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Abstract— In this paper we seek to quantify and explicitly
optimize the robustness of a control system for a robot walking
on terrain with uncertain geometry. Geometric perturbations to
the terrain enter the equations of motion through a relocation of
the hybrid event “guards” which trigger an impact event; these
perturbations can have a large effect on the stability of the robot
and do not fit into the traditional robust control analysis and
design methodologies without additional machinery. We attempt
to provide that machinery here. In particular, we quantify the
robustness of the system to terrain perturbations by defining
an L2 gain from terrain perturbations to deviations from the
nominal limit cycle. We show that the solution to a periodic
dissipation inequality provides a sufficient upper bound on
this gain for a linear approximation of the dynamics around
the limit cycle, and we formulate a semidefinite programming
problem to compute the L2 gain for the system with a fixed
linear controller. We then use either binary search or an
iterative optimization method to construct a linear robust
controller and to minimize the L2 gain. The simulation results
on canonical robots suggest that the L2 gain is closely correlated
to the actual number of steps traversed on the rough terrain,
and our controller can improve the robot’s robustness to terrain
disturbances.

I. INTRODUCTION

Bipedal robots are subject to many sources of uncertainty
during walking; these could include a push from human,
an unexpected gust of wind, or parametric uncertainties of
unmodeled friction forces. Among all of these uncertainties,
we focus in this paper on geometric perturbations to the
terrain height. Unlike uncertainties which affect the contin-
uous dynamics of the system, which can be accommodated
with traditional approaches to robust control analysis and
synthesis, terrain uncertainty manifests itself directly in the
hybrid dynamical systems nature of a walking robot. A
perturbation in terrain height appears as changes in the
timing and dynamics of a ground contact event. Changes
in the ground contact events can have a major stabilizing
or de-stabilizing effect on legged robots. Although it is
natural to apply robust control analysis and/or synthesis to
a (typically numerical) approximation of walking dynamics
on the Poincaré map, or even to apply time-domain methods
from robust control to the continuous phases of the dynamics,
applying robust control to the hybrid systems uncertainty
requires additional care.

In this paper, we define an L2 gain to quantify the
robustness of bipedal robots to terrain disturbances. More-
over, we present a semidefinite programming formulation
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for computing an upper bound of the L2 gain based on
dissipation inequality. We further demonstrate that through
binary search or iterative optimization, that upper bound can
be optimized by constructing robust linear controllers. We
validate our paradigm on canonical robots.

h

Fig. 1: A simple humanoid walking over uneven terrain; h is the
terrain height at the incoming ground impact.

II. RELATED WORK

Extensive research has been performed on dealing with
uncertainties for a continuous linear system [24], [16]. A
common approach is to quantify the robustness of the system
by its L2 gain. By searching over the storage function that
satisfies the dissipation inequality, an upper bound of the L2
gain can be determined for a closed-loop system, and an
H∞ controller can be constructed for a given L2 gain upper
bound [12]. In this paper, we extend this approach to hybrid
dynamical systems, with uncertainty existing in the guard
function.

For limit cycle walkers, the robotics community has real-
ized that careful local linearization of the dynamics around
a limit cycle can provide powerful tools for orbital stability
analysis[7] and control design[17]. This analysis can also
lead to regional stability analysis[10] and can be lead to
receding-horizon control strategies for dealing with terrain
sensed at runtime[9]. These results suggest that linear con-
trollers in the transversal coordinate can be used for nonlinear
hybrid systems like bipedal robots. In this paper, we will
show that robust linear controller even in the original (non-
reduced) coordinates can improve the stability of a robot
walking over unknown terrain.

Morimoto employs DDP method to optimize an H∞ cost
function, so as to improve the robustness of a bipedal



walker[13]. His simulation results demonstrate that this con-
troller enables the robot traverse longer distance under joint
disturbances. This result indicates that H∞ norm, and thus the
L2 gain is a good robust measure of the nonlinear system like
bipedal robots.

One common approach in analyzing periodic legged lo-
comotion is to construct a discrete step-to-step function,
namely the Poincaré map, and analyze the properties of
this discrete map [11], [14], [21]. Based on the Poincaré
map, Hobbelen defines the gait sensitivity norm to measure
the robustness of limit cycle walkers [8], Byl uses mean
first-passage time to measure the robustness to unknown
terrain given that the terrain height is drawn from a known
distribution [4]. Moreover, Park designs an H∞ controller
for the discrete Poincaré map [15] for a bipedal walker.
However, there some important limitations to Poincaré map
analysis and control. In Poincaré analysis, it is difficult to
include continuous dynamics uncertainty, and in Poincaré
synthesis, control decisions can be made only once per one
cycle, so opportunities for mid-step corrections are missed.
For most systems, the Poincaré map does not have a closed
form representation; it can only be numerically approximated
instead of being exactly computed. In our approach, instead
of relying on the Poincaré map, we study the continuous
formulation of the hybrid dynamical system directly.

This paper is organized as follows: In Section III we
present the definition of the L2 gain for a limit cycle walker
(III-A); a semidefinite programming formulation to compute
an upper bound of the L2 gain (III-B); control synthesis
for a given L2 gain upper-bound (III-C); and a paradigm
to optimize such an upper bound (III-D). In section IV, we
validate our approach on canonical robots. We then conclude
our work in the last section.

III. APPROACH

Bipedal walking robots with pin feet are commonly mod-
eled as hybrid systems with continuous modes interconnected
by transition functions [22], [5]. Suppose the robot foot hits
the ground with inelastic impact. The ground transition is
then modeled as an impulsive mapping. For simplicity, we
consider the system with only one continuous mode and one
transition function

ẋ = f (x,u) if φ(x,h)> 0 (1)
x+h = ∆(x−h ) if φ(x−h ,h) = 0 (2)

Where x ∈ Rn is the state, u ∈ Rm is the control, h is the
height of the terrain at the incoming ground impact. φ rep-
resents the distance between the foot and the terrain. When
the distance decreases to zero, the ground impact occurs
and the transition function maps the pre-impact state x−h to
the post-impact state x+h . We suppose that we have access
to perfect state information. Notice that unlike disturbances
in the continuous dynamical system, in the rough terrain
walking case, the terrain disturbance exists only in the guard
function, the hybrid part of the system.

Terrain uncertainty can arise from many situations, like
terrain perception error. Also, when we have planned a

nominal gait, and do not want to re-plan for every small
difference in the perceived height, that small difference can
also be regarded as terrain uncertainty. Suppose the nominal
terrain is h∗. On such terrain h∗, we have planned a limit
cycle (x∗,u∗) as the desired walking pattern. Denote the
terrain disturbance as h̄ = h− h∗. The goal is to design a
phase tracking controller such that the error between the
actual trajectory and the desired one (x∗,u∗) is small, while
the unknown terrain disturbance is present. The magnitude
of the error signal for an infinite time horizon is defined as∫

∞

0
|e(t)|2dt =

∫
∞

0
|x(t)− x∗(τ)|2Q + |u(t)−u∗(τ)|2R (3)

where Q,R are given positive definite matrices for state error
and control error respectively; τ is the phase being tracked
on the nominal trajectory. For simplicity we suppose the
clock of the tracked phase elapses at the same speed as the
world clock in the continuous mode, (more advanced phase
tracking, like the transversal coordinate, is also possible.)
For the ground impact, since it does not make sense for
the perturbed trajectory after the impact to track the nominal
trajectory prior to the impact, the phase is reset by a function
Π to the post-impact phase τ

+
h every time the impact takes

place. Namely

τ̇ = 1 if φ(x(t),h)> 0 (4)
Π(x+h ,x

∗(τ+h )) = 0 if φ(x−h ,h) = 0 (5)

Notice that the projection function Π can be an implicit
function of τ

+
h . For example, τ

+
h may be chosen such that

the stance leg angle of the post-impact state x+h is the same
as the stance leg angle of the nominal state x∗(τ+h ) [1].

We measure the influence of terrain disturbance h̄ on the
error signal e by its L2 gain, which is defined as the infimum
of γ such that the equation below is lower bounded.

−
∫

∞

0
|e(t)|2dt + γ

2
∞

∑
n=1

h̄[n]2 >−∞ (6)

where h̄[n] is the terrain height disturbance at the nth ground
impact.

We can not use Equation 6 directly to compute the L2
gain of the system. The challenge lies in the following two
aspects:

1) The time horizon stretches to infinity, while numeri-
cally determining the boundedness of the summation
of an infinite time signal is not straightforward. The
effects of terrain disturbances accumulate over time,
and such effect is prohibitively difficult to explicitly
compute.

2) The disturbance is a discrete signal, while the error is
continuous. We lack the tools to tackle such a “hybrid”
condition.

To overcome the above difficulties, rather than relying on
Poincaré map, which is the traditional approach, we analyze
the hybrid dynamical system (Equation 1, 2) directly in the
following sections. We rely on the fact that the nominal
trajectory (x∗,u∗) is periodic.



Fig. 2: The perturbed state trajectory x and the nominal state
trajectory x∗ within one step. Suppose the step starts at time t0. The
perturbed trajectory x hits the impact surface φ(x,h) = 0 with the
pre-impact state x−h at time t−c . τ

−
h is the value of the tracked phase

when the ground impact happens, τ
−
h = t−c − t0. The post-impact

state x+h is mapped by the state-transition function ∆ from x−h . The
post-impact phase τ

+
h is determined by the phase reset function Π.

The world clock does not change at the impact, namely t−c = t+c .

A. L2 gain for a periodic phase tracking system

To get rid of the infinite time horizon problem, our
solution is to break it into small steps, and only analyze the
continuous state propagation within each step independently.
We define a step based on the nominal trajectory being
tracked. If we fix a certain event E on the nominal trajectory
(such an event should be distinct from the ground impact,
for example, the robot reaches its apex with that nominal
state configuration), a step starts at τ = 0 right after event
E happens on the nominal trajectory, and ends when the the
same event E takes place again on the nominal trajectory
(x∗(τ),u∗(τ)). Since the nominal trajectory is periodic, the
state/control on the nominal trajectory that triggers event E
at the end of the step exactly equals the state/control at the
beginning of the step. We denote the time length in between
the two events as T , and we reset the tracked phase from T
to 0 at the end of each step. The propagation of the perturbed
and nominal trajectories within one step is illustrated in
Fig.2. The step interval is τ ∈ [0, T ], with only one ground
impact taking place in the middle of the step. Note that
when the perturbed trajectory hits the impact surface φ = 0
at time t−c with state x−h , the nominal trajectory does not
necessarily hit the same impact surface. To summarize, when
the robot walks on rough terrain, there are two clocks running
simultaneously, the world clock and the tracked phase clock.
The infinite horizon is split every time the tracked phase
clock jumps from T to 0.

Suppose that at the start of the nth step, the world clock
of the perturbed trajectory is at time tE[n], and without loss
of generality, we can assume tE[1] = 0. Equation 6 can
be reformulated as the summation of disturbance and error
signal within each step in Equation 7.

∞

∑
n=1

(
γ

2h̄[n]2−
∫ tE[n+1]

tE[n]
|x(t)− x∗(τ)|2Q + |u(t)−u∗(τ)|2Rdt

)
>−∞ (7)

For the given step n, we define the state error within that step
as x̄(n)(τ) = x(t)−x∗(τ), the control error as ū(n)(τ) = u(t)−
u∗(τ), with the initial condition x̄(n)(0) = x(tE[n])−x∗(0) and

ū(n)(0) = u(tE[n])− u∗(0). We get the following lemma on
the L2 gain of the system with an infinite time horizon:

Lemma 3.1: For the hybrid dynamical system described
by Equation 1 and 2, a sufficient condition for the L2 gain no
larger than a constant γ , is that there exists a storage function
V : [0, T ]×Rn→R, such that the following conditions 8-10
hold

γ
2h̄2−

∫
τ
−
h

0
|x̄(n)(τ)|2Q + |ū(n)(τ)|2Rdτ

−
∫ T

τ
+
h

|x̄(n)(τ)|2Q + |ū(n)(τ)|2Rdτ

≥V (T, x̄(n)(T ))−V (0, x̄(n)(0)) ∀ h̄ ∈ R, x̄(n)(0) ∈ Rn (8)

And the constraints on the two ends of the step

V (T,z)≥V (0,z) ∀ z ∈ Rn (9)

And
V (T,z)≥ 0 ∀ z ∈ Rn (10)

Proof:
∞

∑
n=1

(
γ

2h̄[n]2−
∫ tE[n+1]

tE[n]
|x(t)− x∗(τ)|2Q + |u(t)−u∗(τ)|2Rdt

)
=

∞

∑
n=1

(
γ

2h̄[n]2−
∫

τ
−
h

0
|x(t)− x∗(τ)|2Q + |u(t)−u∗(τ)|2Rdτ

−
∫ T

τ
+
h

|x(t)− x∗(τ)|2Q + |u(t)−u∗(τ)|2Rdτ

)
≥

∞

∑
n=1

V (T,x(tE[n+1])− x∗(T ))−V (0,x(tE[n])− x∗(0))

=
∞

∑
n=2

(V (T,x(tE[n+1])− x∗(T ))−V (0,x(tE[n+1])− x∗(0)))

+ lim
m→∞

V (T,x(tE[m])− x∗(T ))−V (0,x(tE[1])− x∗(0))

>−∞

Note that due to the periodicity of the nominal trajectory,
x∗(T ) = x∗(0).

Lemma 3.1 enables us to get rid of the infinite time horizon
problem and only analyze conditions 8-10 within one step.
It is conservative as it does not capture the recovery motions
that take one bad step before taking a different good step. In
the sequel, we will drop the superscript “n” in x̄ and ū, as
each step is analyzed independent of the other steps.

Still, within one step, we have the continuous error signal
e and the discrete terrain disturbance h̄ in condition (8). To
separate them, we consider the following sufficient condi-
tions for equation (8)

V̇ (τ, x̄(τ))≤−|x̄(τ)|2Q−|ū(τ)|2R (11)

if φ(x∗(τ)+ x̄(τ),h∗+ h̄)> 0

V (τ+h , x̄+)−V (τ−h , x̄−)≤ γ
2h̄2 (12)

if φ(x∗(τ−h )+ x̄−,h∗+ h̄) = 0

where x̄+ = ∆(x∗(τ−h )+ x̄−)−x∗(τ+h ) is the post-impact state
error. Notice that we isolate the mode transition out and treat
both pre-impact state error x̄− and post-impact state error x̄+

as time-independent variables.



For simplicity, we restrict the storage function V to a
quadratic form,

V (τ, x̄) = x̄′S(τ)x̄ (13)

where S ∈ Rn×n satisfies the following conditions

V̇ = x̄′Ṡ(τ)x̄+2 ˙̄x′S(τ)x̄≤−|x̄|2Q−|ū|2R (14a)

if φ(x∗(τ)+ x̄(τ),h∗+ h̄)> 0

x̄+′S(τ+h )x̄+− x̄−′S(τ−h )x̄− ≤ γ
2h̄2 (14b)

if φ(x∗(τ−h )+ x̄−,h∗+ h̄) = 0
S(T )� S(0) (14c)
S(T )� 0 (14d)

Equations 14c and 14d are obtained by substituting Equation
13 into Equation 9 and 10 respectively.

We aim to design a linear time-varying controller ū(τ) =
K(τ)x̄(τ) and search for the storage matrix S satisfying
Conditions 14a-14d, which guarantee that the closed-loop
system has an L2 gain no larger than γ . condition 14b for
the mode transition is tricky, as the post-impact phase τ

+
h is

determined by the phase reset function Π, thus we cannot
compute x̄+ from the state transition function ∆ only, it has
to be computed with the phase reset and guard function
together; moreover, there exists a constraint that the guard
function should be zero, we also wish to get rid of this
constraint. For simplicity, we focus on the linearized case,
and consider a small perturbation of the terrain height h̄,
and a small drift of the pre-impact state x̄−. Note that when
there is no terrain disturbance and pre-impact state error is
zero, the ground impact happens at the nominal impact time
τ
−
h∗ , which is the phase that the nominal trajectory hits the

nominal terrain guard function. Moreover, the post impact
state error x̄+ will also be zero when h̄ = 0 and x̄− = 0. To
analyze the situation when both x̄− and h̄ are small, by taking
full derivative of the guard function, the following condition
should hold.

φx f (x∗(τ−h∗),u
∗(τ−h∗))dτ

−
h +φxdx−+φhdh = 0 (15)

where we denote dq as the infinitesimal variation of some
variable q. We suppose that the robot does not graze on the
ground when impact happens, thus φx f (x∗(τ−h∗),u

∗(τ−h∗)) 6= 0,
and the variation of the pre-impact time dτ

−
h can be uniquely

determined by the pre-impact state variation dx− and terrain
variation dh.

dτ
−
h =

−φhdh−φxdx−

φx f (x∗(τ−h∗),u
∗(τ−h∗))

(16)

Likewise, we take full differentiation on the state transition
function ∆ and phase reset function Π also. Combining
these two full differentiations with Equation 15, we get the
following matrix equation.

L

dτ
−
h

dτ
+
h

dx+

=

−φh −φx
0 ∆x
0 0

[ dh
dx−

]
(17)

Where L is a matrix defined in Equation 18. We suppose
the phase reset function uniquely determines the post-impact

phase, hence the term Πx∗ f (x∗(τ+h∗),u
∗(τ+h∗)) 6= 0. So the

matrix L is nonsingular, and we can solve [dτ
−
h , dτ

+
h , dx+]

from [dh, dx−] as a linear mapping. Suppose that

dx+ = T1dh+T2dx− (19)

And we do the first order expansion of the term x̄+,S(τ+h )
and S(τ−h ) as follows:

x̄+ =T1h̄+T2x̄−+o(h̄)+o(x̄−) (20a)

S(τ+h ) =S(τ+h∗)+ Ṡ(τ+h∗)τ̄
+
h +o(τ̄+h ) (20b)

S(τ−h ) =S(τ−h∗)+ Ṡ(τ−h∗)τ̄
−
h +o(τ̄−h ) (20c)

where τ̄
+
h , τ̄−h are variations of pre- and post impact phases

respectively. We use a second order approximation of Con-
dition 14b around the nominal terrain height h̄∗ = 0 and
nominal trajectory x̄−∗= 0. By substituting 20a-20c into 14b,
the second order approximation is

(T1h̄+T2x̄−)′S(τ+h∗)(T1h̄+T2x̄−)− x̄−′S(τ−h∗)x̄
− ≤ γ

2h̄2 (21)

Notice that we will then only need to verify the storage
matrix S at the nominal pre-impact time τ

−
h∗ and post-impact

time τ
+
h∗ . Equation 21 is equivalent to the linear matrix

inequality (LMI) below[
T ′2
T ′1

]
S(τ+h∗)

[
T2 T1

]
−
[

S(τ−h∗) 0
0 γ2

]
� 0 (22)

For the continuous mode condition 14a, we linearize the state
dynamics Equation 1. Denote A= ∂ f

∂x ,B= ∂ f
∂u , and we require

the following condition to hold

−Ṡ� (A+BK)′S+S(A+BK)+Q+K′RK (23)

Notice that by dropping the constraint φ(x∗(τ)+ x̄(τ),h∗+
h̄)> 0, equation 23 is more conservative than equation 14a,
as we require the inequality holds for any state error x̄. To
summarize the discussions above, we have the following
theorem

Theorem 3.2: For a hybrid system with dynamics defined
as Equation 1 and 2, a sufficient condition for the controller
ū = Kx̄ making the feedback system with L2 gain no larger
than γ , is that there exists a matrix S : [0, T ]→ Rn×n and
satisfying the following conditions

−Ṡ� (A+BK)′S+S(A+BK)+Q+K′RK (24a)[
T ′2
T ′1

]
S(τ+h∗)

[
T2 T1

]
−
[

S(τ−h∗) 0
0 γ2

]
� 0 (24b)

S(T )� S(0) (24c)
S(T )� 0 (24d)

B. Computing L2 gain

For a given linear controller ū(τ) = K(τ)x̄(τ), our goal is
determine an upper bound of its L2 gain based on Theorem



L =

 φx f (x∗(τ−h∗),u
∗(τ−h∗)) 0 0

−∆x f (x∗(τ−h∗),u
∗(τ−h∗)) f (x∗(τ+h∗),u

∗(τ+h∗)) I
0 (Πx+ +Πx∗) f (x∗(τ+h∗),u

∗(τ+h∗)) Πx+

 (18)

3.2, the problem is formulated as

min
S(.),γ

γ (25a)

s.t − Ṡ� (A+BK)′S+S(A+BK)+Q+K′RK (25b)[
T ′2
T ′1

]
S(τ+h∗)

[
T2 T1

]
−
[

S(τ−h∗) 0
0 γ2

]
� 0 (25c)

S(T )� S(0) (25d)
S(T )� 0 (25e)

Thus we need to search for the matrix S parameterized by
time. Unfortunately we cannot use the condition 25b directly,
for two reasons

1) By parameterizing S over time, there are infinitely
many S to be determined, it cannot be solved through
optimization program which only handles finitely
many decision variables.

2) The differential term Ṡ cannot be computed in a closed
form representation.

However, we know that the following celebrated equation for
a general Lyapunov function

Lemma 3.3: For a general differential Lyapunov function

−Ṗ = F ′P+PF +M (26)

The solution is given by

P(t)=ΦF(t f , t)′P(t f )ΦF(t f , t)+
∫ t f

t
ΦF(σ , t)′M(σ)ΦF(σ , t)dσ

(27)
Where ΦF(σ , t) is the state transition matrix associated with
F from time t to time σ .
For the differential Lyapunov inequality, the following corol-
lary holds

Corollary 3.4: The matrix P satisfying the differential
Lyapunov inequality

−Ṗ� F ′P+PF +M (28)

is equivalent to the satisfaction of the the following condition

P(t)�ΦF(t f , t)′P(t f )ΦF(t f , t)+ (29)∫ t f

t
ΦF(σ , t)′M(σ)ΦF(σ , t)dσ ∀ t < t f

Moreover, given two matrices P1,P2 ∈Rn×n, if the following
condition holds

P1 �ΦF(t f , t0)′P2ΦF(t f , t0)+ (30)∫ t f

t
ΦF(σ , t0)′M(σ)ΦF(σ , t0)dσ (31)

Then there exists a continuous time matrix function P(t), t ∈
[t0, t f ], such that P(.) is the solution to the differential
Lyapunov inequality (28), and satisfies P(t0)=P1,P(t f )=P2.

Based on Corollary 3.4, if we denote F̄ = A+BK,M̄ = Q+
K′RK, condition 25b can be reformulated as

S(τ+h∗)�ΦF̄(T,τ
+
h∗)
′S(T )ΦF̄(T,τ

+
h∗)+ (32a)∫ T

τ
+
h∗

ΦF̄(σ ,τ+h∗)
′(Q+K′RK)ΦF̄(σ ,τ+h∗)dσ

S(0)�ΦF̄(τ
−
h∗ ,0)

′S(τ−h∗)ΦF̄(τ
−
h∗ ,0)+ (32b)∫

τ
−
h∗

0
ΦF̄(σ ,0)′(Q+K′RK)ΦF̄(σ ,0)dσ

The state transition matrix and the integral term can be
numerically computed. The decision variables are reduced
to the storage matrix S at time 0,τ−h∗ ,τ

+
h∗ ,T and a scalar

γ . We can further reduce the number of decision variables
by checking the special properties of the optimal solution.
Notice that if the tuple (γ,S1) satisfies Condition 25b-25e,
then we can construct a new tuple (γ,S2) satisfying

S2(0) = S2(T ) (33a)

S2(τ
−
h∗) = S1(τ

−
h∗)+

λmin(S2(0)−S1(0))
λmax(ΦF̄(τ

−
h∗ ,0)

′ΦF̄(τ
−
h∗ ,0))

I (33b)

S2(τ
+
h∗) = S1(τ

+
h∗) (33c)

S2(T ) = S1(T ) (33d)

It can be easily verified that S2 satisfies constraints 32a, 32b,
25d and 25e. Moreover, since S2(τ

−
h∗) � S1(τ

−
h∗),S2(τ

+
h∗) =

S1(τ
+
h∗), (γ,S2) also satisfies constraint 25c, hence (γ,S2) is

a feasible solution to the program 25a-25e. Namely, in the
optimization program 25a-25e, by replacing the constraint
25d with strict equality 33a, the optimal value does not
change. Thus the decision variable S(0) can be dropped, as
it can be replaced by S(T ).

We further show that the optimization program can be sim-
plified by dropping S(T ). Condition 25e is the only constraint
involving S(T ). But if S(T )� 0, then inequality 32a implies
S(τ+h∗)� 0. On the other hand, if S(τ+h∗)� 0, then inequality
25c implies S(τ−h∗) � T ′2S(τ−h∗)T2 � 0, and by inequality
32b, we have S(0) � ΦF̄(T,τ

+
h∗)
′S(τ−h∗)ΦF̄(T,τ

+
h∗) � 0, thus

S(T ) = S(0)� 0. So S(T )� 0 iff S(τ+h∗)� 0. Constraint 25e
can be replaced by S(τ+h∗)� 0, and the decision variable S(T )
can be dropped.

In all, with powerful conic programming solver like Se-
DuMi [18], we can solve the following semidefinite program-
ming problem (SDP) to determine an upper bound of the L2
gain, given a fixed linear controller ū = Kx̄.

min
ζ ,S+,S−

ζ (34a)

s.t S+ �Ψ
′S−Ψ+ N̄ (34b)[

T ′2
T ′1

]′
S+
[
T2 T1

]
−
[

S− 0
0 ζ

]
� 0 (34c)

S+ � 0 (34d)



Where

S+ = S(τ+h∗),S
− = S(τ−h∗),ζ = γ

2

Ψ = ΦF̄(τ
−
h∗ ,0)ΦF̄(T,τ

−
h∗)

N̄ =
∫ T

τ
+
h∗

ΦF̄(σ ,τ+h∗)
′(Q+K′RK)ΦF̄(σ ,τ+h∗)dσ +ΦF̄(T,τ

+
h∗)
′(∫

τ
−
h∗

0
ΦF̄(σ ,0)′(Q+K′RK)ΦF̄(σ ,0)dσ

)
ΦF̄(T,τ

+
h∗)

where Ψ, N̄ can be numerically computed.

C. Robust control synthesis

Given a constant γ and a hybrid system defined in Equa-
tion 1, 2, we want to construct a linear controller ū(τ) =
K(τ)x̄(τ), such that the closed loop system has an L2 gain
no larger than γ . Based on Theorem 3.2, it is equivalent
to computing the storage matrix S and the control gain
K satisfying constraints 24a-24d. When γ2 > T ′1S(τ+h∗)T1,
by using Schur Complement, the LMI constraint 24b is
equivalent to

S(τ−h∗)� T ′2S(τ+h∗)T1(γ
2−T ′1S(τ+h∗)T1)

−1T ′1S(τ+h∗)T2 (35)
+T ′2S(τ+h∗)T2 (36)

Condition 24a, 24c, 25e and 35 implies that finding the
control gain K for the original hybrid system becomes
equivalent to the robust control synthesis for the following
periodic linear system S

v̇(τ) = A(τ)v(τ)+B(τ) f (τ) τ 6=,τ−h∗ +nT,τ 6= kT,n,k ∈ Z
(37)

v(τ+) = T2v(τ−)+T1w τ = τh∗ +nT,n ∈ Z (38)
v(τ+) = v(τ−) τ = nT,n ∈ Z (39)

where v is the state, f is the control input, w is the
disturbance. A,B are periodic matrices satisfying A(t +T ) =
A(t),B(t+T ) =B(t) ∀ t. The robust control synthesis for this
periodic linear system is well established [12], [23], [25], [2].
If the system S has an L2 gain less than γ , then there exists
a periodic gain matrix K, satisfying the following conditions

K(τ) =−R−1B(τ)′S(τ) (40a)

− Ṡ(τ) = A(τ)′S(τ)+S(τ)A(τ)−S(τ)B(τ)R−1B(τ)′S(τ)

+Q τ 6= τh∗ ,T (40b)

S(τ−h∗) = T ′2S(τ+h∗)T1(γ
2−T ′1S(τ+h∗)T1)

−1T ′1S(τ+h∗)T2

+T ′2S(τ+h∗)T2 (40c)
S(T ) = S(0) (40d)

Namely, there exists a periodic solution to the differential
Riccati equation 40b and the jump Riccati equation 40c.
The usual approach to solving the periodic Riccati equation
is to numerically integrate it backward until the solution
converges [3], given that matrix (A,B) is controllable. So
for a fixed γ , if we know that there exists a linear controller
for the hybrid system (Equation 1, 2) and a storage matrix S
verifying that γ is an upper bound of the closed-loop system
L2 gain, based on Theorem 3.2, then by solving the periodic
Riccati equation 40a-40d, we obtain such a robust controller.

D. Optimizing L2 gain

If our goal is to design the linear controller for the hybrid
system (Equation 1, 2) to minimize the L2 gain of the closed-
loop system, we can use binary search on γ . Namely, for a
given γ , if the periodic Riccati equations 40b-40d have a
convergent solution, then this γ is a valid upper bound of
the L2 gain for the closed-loop system; otherwise we cannot
verify the existence of a linear controller making the closed-
loop system with L2 gain smaller than γ . Alternatively, we
can also use the iterative optimization Algorithm 1. It is
obvious that {γi} is a non-decreasing sequence in Algorithm
1, as in each iteration, the tuple (γi,Pi) which solves the
Riccati equation is a feasible solution to the semidefinite
programming problem in the next iteration.

Algorithm 1 Iterative Optimization

1: At iteration i, given a linear controller gain Ki, solve the
following semidefinite programming problem to deter-
mine γi as an upper bound of the L2 gain of the closed-
loop system

min
S+i ,S−i ,ζi

ζi

s.t
[

T ′2
T ′1

]
S+i
[
T2 T1

]
−
[

S−i 0
0 ζi

]
� 0

S+i �Ψ
′
Fi

S−i ΨFi + N̄i

S+i � 0
ζi > T ′1S+i T1

Where

Fi =A+BKi

N̄i =
∫ T

τ
+
h∗

ΦFi(σ ,τ+h∗)
′(Q+K′RK)ΦFi(σ ,τ+h∗)dσ+

ΦFi(T,τ
+
h∗)
′

(∫
τ
−
h∗

0
ΦFi(σ ,0)′(Q+K′RK)ΦFi(σ ,0)dσ

)
ΦFi(T,τ

+
h∗)

γi =
√

ζi

2: For the upper bound γi, construct a γi sub-optimal con-
troller by computing a periodic solution to the following
Riccati equation

Pi(τ
−
h∗) = T ′2P(τ+h∗)T1(γ

2−T ′1P(τ+h∗)T1)
−1T ′1P(τ+h∗)T2

+T ′2S(τ+h∗)T2

− Ṗi = A′Pi +PiA+Q−PiBR−1B′Pi ∀ τ 6= τh∗

P(T ) = P(0)

Find the γi-suboptimal controller Ki

Ki =−R−1B′Pi

3: i← i+1, with Ki+1 = Ki

The binary search approach scales better for systems with
high degrees of freedom (DOF). But the initial guess of
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Fig. 3: A compass gait walking down a slope [19]

γ is unclear, and sometimes suffers the numeric tolerance
issue of determining convergence. We can combine these two
approaches, given an initial linear controller (not necessarily
robust), we can compute the L2 gain of the closed-loop
system associated with that controller, and such L2 gain can
be an initial guess of the binary search. When convergence is
hard to be decided by numeric integrating Riccati equation,
we can switch to the iterative optimization to get a good
estimate of the optimal γ .

IV. RESULTS

A. Compass Gait

A compass gait robot is the simplest dynamic walking
model (Fig 3). It is well known that the compass gait robot
has a very narrow region of attraction and can easily fall
down over rough terrain. We compare two limit cycles, the
passive one and the robust one [6]. We run simulations of the
robot walking over unknown terrain with virtual slope drawn
from [2◦, 8◦]. The comparison is summarized in Table I. γ is
computed through the semidefinite programming formulation
in Section III-D. The limit cycle that has smaller γ can
traverse much longer distance than the one with large γ . This
good agreement between the big gap of γ and the distinction
of their actual performance on the rough terrain suggests that
the L2 gain is a good indicator for the capability of traversing
unknown terrain.

TABLE I: Comparison between the passive limit cycle and the
robust one with the same LQR controller on a rugged terrain.

Limit Cycle Passive Robust
γ 292.6646 21.2043
Average number of steps before
falling down

< 10 ∞

For the passive limit cycle, we construct two robust con-
trollers based on the algorithm in Section III-D, and compute
their L2 gain by solving the the semidefinite programming
problem in Section III-B. We run 100 simulations of the
compass gait robot walking on a rough terrain with the
LQR controller and the two robust controllers. The virtual
slope of the terrain is drawn uniformly within [4◦, 6◦]. Their
performance is compared in Table II. The controller with the
least γ , Robust1, can take more than twice as many steps as
the LQR controller, the one with the largest γ . It is also note
that the control gain of the Robust1 and Robust2 are quite
different, the gain at τ

−
h∗ of Robust1 is more than 2.3 times

larger than that of Robust2, but since their γ values are close,
their average number of steps on the rough terrain become

also close. The comparison between those three controllers
are shown in Fig 4 and 5, the straight line is y = x. Each
dot represents a simulation of the compass gait on the same
terrain for three controllers. In Fig 4, most points are above
the y = x line, indicating that Robust1 controller enables the
robot to traverse more steps than LQR does. In Fig.5, most
points are along the y = x line, indicating the performance
of the two robust controllers is close.

TABLE II: Comparison between three controllers for the passive
limit cycle on a mild terrain.

controller LQR Robust2 Robust1
γ 292.6646 274.2038 269.9908
Average number of steps before
falling down

40.61 89.27 96.21

Fig. 4: LQR vs Robust1

Fig. 5: Robust2 vs Robust1

B. RABBIT

RABBIT is a five-link planar bipedal walker constructed
jointly by several French laboratories. Grizzle’s group in
University of Michigan have done extensive research into
modeling and control of this robot [20], [5]. We apply our
approach to the rigid-body model of RABBIT created by
Westervelt (Fig.6).

We consider two different walking gaits for RABBIT. For
gait 1 we construct an LQR controller, the SDP program
computes that for the closed-loop system of RABBIT fol-
lowing gait 1, its γ = 522.0822; for gait 2 we use binary
search to find a controller, which makes γ ∈ [5000, 6000].
We then take 40 simulations of the robot model walking on
a rough terrain. The virtual slope of the terrain changes from
step to step, and the angle is drawn uniformly from [−2◦, 2◦].
The comparison of their average number of steps traversed



Fig. 6: A model of RABBIT walking on flat ground

is shown in Table III. This again shows that the upper bound
of L2 gain is a good indicator of the capability of traversing
rough terrain. Moreover, it suggests that our method scales
well to a system of RABBIT’s complexity.

TABLE III: Comparison between two control strategies of RABBIT

γ 522.0822 [5000, 6000]
Average number of steps 20.325 1.675

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we study the robustness of a bipedal robot to
unknown terrain elevations. Given a desired walking pattern,
we define a continuous error signal for the hybrid dynamical
system. We quantify the robustness to terrain disturbance by
the L2 gain of the closed-loop system. Given a fixed linear
controller, we present a semidefinite programming approach
to compute an upper bound of the L2 gain, and a control
synthesis scheme to design a robust controller so as to bring
down the L2 gain. The simulation results validate that the
L2 gain is a good indicator of the capability to traverse
unknown terrain. And our robust controller can improve such
capability.

It will be easy to extend our scheme to include distur-
bances in the continuous time, since the analysis is performed
on the continuous signal in our paper.
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