, and

require the center of the palm to reach the sample point. There are three possible

outcomes from the sequential SDP.

∙ Green dot: sequential SDP converges to 𝑡𝑜𝑝𝑡 = 0 ⇒ feasible BMIs, thus reach-

able.

∙ Red dot: the rank-relaxed SDP reports infeasibility, thus proved unreachable.

∙ Blue dot: the rank-relaxed SDP is feasible, but the sequential SDP does not

converge to 𝑡𝑜𝑝𝑡 = 0.

As shown in Fig.5-12, the blue dot layer is thin, showing that in most cases the

sequential SDP algorithm either solves the problem or proves that the problem is

infeasible. The histogram in Fig.5-13 shows that when the sequential SDP can solve

the problem, in most (81.36%) cases it converges within 5 SDP calls. The average

time to solve the BMI is 0.25 seconds using MOSEK [116] on an Intel i7 machine.

Grasp optimization

In this sub-section, we demonstrate the result on optimizing the force closure contacts

location and grasping postures.
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Figure 5-14: Initial contacts
and linearized friction cones.

Figure 5-15: Optimized con-
tacts and linearized friction
cones.
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Figure 5-16: The change of 𝜖-ball metric in each
iteration of bilinear alternation.

(a) Initial contacts and the nonlinear fric-
tion cones.

(b) Optimized contacts and the nonlinear
friction cones.

Figure 5-17: Force closure contacts with nonlinear friction cone

We first show the result of using bilinear alternation to optimize a 3-point force

closure grasp on a sphere. The initial contacts and linearized friction cones are plotted

in Fig.5-14, the optimized contacts become more evenly distributed (Fig.5-15), as is

known to be the better 3-point grasp on the sphere [103]. In Fig.5-16 we draw the

𝜖-ball metric in each iteration. The SOS programs (5.41a)-(5.41c),(5.42a)-(5.42c) find

a lower bound of the 𝜖-ball metric. The true 𝜖-ball metric is computed as in Appendix.

We can see that the gap between the SOS verified lower bound and true 𝜖-ball metric

is small. The computation time is 172 seconds using MOSEK solver [116] on an Intel

i7 machine.

We also show that we can optimize the force closure contact points using nonlinear

friction cone, as shown in Fig.5-17
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Figure 5-18: Initial contacts and
linearized friction cones.

Figure 5-19: Optimized contacts
and linearized friction cones.
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Figure 5-20: The change of 𝜖-ball metric in
each iteration of binary search.

We also show the result of optimizing force closure contacts on a diamond shaped

polyhedron, through binary search. The optimized contacts (Fig.5-19) are more

evenly distributed than the initial contacts (Fig.5-18). Also we want to highlight that

the facets on which the contacts lie are changed through optimization, this again

demonstrates that the optimization program can search over all facets by itself. The

computation time is around an hour using MOSEK solver on an Intel i7 machine.

We show the result of optimizing the force closure grasp with Robotiq hand and

ABB arm on a cylinder, with linearized friction cones. The initial posture grasps the

tip of the cylinder (Fig.5-21), the optimized posture gets improved by grasping the

center of the cylinder (Fig.5-22). The computation time is around 20 minutes using

MOSEK on an Intel i7 machine.

5.4 Static Posture Optimization

We will show that we can optimize the robot posture, such that it can maintain static

equilibrium under large Center of Mass position error. We will maximize the margin

between the Center of Mass projection to the boundary of the support region. As

we will see shortly, this margin is a special case of the Contact Wrench Set margin,

thus we can optimize the robot posture to enlarge this margin. We will solve this

optimization problem through nonlinear optimization.
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Figure 5-21: initial
force closure grasp
from two views.

Figure 5-22: opti-
mized force closure
grasp from two
views.
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Figure 5-23: The change of 𝜖-ball metric
in each iteration of bilinear alternation,
for robotiq hand grasping the cylinder.

5.4.1 Static Equilibrium

The robot can maintain static equilibrium, if the contact wrench can balance the grav-

itational wrench, namely, the negation of gravitational wrench is within the Contact

Wrench Set.

−𝑤𝑔(𝑟) =
[︁
0 0 𝑚𝑔 𝑟𝑦𝑚𝑔 −𝑟𝑥𝑚𝑔 0

]︁𝑇
∈ 𝐶𝑊𝑆 (5.43)

here we write the gravitational wrench 𝑤𝑔 as a function of CoM position 𝑟.

The static equilibrium is achieved if the Center of Mass horizontal position is

within a region, called the support region, as illustrated in Fig.5-24.

We want the robot to main static equilibrium robustly, i.e, the CoM horizontal

position not close to the boundary of the support region. To this end, we want to

find the robot posture, together with the contact locations, such that the robot keeps

a large distance from the Center of Mass to the boundary of the support region.

A shift of Center of Mass position is equivalent to applying a wrench disturbance

in some particular form (Eq.(5.45)), due to the linearity of gravitational wrench 𝑤𝑔(𝑟)

in Eq.(5.43). We can define the support region margin as the radius of the largest

ball, centered at current CoM position 𝑟, such that when the robot CoM position is
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Figure 5-24: Support region for CoM [17]

within this ball, the gravitational wrench is still inside the Contact Wrench Set.

ℬ𝜖 =
{︀
−𝑤𝑔(𝑟 + 𝛿)| 𝛿2𝑥 + 𝛿2𝑦 ≤ 𝜖2

}︀
∈ 𝐶𝑊𝑆 (5.44)

where − 𝑤𝑔(𝑟 + 𝛿) = −𝑤𝑔(𝑟) +
[︁
0 0 0 𝛿𝑦𝑚𝑔 −𝛿𝑥𝑚𝑔 0

]︁𝑇
(5.45)

When the ellipsoid ℬ𝜖 lies within the Contact Wrench Set, it is guaranteed that the

support region margin is no smaller than 𝜖.

To see how this support region margin is connected to the Contact Wrench Set

margin, we can slice the Contact Wrench Set with a plane passing the contact wrench

−𝑤𝑔(𝑟), and spanned by vectors [0 0 0 1 0 0]𝑇 and [0 0 0 0 1 0]𝑇 , the contact wrench

set margin on this plane is the support region margin.

Sum of Squares condition

As we derived the Sum of Squares condition for contact wrench margin in Sec 5.1 using

halfspaces, we can similarly derive the sos condition for static equilibrium margin. We

can show that when we use the linearized friction cones, the static equilibrium margin
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is no less than 𝜖, if and only if the following implication holds.

𝑎𝑇𝑣𝑗𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛𝑒

𝑏 ≥ 0

𝑎𝑇𝑣𝑗 + 𝑏 ≥ 0, 𝑗 = 1 . . . , 𝑛𝑛2
𝑒

𝑎24 + 𝑎25 = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
⇒ (𝑎3 + 𝑎4𝑟𝑦 − 𝑎5𝑟𝑥)𝑚𝑔 + 𝑏 ≥ 𝜖𝑚𝑔 (5.46)

where 𝑣𝑗𝑖 =
[︁
(𝑒𝑗𝑖 )

𝑇 (𝑝𝑖 × 𝑒𝑗𝑖 )
𝑇

]︁𝑇
is the wrench corresponding to the friction cone edge

𝑒𝑗𝑖 at contact position 𝑝𝑖, as described in Eq.(5.11). 𝑣𝑗 is the wrench corresponding to

the friction cone with bounded magnitude.

It is worth mentioning that if all the friction cones are unbounded, then we do not

need to consider the condition on 𝑣𝑗 on the left-hand side of ⇒ in Eq.(5.46). Then

we can get rid of the indeterminates 𝑏, and the implication is

𝑎𝑇𝑣𝑗𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛1, 𝑗 = 1, . . . , 𝑛𝑒

𝑎24 + 𝑎25 = 1

⎫⎬⎭⇒ 𝑎3 + 𝑎4𝑟𝑦 − 𝑎5𝑟𝑥 ≥ 𝜖 (5.47)

As we explained in Sec.5.1, the implication in Eq.(5.46) holds if there exists poly-

nomials 𝑙𝑖(𝑎, 𝑏), such that the following sos conditions hold

𝑙0(𝑎, 𝑏) ((𝑎3 + 𝑎4𝑟𝑦 − 𝑎5𝑟𝑥)𝑚𝑔 + 𝑏− 𝜖𝑚𝑔)− 𝑙1(𝑎, 𝑏)(𝑎
2
4 + 𝑎25 − 1)

−
𝑛∑︁

𝑖=1

𝑛𝑒∑︁
𝑗=1

𝑙𝑖,𝑗2 (𝑎, 𝑏)(𝑎𝑇𝑣𝑗𝑖 )− 𝑙3(𝑎, 𝑏)𝑏−
𝑛
𝑛2
𝑒∑︁

𝑗=1

𝑙𝑗4(𝑎, 𝑏)(𝑎
𝑇𝑣𝑗 + 𝑏) is sos (5.48)

𝑙0(𝑎, 𝑏)− 1 is sos (5.49)

𝑙𝑖,𝑗2 (𝑎, 𝑏), 𝑙3(𝑎, 𝑏), 𝑙
𝑗
4(𝑎, 𝑏) is sos (5.50)

We will formulate these sos conditions as nonlinear differentiable constraints, using

the trick 𝑀 ⪰ 0⇔𝑀 = 𝑁𝑁𝑇 as described in 5.2.1.

The robot static posture should satisfy the kinematic constraints also. Here we

treat the kinematic constraints as general nonlinear differentiable constraints, com-
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(a) Unoptimized posture (b) Optimized posture

Figure 5-25: Atlas postures, its CoM projection (red dots), and support region (blue
regions)

monly solved by nonlinear optimization [39, 28]. So the static posture optimization

problem can be solved by NLP solvers.

5.4.2 Results

Atlas

We show the postures of Atlas robot with foot and left hand in contact with the

environment. The bound on the hand contact force is 200N. In Fig.5-25 we show the

unoptimized posture and the optimized one. We deliberately set objective as max-

imizing the support region margin only, to highlight that our optimization problem

can really increase this margin. We could add some other cost to the objective to

find a more comfort robot posture.

The support region margin increases from 8.29cm to 27.26cm through optimiza-

tion. The optimization takes 35 seconds on an Intel Core i7 machine with SNOPT

[48]. The code is written in MATLAB.
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Little Dog

If the terrain has some complicated geometry, like a stepping stone, we would want

our optimizer to search over all facets on the stepping stone, as we did in grasp

optimization on a polytope. We use the same support hyperplane idea presented in

Sec.5.3.3, so that we are searching for a hyperplane that supports the contact point

at the boundary of the stepping stone. The constraints in Sec.5.3.3 are also nonlinear

constraints, so we can solve them through nonlinear optimization.

We show the results of posture optimization on four stepping stones in Fig.5-

26. The support margin increases from 4.2cm to 8.07cm through optimization. After

optimization, the robot not only sprawls its legs, but also switches the facets on which

to place its foot. This shows that our optimization can search over all facets of the

convex polytope simultaneously.

The optimization time is about 3 minutes on a Intel Core i7 machine with SNOPT.

The code is written in MATLAB.

5.5 Trajectory Optimization

Finally, we want to find a trajectory of robot interacting with the environment with

multiple contacts, and maximize its contact wrench set margin along the trajectory.

We will solve this optimization problem through nonlinear optimization. The com-

putation of the contact wrench set margin has been explained in Sec. 5.1, we will

describe the time integration and cost here.

5.5.1 Nonlinear optimization formulation

Time integration

We take 𝑁 time samples along the trajectory, and parameterize the trajectory using

the sampled states at those knot points. We denote the time step from knot 𝑖 to knot

𝑖+1 as 𝑑𝑡[𝑖]. We are going to search for the time steps in the trajectory optimization.
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(a) Unoptimized posture, perspective a (b) Optimized posture, perspective a

(c) Unoptimized posture, perspective b (d) Optimized posture, perspective b

Figure 5-26: Little dog on stepping stones, with support regions (blue), CoM projec-
tion (red dots), and the normal of the contact facet (red arrows).
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The robot posture 𝑞 is integrated from robot velocity 𝑣 using backward Euler step.

𝑞[𝑖] = 𝑞[𝑖− 1] + 𝑣[𝑖]𝑑𝑡[𝑖] ∀𝑖 = 1, . . . , 𝑁 (5.51)

The robot linear and angular momentum is integrated using backward Euler

ℎ[𝑖] = ℎ[𝑖− 1] + ℎ̇[𝑖]𝑑𝑡[𝑖] (5.52)

Kinematics and dynamics constraints

We will list the kinematics and dynamics constraints on the robot posture and velocity.

Since these constraints should be satisfied at every knot point, we will ignore the time

indices 𝑖 when there is no ambiguity.

The robot center of mass position 𝑟 is computed from robot whole-body posture

using robot kinematics

𝑟 = 𝑐𝑜𝑚(𝑞) (5.53)

The robot linear momentum 𝑚�̇� and angular momentum 𝑘𝑂 are computed from the

robot posture and velocity [168, 122].

ℎ𝐺 =

⎡⎣𝑚�̇�

𝑘𝐺

⎤⎦ = 𝐴(𝑞)𝑣 (5.54)

𝑘𝑂 = 𝑘𝐺 + 𝑚𝑟 × �̇� (5.55)

where 𝐴(𝑞) is the centroidal momentum matrix.

The robot contact positions 𝑝𝑖 are computed from the forward kinematics function

𝐹𝐾𝑖

𝑝𝑖 = 𝐹𝐾𝑖(𝑞) (5.56)
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Objective function

Our goal is to find a reasonable motion, while maximizing the contact wrench set 𝜖.

We use a general objective function as

min
𝑞,𝑣,𝑟
𝑑𝑡,𝜖

𝑙0,𝑙1,𝑙2,𝑙3,𝑙4

𝑁∑︁
𝑖=1

−𝑐𝜖𝜖[𝑖] + 𝑓(𝑞[𝑖], 𝑣[𝑖], 𝑟[𝑖], 𝑑𝑡[𝑖]) (5.57)

where 𝑓 is a general differential function. It penalizes undesired behavior of the robot,

such as large joint velocity, large centroidal angular momentum, etc.

5.5.2 Results

We tested our planner on Atlas robot, with 36 degrees of freedom. Boston Dy-

namics Inc demonstrated a video of Atlas walking between two walls on https:

//www.youtube.com/watch?v=FFGfq0pRczY, and we plan a similar motion here.

The nonlinear optimization problem has 13,000 decision variables. We first plan

a trajectory without maximizing the contact wrench set margin, using the planner

introduced in [28]. Then we can solve a convex optimization problem, to find the

polynomials 𝑙𝑖(𝑎, 𝑏) in Eq. (5.19a)-(5.19c). We then take this feasible trajectories as

the initial guess to the optimization problem, to maximize the contact wrench set

margin.

The result of the contact wrench set margin is shown in Fig. 5-27. As the unop-

timized trajectory does not attempt to maximize the contact wrench set margin, the

margins are zero at several sample points, indicating that the motion is marginally

stable, and the robot can easily lose balance due to a small disturbance. The op-

timized trajectory has CWS margin no smaller than 70 at all time samples. The

disturbance points are close to the CoM location of the robot. This margin means

that the robot can withstand 70 Newton force disturbance. The sampled postures of

the initial trajectory and the optimized trajectory are shown in Fig. 5-28. An ob-

vious difference between the un-optimized trajectory, and the optimized one, is that

the robot feet sprawl wider in the initial posture of the optimized trajectory, thus
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Figure 5-27: Contact Wrench Set Margin

the contact wrench set is larger. Also at the end of the motion, the un-optimized

trajectory still has larger acceleration, and its contact wrench is at the boundary of

the set; while in the optimized trajectory, the final acceleration is a lot smaller, and

thus the contact wrench is in the middle of the contact wrench set.
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(a) Un-optimized initial posture (b) Optimized initial posture

(c) Un-optimized step 1 (d) Optimized step 1

(e) Un-optimized left hand move (f) Optimized left hand move

(g) Un-optimized step 2 (h) Optimized step 2

(i) Un-optimized final posture (j) Optimized step 2

Figure 5-28: Atlas walking between walls100



Chapter 6

Feedback controller for grasping

In Section 5.3.1, we described how to synthesize a grasping posture. Unfortunately if

we blindly command the robot hand to achieve the desired grasping posture, without

considering the pose of the object during grasping, in many cases this strategy will

not generate a good grasp. The problem is that when the robot fingers start to touch

the object, the object can move. If the grasping strategy ignores the motion of the

object, then even if the robot fingers perfectly achieve the desired posture, the contact

locations on the object can end up being totally different from the desired ones, and

thus the grasp can miss its goal. To this end, we want to design a feedback control

policy, that incorporates the dynamics of both the object and the hand. This control

policy will adjust the finger motion based on the object motion, and we expect this

control policy to be robust, even under uncertainties of the object motion.

We attempted to synthesize a feedback controller for grasping, to track the dy-

namics of the object while closing the grasp. This controller should be robust to

state estimation error on the grasped object. The state estimation error is ubiquitous

during grasping, especially when the hand approaches the grasped object, that the

fingers and palm occlude the visual features. Occlusion prevents the camera or Lidar

from obtaining a good view of the grasped object, when the robot need the accurate

position/velocity estimation of the object most. Our proposed solution is to use tac-

tile sensors to measure contact forces, and then feed this contact force measurement

directly to the finger controller. We thought this approach is more robust to position
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measurement error, compared to using the estimated state of the object from error-

prone cameras. We attempted to minimize the set of the final states for the grasped

object, by designing this feedback controller through Sum of Squares programming.

We encountered numerical difficulties when solving the Sum of Squares problem. We

will present our approach and the negative results in this chapter.

6.1 Related Work

There has been a lot of research to use visual feedback to control the robot, such

approach is called visual servoing [1, 147, 70, 90] . It typically involves two subsystems,

a visual tracking system to estimate the state of the object using visual sensors, and a

control system to move the robot manipulator based on the sensory input. Although

widely used, visual servoing has its drawbacks, that it needs to keep a good view on

the features of the object for the whole time, to get a good estimate of the object

motion. Unfortunately when the hands approach the object, those features can get

occluded. Also due to the small estimation errors, the visual sensor does not always

generate accurate estimation on whether the hand is in contact with the object or

not.

Tactile sensors can be used as a complement to visual sensors, to provide local

contact information [84, 75, 76]. It is immune to occlusion problems, and also gives a

good estimate on whether the contact is active or not. There has been a lot of work

to use contact sensors to help estimate the motion of the object [74, 52, 176]. This

approach typically involves two stages: first to estimate the state, including hand and

object poses and velocities; and then the controller computes the hand joint action

based on the estimated state. In this setting, the contact measurement is usually

treated as a binary signal, to determine whether the finger touches the object or

not. The control action is typically different before and after triggering the contact,

thus the control law that maps the robot state to the control action does not share

the same formulation [88]. This switch of control policy complicates the problem, as

it requires detecting the accurate timing of contact event. In this chapter, we will
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present a controller that uses the same control policy before and after the contact

event, by using the contact force measurement as a continuous signal, rather than a

binary signal. This control policy formulation will enable us to analyze the stability of

the closed-loop system using only one Lyapunov function for different contact modes.

Apart from using the two-stage approach to compute the control action from the

estimated pose and velocities, people also try to control the robot motion directly.

The contact force measurement can be used directly as an input to the controller.

In hybrid force/position control [138], the control action directly depends on the

error from the desired force. In [72], the robot hand can spin the pen in very high

speed, using tactile sensor feedback to control the joint motors. Before and after the

impact, although the change on the robot pose is small, the contact force can jump

significantly, and a controller depending on the contact force measurement can output

different joint command based on the contact force measurement, thus remove the

necessity to use a separate control formulation for each individual contact mode. We

will use this force feedback approach in this chapter.

To verify the stability of a dynamical system in the Lyapunov sense, people resort

to searching for a Lyapunov function using Sum of Squares programming [128, 155].

Such Lyapunov function can verify a region of attraction [155, 161, 157] or an in-

variant region [158] for a closed-loop system with given controllers. Majumdar et

al. exploited the property that a manipulator system is affine in the control actions,

and searched the control policy to enlarge the region of attractions through Sum of

Squares programming [106]; they demonstrated their approach on systems with con-

tinuous dynamics, such as Acrobot. Posa et al. exploited the superposition property

of the manipulator dynamics with external force, and used one Lyapunov function

to verify convergence or invariance across different hybrid modes [133, 134], we will

explain this approach in greater detail in Section 6.2. We will apply Posa’s approach

to grasping, to verify the stability of the closed-loop hybrid system using one single

Lyapunov function.
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Figure 6-1: Fingers grasping a block

6.2 Approach

6.2.1 Problem formulation

We want to study how to control the robot fingers, so as to move an object on

the table, as shown in Fig.6-1. We suppose the robot finger motors accept torque

commands, and at the finger tip, the tactile sensor can measure the contact force.

Also the finger position and velocity are known from kinematics. For the object, we

suppose that its mass and geometry are known. The object can slide on the table, with

friction coefficient 𝜇. We suppose we do not know the block position and velocity.

Our goal is to synthesize a controller, that takes the finger position, velocity, and

tactile sensor measurement as inputs, and output the finger joint torques, such that

we can move the object to a desired position. We aim to verify that such controller

can achieve this goal, by searching for a Lyapunov function as a certificate.

Here for simplicity, we start with the object moving in one dimension, and the

fingers are modeled as two point-mass pushers, on both sides of the block object, as

shown in Fig. 6-2a,6-2b. The mass of the pushers are 𝑚1,𝑚2 respectively. We can

command the thrust 𝑢1, 𝑢2 on the pushers, and measure pushers’ positions 𝑝1, 𝑝2 and

velocities �̇�1, �̇�2. The dynamics of the pushers are formulated as the following

𝑚1𝑝1 = 𝑢1 − 𝜆1 (6.1)

𝑚2𝑝2 = 𝑢2 + 𝜆2 (6.2)

where 𝜆1, 𝜆2 ≥ 0. When the pusher is not incontact with the block, the contact force
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(a) Pushers not in contact with the block

(b) Pushers in contact with the block

Figure 6-2: Point-mass pushers and the block. The pushers positions are 𝑝1, 𝑝2 re-
spectively. The position of the center of the block is 𝑝0. The table friction force on
the block is 𝜆0. The pushers are controlled by the thrust 𝑢1, 𝑢2 respectively. When
making contact with the block, the contact force between the pushers and the block
are 𝜆1, 𝜆2.

𝜆1 or 𝜆2 is zero.

The block is under the pusher contact forces 𝜆1, 𝜆2 and the table friction force 𝜆0.

From Newton’s law, the dyamics of the block is

𝑚𝑝0 = 𝜆1 − 𝜆2 + 𝜆0 (6.3)

The table friction force 𝜆0 is subject to the Coulomb friction constraint, namely

−𝜇𝑚𝑔 ≤ 𝜆0 ≤ 𝜇𝑚𝑔 (6.4)

And the energy should dissipate due to the friction

𝜆0�̇�0 ≤ 0 (6.5)
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When the block is sliding, the friction force should be at the edge of the friction cone

�̇� > 0⇒ 𝜆0 = −𝜇𝑚𝑔 (6.6)

or �̇� < 0⇒ 𝜆0 = 𝜇𝑚𝑔 (6.7)

We want to command the pusher thrust based on the contact force. Unfortu-

nately, the thrust command cannot depend on contact force 𝜆1, 𝜆2 directly, otherwise

it will bring an algebraic loop in the feedback system, that the output 𝜆1, 𝜆2 in pusher

dynamics (6.1),(6.2) depend on the input commanded thrust directly. Thus the con-

troller cannot take the contact force 𝜆1, 𝜆2 directly as the input, but instead we need

to introduce a state for the contact force sensor, and use this state as the input to

the controller.

We consider to use a first order system to model the contact force sensor dynamics,

with the sensor state 𝜁1, 𝜁2. This time constant 1
𝑘

of this first order system can

represent the delay on the sensor measurement.

𝜁1 = 𝑘(𝜆1 − 𝜁1) (6.8)

𝜁2 = 𝑘(𝜆2 − 𝜁2) (6.9)

and the sensor outputs its state 𝜁1, 𝜁2 as the measurement. The choice of sensor

model is not restricted to this linear first order system, here we choose this model for

simplicity.

The state of the overall system is denoted as 𝑥 = [𝑝0, 𝑝1, 𝑝2, 𝜁1, 𝜁2, �̇�0, �̇�1, �̇�2]
𝑇 . The

dynamics of the state is formulated in Eq.(6.1),(6.2),(6.3),(6.8),(6.9). The output of

the system is 𝑦 = [𝑝1, 𝑝2, 𝜁1, 𝜁2, �̇�1, �̇�2]
𝑇 .

Our goal is to design a control law [𝑢1, 𝑢2]
𝑇 = 𝜋(𝑦) that will move the block to

some desired region. Notice that our control law does not depend on the block state

𝑝0, �̇�0, but on the finger state 𝑝1, 𝑝2, �̇�1, �̇�2 and contact force measurement 𝜁1, 𝜁2.
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6.2.2 Lyapunov function

Our goal is to design a controller, such that the block will converge to an invariant

set under this control law. To verify the invariance set, we consider to search for a

Lyapunov-like function 𝑉 (𝑥), satisfying the following condition

𝑉 (𝑥) ≥ 𝜌⇒ 𝑑𝑉 ≤ 0 (6.10)

𝑉 (𝑥) ≥ 𝛼(|𝑥|) (6.11)

where 𝛼(|𝑥|) is a function that is monotonically increasing, and 𝛼(0) = 0. (6.10)

proves that the state 𝑥 will converge to the sub-level set 𝒢 = {𝑥|𝑉 (𝑥) ≤ 𝜌}.

The size of this invariant set 𝒢 can be measured by its outer ellipsoidal region

{𝑥|𝑥𝑇𝐺𝑂𝑥 ≤ 1}. To guarantee this ellipsoid contains the invariant set 𝒢, we impose

the following condition

𝑉 (𝑥) ≤ 𝜌⇒ 𝑥𝑇𝐺𝑂𝑥 ≤ 1 (6.12)

Our goal is to minimize the invariant set, so that the terminal set for the state is

as small as possible. To this end, we will minimize the size of the outer ellipsoidal

approximation, by maximizing the trace of matrix 𝐺𝑂.

We now analyze the condition that 𝑑𝑉 ≤ 0. We adopt the same approach as in

Posa’s work [134]. Since 𝑑𝑉 is a function of the dynamics of the overall system, which

has different form depending on whether the pusher is making contact with the block.

We will analyze the formulatoin of 𝑑𝑉 depending on whether the contact is active

or not. For notation simplicity, we will use function 𝜑𝑖(𝑥) to represent whether the

pusher is in contact with the block, defined as follows

𝜑1(𝑥) = 𝑝0 − 𝑝1 − 𝑙 (6.13)

𝜑2(𝑥) = 𝑝2 − 𝑝0 − 𝑙 (6.14)

We can analyze the contact mode based on the guard function 𝜑(𝑥) and its derivative.
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∙ When 𝜑𝑖(𝑥) > 0, pusher 𝑖 is not in contact with the block.

∙ When 𝜑𝑖(𝑥) = 0, �̇�𝑖(𝑥) < 0, pusher 𝑖 is hitting the block with an instantaneous

impact.

∙ When 𝜑𝑖(𝑥) = 0, �̇�𝑖(𝑥) = 0, pusher 𝑖 is maintaing contact with the block.

∙ When 𝜑𝑖(𝑥) = 0, �̇�𝑖(𝑥) > 0, pusher 𝑖 is breaking contact with the block.

Based on the value of 𝜑𝑖(𝑥) and its derivatives, we partition the state space into

three sets

1. set ℱ . Both pushers are either not in contact with the block, or breaking contact

with the block.

ℱ = {𝑥|𝜑𝑖(𝑥) = 0⇒ �̇�𝑖(𝑥) > 0} (6.15)

2. set ℐ. A pusher is hitting the block with instantaneous impact

ℐ = {𝑥|∃𝑖 ∈ {1, 2}, 𝜑𝑖(𝑥) = 0, �̇�𝑖(𝑥) < 0} (6.16)

3. set 𝒰 . Pushers are maintaining contact with the block

𝒰 = {𝑥|∃𝑖 ∈ {1, 2}, 𝜑𝑖(𝑥) = 0, �̇�𝑖(𝑥) = 0} (6.17)

Intuitively, on set ℱ , the contact force 𝜆1, 𝜆2 vanish. On set ℐ, the contact force is

an impulse. On set 𝒰 , the contact force is finite and non-zero.

For notation simplicity, we write 𝑝 = [𝑝0, 𝑝1, 𝑝2]
𝑇 , �̇� = [�̇�0, �̇�1, �̇�2]

𝑇 , 𝜁 = [𝜁1, 𝜁2]
𝑇 .

On set ℱ , since the contact forces 𝜆1, 𝜆2 vanish, we can write 𝑑𝑉 as

𝑑𝑉 =
𝜕𝑉

𝜕𝑝
�̇� +

𝜕𝑉

𝜕𝜁
(−𝑘𝜁) +

𝜕𝑉

𝜕�̇�

⎡⎢⎢⎢⎣
𝜆0

𝑚

𝑢1

𝑚1

𝑢2

𝑚2

⎤⎥⎥⎥⎦ ≤ 0 (6.18)
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On set ℐ, the contact force is an instantaneous impulse, so 𝑉 will jump before

and after the impulsive contact, due to the abrupt change on the velocity �̇�, and the

contact sensor state 𝜁. 𝑑𝑉 is written in the following form

∙ If pusher 1 hits the block

𝑑𝑉 =
𝜕𝑉

𝜕�̇�

⎡⎢⎢⎢⎣
𝜆1

𝑚

−𝜆1

𝑚1

0

⎤⎥⎥⎥⎦ +
𝜕𝑉

𝜕𝜁1
𝑘𝜆1 ≤ 0 (6.19)

∙ If pusher 2 hits the block

𝑑𝑉 =
𝜕𝑉

𝜕�̇�

⎡⎢⎢⎢⎣
−𝜆2

𝑚

0

𝜆2

𝑚2

⎤⎥⎥⎥⎦ +
𝜕𝑉

𝜕𝜁2
𝑘𝜆2 ≤ 0 (6.20)

On set 𝒰 , we want to verify when the contact force may be non-zero. The condition

for 𝑑𝑉 is that

𝑑𝑉 =
𝜕𝑉

𝜕𝑝
�̇� +

𝜕𝑉

𝜕𝜁

⎡⎣𝑘(𝜁1 − 𝜆1)

𝑘(𝜁2 − 𝜆2)

⎤⎦ +
𝜕𝑉

𝜕�̇�

⎡⎢⎢⎢⎣
𝜆0+𝜆1−𝜆2

𝑚

𝑢1−𝜆1

𝑚1

𝑢2+𝜆2

𝑚2

⎤⎥⎥⎥⎦ ≤ 0 (6.21)

As Posa et.al demonstrated in [134], the condition on the left-hand side of Eq.(6.21) is

the summation of the condition on the left-hand side of Eq.(6.18)-(6.20). Thus if 𝑑𝑉

satisfy the conditions (6.18)-(6.20), it automatically verifies that 𝑑𝑉 is non-positive

in set 𝒰 . This superposition property on 𝑑𝑉 allows us to analyze the situation either

when the contact forcese are all vanishing, or when the impulsive contact occurs.

We further notice that the complementary condition on the table friction force 𝜆0

has a special structure. We can analyze the three distinct cases for the table friction

force, and the condition on 𝑑𝑉 on set ℱ for each case. Here for notation simplicity,

we denote all the states except �̇�0 as 𝑧.

109



1. When the block is sliding to the right, �̇�0 > 0, 𝜆0 = −𝜇𝑚𝑔.

𝑑𝑉 = −𝜕𝑉

𝜕�̇�0
𝜇𝑔 +

𝜕𝑉

𝜕𝑧
�̇� ≤ 0 (6.22)

2. When the block is sliding to the left, �̇�0 < 0, 𝜆0 = 𝜇𝑚𝑔.

𝑑𝑉 =
𝜕𝑉

𝜕�̇�0
𝜇𝑔 +

𝜕𝑉

𝜕𝑧
�̇� ≤ 0 (6.23)

3. When the block is static on the table, �̇�0 = 0, 𝜆0 = 𝛽𝜇𝑚𝑔, where −1 ≤ 𝛽 ≤ 1.

𝑑𝑉 =
𝜕𝑉

𝜕�̇�0

⃒⃒⃒⃒
�̇�0=0

𝛽𝜇𝑔 +
𝜕𝑉

𝜕𝑧
�̇� ≤ 0 (6.24)

We know that when the block velocity approaches zero from both postive and

negative direction, both condition (6.22) and (6.23) still hold. By continuity argu-

ment, condition (6.22) and (6.23) prove that when the block velocity vanishes, 𝑑𝑉 is

still negative, for table friction force 𝜆0 = ±𝜇𝑚𝑔. Namely⎧⎪⎪⎨⎪⎪⎩
− 𝜕𝑉

𝜕�̇�0

⃒⃒⃒
�̇�0=0+

𝜇𝑔 + 𝜕𝑉
𝜕𝑧
�̇� ≤ 0

𝜕𝑉
𝜕�̇�0

⃒⃒⃒
�̇�0=0−

𝜇𝑔 + 𝜕𝑉
𝜕𝑧
�̇� ≤ 0

(6.25)

⇒ 𝜕𝑉

𝜕�̇�0

⃒⃒⃒⃒
�̇�0=0

𝛽𝜇𝑔 +
𝜕𝑉

𝜕𝑧
�̇� ≤ 0 (6.26)

The implication holds because Eq.(6.26) is a convex combination of the two conditions

in Eq.(6.25). Thus out of the three conditions (Eq.(6.22)-(6.24)) when the pusher

contact forces vanish, we only need to verify the two conditions (6.22),(6.23). The

third condition holds automatically if the other two conditions are satisfied.

To summarize this section, in order to verify 𝑑𝑉 is non-positive for all contact

modes, we only need to verify 𝑑𝑉 is non-positive for the following four situations.

1. When the pusher contact forces vanish, and the block is sliding to the right, 𝑑𝑉
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is non-positive

𝑑𝑉 =
𝜕𝑉

𝜕𝑝
�̇� +

𝜕𝑉

𝜕�̇�

⎡⎢⎢⎢⎣
−𝜇𝑔
𝑢1

𝑚1

𝑢2

𝑚2

⎤⎥⎥⎥⎦− 𝜕𝑉

𝜕𝜁
𝑘𝜁 ≤ 0 (6.27)

2. When the pusher contact forces vanish, and the block is sliding to the left, 𝑑𝑉

is non-positive

𝑑𝑉 =
𝜕𝑉

𝜕𝑝
�̇� +

𝜕𝑉

𝜕�̇�

⎡⎢⎢⎢⎣
𝜇𝑔

𝑢1

𝑚1

𝑢2

𝑚2

⎤⎥⎥⎥⎦− 𝜕𝑉

𝜕𝜁
𝑘𝜁 ≤ 0 (6.28)

3. When the pusher 1 hits the block with an instantaneous impulsive impact, 𝑑𝑉

is non-positive

𝑑𝑉 =
𝜕𝑉

𝜕�̇�

⎡⎢⎢⎢⎣
1
𝑚

− 1
𝑚1

0

⎤⎥⎥⎥⎦ +
𝜕𝑉

𝜕𝜁

⎡⎣𝑘
0

⎤⎦ ≤ 0 (6.29)

4. When the pusher 2 hits the block with an instantaneous impulsive impact, 𝑑𝑉

is non-positive

𝑑𝑉 =
𝜕𝑉

𝜕�̇�

⎡⎢⎢⎢⎣
1
𝑚

0

1
𝑚2

⎤⎥⎥⎥⎦ +
𝜕𝑉

𝜕𝜁

⎡⎣0

𝑘

⎤⎦ ≤ 0 (6.30)

6.2.3 Tri-linear alternation

As we mentioned in the previous sub-section, our goal is to design a controller

[𝑢1, 𝑢2]
𝑇 = 𝜋(𝑦), such that we can minimize the set of the terminal state. Our
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approach is to find a function 𝑉 , satisfying the condition

max
𝑉,𝐺𝑂

trace(𝐺𝑂) (6.31)

𝑉 ≥ 𝜌⇒ 𝑑𝑉 ≤ 0 (6.32)

𝑉 ≥ 𝛼(|𝑥|) (6.33)

𝑉 ≤ 𝜌⇒ 𝑥𝑇𝐺𝑂𝑥 ≤ 1 (6.34)

We will use the tri-linear alternation algorithm below to solve this problem iteratively.

In each step of the while loop in Algorithm 3, we solve a Sum-of-Squares problem.

Algorithm 3 Tri-linear alternation
Start with an initial control policy 𝜋, and 𝑉, 𝜌. Maximize the trace of 𝐺𝑂 by
searching over Lagrangian multipliers in the S-procedure.
while trace(𝐺𝑂) not converged do

1. fix 𝑉 and Lagrangian multipliers, maximize trace of 𝐺𝑂 by searching over
control policy 𝜋, and 𝐺𝑂, 𝜌, subject to (6.32)-(6.34).

2. fix 𝜋 and Lagrangian multipliers, maximize trace of 𝐺𝑂 by searching over
𝑉, 𝜌, subject to constraints (6.32)-(6.34).

3. fix 𝐺𝑂, 𝑉, 𝜌, solve a feasibility problem by searching over controller 𝜋 and
Lagrangian multipliers, subject to constraints (6.32),(6.34)

end while

Initial guess

We need an initial guess on control policy and Lyapunov function to start the trilinear

alternation. Here we designed a simple LQR controller for the pusher. The dynamics

of the pusher in Eq.(6.1),(6.2) are linear, if the contact force vanish. We can design

an LQR controller for each pusher separately, with the goal state as [𝑝*1, �̇�
*
1, 𝑝

*
2, �̇�

*
2]

𝑇 =

[−𝑙, 0, 𝑙, 0]𝑇 . The gain for this LQR controller is 𝐾, we then superimpose the contact
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force measurement to this LQR controller, and our control policy is

𝑢1 = 𝐾

⎡⎣𝑝1 + 𝑙

�̇�1

⎤⎦ + 𝛾𝜁1 (6.35)

𝑢2 = 𝐾

⎡⎣𝑝2 − 𝑙

�̇�2

⎤⎦− 𝛾𝜁2 (6.36)

where 𝛾 is a constant, falling strictly between 0 to 1. This LQR controller also

generates a cost-to-go function, which we will use as the initial Lyapunov function 𝑉 .

We can then find an initial guess of 𝜌 through binary search.

6.3 Results

We tested this trilinear alternation approach on with 𝑘 = 50 in the contact sensor

model (6.8),(6.9), to introduce a 20ms delay in the contact sensor. Unfortunately we

encounter severe numerical problems in the trilinear alternation.

We can successfully find an initial guess of control policy and the Lyapunov func-

tion. Using the cost-to-go function from the LQR controller, and the control policy,

we can do binary search to find an appropriate 𝜌, such that the Lagrangian multipli-

ers exist for the S-procedure. We then proceed to the trilinear alternation with this

initial guess. We first fix the Lyapunov function 𝑉 and the Lagrangian multipliers,

and search for 𝐺𝑂, 𝜌 and a linear control policy 𝑢 = 𝐾𝑦 + 𝑏, where 𝐾 and 𝑏 are

matrices of the correct size, and they are the parameters of this control policy to be

searched for. The outputs from the solvers are dubious. SeDuMi reports running

into numerical problems, while Mosek says the problem is infeasible. We also tried

to bypass step 1 in the trilinear alternation, and proceed to step 2 directly. In step 2,

with fixed control policy and Lagrangian multipliers from the initial guess, we search

over 𝜌 and the Lyapunov function 𝑉 = 𝑥𝑇𝑆1𝑥+ 𝑠𝑇2 𝑥, where 𝑆1, 𝑠2 are the parameters

of the Lyapunov function to be searched for. Again Sedumi runs into numerical prob-

lems, and Mosek reports infeasibility. Same thing happens if we take the initial guess

and proceed to step 3 directly. If we take the SeDuMi solution as the initial guess,
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and proceed to the next step in the trilinear alternation, then SeDuMi solver again

runs into numerical problems. It is known that Mosek 7 has a bug that would report

infeasibility, even if the problem is feasible in some cases. We are still attempting to

find out the cause of such numerical difficulty.
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Chapter 7

Conclusion

In this thesis, we present planners that can generate robust motion for a robot with

multiple non-planar contact. The dynamics of the motion is constrained due to the

limit on the contact forces. We plan the motion that can robustly satisfy those limits

with some preserved margin, so the motion can withstand certain disturbance in the

online motion execution.

We adopt the Contact Wrench Set margin as the robustness metric, which mea-

sures the ability of the robot to perfectly resist external wrench disturbance, and to

track the desired motion exactly. This robustness metric is a generalization of the

prevailing Zero Moment Point notion on the flat ground with unbounded friction, and

it extends to the case of non-planar contact with friction limits.

In Chapter 4, we formulate a convex optimization problem, to generate the Center

of Mass motion, with pre-specified contact locations and time. The planner finds

a robust center of mass trajectory and an angular momentum trajectory, so as to

maximize the contact wrench set margin, and to minimize the centroidal angular

momentum. We show that this planner outputs similar results as the ZMP planner

on the flat ground, and it can successfully find feasible motion on uneven terrain with

bounded friction, where the ZMP planner would fail.

In Chapter 5, we search for the contact locations and the robot whole-body motion

simultaneously, so as to improve the robustness metric. We present some matrix in-

equality constraints to compute the contact wrench margin, and we show that we can
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solve the matrix inequalities together with non-convex nonlinear kinematic/dynamic

constraints, either by using a nonlinear optimization approach, or by sequentially solv-

ing a series of semidefinite programming problems. We apply our planner to three

problems, the force closure grasp optimization, the static posture optimization and

trajectory optimization. We improve the robustness of the motion after optimization.

7.1 Discussion

7.1.1 Joint torque limit

As we mentioned in Section.3.3, the Contact Wrench Set criteria is just a necessary

condition to determine whether the motion is feasible. This criteria ignores the ac-

tuator torque limits, by supposing the actuator can generate any arbitrary torque

to accelerate the robot. In reality, we cannot always generate a large enough mo-

tor torque, as some motors are not power enough. Moreover, some of the joints are

not actuated on some robot, such as the under-actuated hands [109, 45]. Thus it is

important to consider the torque limits, to determine the feasibility of a motion.

We can introduce the torque limits to our problem, but the problem size gets a lot

larger. We are currently working on a simpler formulation with less decision variables.

7.1.2 Sliding contact

In this thesis, we want to avoid sliding contact, and keep the contact link static. Some

of the motion may prefer sliding contact, for example, to rotate a pen with in-hand

manipulation. Unlike in static contact case, the friction force in sliding contact would

depend on the velocity of the contact. According to Coulomb friction model, the

contact force is at the boundary of the friction cone, and in the opposite direction of

the sliding velocity, and we have to take velocity into consideration when computing

the contact wrench set.

There are some work to compute the contact wrench set when a patch is sliding

on the surface [49, 50, 101]. We can possibly extend our work using the limit surface

116



idea to compute the wrench set, and plan the wrench set which depends on both

contact location and velocity.

7.1.3 Disturbance wrench

The wrench space does not have a well-defined norm. Some researchers argue that

since there is not a natural unit in the wrench space (like Newton for force, and

Newton×meter for torque), it is better to think about a force disturbance only, being

applied at the surface of the robot. To do so, we can sample many points on the

robot surface, and compute the minimal force disturbance that the robot cannot

resist, among all these disturbance locations. This approach would add a lot more

constraints into the optimization, as we need to compute the contact wrench margin

for each disturbance location separately.

7.1.4 Contact position error

We presented that if a motion has a positive contact wrench margin, then it can

withstand certain wrench disturbance. Apart from the wrench disturbance, the robot

motion can suffer from another type of error, the error on contact location, during

online motion execution. Since the contact wrench set margin is a continuous function

of the contact location, if the normal direction does not change when the contact

location moves, we can also show that a positive contact wrench margin guarantees

robustness to contact position error. We should be able to formulate an optimization

problem, that can search over the contact locations, such that the contact wrench

always lies within the contact wrench set, even with small perturbation on the contact

locations.
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Appendix A

A.1 Robust Optimization

The goal of the robust optimization is to find the optimal value to a problem when

the parameters of the constraints have uncertainty. The general form of robust opti-

mization is

min
𝑥

𝑓0(𝑥) (A.1)

s.t 𝑓(𝑥, 𝑢) ≤ 0 ∀𝑢 ∈ 𝒰 (A.2)

where

∙ 𝑥 ∈ R𝑛, the decision variable.

∙ 𝑢 ∈ R𝑙, the uncertain parameters of the problem.

∙ 𝒰 , the uncertain parameter set.

∙ 𝑓 ∈ R𝑚, the constraint function.

Here we focus on the case when the functions 𝑓0, 𝑓𝑖 are all linear, and the uncertainty

set 𝒰 is either a polytope or an ellipsoid. For more complicated functions and sets,

the reader can refer to [6, 11] for more details.
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With linear functions, the optimization problem is written as

min
𝑥

𝑐𝑇𝑥 (A.3)

s.t 𝐴(𝑢)𝑥 ≤ 𝑏 ∀𝑢 ∈ 𝒰 (A.4)

where 𝐴(𝑢) ∈ R𝑚×𝑛 is a linear expression of the uncertain parameters 𝑢.

When the uncertainty set 𝒰 is a polytope,

𝒰 = ConvexHull(𝑣1, . . . , 𝑣𝑠) (A.5)

the constraint (A.4) is satisfied for any 𝑢 inside the polytope, if and only if it is satisfied

at the vertices of the polytope. Thus the robust counterpart of this linear optimization

problem under polytope uncertainty set, is the following linear optimization problem.

min
𝑥

𝑐𝑇𝑥 (A.6)

s.t 𝐴(𝑣𝑖)𝑥 ≤ 𝑏 ∀𝑖 = 1, . . . , 𝑠 (A.7)

When the uncertainty set 𝒰 is an ellipsoid ℬ = {𝑢|𝑢𝑇𝑄𝑢 ≤ 1}, we denote the

rows of 𝐴(𝑢)

𝐴(𝑢) =

⎡⎢⎢⎢⎣
𝑢𝑇𝐴1 + 𝑎01

...

𝑢𝑇𝐴𝑚 + 𝑎0𝑚

⎤⎥⎥⎥⎦ (A.8)

where 𝐴𝑖 ∈ R𝑙×𝑛, 𝑎0𝑖 ∈ R1×𝑛. The constraint (A.4) is satisfied for any 𝑢 inside the

ellipsoid, if and only if the following second-order cone constraint is satisfied

max
𝑢∈ℬ

𝑢𝑇𝐴𝑖𝑥 ≤ 𝑏𝑖 ⇔
√︁

𝑥𝑇𝐴𝑇
𝑖 𝑄

−1𝐴𝑖𝑥 ≤ 𝑏𝑖 − 𝑎0𝑖𝑥 (A.9)
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Thus the robust counterpart of the linear optimization problem under ellipsoidal

uncertainty set, is the following second-order cone problem

min
𝑥

𝑐𝑇𝑥 (A.10)

s.t 𝑏𝑖 − 𝑎0𝑖𝑥 ≥
√︁

𝑥𝑇𝐴𝑇
𝑖 𝑄

−1𝐴𝑖𝑥 ∀𝑖 = 1, . . . ,𝑚 (A.11)

Both linear problems and second order cone problems can be solved efficiently by

modern optimization solvers [116, 120]. Thus the robust counter part of linear pro-

gramming problems under either polytope or ellipsoidal uncertainty set, are tractable

optimization problems.

A.2 Sum of Squares Polynomial

A polynomial 𝑝(𝑥) being Sum of Squares (sos) is a sufficient condition such that the

polynomial is non-negative for any 𝑥. Determining if a polynomial is Sum of Squares

is equivalent to finding a matrix being positive semidefinite (psd). A sos polynomial

of order 2𝑑 on indeterminate 𝑥 ∈ R𝑛 can be written in the form

𝑝(𝑥) is sos⇔
(︀
∃𝑀 ⪰ 0, s.t 𝑝(𝑥) = 𝑣(𝑥)𝑇𝑀𝑣(𝑥)

)︀
(A.12)

where

𝑣(𝑥) =
[︁
1, 𝑥1, . . . , 𝑥𝑛, 𝑥

2
1, 𝑥1𝑥2, . . . , 𝑥𝑛−1𝑥𝑛, 𝑥

2
𝑛, . . . , 𝑥

𝑑
1, . . . , 𝑥

𝑑
𝑛

]︁𝑇
(A.13)

each entry of 𝑣(𝑥) is of form 𝑥𝛼1
1 𝑥𝛼2

2 . . . 𝑥𝛼𝑛
𝑛 , 𝛼𝑖 ≥ 0, 𝛼𝑖 ∈ N,

∑︀
𝛼𝑖 ≤ 𝑑. Namely

𝑣(𝑥) ∈ R(𝑛+𝑑
𝑑 ) contains all the monomials of 𝑥 up to order 𝑑. And 𝑀 ∈ R(𝑛+𝑑

𝑑 )×(𝑛+𝑑
𝑑 ) is

called Gramian matrix, whose entries are linear functions of coefficients in polynomial

𝑝(𝑥). So saying a polynomial is sos is equivalent to finding the positive semidefinite

matrix 𝑀 in Eq.(A.12).
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One example of a sos polynomial is that

𝑝(𝑥) = 𝑎𝑥2 + 2𝑏𝑥 + 𝑐 is sos⇔

⎡⎣𝑎 𝑏

𝑏 𝑐

⎤⎦ ⪰ 0 (A.14)

A more detailed explanation on Sum of Squares can be found in [128, 157].

A.3 Bilinear Matrix Inequality

Bilinear matrix inequalities (BMIs) are problems of the following form:

Find 𝑥 ∈ R𝑛 (A.15)

s.t. 𝐹0 +
𝑁∑︁
𝑖=1

𝑥𝑖𝐹𝑖 +
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑥𝑖𝑥𝑗𝐹𝑖𝑗 ⪰ 0, (A.16)

where 𝐹0, 𝐹𝑖, 𝐹𝑖𝑗 are constant 𝑚 × 𝑚 symmetric matrices. ⪰ 0 means the matrix

on the left hand-side is positive semidefinite (psd), i.e. all the eigenvalues are non-

negative; the special case is when the matrix is just a scalar, then ⪰ 0 is the same

as ≥ 0. We also note that BMIs include constraints that are both bilinear (𝑖 ̸= 𝑗) as

well as quadratic (𝑖 = 𝑗).

There has been a lot of approaches to solve the BMI problem [40, 162, 110].

Here we will briefly introduce the approach proposed by Ibaraki [71], where the BMI

problem is solved through a sequence of semidefinite programming problems.

A.3.1 Finding Feasible Solutions to BMIs

While it is well known that BMIs are NP-hard in general [71], there exist very good

heuristic methods based on semidefinite programming (SDP) for solving them. Here

we review the method presented in [71] for finding feasible solutions to BMIs.

The first step is to write the BMI (A.15) as a rank-constrained Linear Matrix
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Inequality (LMI) with an additional variable 𝑋 ∈ R𝑁×𝑁 :

Find: 𝑥 ∈ R𝑁 , 𝑋 ∈ R𝑁×𝑁 (A.17)

s.t. 𝐹0 +
𝑁∑︁
𝑖=1

𝑥𝑖𝐹𝑖 +
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑋𝑖𝑗𝐹𝑖𝑗 ⪰ 0, (A.18)

𝑀 :=

⎡⎣𝑋 𝑥

𝑥𝑇 1

⎤⎦ ⪰ 0, (A.19)

rank(𝑀) = 1. (A.20)

Here, each occurrence of bilinear terms 𝑥𝑖𝑥𝑗 in (A.15) has been replaced by the (𝑖, 𝑗)

element of the decision matrix 𝑋. Constraints (A.19)(A.20) have been introduced to

ensure that 𝑋 = 𝑥𝑥𝑇 , resulting in the problems (A.17) and (A.15) having equivalent

constraints. We note that without the rank constraint (A.20), problem (A.17) is a

semidefinite program, which is a particular kind of convex optimization problem and

can be solved efficiently (e.g., using interior point methods) [16].

The key idea in [71] is to drop the rank constraint in (A.17) and solve a sequence

of SDPs that attempt to minimize the rank of 𝑀 , as shown in Algorithm 4.

Algorithm 4 Finding feasible solutions to BMIs
Minimize trace(X) subject to constraints (A.18) and (A.19). If problem is infeasible,
then problem (A.15) is infeasible. If problem is feasible, initialize 𝑥(0) and 𝑋(0) with
the solution. Initialize 𝑘 = 1.
while ¬converged do

1. Minimize trace(𝑋(𝑘)) - 2𝑥(𝑘−1)𝑇𝑥(𝑘) subject to the constraints (A.18) and
(A.19).
2. Set 𝑘 ← 𝑘 + 1

end while

Note that the first step in Algorithm 4 is the standard trace heuristic for mini-

mizing the rank of a positive semidefinite matrix [16, 40]. The justification for the

proceeding steps in the algorithm is based on the observation that the constraint

(A.19) implies (by the Schur complement lemma) that 𝑋 ⪰ 0 and 𝑋−𝑥𝑥𝑇 ⪰ 0. This

in turn implies that trace(𝑋)−𝑥𝑇𝑥 ≥ 0 with equality holding if and only if 𝑋 = 𝑥𝑥𝑇

(i.e. when we have a feasible solution to (A.15)). Thus, Algorithm 4 proceeds by
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linearizing the function trace(𝑋)− 𝑥𝑇𝑥 and minimizing this linearization at every it-

eration. A termination criterion for Algorithm 4 is provided by the following Lemma

in [71].

Lemma 3. [71] The following sequence is bounded below by 0 and non-increasing for

𝑘 = 1, 2, . . . :

𝑡𝑘 := trace(𝑋(𝑘))− 2𝑥(𝑘−1)𝑇𝑥(𝑘) + 𝑥(𝑘−1)𝑇𝑥(𝑘−1).

Hence, this sequence converges to a value 𝑡𝑜𝑝𝑡 ≥ 0. Equality holds if and only if

𝑋(𝑘) = 𝑥(𝑘)𝑥(𝑘)𝑇 as 𝑘 →∞.

Lemma 3 provides us with a convergence criterion for Algorithm 4. Assuming

that the first step in Algorithm 4 is feasible (if this is not the case, the original BMI

is infeasible), then convergence of the value of 𝑡𝑘 to 0 implies that we have found a

feasible solution to the BMI. In the case where 𝑡𝑜𝑝𝑡 is not 0, nothing can be inferred.

A.3.2 Implementation Details
An important detail in implementing Algorithm 4 is that the SDP constraint (A.19)

can be quite large if one has many decision variables 𝑥. However, it is typically the

case that a large number of variables do not multiply with each other as bilinear

products. Formally, consider a graph whose vertices are the variables in 𝑥. Two

vertices are connected by an edge if the corresponding variables appear in a bilin-

ear product in some constraint. Then we can partition the variables 𝑥 into subsets

𝑥𝐼1 , 𝑥𝐼2 , . . . , 𝑥𝐼𝑘 , . . . , 𝑥𝐼𝐾 corresponding to the connected components of the graph.

We can then replace the constraints (A.19) and (A.20) by the following constraints:

𝑀𝑘 :=

⎡⎣𝑋𝐼𝑘,𝐼𝑘 𝑥𝐼𝑘

𝑥𝑇
𝐼𝑘

1

⎤⎦ ⪰ 0, rank(𝑀𝑘) = 1, ∀𝑘 = 1, . . . , 𝐾. (A.21)

The cost function in Algorithm 4 is then replaced by the sum of the traces of the

matrices 𝑋𝐼𝑘,𝐼𝑘 . While we end up with more psd constraints in general, each constraint

involves a smaller matrix. Since SDP solve times typically scale poorly with the size

of the largest psd constraint, we observe large computational gains in practice.
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Another important implementation detail is to employ a randomization step in Al-

gorithm 4, as described in [71]. In each iteration 𝑘 of the algorithm, we sample a point

𝑥
(𝑘)
𝑟𝑎𝑛𝑑 from the Gaussian distribution with mean 𝑥(𝑘) and covariance 𝑋(𝑘) − 𝑥(𝑘)𝑥(𝑘)𝑇 ,

where (𝑥(𝑘), 𝑋(𝑘)) is a solution to the SDP at the 𝑘-th iteration, and use cost function

trace(𝑋(𝑘+1))− 2𝑥
(𝑘)𝑇
𝑟𝑎𝑛𝑑𝑥

(𝑘+1) in 𝑘 + 1𝑡ℎ iteration. In practice, the randomization step

prevents the algorithm from getting stuck in local minima.
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