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Abstract— While legged animals are adept at traversing
rough landscapes, it remains a very challenging task for a
legged robot to negotiate unknown terrain. Control systems
for legged robots are plagued by dynamic constraints from
underactuation, actuator power limits, and frictional ground
contact; rather than relying purely on disturbance rejection,
considerable advantage can be obtained by planning nominal
trajectories which are more easily stabilized. In this paper, we
present an approach for designing nominal periodic trajectories
for legged robots that maximize a measure of robustness against
uncertainty in the geometry of the terrain. We propose a direct
collocation method which solves simultaneously for a nominal
periodic control input, for many possible one-step solution
trajectories (using ground profiles drawn from a distribution
over terrain), and for the periodic solution to a jump Riccati
equation which provides an expected infinite-horizon cost-to-go
for each of these samples. We demonstrate that this trajectory
optimization scheme can recover the known deadbeat open-
loop control solution for the Spring Loaded Inverted Pendulum
(SLIP) on unknown terrain. Moreover, we demonstrate that it
generalizes to other models like the bipedal compass gait walker,
resulting in a dramatic increase in the number of steps taken
over moderate terrain when compared against a limit cycle
optimized for efficiency only.

I. INTRODUCTION

Legged animals exhibit an extraordinary ability to adapt to
variable terrain elevation during walking, inspiring engineers
to bring about legged robots that are comparably robust on
unknown terrain. A wide variety of legged robots capable
of overcoming rough terrain have been built to examine
diverse locomotion strategies. Usually, the control strategy
for these robots have been tailored to the specific robot
model [20], [18], [2], [6]. This work presents a new control
strategy which applicable to a more general robot model,
with simulation validation on two canonical robot models.
Legged robots are subjected to many sources of uncertainty,
including for instance unmodeled disturbances like a push
from a human or a gust of wind, or parameteric uncer-
tainty from unmodeled frictional forces. Among all possible
sources of uncertainty for a walking robot, terrain uncertainty
is of particular interest, as it pertains directly to the hybrid
dynamical system structure which makes walking robots
unique relative to many other types of robots. Furthermore,
changes in the schedule or location of a ground impact
can have a large deviation from a nominal desired walking
pattern. Underactuated systems like legged robots often do
not possess enough control authority to cancel out the state
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Fig. 1: A planar humanoid walks on the rough terrain, with
the incoming terrain height equals to h. Although the terrain is
represented by flat stairs, it actually incorporates most of the terrain
profiles, since by ignoring ground clearance for the swing foot, it
only matters with the difference in height between the stance foot
and the swing foot to to be touching the ground.

error arising from unscheduled ground impacts; these can
easily cause the robot to fall down.
Formal approaches to control design for walking robots (e.g.

[26], [12]) are often separated into (1) designing a nominal
periodic motion/trajectory/gait and (2) (local) feedback stabi-
lization of that gait. Robust design techniques can be injected
into either of these pieces, but in practice we have found that
the selection of a robust nominal can have a more dramatic
effect on the overall robustness of the systems. In this paper
we formulate the problem of designing a nominal gait which
is intristically easy to stabilize, and provide a transcription
of this problem to a nonlinear optimization problem.
In Section II we present the general scheme for optimizing
the robust limit cycle. In Section III, we examine the method
on both SLIP and a simple passive walker, the compass gait,
and compare the performance of the robust limit cycles to
the existing periodic orbits. In Section IV, we discuss the
possible alternations to our approach. In the last section we
draw the conclusion and briefly introduce our future work.

A. Related work

Humans and animals maintain periodic gaits while walk-
ing and running. Such periodic trajectories, called the limit
cycles, are also discovered in various walking models, such
as the stable apex-to-apex return map for Spring Loaded
Inverted Pendulum (SLIP) model [21], and the passive limit
cycle for the bipedal walker stepping down a shallow slope
[14], [10]. Those periodic orbits attract special attention
among robotics researchers to study their properties. Instead
of constructing a disturbance rejection controller, Mombaur
exhibits that by minimizing the spectral radius of the mon-



odromy matrix of the return map, the optimized limit cycle
achieves improved stability without the aid of feedback con-
troller [16]. The success of her work motivates our interest
in optimizing the nominal limit cycle to be more robust to
terrain changes, rather than purely relying on disturbance
rejection.

Trajectory optimization can improve the intrinsic robust-
ness of trajectories. By employing Differential Dynamic
Programing, Morimoto designed a trajectory that is robust
to disturbances through minimizing H∞ cost iteratively, and
simultaneously came up with a robust controller [17]. This is
the most relevant approach to our work, although he mostly
focuses on the disturbances in the continuous dynamics,
while the terrain disturbances are not addressed explicitly
in his scheme.

The trajectories robust to terrain changes have been
discovered for the SLIP model. Ernst presented the deadbeat
feedforward controller for such model through exhaustive
simulations [6]. Such trajectory can completely reject
unknown terrain elevations, and will achieve a perfect apex-
to-apex return map. Although his approach is model-specific,
the result motivates us to design a general framework of
computing such robust limit cycles for the whole family of
legged robots.

II. METHODOLOGY

A. Problem Formulation

As is commonplace in optimization-based trajectory de-
sign for legged robots (e.g., [26], [15], [23], [24], [19]),
we describe the dynamics of a legged robot as a hybrid
system, with rigid-body collisions between the robot and
the environment modeled as impulsive transitions between
hybrid modes. For simplicity we focus our presentation on
the case where hybrid system has only one mode and a single
transition function, which maps the prior-impact state to a
new state in the same mode. Without much loss of generality,
we describe the unknown terrain as drawn from a distribution
parameterized one each footstep by a single random variable
describing the height, h, of the terrain on the next step[3].
This random terrain height adds uncertainty to the hybrid
guard which detects the collision event (e.g. between a foot
and the ground), and to the hybrid transition function. The
resulting dynamics are summarized as:

ẋ = f (x,u) if φ(x,u)> h (1)
x+ = ∆(x−,u−) if φ(x−,u−) = h (2)

x ∈X u ∈U (3)
h drawn from a random distribution (4)

where f is the continuous dynamics in the mode, and φ

represents the height of the foot, and it is the guard function
of the hybrid system. When the foot touches the terrain
with height h, namely φ(x−,u−) = h, the guard function is
triggered, and the transition function ∆ maps the prior-impact
state x− to a post-impact state x+ in the same mode. X

Fig. 2: Nominal trajectory on the nominal terrain height h0

Fig. 3: Trajectory on terrain height h−1,h1

and U are the admissible sets of states and control actions
respectively.

In the sequel, we will assume that the robot walks blindly
on the rugged terrain, but has access to perfect state informa-
tion. Therefore, the controller does not know the height of
the terrain before making contact, but could infer it perfectly
upon contact. The blindness assumption is valid for robots
without terrain perception; for robots with a terrain sensor,
the uncertainty description can be used to capture bounds on
the error from a perceptual system.

B. Intuition

Our goal is to design a one-step limit cycle that can
minimize the effect of terrain disturbances while traversing
all possible terrain heights within a certain range. The
propagation of the state x∗ on such limit cycle is depicted in
Fig 2 and 3 for three different terrain heights h−1,h0,h1, with
h0 being the nominal terrain. Notice that in Fig 2, the post-
impact state x+h0

lands exactly on the nominal trajectory, due
to the periodic orbit on the nominal terrain h0. For the terrain
height h1 higher than the nominal height h0, the nominal pre-
impact phase τ

−
h1

is earlier than the nominal pre-impact phase
τ
−
h0

, and the post-impact state x+h1
is projected to x∗(τ+h1

) on
the nominal trajectory, and resets the tracked phase to τ

+
h1

.
A time varying controller will steer the post-impact state x+h1
back to the nominal trajectory by tracking the phase starting
at τ

+
h1

. Similarly for the terrain height h−1 lower than the
nominal terrain h0, we extend the trajectory to x∗(τ−h−1

), and
reset the post-impact phase to be τ

+
h−1

.
One of reasons why a robot easily falls down after hitting

unexpected terrain is that the post impact states are far



(a) A bad limit cycle (b) A good limit cycle

Fig. 4: Squeeze post-impact region

away from the nominal trajectory, leaving little hope for
the controller to capture those post-impact states within the
narrow regions of attraction; these post-impact states will
diverge from the nominal trajectory. Intuitively, we want to
squeeze the regions of the possible post-impact states, and
constrain them to be in the vicinity of the nominal trajectory.
Fig 4 illustrates this idea. Each post-impact states (blue stars)
corresponds to a ground impact at a specific terrain height.
When the regions of all possible post impacts (the blue
circle) spans a large region away from the nominal cycle
(blue ellipsoid), those post-impacts will not track the nominal
cycle, and the robot will fall down. On the contrary, when
the possible post-impact states are all close to the nominal
cycle, they will be stabilized by the tracking controller. The
location of the post-impact states are determined by the pre-
impact states, and thus by the whole nominal trajectory. We
note that the improvement from Fig 4a to 4b can also be
accomplished by elegant controller design, but in practice
we have found that the design of the nominal trajectory has
a greater effect.

C. Trajectory Optimization

Based on the intuition discussed above, our goal is to
squeeze the region of the post-impact states so as to make
those states ‘close’ to the nominal limit cycle. Thus we
need to define a metric quantifying the ‘closeness’ in the
state space. A simple distance metric for ‘closeness’ is the
(weighted) Euclidean distance between two points. But such
metric performs poorly in the state space, as the system
dynamics determines that it is almost impossible for the
straight line connecting those two states to be a feasible path.
On the other hand, the cost-to-go in optimal control theory
provides a good notion to measure the difficulty of steering
a state to the its goal, and it inherently indicates the long-
term performance of the system, thus it is an ideal metric in
the state space [4]. In the case of rough terrain locomotion,
we expect it takes as little effort as possible to regulate the
post-impact states back to the nominal limit cycle, so that
the effect of terrain disturbances is alleviated. In our work,
we minimize the expected cost-to-go to steer the post-impact
states to the nominal trajectory in our trajectory optimization
program.
Since the robot should maintain periodic walking on the
nominal terrain h0, the periodicity constraints is also imposed
for the post-impact states x+h0

and the cost-to-go function
J(x+h0

). Suppose function Π projects the post-impact state on
the nominal trajectory and resets the tracked phase τ , the

trajectory optimization program is formulated as follows:

min
x∗(.),u∗(.),J(.)

E(J(x+h )) (5)

s.t ẋ∗(τ) = f (x∗(τ),u∗(τ)) if φ(x∗(τ),u∗(τ))> h

τ̇ = 1 if φ(x∗(τ),u∗(τ))> h

x+h = ∆(x∗(τ−h ),u∗(τ−h )) if φ(x∗(τ−h ),u∗(τ−h )) = h

Π(x+h ,x
∗(τ+h )) = 0

x+h0
= x∗(τ+h0

)

J subject to the cost-to-go dynamics
J(x+h0

) subject to the periodicity constraint

x ∈X u ∈U

h drawn from a random distribution

For the optimization problem, there are two viable ap-
proaches to parameterize the decision variables [25]. The
first one, the indirect method (for example, single shooting),
only optimizes over the initial state and control actions. The
explicit form of the cost function and constraints can be
obtained by numerically integrating the dynamics function
forward and computing the gradient of states w.r.t decision
variables. Although straightforward, such a method suffers
from the ‘tail wagging the dog’ effect, i.e, a small pertur-
bation of the initial state and control action can produce
large changes on the final states, resulting in a slow con-
vergence rate [1]. The second approach, the direct method
(for example, direct collocation), formulates both control
and states as decision variables, with the dynamics functions
to be the nonlinear constraints in the optimization program
[5]. This approach is advantageous in convergence rate, but
requires the optimization program to handle more variables
and constraints. In our work, we adopt the second approach,
and formulate states, control actions and cost-to-go matrices
as decision variables.

The true optimal cost-to-go is prohibitively difficult to
compute for a general nonlinear system, thus the infinite-
horizon Linear Quadratic Regulator (LQR) cost is chosen as
an approximation, namely, J(x) = x′Sx, with optimal cost-
to-go matrix S to be the solution to the differential Riccati
equation. LQR cost-to-go proves to be a valid and conve-
nient metric in state space for expanding Rapidly-explored
Random Tree (RRT) [9], and is also a good approximation
of the true optimal cost-to-go for the nonlinear system.
The physical interpretation of such metric is the optimal
cost that the LQR will take to track the nominal trajectory,
if the following terrains were nominal terrain and if the
linearized dynamics is a valid approximation of the nonlinear
system in the neighborhood around the nominal trajectory.
Meanwhile, optimizing such cost function also provides a
simple LQR controller for stabilizing the nominal trajectory,
so that numeric integration error and external disturbances
other than terrain changes can be rejected in the simulation.

The traditional manner of solving periodic LQR cost-to-
go matrices is to integrate the differential Riccati equation
backward along a given periodic trajectory in the state space
until the solution converges. This approach is not viable in



our optimization program, as we do not know the periodic
state-space trajectory beforehand, and we need to solve the
periodic solution explicitly, rather than an approximated
matrix converging to the real periodic solution. Instead, we
parameterize the cost-to-go matrices as decision variables
in our optimization program, and we treat the differential
Riccati equation as dynamics constraints on those variables.
Together with the constraints that the cost-to-go matrices at
the tailing points of the limit cycle are consistent through the
jump-Riccati equation, the periodic LQR cost-to-go matrices
and the state/control sequences are simultaneously solved by
the optimization program below

min
x∗(.),u∗(.),S∗(.),x+h

τ
−
h ,τ−h0

,τ+h ,τ+h0

E[(x+h − x∗(τ+h ))′S(τ+h )(x+h − x∗(τ+h ))] (6)

s.t ẋ∗ = f (x∗,u∗) ∀τ < τ
−
h

φ(x∗(τ),u∗(τ))> h ∀τ < τ
−
h

x+h = ∆(x∗(τ−h ),u∗(τ−h ))

φ(x∗(τ−h ),u∗(τ−h )) = h

− Ṡ(τ) = A(τ)′S(τ)+S(τ)A(τ)+Q

−S(τ)B(τ)R−1B(τ)′S(τ) ∀τ < τ
−
h0

S(τ+h0
) = T ′x S(τ−h0

)Tx

Π(x+h ,x
∗(τ+h )) = 0

x+h0
= x∗(τ+h0

)

h ∼ a given distribution
x ∈X u ∈U

The formulation above cannot be processed directly by the
optimization solver, since it has infinite decision variables.
The remedy is to sample the terrain height and discretize
the state, control and cost-to-go matrix, and approximate the
continuous differential equation by numerical approximation
of the discretized values. We take K samples of the terrain
height h with impulsive probability pr(h = hn) = pn,n =
1, . . . ,K, and discretize the state, control, and cost-to-go
matrix tape. In the discretization of the tape, we break
the time domain into N intervals with the interval duration
between knot i and knot i+ 1 to be dti. We then sample
the state, control and cost-to-go matrix trajectories at those
knot points as xi,ui and Si respectively. To rebuild the
continuous trajectories from those samples, we use cubic
Hermite interpolation for states and cost-to-go matrices,
and linear interpolation for control actions as in [11]. We
prescribe some sampled knot points {xpn} on the nominal
trajectory that are projected by post-impact states {x+(hn)}
through function Π respectively. Due to the monotonicity
relationship between the terrain height and the impact time,
i.e., a given trajectory will hit the impact surface related to
higher terrain prior to it hitting the impact surface with lower
terrain, we can also prescribe a sequence of knot point xcn

such that xcn is the prior-impact state for the terrain height

hn. The optimization program is formulated as follows:

min
xi,ui,Si,x+hn

,dti
∑
n

pr(hn)
[
(x+hn
− xpn)

′Spn(x
+
hn
− xpn)

]
(7)

s.t xc
i = (xi + xi+1)/2+

dti
8
[ f (xi,ui)− f (xi+1,ui+1)] (8)

uc
i = (ui +ui+1)/2 (9)

ẋc
i =−3(xi− xi+1)/(2dti)− [ f (xi,ui)+ f (xi+1,ui+1)]/4

(10)
ẋc

i = f (xc
i ,u

c
i ) (11)

Ṡi =−(A′iSi +SiAi−SiBiR−1B′iSi +Q) (12)

Sc
i = (Si +Si+1)/2+dti[Ṡi− Ṡi+1]/8 (13)

Ṡc
i =−3(Si−Si+1)/(2dti)− [Ṡi + Ṡi+1]/4 (14)

Ṡc
i =−(Ac′

i Sc
i +Sc

i Ac
i −Sc

i Bc
i R−1Bc′

i Sc
i +Q) (15)

hn = φ(xcn ,ucn) (16)
x+hn

= ∆(xcn ,ucn ,hn) (17)

Π(x+hn
,xpn) = 0 (18)

x+h0
= xp0 (19)

Sp0 = T ′c0
Sc0Tc0 (20)

xi ∈X ui ∈U (21)

Here xc,uc,Sc are the states, control actions and cost-to-
go matrices at the collocation point. Ai,Bi,Ac

i ,B
c
i are the

Jacobians of dynamics function f w.r.t the sampled state
xi, the sampled control ui, the collocated state xc

i and the
collocated control uc

i respectively. Tc0 is the Jacobian of
transition function ∆ with respect to the pre-impact state xc0
that triggers the ground collision guard for nominal terrain
h0. Q and R are the fixed instantaneous cost matrices for
state error and control actions respectively.

Equations 8, 9, 10 and 11 altogether represent the state
dynamics constraints on the collocation point xc,uc. Equation
12 is the explicit form of differential Riccati equation.
Equations 13, 14 and 15 represent the cost-to-go dynamics
constraints on the collocation point xc,uc,Sc. Equations 19
and 20 represent the periodicity constraints on states and
cost-to-go matrices respectively.

To improve the speed of the optimization program, the
gradients of the cost and constraints are computed explicitly.
Note that the second order derivatives of the dynamics must
be available for calculating the gradients of the constraints
involving the cost-to-go matrices. The nonlinear optimization
program (NLP) can be solved by software package like
SNOPT [8], which handles this NLP efficiently due to the
sparsity of the Jacobian matrix.

III. RESULTS

A. Spring Loaded Inverted Pendulum

The Spring Loaded Inverted Pendulum (SLIP) model, as
shown in Fig 5, consists of a point mass attached to a
massless spring. It is widely known that appropriate leg angle
of attack and/or spring stiffness can achieve a perfect apex-
to-apex return map on the flat terrain. On rough terrain, by



Fig. 5: Spring Loaded Inverted Pendulum (SLIP) [7], α in the flight
phase is the actuated angle of attack.

Fig. 6: Phase plot of SLIP in the flight mode

exhaustive simulation, Ernst finds the deadbeat controller
encoding a time law of leg angle and the spring stiffness
so as to achieve a perfect return map [6]. We show their
model-specific approach can merge into our more general
scheme.

The SLIP model has two modes, the flight mode and
the stance mode. We suppose the leg angle is actuated
during flight phase. The post-impact (post-take-off) state
tracks the state on the nominal trajectory with the same
vertical position. It is worth noting that the mode transition
function ∆ which maps the pre-impact (pre-landing) state to
the post-impact (post-take-off) state is not instantaneous, but
rather governed by the dynamics in the stance phase. Such
mapping, together with its first and second order derivatives,
are derived through adjoint method as follows [24]. We
denote the mapping from pre-landing to post-landing to be
∆1 and the mapping from pre-take-off to post-take-off to be
∆2, the continuous dynamics in stance phase to be f2, pre-
landing state to be x−l , pre-landing angle of attack to be u−,
and α = [x−

′
l u−

′
]′ define a matrix P to store the gradient of

the state

P(t) =
∂x(t)
∂α

(22)

The dynamics of P are

Ṗ =
∂ f2

∂x
P (23)

By numerically integrating this P matrix, and multiplying the
Jacobians of the functions ∆1 and ∆2, we can compute the
first derivatives of ∆. Special attention should be paid that the
take-off time is an implicit function of α . So implicit function
theorem should be used when computing gradients at the
time of taking off the ground. The second derivatives can be
computed in the similar manner. Fig 6 is the phase plot of
the SLIP in the flight mode by following the robust trajectory.

Fig. 7: Robust leg angle sequence computed from optimization
versus deadbeat controller.
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Fig. 8: Compass Gait Walker [24]

The red circles are the post-impact states for five sampled
terrain heights. As can be seen on the plot, those post-impact
states land exactly on the nominal trajectory, indicating that
whatever the terrain height is, the robot can always follow
exactly the desired gait after the ground impact, thus the
terrain disturbance is completely rejected. Fig. 7 shows the
robust open loop leg angle sequence computed from the
optimization program versus the deadbeat controller obtained
from exhaustive simulation [6]. The nearly perfect match
between those two suggests that the model-specific approach
for SLIP can merge into our more general optimization
scheme.

B. Compass Gait Walker

The configuration of the compass gait walker is shown
in Fig. 8. This underactuated robot can maintain a passive
limit cycle when walking down a shallow slope due to
gravitational force only. Although self-stable, such passive
limit cycle is fragile under terrain disturbances, even with
a stabilizing controller (Fig 10). We search over the robust
limit cycle through optimization. In the optimization scheme,
we set the function Π to project the post-impact states to
states on the nominal trajectory with the same stance leg
angle. Since we require such a function to be injective, to this
end we constrain the stance leg angle to be monotonic in the
limit cycle, which is a valid requirement for a natural-looking
gait. The terrain disturbance is the angle of the virtual slope
from step to step, equivalently, the terrain slope changes after
every ground impact.
The initial input to the optimization program is the passive

limit cycle. After optimization, the expected LQR cost-to-go
drops from 45.1462 to 0.7859. The optimized limit cycle



Fig. 9: The two red dashed curves are phase plots of the compass
gait’s passive limit cycle, with the upper curve being swing leg
angle, and the lower curve being stance leg angle. The blue curves
are the phase plots of the optimized robust limit cycle, the red
curves are the initial input to the optimization program.

for the compass gait is depicted in the blue phase plot
in Fig. 9. We suppose the virtual terrain slope is drawn
from a uniform distribution within [2◦ 8◦]. The dotted blue
curve is the segment of the trajectory that might hit the
impact surface with terrain slope within the given range.
We take five sampled terrain slopes [2◦ 3.5◦ 5◦ 6.5◦ 8◦]. The
five red circles on each blue curve represent the five prior-
impact states corresponding to five sampled terrain slopes.
The black plus signs near each curve represent the post-
impact states corresponding to the sampled terrain slopes.
The green asterisks on each curve represent the knot points
on the nominal trajectory projected by each post-impact state.
Note that one of the black plus sign and green asterisk exactly
overlap, indicating periodic solution on the nominal terrain.

We simulate the compass gait robot to walk on rugged
terrain by tracking the passive limit cycle and the optimized
robust limit cycle respectively. Both trajectories are stabi-
lized by an infinite-horizon LQR controller with the same
instantaneous state and control cost matrices. The phase
plots of the LQR-stabilized trajectories for two cases are
shown in Fig 10 and 11. In the simulation, the compass gait
walker remains stable even after walking 10,000 steps on the
stochastic uneven terrain, with the virtual one-step slope γ

drawn from uniform distribution within [2◦ 8◦], by tracking
the robust limit cycle (Fig. 11). On the other hand, tracking
passive limit cycle ends up with failure in averagely less
than 10 steps on the same stochastic terrain (Fig 10). From
Fig 11 it is also clear that with the stabilizing controller,
the perturbed trajectories converge to the nominal robust
limit cycle. The comparison between optimized limit cycle
and passive limit cycle proves that our scheme finds an
inherently robust trajectory that alleviates the effect of terrain
disturbances.

IV. DISCUSSION

In the current work we do not develop a general form
of the projection function that determines the state on the
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Fig. 10: Phase plot of tracking passive limit cycle, stabilized by
LQR. The walker falls down after 3 steps on rough terrain. The red
marked plot is the passive nominal limit cycle.
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Fig. 11: Phase plot of tracking robust limit cycle for 1000 steps,
stabilized by LQR. The system does not fail during even 10000
steps on the same rough terrain. The red curves are the nominal
limit cycle, and the blue curves are the simulated trajectories on
the rough terrain.

nominal trajectory to be tracked by the post-impact states.
Inspired by controlling dynamics in the transversal coordi-
nate [22], we might choose the transversal plane projection,
although designing transversal coordinates of the trajectory
requires extra effort, and might also be model-specific.

Every sample of the cost-to-go matrix is parameterized
as decision variables in the optimization program by using
the direct collocation approach. Although convenient in
formulation, such parameterization greatly increases the size
of the optimization program, from O(nN) to O(n2N), with
n as the dimension of the system and N as the the number
of samples. When systems with high DOFs are considered,
it might be difficult for the optimizer to handle a huge
number of decision variables and constraints. In contrast,
the indirect shooting method parameterizes only the ending
sample as the decision variables, thus reduces the size of
the optimization program significantly. When the size of the
problem becomes a concern , we might need to switch to the
indirect method for the cost-to-go matrices. Still, we want
to keep direct collocation parameterization of the state and
control to achieve a good convergence rate. Moreover, an
alternative approach to reduce the size of the program is to
choose higher order interpolation method instead of cubic
Hermite interpolation, thus retain desirable accuracy while
taking fewer samples.

The cost function is chosen as the expected value of the



cost-to-go of the post-impact state. We can also adopt the
maximum cost-to-go and work with the worst case scenario.
But the maximum function can hardly be approximated by a
simple smooth function. Such a non-smooth function cannot
be handled by the gradient-based optimization method.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we have proposed a novel approach planning
a limit cycle that is robust to unknown terrain changes for
legged locomotion, such limit cycle can be easily stabilized
by simple linear controllers. We show that the expected
LQR optimal cost-to-go of the post-impact state is a good
metric for the robustness to terrain disturbances. We present a
novel direct collocation formulation to solve simultaneously
the state/control sequences and the LQR cost-to-go matrices
through our optimization program.

To the best of the authors’ knowledge, this is the first
general approach to search for an intrinsically robust trajec-
tory that handles hybrid impact disturbances explicitly. Also
notable is the fact that this was the first time that we have
produced a simple linear controller capable of stabilizing the
compass gait model on rough terrain in the full coordinates
(as compared to Manchester’s work, which also utilizes
linear controller, but in the transversal coordinates [13]). The
proposed technique can recover the known open-loop control
strategy for the Spring Loaded Inverted Pendulum. Moreover,
this scheme generalizes to a more complicated system like
the compass gait walker, and achieves dramatic increase in
number of steps taken over rough terrain compared to the
passive limit cycle.

B. Future Work

Further investigation will be to investigate the formulation
so that the trajectory optimization scales well for a more
complicated system. Moreover, we will seek to construct a
robust controller for limit cycles, so as to further reject terrain
disturbances.
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