
Robust Bipedal Locomotion on Unknown Terrain

by

Hongkai Dai

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2012

c© Massachusetts Institute of Technology 2012. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Aug,31,2012

Certified by. .
Russ Tedrake

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

Robust Bipedal Locomotion on Unknown Terrain

by

Hongkai Dai

Submitted to the Department of Electrical Engineering and Computer Science
on Aug,31,2012, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

A wide variety of bipedal robots have been constructed with the goal of achieving natural and efficient walking
in outdoor environments. Unfortunately, there is still a lack of general schemes enabling the robots to reject
terrain disturbances. In this thesis, two approaches are presented to enhance the performance of bipedal
robots walking on modest terrain. The first approach searches for a walking gait that is intrinsically easily
stabilized. The second approach constructs a robust controller to steer the robot towards the designated
walking gait.
Mathematically, the problem is modeled as rejecting the uncertainty in the guard function of a hybrid
nonlinear system. Two metrics are proposed to quantify the robustness of such systems. The first metric
concerns the ‘average performance’ of a robot walking over a stochastic terrain. The expected LQR cost-
to-go for the post-impact states is chosen to measure the difficulty of steering those perturbed states back
to the desired trajectory. A nonlinear programming problem is formulated to search for a trajectory which
takes the least effort to stabilize. The second metric deals with the ‘worst case performance’, and defines
the L2 gain for the linearization of the hybrid nonlinear system around a nominal periodic trajectory. In
order to reduce the L2 gain, an iterative optimization scheme is presented. In each iteration, the algorithm
solves a semidefinite programming problem to find the quadratic storage function and integrates a periodic
differential Riccati equation to compute the linear controller. The simulation results demonstrate that both
metrics are correlated to the actual number of steps the robot can traverse on the rough terrain without
falling down. By optimizing these two metrics, the robot can walk a much longer distance over the unknown
landscape.

Thesis Supervisor: Russ Tedrake
Title: Associate Professor of Electrical Engineering and Computer Science

2

Acknowledgments

First and foremost, I would like to thank my advisor, Russ Tedrake, for his invaluable mentorship and steady

encouragement. Russ’s sharp insight in transforming a complicated problem into a tractable formulation

greatly helps me sprouting research ideas. When I tried to define the robustness measure for the periodic

system, his suggestion on sticking to the continuous system significantly simplifies the analysis of a infinite

horizon signal. Moreover, Russ is the role model in combining intelligence and devotion, whose frequent

midnight svn commits always remind me that thinking smart and working hard are the qualities essential

to producing great works.

My fellow labmates in the Robot Locomotion Group contributed intriguing perspectives through the years. I

would like to thank John Roberts and Zack Jackowski for the discussion we made on designing the trajectory,

as well as Mark Tobenkin for the help of robust control, Anirudha Majumdar, Michael Posa and Amir Ali

Ahmadi, Joseph Moore for the help of semidefinite programming, and Andy Barry, Mark Tobenkin and

Joseph Moore for their great help on the thesis writing.

I want to thank specially to my girlfriend, Jiahui Shi, who has been with me in every step, even when we

were separated by the whole continent. Finally, I would like to thank my parents as well as my grandparents,

their love are always the sweetest comfort for me.

3

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Contributions . 8

1.3 Organization . 9

2 Previous Work 10

2.1 Passive Robot walker . 10

2.2 Robots robust walking . 10

2.3 Trajectory Optimization . 12

2.4 Periodic Motion . 13

3 Problem Formulation 14

4 Optimizing the robust limit cycle 16

4.1 Intuition . 16

4.2 Distance metric . 18

4.2.1 (Weighted) Euclidean Distance . 19

4.2.2 optimal cost-to-go . 20

4.3 LQR cost-to-go for rough terrain walking . 23

4.3.1 Phase propagation . 23

4.3.2 Linearized state dynamics . 24

4.3.3 Optimizing expected cost-to-go . 25

4.3.4 Sampling and discretization . 26

4.4 Results . 29

4.4.1 Spring Loaded Inverted Pendulum . 29

4.4.2 Compass Gait Walker . 30

4

5 Robust Control Synthesis 34

5.1 Background of robust control . 34

5.1.1 L2 gain . 34

5.1.2 Dissipation inequality . 35

5.1.3 KYP lemma for linear system . 35

5.2 L2 gain for periodic linearized system . 36

5.2.1 Periodic phase tracking system . 36

5.2.2 Periodic storage function . 38

5.2.3 Linearized system . 40

5.2.4 Quadratic storage function within one cycle . 41

5.2.5 Computing L2 gain through LMI . 43

5.3 Robust Controller Design for a given L2 gain . 46

5.4 Iteratively minimize the L2 gain . 51

5.5 Result . 51

5.5.1 Compute L2 gain . 51

5.5.2 Minimize the L2 gain . 52

6 Conclusion 55

6.1 Contributions . 55

6.2 Discussion . 55

6.3 Future work . 56

5

List of Figures

1-1 Legged locomotion on uneven terrain . 8

2-1 A passive walker by Steven Collins [9] . 11

3-1 A hybrid system with single continuous mode and single transition 15

4-1 State propagation along the nominal trajectory . 17

4-2 Squeeze the region of post-impact states . 18

4-3 Two configurations in swinging up the pendulum . 20

4-4 The vector flow and cost-to-go level set of pendulum around [π 0] 22

4-5 Spring Loaded Inverted Pendulum running from apex to apex 29

4-6 A compass gait walker on a slope . 32

4-7 The robust and passive limit cycle . 32

5-1 The nominal and simulated trajectories in one period . 37

5-2 γ for the passive cycle in each iteration . 53

5-3 number of steps traversed on the rough terrain in each simulation 53

5-4 Phase plot of compass gait following passive cycle with a robust controller, walking 300 steps

on the rough terrain . 54

6

Chapter 1

Introduction

1.1 Motivation

Legged animals exhibit the extraordinary ability to adapt to variable terrain elevation during walking, yet

spend little effort tweaking their natural walking gait. Such an ability is essential for robots to operate

in an outdoor environment. For decades, engineers have been analyzing the animal walking patterns with

the aim of bringing about legged robots that are comparably robust on unknown terrain. A wide variety

of legged robots capable of overcoming rough terrain have been built to examine diverse locomotion ap-

proaches. Usually, each control strategy for these robots has been tailored to the specific robot model, and a

general framework is still missing to improve the robustness for robots walking on uneven terrain. This work

presents a new control strategy applicable to general robot model, with simulation validation on some robots.

One reason why most current robots are incapable of walking in an unknown environment is that they

are not robust enough to tolerate the diversified sources of uncertainty. Such uncertainty sources include

gusts of wind, uncontrolled slip, unmodeled friction forces, etc. Among all those uncertainties, the terrain

uncertainty is of particular interest, as it pertains only to hybrid dynamical systems. For a hybrid sys-

tem like the bipedal robot, its dynamical behavior is changed by the contact force every time a ground

impact occurs. Uncertainty in the ground impact can result in severe drift of the post-impact state away

from the desired walking pattern. Underactuated systems like legged robots do not possess enough control

authority to cancel out the state error arising from unscheduled ground impacts; thus the robot will fall down.

We examine two possible approaches to reduce the failure risk of a robot walking over unknown terrain.

The first one is to walk in a gait that is intrinsically easily stabilized on the rough terrain. For humans,

one such possible gait is to bend the knees and to take a shorter step. The other approach is to control the

7

(a) A dog running on uneven road, by Jochen Bongaerts
"http://www.flickr.com/photos/jochenbongaerts/

2938148467/sizes/z/in/photostream/"

h

(b) An illustrative figure depicting a bipedal robot walking
on an unknown terrain, with terrain height at the next foot
collision point to be unknown variable h

Figure 1-1: Legged locomotion on uneven terrain

body motion so that the robot will follow the designated gait. Again, for humans, one candidate motion

is to swing the torso so as to balance the body by regulating the center of mass. We will show that both

approaches can be mathematically formulated as solving optimization problems.

The goal of this work is to bring about a general framework to reduce the failure risk of a robot walk-

ing over uneven terrain. Two metrics are defined to quantify the robustness of bipedal robots to the terrain

disturbances, and control strategies are developed by optimizing such robustness metrics.

1.2 Contributions

The contributions of this thesis include two metrics to quantify the robustness of the legged robots walking

on the unknown terrain. These metrics are derived for separate models of ground profile. When the terrain

elevation is modeled as a realization of a stochastic process, one metric measures the average cost for

stabilizing the post-impact state towards the desired trajectory. When the terrain elevation is bounded, the

other metric measures the worst-case sensitivity of the error signal to the terrain disturbance. Moreover,

for each metric, an optimization scheme is presented to reduce the sensitivity. A trajectory optimization is

formulated to improve the robustness on the stochastic terrain, and an iterative semidefinite programming is

presented to alleviate the worst-case sensitivity. Simulation of simple legged robot models shows that these

two schemes increase the number of steps the robot can traverse over an uneven terrain.

8

"http://www.flickr.com/photos/jochenbongaerts/2938148467/sizes/z/in/photostream/"
"http://www.flickr.com/photos/jochenbongaerts/2938148467/sizes/z/in/photostream/"

1.3 Organization

The thesis is organized as follows, Chapter 2 reviews the previous work on robots walking over uneven

terrain. Chapter 3 formulates the problem as a hybrid system with uncertainty at the guard. Chapter 4

describes the trajectory optimization scheme for finding a robust walking gait, Chapter 5 presents the robust

control synthesis scheme, Chapter 6 concludes with a discussion of our approach and future work.

9

Chapter 2

Previous Work

2.1 Passive Robot walker

Honda’s ASIMO are widely considered as the state-of-the-art walking robot. However, as a humanoid, its

gait is apparently distinct from the natural human walking pattern. Such robot uses high-gain feedback

controllers to cancel out the natural dynamics, so as to strictly follow the desired trajectory. This requires

large torque, and the robot needs to be fully actuated, i.e, one actuator for one degree of freedom. This

mechanical design and control strategy causes it energy-inefficient in its walking.

On the other hand, a passive walker, introduced by the seminal work of McGeer [23, 24, 22, 25], can

walk down a shallow slope solely due to the gravity force. Thus they are extremely energy efficient. This

walker is also inherently stable with respect to small disturbances [9]. Unfortunately passive walkers have

notoriously fragile basins of attraction, and minor terrain elevation will cause them to fall. In this thesis, we

will add actuators to the passive walker to improve its robustness through actively steering the robot.

2.2 Robots robust walking

Extensive efforts have been put to study the locomotion patterns of legged robots by robotics communi-

ties [33, 45, 8], and several successful control strategies have been devised for certain robot models. For the

spring-mass model, swing leg retraction proves to improve its stability of running [36]. Furthermore, through

extensive simulation, Ernst discovered the control strategy for the Spring-Loaded Inverted Pendulum (SLIP)

model to running at a constant speed on uneven terrain [12]. This result demonstrates that by carefully

designing the control strategy and the walking gait, a certain type of robot can perfectly reject the terrain

disturbance. We are motivated by such result, and desire to study if a general control strategy exists for all

10

Figure 2-1: A passive walker by Steven Collins [9]

robot models. Hopefully, our more general approach can reproduce their model-specific result.

There has been several motion planning and control strategies developed for robots navigating known terrain.

For example, the quadruped robot, the Little Dog, can adapt to a large set of terrain profiles [20, 37, 19, 49].

Although greatly successful on the indoor challenging terrain, all those strategies require perfect terrain

modeling, which is not realistic in the outdoor tasks due to perception error. In our work, we model the ter-

rain height at the incoming step as an unknown variable, so as to explicitly address such ground perception

error.

By adopting the notion of transversal surface, Manchester demonstrates that a general linear controller

can stabilize the system in the vicinity of the desired trajectory [21]. On the Compass Gait example, the

robot can safely step down a stair with stair height equals to 6% of its leg length. This result is a clear

evidence that a linear controller is powerful enough to stabilize a bipedal robot, which is a nonlinear hybrid

system. It also indicates that selecting the appropriate phase being tracked on the nominal trajectory can

make a big difference on the overall stability.

11

Morimoto considers the modeling error as the uncertainty in the continuous mode of the walking robot

[28]. By mini-maxing the H∞ related cost function, he designs a nominal trajectory together with the con-

trol strategy to track that trajectory. Experiment shows that a bipedal robot can take much larger steps on

a flat terrain, compared to a PD controller. This approach implies that H∞ cost, and thus L2 gain, is a good

indicator of the robustness of a walking robot on a flat terrain. We want to explicitly focus on the disturbance

on the hybrid guard function and also explore such a good indicator of robustness to the terrain disturbances.

A common approach used in analyzing periodic walking is to compute the Poincaré map, and to model

the step-to-step behavior as a discrete system [7, 38, 35, 29]. To enable MABEL robot walking over un-

known terrain, Park linearizes the one-step Poincaré map of MABEL, and represents the actuator input

within each step as a Bézier curve. He then constructs an H∞ controller to adjust the values of the two

Bézier coefficients in every step [31]. The simulation results shows that such a discrete H∞ controller can

reduce the failure rate. In our scheme, rather than focusing on the discretized system and controlling only

finite number of coefficients, we aim to work on the continuous system directly, and designs the continuous

H∞ controller for the whole period.

2.3 Trajectory Optimization

Trajectory optimization is a powerful tool for motion planning to design the nominal trajectory [43, 42, 11,

44, 17, 34, 10, 13, 32]. Well established nonlinear optimization techniques, such as the sequential quadratic

programming, and software packages like SNOPT and IPOPT are extensively used [14, 46]. By minimizing

a meaningful cost function (duration time, control cost, cost of transport), the performance of the robot

with respect to some benchmarks gets improved if the robot follows the designed trajectory. There are

basically two types of formulations in the trajectory optimization, the indirect (shooting) method and direct

method [1]. The indirect method, known as the adjoint method in the optimal control community, treats

the control inputs as decision variables, and explicitly integrates the dynamics function to incorporate it into

the optimization scheme. This approach suffers from the ’dog wagging the tail’ problem, as a small change

in the initial control input will cause huge variation of the final state. Another approach, the direct one,

regard both states and control inputs as decision variables, and the dynamics are treated as constraints in the

optimization program. This approach is much more numerically better conditioned. Besides, although large

in size, the Jacobian matrix of the dynamics constraints is generally sparse, and thus can be easily handled by

modern linear solvers. Moreover, it is easier to impose state constraints with the direct approach. The state

constraint is important in the hybrid system case, as we need to constrain each state in their corresponding

mode. We will stick to the direct approach in our work.

12

2.4 Periodic Motion

Walking on the flat terrain has a periodic pattern. In nonlinear control theory, a periodic motion that is

asymptotically stable or unstable is called a limit cycle. There exist many criteria to characterize the stability

of a limit cycle, like the Largest Floquet Multiplier [40] and the Gait Sensitivity Norm [18]. Mombaur presents

a non-differentiable optimization algorithm to design a robust limit cycle for a passive walking machine [27].

Her work demonstrates that constructing a walking gait that is robust by itself is a viable approach to improve

the overall robustness of the passive system, and motivates us to design a differentiable optimization scheme,

so as to improve the robustness of a controlled limit cycle.

An important tool in the linear control design is the Riccati equations. Extensive study has shown that

on a periodic orbit, the Riccati equation also has a periodic solution [3, 2]. Both LQR and H∞ control

synthesis on a periodic orbit rely on the periodic Riccati solution [47]. In our work, we will design the linear

controller on the periodic orbit, and the periodic Riccati equation will play an important role in determining

the controller formulation.

13

Chapter 3

Problem Formulation

As is commonplace in optimization-based trajectory design for legged robots [27, 39, 31], we describe the

dynamics of a legged robot as a hybrid dynamical system, which has both continuous and discrete variables

[5]. In our case, we consider the system with continuous states and control inputs, and discrete modes. A

guard function determines when to trigger the mode transition, and the mode transition function maps the

pre-impact state to a new state in the destination mode. In the case of robot walking, the distance from the

foot to the ground is the guard function. We model the ground as a rigid body, and the collision between

the robot and the ground as an impulsive transition between different modes. For simplicity we focus on the

case where the hybrid system has only one mode and a single transition function.

ẋ = f(x, u) if φ(x, u) > h (3.1)

x+
h = ∆(x−h , u

−
h) if φ(x−h , u

−
h) = h (3.2)

Where x is the continuous state, u is the control action, φ(x, u) is the current height of the foot, h is the

terrain height at the next impact position. When the foot is above the ground (φ(x, u) > h), the system

dynamics is governed by the continuous differential equation ẋ = f(x, u); when the foot touches the ground

with the terrain height h, the mode transition function ∆ maps the pre-impact state x−h to the post-impact

state x+
h . Here we suppose we have full access to the state information. Figure (3-1) illustrates the dynamical

system behavior.

Note that the unknown variable h only exists in the guard function, the ‘hybrid’ part of the system.

Controlling a hybrid system with uncertainty in the guard function is challenging, since unlike tradition

disturbance which exists in the continuous dynamics, in our system, the disturbance changes the occurrence

time of the mode switch. And the drift in the impact time will cause large perturbation of the post-impact

14

Figure 3-1: A hybrid system with single continuous mode and single transition

states, making those states hard to stabilize.

15

Chapter 4

Optimizing the robust limit cycle

4.1 Intuition

Suppose the terrain height h at the incoming step is a random variable, and its distribution is known

beforehand. Rather than designing one control trajectory for each terrain scenario, our goal is to design a

single nominal one-step limit cycle that can minimize the effect of all possible terrain disturbances. Thus all

possible ground impacts should be examined for that single trajectory. Denote the nominal state trajectory

as x∗(τ), and the nominal control trajectory as u∗(τ), we depict how the state propagates along the nominal

trajectory in Fig 4-1 for three different ground scenarios. The figures are explained as follows:

• Suppose h0 is the nominal terrain, and the nominal ground impact happens at the phase τ−0 , the

transition functions ∆ lands the post-impact state x+
0 exactly on the nominal state trajectory x∗, due

to the existence of a periodic orbit on the nominal terrain, as in Fig 4-1a-4-1c

• In Fig 4-1d, if the terrain is higher than the nominal one, with h1 > h0, then the nominal trajectory will

hit the impact surface {(x∗(τ−1), u∗(τ−1))| φ(x∗(τ−1), u∗(τ−1)) = h1} at the pre-impact phase τ−1 < τ−0 .

And the state transition function maps the pre-impact state x∗(τ−1) to the post-impact state x+
1 .

• Likewise, in Fig 4-1e if the terrain is lower than the nominal one, with h−1 < h0, the nominal trajectory

should be extended to hit the impact surface {(x∗(τ−−1), u∗(τ−−1))| φ(x∗(τ−−1), u∗(τ−−1)) = h−1}, with

the pre-impact phase τ−−1 > τ−0 . The post-impact state x+
−1 is mapped by the transition function ∆

from the pre-impact state x∗(τ−−1).

• We wish to use time-varying controller to track the nominal trajectory x∗. In Fig 4-1f, the post

impact states x+
−1, x

+
1 will be projected to the nominal trajectory to determine the reset phase τ+

−1, τ
+
1

respectively, and the controller will track the reset phase on the nominal trajectory.

16

(a) continuous dynamics (b) Ground impact for nominal terrain h0

(c) Mode transition for nominal terrain h0 (d) Ground impact for higher terrain h1

(e) Ground impact for lower terrain h−1
(f) Determine phases to be tracked for the post-impact
states

Figure 4-1: State propagation along the nominal trajectory

17

(a) Bad limit cycle
(b) Good limit cycle

Figure 4-2: Squeeze the region of post-impact states

One of reasons why a robot easily falls down after hitting unexpected terrain is that the post impact states

are far away from the nominal trajectory, and leaves little hope for the controller to capture those post-impact

states within the narrow regions of attraction, thus the post-impact states will diverge from the nominal tra-

jectory. Intuitively, we want to squeeze the regions of the possible post-impact states, and constrain them to

be in the vicinity of the nominal trajectory. Fig 4-2 illustrates this idea. Each post-impact states (blue stars)

corresponds to a ground impact at a specific terrain height. When the regions of all possible post impacts

(the blue circle) spans a large region away from the nominal cycle (blue ellipsoid), those post-impacts will

not track the nominal cycle, and the robot will fall down. On the contrary, when the possible post-impact

states are all close to the nominal cycle, they will be stabilized by the tracking controller. The location of

the post-impact states are determined by the pre-impact states, and thus by the whole nominal trajectory.

The improvement from Fig 4-2a to 4-2b can also be accomplished by elegant controller design, but we decide

that the nominal trajectory has a major effect, and we focus on designing such nominal trajectory in this

chapter. The controller design will be discussed in the next chapter.

To summarize the intuition, the objective is to design a nominal limit cycle, such that the expected dis-

tance from the post-impact states to the nominal trajectory is small. Such nominal limit cycle is intrinsically

robust to the terrain disturbances. In the following section, discussion will be drawn on selection of the

distance metric.

4.2 Distance metric

To explicitly constrain the post-impact states close to the nominal trajectory, a specific distance metric must

be chosen to measure the ’closeness’. Two candidates, the (Weighted) Euclidean distance and the cost-to-go

will be discussed.

18

4.2.1 (Weighted) Euclidean Distance

The (weighted) Euclidean distance between two points x, y is d(x, y) =
√

(x− y)′Q(x− y). This metric is

simple in computation, but perform poorly in the state space for two reasons

1. The (weighted) Euclidean distance presumes that there always exists a straight path between two

points x and y, while in the state space, all feasible paths are governed by the system dynamics. Such

straight path does not exists between most points in the state space, especially for an underactuated

system, which lack the control authority to regulate the path.

2. The shortest path in the state space may not the the desired path when other factors like energy

consumption or time become of interest.

A good example of why Euclidean distance is bad in the state space is that when swinging up the inverted

pendulum as in Figure 4-3, in which a mass m is attached to the end of a massless rod with length l, and

the system is frictionless. Define the state as x = [θ ω]T . The goal is to swing the inverted pendulum to the

upright configuration with state xD = [π 0]T (the light-colored configuration in the middle), by applying a

torque u at the base. Both the left configuration A and the right one B have same angle θ to the vertical

position, and they are both swinging at the same angular speed ω counterclockwise. Denote the state of

configuration A as xA = [θ ω]T and the state of configuration B as xB = [−θ ω]T . Furthermore, suppose

both xA and xB have the same kinematic energy as the upright desired configuration state xD, namely,

1

2
mlω2 +mgl cos(θ) = mgl

Although both states xA and xB are equidistant in the Euclidean metric to the desired state xD, these two

states are not equivalent. The right configuration B is swinging to the desired position while the configura-

tion A rotates away from the upright configuration, indicating that in an ideal metric, xB should be closer

to xD than xA is. Moreover, the shortest path in the state space from configuration B to upright position

requires large torques to drag the pendulum back, while there exists another path, which applies no force

and the pendulum swings a full cycle effortlessly to the upright position. Apparently when energy becomes

a concern, the latter passive path, instead of the shortest path, becomes more preferable.

Based upon the discussion above, the desired metric should be a good predictor of the long-term performance

of the system.

19

Figure 4-3: Two configurations in swinging up the pendulum

4.2.2 optimal cost-to-go

In the optimal control literature, the cost-to-go is a scalar objective function which scores the long-term

performance of running each candidate control policy from each initial condition. When the control goal is

to steer the initial condition to the desired state, such objective function measures how much cost a certain

controller would incur to regulate such initial condition to the goal state. The optimal cost-to-go is the

minimum cost incurred among all possible controllers. This function is ideal to measure the distance in the

state-space [6, 16].

Denoting the optimal cost-to-go from a post-impact state x+
h to the nominal trajectory as J(x+

h), our goal

is to minimize the expected cost-to-go for all possible x+. The problem is formulated as

min
x(.),u(.),J(.)

E(J(x+
h)) (4.1)

s.t ẋ = f(x, u) if φ(x, u) > h

x+
h = ∆(x−, u−) if φ(x−, u−) = h

x+
h0
∈ Γ

J subject to cost-to-go dynamics

J subject to periodicity constraints

h drawn from a random distribution

x ∈ X u ∈ U

Where Γ = {x∗|x∗ is on the periodic state trajectory on the flat terrain}. X , U are the admissible set of

state and control respectively.

Computing the true optimal cost-to-go V (x+) analytically is prohibitively hard for a general nonlinear sys-

20

tem. But an approximation of the true optimal cost still preserves the metric property to a large extent.

When the terrain elevation is minor, the post-impact states land not far from the nominal trajectory, thus

the linearized dynamics is a good approximation of the nonlinear system in the neighborhood of the nominal

trajectory. For the linearized system, the time integral of the quadratic state error and extra control effort,

namely, the Linear Quadratic Regulator (LQR) cost is widely used when designing the optimal controller.

LQR cost

For a linear time-varying system with dynamical equation

ẋ(t) = A(t)x(t) +B(t)u(t) (4.2)

Where x ∈ Rn to be state and u ∈ Rm to be control input. A ∈ Rn×n B ∈ Rn×m

To design an optimal controller steering the system from the initial state x(t) = x0 to the desired state

xd = 0, the cost-to-go is defined as the integral of quadratic cost

J∗(x0, t) = min
u(.)

x(tf)′Qfx(tf) +

∫ tf

t

x(τ)′Qx(τ) + u(τ)′Ru(τ)dτ

Where Q ∈ Rn×n, , Q = Q′, Q > 0 is a given state cost matrix. R ∈ Rm×m, R = R′, R > 0 is a given control

cost matrix, Qf ∈ Rn×n, Qf = Q′f , Qf > 0 is the final cost matrix.

Suppose the optimal cost is a quadratic function

J∗(x0, t) = x′0S(t)x0

Where S ∈ Rn×n, S = S′, S > 0

Using Hamilton-Jacobi-Bellman Equation, the sufficient condition of S is

0 = min
u

[x′Qx+ u′Ru+ 2x′S(Ax+Bu)] (4.3)

Due to the convexity of the Equation 4.3 in u, the optimal control law is

u∗ = −R−1B′S(t)x

21

Figure 4-4: The vector flow and cost-to-go level set of pendulum around [π 0]

Where S satisfies the following differential Riccati Equation

Ṡ(t) = −S(t)A(t)−A(t)′S(t) + S(t)B(t)R−1B′(t)S(t)−Q

And the terminal condition

S(tf) = Qf

This LQR cost-to-go incorporates the system dynamics, and can be used as a distance metric in the state

space. Back to the pendulum swing up example, an LQR controller is constructed at the top position for

stabilization, and the vector flows around the state [π 0] is shown in Fig 4-4 as green arrows. The two

filled black circles represent the two configurations A,B in Fig 4-3. The red ellipse is the contour with the

same cost-to-go as configuration B. The black circle representing configuration B, is outside of the ellipsoid,

indicating it has a larger cost-to-go, and thus configuration B is more distant away from the desired state

than configuration A is. This cost-to-go result agrees with the previous discussion on the distance from the

two configurations to the desired state.

Periodic Riccati Equation

Theorem 4.2.1. The Riccati equation satisfying

− Ṡ(t) = A(t)′S(t) + S(t)A(t)− S(t)B(t)R−1B(t)S(t) +Q

22

is the periodic Riccati Equation (PRE), where A(t + T) = A(t) ∀t, B(t + T) = B(t) ∀t are matrices with

period T . There exists a unique symmetric, periodic and positive semidefinite (SPPS) solution S if and only

if (A(.), B(.)) is stabilizable. [3]

The usual way to compute such periodic solution is to integrate the Riccati equation backward with a

given final condition until the solution converges [30]. Under the controllability assumptions, all solutions

to the PRE with positive semidefinite final condition converge to the unique SPPS solution. For the Riccati

solution in the LQR controller design, select Qf to be any positive semidefinite symmetric matrix, such

solution S indicates that x(t0)′S(t0)x(t0) is cost-to-go from initial condition x(t0) to the infinite horizon.

4.3 LQR cost-to-go for rough terrain walking

For the rough terrain walking, we focus on the linearized dynamics around the nominal trajectory and

consider the infinite horizon LQR cost-to-go as the distance from the post-impact state to the nominal

trajectory.

To obtain the linearized dynamics, the phase at which to be linearized needs to be defined first

4.3.1 Phase propagation

Denote the phase being tracked on the nominal trajectory as τ . For simplicity, we assume that in the

continuous mode, the clock of phase τ is running at the same speed of the world clock, namely

τ̇ = 1 (4.4)

Every time an impact occurs, the phase right after the impact is reset, by the projection function π, which

uniquely determines the reset phase after the impact, based upon the terrain height h, pre-impact phase τ−h ,

the post-impact state x+(h) and the nominal trajectory x∗(.). The projection is of the form

Π(x+(h), x∗(τ+
h), h, τ−h) = 0 (4.5)

One example of such phase projection function for a bipedal walking robot is to select the post-impact phase

such that the nominal post-impact state x∗(τ+
h) and the perturbed post-impact state x+

h have the same

stance leg angle. Note that the phase projection function π might be an implicit function of τ+
h , and no

analytic formulation of the reset post-impact phase is available.

23

4.3.2 Linearized state dynamics

Define the state error x̄ and the control error ū as

x̄(τ) = x(t)− x∗(τ)

ū(τ) = u(t)− u∗(τ)

Where τ is the nominal phase being tracked by the perturbed trajectory.

The state error dynamics for the continuous mode is trivial, computed as follows

˙̄x(τ) = A(τ)x̄(τ) +B(τ)ū(τ) τ 6= τc (4.6)

Where τc is the collision time on the nominal trajectory. A,B are defined as

A(τ) =
∂f

∂x

∣∣∣∣
x∗(τ),u∗(τ)

, B(τ) =
∂f

∂u

∣∣∣∣
x∗(τ),u∗(τ)

(4.7)

Suppose that for the simulated trajectory, the ground impact also happens at the nominal impact time τc,

with proper ground height. So the linearized jump dynamics is

x̄+ = Txx̄
− + Tuū (4.8)

Where

Tx =
∂∆

∂x

∣∣∣∣
x∗(τc),u∗(τc)

, Tu =
∂∆

∂u

∣∣∣∣
x∗(τc),u∗(τc)

(4.9)

The dynamics of the cost matrix S is also a hybrid system

−Ṡ(τ) = A(τ)′S(τ) + S(τ)A(τ)− S(τ)B(τ)R−1B(τ)′S(τ) +Q if τ 6= τc (4.10)

S(τ−c) = T ′xS(τ+
c)Tx (4.11)

Equation 4.11 is the jump Riccati equation at the nominal impact. It is easily verified that the dynamics

of S is periodic, and thus there exists a periodic solution to the Riccati equation 4.10 and 4.11. The LQR

cost x′Sx represents the cost that the LQR controller would incur to steer the state x back to the nominal

trajectory in the infinite horizon, which is the analytical representation of the distance metric used in the

rough terrain case.

24

4.3.3 Optimizing expected cost-to-go

With the discussion above, we linearize the dynamics around the nominal trajectory and compute the LQR

cost. The problem 4.1 is reformulated as

min
x∗(.),u∗(.),S∗(.),x+

h

τ−
h ,τ

−
h0
,

τ+
h ,τ

+
h0

E[(x+
h − x

∗(τ+
h))′S(τ+

h)(x+
h − x

∗(τ+
h))] (4.12)

s.t ẋ∗ = f(x∗, u∗) ∀τ < τ−h

φ(x∗(τ), u∗(τ)) > h ∀τ < τ−h

x+
h = ∆(x∗(τ−h), u∗(τ−h))

φ(x∗(τ−h), u∗(τ−h)) = h

− Ṡ(τ) = A(τ)′S(τ) + S(τ)A(τ)− S(τ)B(τ)R−1B(τ)′S(τ) +Q ∀τ < τ−h0

S(τ+
h0

) = T ′xS(τ−h0
)Tx

π(x+
h , x

∗(τ+
h), h, τ−h) = 0

π(x+
h0
, x∗(τ+

h0
), h0, τ

−
h0

) = 0

x+
h0

= x∗(τ+
h0

)

h ∼ a given distribution

x ∈ X u ∈ U

Where h0 is the nominal terrain, for which a periodic state and cost matrix trajectory exist.

Notice that both state x∗, control u∗ are decision variables in the optimization problem 4.12, so we are

parameterizing the problem using direct method. Also the impact time are decision variables, so instead

of performing zero-crossing to detect the impact time, the guard function φ is treated as a constraint also.

To find the periodic solution to the Riccati Equation, the traditional approach, which is to integrate the

Riccati equation backward until it converges, is not viable in this case. This is because the periodic state and

control trajectories are not obtained prior to the optimization ends, thus during the optimization process,

the backward integration approach is not applicable. To this end, the cost-to-go matrix is parameterized as

a decision variable also, and the Riccati equation is the dynamical constraint on this decision variable. The

periodic constraint is enforced by equalizing the values at the two sides of the jump Riccati equation. Thus

the state/control and cost-to-go matrix are solved simultaneously in the optimization program.

25

4.3.4 Sampling and discretization

The problem 4.12 is not viable for numerically computation. First, the expected value of the cost-to-go can-

not be computed analytically for a continuous distribution. Second, the continuous differential dynamical

equation cannot be dealt with the optimization solver, which only allows finite decision variables. The rem-

edy is to sample the terrain for computing expected value, and to discretize the state/control and cost-to-go

matrices and numerically approximate the time derivative.

For the terrain sampling, K + 1 terrain values of [h0 h1 . . . hK] are taken with impulsive probability

Pr(h = hi) = pi. Notice that the nominal terrain height h0 is always sampled, for its specialty related to

the nominal trajectory on the flat terrain. The nominal trajectory includes the earliest possible taking off

time at the highest sampled terrain, and the latest possible ground impact time with the lowest sampled

terrain. Namely if the terrain samples are sorted as hi < hi+1 i = 1, . . . , N , then the nominal trajectory

interval [τs τe] satisfies τs ≤ τ+
hK

and τe ≥ τ−h1
, as illustrated in Fig 4-1f.

To discretize the state/control and cost-to-go matrices, the nominal trajectory is split into N small in-

tervals, with the interval duration between knot i to knot i + 1 to be dti. Among the N + 1 knot points,

there are 2(K + 1) of them that are special, where each special knot corresponds to a ground impact at a

sampled terrain height. The knot points pn, n = 0 . . .K are assigned to be the projected knot of x+
hn

, the

post-impact state at terrain height hn. The knot point cn, n = 0 . . .K are assigned to be the pre-impact

knot at terrain height hn. The state, control and cost-to-go matrix trajectories are discretized at those knot

points as xi, ui and Si respectively. To rebuild the continuous trajectory from discretized knot point, the

state and cost-to-go trajectory are approximated by cubic Hermite interpolation of xi and Si respectively,

and control profile is linearly interpolated with ui. The same interpolation approach is used in the aerospace

applications [17].

Cubic interpolation of state

Suppose the state x on time interval [0, 1] is a cubic polynomial of time s ∈ [0, 1]

x = c0 + c1s+ c2s
2 + c3s

3 (4.13)

26

Where ci are constants. The values of ci can be determined by the values of the state and its derivatives at

the tailing points. Suppose x(0) = x0, x(1) = x1,
dx
ds (0) = ẋ0,

dx
ds (1) = ẋ1, then


1 0 0 0

0 1 0 0

1 1 1 1

0 1 2 3




c0

c1

c2

c3

 =


x0

ẋ0

x1

ẋ1


The matrix on the left is nonsingular, thus ci can be computed from x0, ẋ0, x1, ẋ1. Substitute ci with

x0, ẋ0, x1, ẋ1, and map the time interval to [0, T], the value of x at the middle of the interval is

xc = x(T/2) = (x0 + x1)/2 + T (ẋ0 − ẋ1)/8

Based upon the cubic polynomial assumption, the slope at the middle point is

x′c = −3(x0 − x1)/(2T)− (ẋ0 + ẋ1)/4

The slope at the middle point evaluated from the dynamics equation is f c = f(xc, uc), where uc is interpolated

by the control at the two tailing points, uc = (u(0) + u(1))/2. The dynamics constraint ẋ = f(x, u) is then

transformed to the constraint that the slope at the middle point f c computed from dynamics function should

match x′c, the slope computed from the cubic interpolation.

f c − x′c = 0

Apply this interpolation to every small segment with interval from knot i to knot i + 1, the continuous

differential dynamics constraint ẋ = f(x, u) is formulated as an algebraic constraint on xi, xi+1, ui, ui+1, dti.

The same approach can be applied to the differential Riccati equation.

27

After sampling and discretization, the optimization formulation to be handled by the optimizer is

min
xi,ui,Si,

x+
hn
,dti

∑
n

pr(hn)[(x+
hn
− xpn)′Spn(x+

hn
− xpn)] (4.14)

s.t xci = (xi + xi+1)/2 + dti(f(xi, ui)− f(xi+1, ui+1))/8 (4.15)

uci = (ui + ui+1)/2 (4.16)

f(xci , u
c
i) = −3(xi − xi+ 1)/(2dti)− (f(xi, ui) + f(xi+1, ui+ 1)/4 (4.17)

Ṡi = −(A′iSi + SiAi − SiBiR−1B′iSi +Q) (4.18)

Sci = (Si + Si+1)/2 + dti(Ṡi − Ṡi+1)/8 (4.19)

− (A′ci S
c
i + SciA

c
i − SciBciR−1B′ci S

c
i +Q) = −3(Si − Si+1)/(2dti)− (Ṡi + Ṡi+1)/4 (4.20)

hn = φ(xcn , ucn) (4.21)

x+
hn

= ∆(xcn , ucn) (4.22)

τ−hn
=

cn∑
j=0

dtj (4.23)

0 = Π(x+
hn
, xpn , hn, τ

−
hn

) (4.24)

xp0 = x+
h0

(4.25)

Sp0 = T ′c0Sc0Tc0 (4.26)

xi ∈ X , ui ∈ U (4.27)

i = 1 . . . N − 1, n = 0 . . .K (4.28)

Equation 4.15 and 4.16 interpolate the state and control at the middle of each small segment from knot i

to knot i+ 1. Equation 4.17 imposes the constraints that the state dynamics at the middle of each interval

matches that computed from cubic interpolation. Equation 4.18 is the dynamics of the cost-to-go matrix

at each knot point, where Ai, Bi are the linearized dynamics matrices at those knots, Ai = ∂f
∂x

∣∣∣
xi,ui

, Bi =

∂f
∂u

∣∣∣
xi,ui

. Equation 4.19 interpolates the cost-to-go matrix at the middle of each small segment, and Equation

4.20 constrains that the cost-to-go dynamics at the middle of each segment matches that computed from

cubic interpolation, where Aci = ∂f
∂x

∣∣∣
xc
i ,u

c
i

, Bci = ∂f
∂u

∣∣∣
xc
i ,u

c
i

. Equation 4.21 constrains that at knot cn, the

robot foot touches ground with height hn. Equation 4.22 is the state transition at the ground height hn.

Equation 4.23 and 4.24 project the post-impact state x+
hn

to xpn on the nominal trajectory, where τ−hn
is the

pre-impact phase at terrain hn. Equation 4.25 and 4.26 are the periodic constraints on state x and cost-to-go

matrix S respectively, both periodic orbit exist for the nominal terrain h0.

To improve the computation speed, the gradient of each constraint is computed analytically. Note that to

compute the gradient of equation 4.19, computing the second order differentiation of dynamics f is necessary.

28

Flight Mode Stance Mode Flight Mode

Figure 4-5: Spring Loaded Inverted Pendulum running from apex to apex

The Jacobian matrix of the constraint optimization problem is sparse, since the dynamics at each interpolated

middle point only depends on states, controls or cost-to-go matrices in the neighboring two knots. SNOPT

is a powerful solver for such constraint nonlinear optimization with sparse Jacobian matrix [15].

4.4 Results

4.4.1 Spring Loaded Inverted Pendulum

The Spring Loaded Inverted Pendulum (SLIP) model [4], as shown in Fig 4-5, consists of a point mass

attached to a massless spring. There are two modes for a SLIP model running on the ground, the flight

mode in which the system is solely governed by the gravity, when the foot touches the ground, the system

enters the stance mode, in which the gravity force, the normal force from the ground and the spring elastic

force act together on the system. The state in the flight mode is [x y ẋ ẏ], and the state in the stance mode

is [r θ ṙ θ̇], It is widely known that appropriate leg angle of attack and/or spring stiffness can achieve a

perfect apex-to-apex return map on the flat terrain. On unknown terrain, by exhaustive simulation, Ernst

discovers the controller that encodes a time law of swing leg angle and the spring stiffness in the flight mode,

so as to achieve perfect return map [12]. Such control law can perfectly reject the terrain disturbances. We

show that using our general optimization scheme, we can recover such model-specific controller.

Suppose the swing leg angle is freely actuated during the flight mode, and no actuation during the stance

mode. The phase projection function is chosen to select the nominal state which has the same vertical po-

sition as the post-impact state, namely Π(x+
h , x

∗(τ+
h), h, τ−h) = y+ − y∗(τ+

h) =
[
0 1 0 0

]
(x+
h − x∗(τ

+
h)).

It is worth noting that the mode transition function ∆ that maps the pre-impact (pre-landing) state to

the post-impact (post-taking-off) state is not impulsive, but rather governed by the dynamics in the stance

mode. To numerically compute such mode transition function and its derivative, the Real Time Recurrent

Learning (RTRL) method is adopted [42]. Denote the mapping from pre-landing to post-landing as ∆1, the

mapping from pre-taking-off to post-taking-off as ∆2, continuous dynamics in the stance mode as f2, the

29

pre-landing state as x−l , pre-landing angle of attack as u−, and define α =

x−l
u−

. Also define the matrix P

as the Jacobian matrix of the state

P (t) =
∂x(t)

∂α

During the stance mode, the dynamics of such Jacobian matrix is

Ṗ (t) =
∂f2

∂x
P (4.29)

By numerically integrating this P matrix, and multiplying the Jacobians of the functions ∆1 and ∆2, the

Jacobian of ∆ is computed. Using the same idea, the second order derivative of ∆ can be computed similarly.

Special attention should be paid that the taking off time is an implicit function of α, since a change in the

pre-impact state will change the time the take-off guard being triggered. So the implicit function theorem

is used when computing the gradients at the time of taking off the ground.

Fig 4-6a shows the optimized state trajectory in the flight mode. The red circles are the post-taking-off

states. As can be seen on the plot, the post-taking-off states land exactly on the nominal state trajectory,

indicating the terrain disturbances are perfectly rejected such that the post-taking-off state can follow the

nominal trajectory exactly whilst the existence of the unknown terrain elevation. Fig 4-6b compares the

optimized control input (the swing leg angle) and the control profile computed from exhaustive simulation.

The good match between those two suggest Ernst model-specific approach can be integrated into our general

optimization scheme.

4.4.2 Compass Gait Walker

The configuration of a compass gait walker is shown in Fig 4-6. It has one actuator at the hip, and two

degrees of freedom. Such an underactuated robot can maintain a passive limit cycle when walking down a

shallow slope due to the gravitational force only. Although self-stable, such passive limit cycle is extremely

fragile under slight terrain disturbances, even with a stabilizing controller Fig 4-8a. Instead of designing a

more robust controller, our first solution is to search for a more robust limit cycle. The phase projection

function Π is chosen such that the projected state on the nominal trajectory has the same stance leg angle as

the post-impact state, namely Π(x+
h , x

∗(τ+
h), h, τ−h) = θ+

st − θ∗st(τ+) = 0. Further constraint can be imposed

to make this projection to be injective, like the constraint that the stance leg angle around the nominal

post-impact time is monotonic. The terrain disturbance is the angle of the virtual slope from step to step.

Equivalently, the incoming terrain slope changes after every ground impact. As is widely known, the compass

gait walker needs to penetrate into the virtual slope so as to maintain a limit cycle, so ground clearance is

30

(a) Optimized state trajectory for SLIP in the flight mode

(b) Leg angles computed from optimization and exhaustive simulation

ignored in the simulation of compass gait.

In the optimization problem settings, the terrain slope is drawn from a uniform distribution within [2◦ 8◦],

with the nominal terrain angle equals to 5◦. Five sampled terrain γ = [2◦ 3.5◦ 5◦ 6.5◦ 8◦] are considered. The

whole trajectory is discretized into 18 intervals. The LQR cost matrix is taken as Q = diag[1 1 10 10] and

R = 1. The initialization of the state trajectory is the passive limit cycle, the initialization of the cost-to-go

matrix is the LQR periodic solution on the passive limit cycle. After optimization, the expected cost-to-go

drops from 45.1462 to 0.7859. Due to the size of the problem, it takes around 10 minutes for SNOPT to find

the local minimum.

The phase plots of the optimized robust limit cycle and the passive limit cycle for the compass gait are

depicted in Fig 4-7. For each cycle, both phase plots for the stance leg (the lower curve) and the swing leg

31

h

sw

m

τ

−θ

b

γ

a

θ

m

st

Figure 4-6: A compass gait walker on a slope

Figure 4-7: The robust and passive limit cycle

(the upper curve) are drawn. The red curve is for the passive cycle, while the blue one is for the robust

cycle. The red circles on the robust cycle are the pre-impact states, the black plus signs are the post-impact

states, the green asterisks are the projected states on the nominal trajectory from the post-impact states.

Note that one of the black plus sign and a green asterisk exactly overlay, indicating the periodic solution on

the nominal terrain.

The compass gait walker is simulated on the rugged terrain as in the problem settings. An LQR con-

troller using the same Q and R as in the optimization is constructed to stabilize the trajectory. In most

simulation cases, by following the passive cycle, the robot falls down within 10 steps. On the contrary, by

following the optimized robust cycle, the robot walks for 10,000 steps and still does not fall down. The phase

plots tracking both passive limit cycle and the robust cycle are drawn in Fig 4-8a and 4-8b. In both plots,

the red curves are the nominal cycle with which the compass gait struggles to track. In the left plot, the

32

−0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

4

5

θ

θ
d

(a) Phase plot of simulating the passive limit cycle on a
rugged terrain

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−3

−2

−1

0

1

2

3

4

θ

θ
d

(b) Phase plot of simulating the robust limit cycle on
the same terrain

passive limit cycle case, the cure diverges after its third collisions, indicating the robot falls down in three

steps. The right plot is the simulation of 10,000 steps by following the robust cycle. It is also interesting

to notice that in the robust cycle plot, the trajectories converge to the nominal cycle, as the volume of the

trajectory bundle shrinks, indicating the asymptotically stability.

The big decrease of the expected cost-to-go (from 45.1462 to 0.7859) and the huge improvement of the

number of steps on the rough terrain indicates the strong correlation between the expected cost-to-go and

the ability to traverse the rough terrain, thus when the terrain distribution is known prior, the expected

cost-to-go is a good measure of the ability for a bipedal robot to reject unknown terrain disturbances, and

our trajectory optimization scheme can drastically improve the robustness of the bipedal robot.

33

Chapter 5

Robust Control Synthesis

As the robust walking gait can be designed using the trajectory optimization scheme in Chapter 4, the next

goal is to construct a controller so as to regulate the robot tracking the designated walking gait on the fly.

The walking robot is again modeled as a hybrid system with only one continuous mode and one guard

ẋ = f(x, u) if φ(x) > h (5.1)

x+ = ∆(x−) if φ(x−) = h (5.2)

Notice that the guard function φ depends only on the state x now. This assumption is valid for most robots

since the state x contains all the robot configuration information, so the height of the foot can be solely

determined by the state x. The transition function also depends on pre-impact state x− only, meaning the

uncontrolled mode switch is studied in this case.

5.1 Background of robust control

5.1.1 L2 gain

As defined in [26, 48], for a continuous time state space system S

ẋ = Ax+Bw

e = Cx+Dw

34

Where x ∈ Rm, w ∈ Rl, e ∈ Rs are the state, the noise, and the error output respectively. The L2 gain for

such a system S is defined as the maximal lower bound for γ ≥ 0 such that

inf
T≥0

∫ T

0

{γ2|w(t)|2 − |e(t)|2}dt > −∞ ∀ v = [w; e] ∈ L2 (5.3)

Where L2 is the locally square integrable signal space.

5.1.2 Dissipation inequality

Define the supply rate function σ as

σ(e, w) = γ2|e|2 − |w|2

The dissipation inequality associated with a continuous time state-space model S and a supply rate σ is the

condition
∂V

∂x
(Ax+Bw) ≤ σ(x,w) ∀ x, u

Where V : Rn → R (the associated storage function) is continuously differentiable, and satisfies V (x) ≥

0 ∀ x.

Then the dissipation inequality establishes the following condition

∫ T

0

(γ2|e|2 − |w|2)dt ≥
∫ T

0

V̇ (x)dt = V (x(T))− V (x(0)) ≥ −V (x(0)) > −∞ (5.4)

Thus the dissipation inequality becomes a sufficient condition that the L2 gain of the linear system S is no

larger than γ .

5.1.3 KYP lemma for linear system

Equation 5.4 is satisfied for some continuous V and linear function f(x,w) = Ax+Bw if and only if they are

satisfied for some quadratic storage function V (x) = x′Sx, S = S′, S � 0 [26]. i.e, to bound the L2 gain of a

linear system S, rather than searching over the storage function V of all forms, we can restrict the storage

function to a quadratic form, and only search over a storage matrix S satisfying the dissipation inequality.

35

5.2 L2 gain for periodic linearized system

For a simulated trajectory with infinite time horizon, the input disturbance is the terrain perturbation.

Define the nth terrain elevation as h̄[n] = h[n]− h0, also define the output error function as

e(t) =

√Qx̄(t)
√
Rū(t)

 (5.5)

Where Q ∈ Rn×n, Q = Q′, Q � 0, R ∈ Rm×m, R = R′, R � 0 are given matrix, x̄(t) = x(t) − x∗(τ), ū(t) =

u(t)− u∗(τ) are the state and control error signals respectively, τ is the phase on the nominal trajectory to

be tracked by the perturbed trajectory. The L2 gain of the input/output system (h̄, e) is no larger than a

constant γ if and only if the following condition holds

γ2
∞∑
n=1

(h̄[n])2 −
∫ ∞

0

(|x̄(t)|2Q + |ū(t)|2R)dt > −∞ (5.6)

Where |y|M is short for y′My.

Equation 5.6 is the condition to check if the system has L2 gain no larger than γ. But it is hard to handle,

for two reasons:

1. The time horizon stretches to infinity, and the notion of convergence in the infinite horizon is vague in

our case. The effect of the previous terrain disturbance get accumulated and are prohibitively difficult

to compute explicitly, as the disturbance exists in the guard function instead of in the continuous mode

as the traditional manner.

2. The error output signal e is a continuous time signal, while the terrain disturbance h̄ is discrete.

In the following sections, these two problems will be addressed by focusing on one period and linearizing the

dynamics. The analysis of the periodic system starts with defining the nominal phase within one cycle.

5.2.1 Periodic phase tracking system

To define the error signal e as in 5.5, the phase being tracked system needs to be defined. By leveraging the

periodic property of a walking pattern on the flat terrain, our analysis focuses on a single period. We define

one period as starting from the phase of one certain event (for example, the robot on the nominal trajectory

reaches its apex), and the phase propagating according to phase dynamics

τ̇ = 1 if φ(x∗(τ) + x̄(t)) > h (5.7)

Π(x+
h , x

∗(τ+
h), h, τ−h) = 0 if φ(x∗(τ−h) + x̄(t)) = h (5.8)

36

Figure 5-1: The nominal and simulated trajectories in one period

until again τ reaches the same event T , where T is the period of the nominal trajectory on the flat terrain.

5.7 means when the state x = x∗(τ) + x̄(t) does not trigger the ground impact guard, the tracked phase

runs at the same clock speed as the world clock; while the ground impact happens, the phase projection

function Π in 5.8 resets the tracked phase after the impact, based upon the post-impact state, the nominal

trajectory, the terrain height and the pre-impact phase. After the impact, the phase continues to propagate

at τ̇ = 1 until the phase reaches τ = T . After one period, the phase is reset back to 0. The whole period

is illustrated in Fig 5-1. The simulated trajectory (the green curve x) and the nominal trajectory (the red

curve x∗) both propagate according to the hybrid system equations 5.1 and 5.2. When the green curve hits

the blue surface φ(x) = h, the impact transition function ∆ maps the pre-impact state x−h to the post-impact

state x+
h . The purple dashed lines, representing the state error between the simulated trajectory x and the

nominal trajectory x∗, are defined as

x̄(t) = x(t)− x∗(τ) (5.9)

Similarly, the extra control effort ū is defined as

ū(t) = u(t)− u∗(τ) (5.10)

Note that since τ̇ = 1 in the continuous phase, the following relations hold

τ−h = tc − t0

T − τ+
h = tT − tc

37

When the simulated trajectory x(t) hits the impact surface, the nominal trajectory x∗(τ) does not necessarily

trigger the same guard function at the same moment, as can be seen from the plot; when the tracked phase

τ = T , the simulated trajectory may not trigger the same event (for example, reach the apex). And the

cycle is defined as the tracked phase runs over one cycle, not the simulated trajectory. Thus, the dynamics

of the error state x̄ is governed by

˙̄x(t) = f(x∗(τ) + x̄(t), u∗(τ) + ū(t))− f(x∗(τ), u∗(τ)) if φ(x∗(τ) + x̄(t)) > h (5.11)

x̄(t+c) = ∆(x∗(τ−h) + x̄(t−c))− x∗(τ+
h) if φ(x∗(τ−h) + x̄(t−c)) = h (5.12)

Equations 5.7, 5.8, 5.11 and 5.12 together governed the dynamics of x̄ within one cycle. Each cycle starts

with the nominal phase τ = 0, and ends when the nominal phase τ = T .

5.2.2 Periodic storage function

With each period defined in the previous section, the infinite time horizon can be split into individual periods,

and each period is analyzed separately. Suppose period n starts at time ta[n] and ends at time ta[n+ 1], and

within period n, the robot leg hits the ground at terrain height h[n], then the L2 gain defined in the infinite

horizon (equation 5.6) can be reformulated as

∞∑
n=1

[
γ2(h̄[n])2 −

∫ ta[n+1]

ta[n]

|x̄(t)|2Q + |ū(t)|2Rdt

]
> −∞ (5.13)

Lemma 5.2.1. A sufficient condition for 5.13 and 5.6 is that there exists a scalar storage function V (τ, x̄),

such that

γ2(h̄[n])2 −
∫ ta[n+1]

ta[n]

|x̄(t)|2Q + |ū(t)|2Rdt ≥ V (T, x̄(ta[n+ 1]))− V (0, x̄(ta[n])) ∀x̄(ta[n]) (5.14)

and

V (T, x) ≥ V (0, x) ∀ x (5.15)

and the nonnegative constraint

V (T, x) ≥ 0 ∀ x (5.16)

38

Proof.

∞∑
n=1

[
γ2(h̄[n])2 −

∫ ta[n+1]

ta[n]

|x̄(t)|2Q + |ū(t)|2Rdt

]

≥
∞∑
n=1

[V (T, x̄(ta[n+ 1]))− V (0, x̄(ta[n]))]

=

∞∑
n=2

[V (T, x̄(ta[n]))− V (0, x̄(ta[n]))] + lim
m→∞

V (T, x̄(ta[m]))− V (0, x̄(ta[1]))

≥− V (0, x̄(ta[1]))

>−∞

Within one period τ ∈ [0 T], the system dynamics involves both continuous mode and the impact

transition. As in the left hand-side of the equation 5.14, the time integral of the error state and discrete

terrain disturbance are added together. To separate the discrete and continuous part, a sufficient condition

for 5.14 is imposed as

V̇ (τ, x̄) ≤ −|x̄|2Q − |ū|2R if φ(x∗(τ) + x̄) > h (5.17)

V (τ+
h , x̄(t+c))− V (τ−h , x̄(t−c)) ≤ γ2h2 if φ(x∗(τ−h) + x̄(t−c)) = h (5.18)

Where 5.17 is for the continuous mode, V̇ is the total differentiation of V over t; and 5.18 is for the jump

transition.

The state error x̄ is parameterized by the world time t, since the nominal phase τ is a function of the

world time t, and we are analyzing the behavior of state error within one cycle, it is more convenient to

parameterize the state error by τ , in the same manner as equation 5.9

x̄(τ) = x(t)− x∗(τ) (5.19)

ū(τ) = u(t)− u∗(τ) (5.20)

And condition 5.17 and 5.18 are reformulated as

dV (τ, x̄)

dτ
≤ −|x̄|2Q − |ū|2R if φ(x∗(τ) + x̄) > h (5.21)

V (τ+
h , x̄(τ+

h))− V (τ−h , x̄(τ−h)) ≤ γ2h2 if φ(x∗(τ−h) + x̄(τ−h)) = h (5.22)

Conditions 5.21 and 5.22 are a conservative formulation for the L2 gain definition 5.6 since first the analysis

39

focuses within one period, as in Lemma 5.2.1, and the long term behavior is not analyzed; second, within

one cycle, by separating the continuous and discrete dynamics, the condition becomes more conservative,

but such condition can be easily dealt by the existing tools in linear control theory.

5.2.3 Linearized system

To leverage the rich control tools for linear system, the dynamics of x̄ is linearized around the nominal

trajectory x∗, u∗ and the terrain height h0. For the continuous mode, the linearization is simple

˙̄x(τ) = A(τ)x̄(τ) +B(τ)ū(τ) if φ(x∗(τ) + x̄(τ)) > h (5.23)

Where A = ∂f
∂x , B = ∂f

∂u . (A,B) is controllable.

It is tricky for the ground impact transition. One caveat is that the pre-impact phase τ−h is determined by

the guard function with the pre-impact state and terrain height. Since we separate the continuous dynamics

and the jump transition, we write x̄(τ−h) = x̄−h and treat it as a free variable, namely, the value of x̄−h can be

freely chosen and independent of the continuous dynamics. Similarly we denote x̄(τ+
h) = x̄+

h . x̄−h and x̄+
h are

solely used in the jump transition analysis. Suppose the nominal trajectory (x̄ = 0) hits the mode transition

surface with nominal terrain h0 at τ−0 , and linearize the guard function around τ−0

φx∗f(x∗(τ−0), u∗(τ−0))dτ−h + φx∗ x̄−h = h̄

Where φx∗ = dφ
dx

∣∣∣
x∗(τ−

0)
. Suppose the nominal impact is not grazing on the ground surface, namely

φx∗f(x∗(τ−0), u∗(τ−0)) 6= 0, the perturbation of the pre-impact phase can be computed as

dτ−h =
h̄− φx∗ x̄−h

φx∗f(x∗(τ−0), u∗(τ−0))
(5.24)

By differentiating equation 5.12, the following condition should hold

f(x∗(τ+
0), u∗(τ+

0))dτ+
h + x̄+

h = ∆x∗(f(x∗(τ−0), u∗(τ−0))dτ−h + x̄−h) (5.25)

Since the post-impact phase is determined by the phase projection function Π, differentiate Π to compute

the perturbation of the post-impact phase

Πx(t+c)(f(x∗(τ+
0), u∗(τ+

0))dτ+ + x̄+
h) + Πx∗f(x∗(τ+

0), u∗(τ+
0))dτ+

h + Πhh̄+ Πτ−dτ−h = 0 (5.26)

40

Combining equation 5.24, 5.25 and 5.26, the following linear equations should be solved
φx∗f(x∗(τ−0), u∗(τ−0)) 0 0

−∆x∗f(x∗(τ−0), u∗(τ−0)) f(x∗(τ+
0), u∗(τ+

0)) I

Πτ− (Πx+ + Πx∗)f(x∗(τ+
0), u∗(τ+

0)) Πx+



dτ−h

dτ+
h

x̄+
h

 =


1 −φx∗

0 ∆x∗

−Πh 0


 h̄
x̄−h

 (5.27)

Suppose that the phase projection function Π explicitly depends on the nominal trajectory and Πx∗f(x∗(τ+
0), u∗(τ+

0)) 6=

0, the left matrix in equation 5.27 is nonsingular, thus by computing the inverse of such matrix, dτ−h , dτ
+
h and

x̄+
h can be explicitly represented as a linear combination of h̄ and x̄−h . Suppose one of such representations

is

x̄+
h = T1h̄+ T2x̄

−
h (5.28)

which will be used in the following section.

5.2.4 Quadratic storage function within one cycle

For the linearized system, suppose the storage function is quadratic

V (τ, x̄) = x̄′S(τ)x̄ (5.29)

Where S ∈ Rn×n, S = S′. For the continuous mode, substitute equation 5.29 into 5.21, and the following

condition should hold

2x̄′S(Ax̄+Bū) + x̄′Ṡx̄ ≤ −x̄′Qx̄− ū′Rū (5.30)

If a linear controller is constructed as

ū = Kx̄ (5.31)

where K ∈ Rm×n is the control gain, then by substituting all the ū in 5.30, the following condition should

be valid

x̄′((A+BK)′S + S(A+BK) +Q+K ′RK + Ṡ)x̄ ≤ 0 ∀ x̄ (5.32)

This quadratic inequality holds for all x̄, thus it is equivalent to the negative semi-definiteness of the matrix

in the middle, thus

− Ṡ � (A+BK)′S + S(A+BK) +Q+K ′RK (5.33)

For the ground impact transition, substituting 5.29 into 5.22 gives rise to

x̄+
h
′S(τ+

h)x̄+
h − x̄

−
h S(τ−h)x̄−h ≤ γ

2h̄2 (5.34)

41

Equation 5.34 contains terms S(τ+
h) and S(τ−h), which do not have a closed form representation. To make

problem viable, the second order expansion around x̄−h = 0 and h̄ = 0 is taken to approximate 5.34. Since

when for the nominal trajectory (x̄ = 0) and the nominal terrain height h̄ = 0, the periodic cycle exists,

namely x̄+
h = 0 for the case x̄−h = 0, h̄ = 0, (τ−0 , τ

+
0 are the pre- and post-impact phase on the nominal

trajectory for the nominal terrain height), the second order expansion is simple

(T1h̄+ T2x̄
−
h)′S(τ+

0)(T1h̄+ T2x̄
−
h)− x̄−h S(τ−0)x̄−h ≤ γ

2h̄2 ∀ x̄−h , h̄ (5.35)

Where T1, T2 are defined in the previous section in equation 5.28.

This constraint can be reformulated as a quadratic constraint on the variable [x̄− h̄]

x̄−h
h̄

′T ′2
T ′1

S(τ+
0)
[
T2 T1

]
−

S(τ−0) 0

0 γ2

x̄−h
h̄

 � 0 ∀ x̄−, h̄ (5.36)

Since the negativity holds for all x̄− and h̄, this is equivalent to the negative definiteness of the matrix in

the middle T ′2
T ′1

S(τ+
0)
[
T2 T1

]
−

S(τ−0) 0

0 γ2

 � 0 (5.37)

The following theorem concludes this section

Theorem 5.2.2. For the linearized periodic system as defined in section 5.2.3 with a linear controller

ū = Kx̄, a sufficient condition for the L2 gain is less than a constant γ, is that there exists a matrix function

S(τ) : [0, T]→ Rn×n satisfying the condition in the continuous mode

− Ṡ � (A+BK)′S + S(A+BK) +Q+K ′RK ∀τ 6= τ+
0 , τ

−
0 (5.38)

the jump transition T ′2
T ′1

S(τ+
0)
[
T2 T1

]
−

S(τ−0) 0

0 γ2

 � 0 (5.39)

And

S(T) � S(0) (5.40)

S(T) � 0 (5.41)

Where 5.40 and 5.41 are obtained by substituting the quadratic storage function V (τ, x) = x′S(τ)x into

the conditions 5.15 and 5.16 respectively.

42

To minimize the L2 gain of the hybrid system, we need to search for a controller K and a storage matrix S

such that the infimum of γ is achieved. Unfortunately, this is not a semidefinite programming problem, as

constraint 5.38 is quadratic in K. Thus we fix the controller first and search for the storage function, and

then search for the controller.

5.2.5 Computing L2 gain through LMI

According to Theorem 5.2.2, for the linearized periodic system defined in section 5.2.3, given a fixed periodic

linear controller ū = Kx̄ satisfying K(τ + T) = K(τ) ∀τ , denote the closed loop system as ẋ = Fx, where

F = A + BK. To compute its L2 gain is equivalent to find the smallest γ and a feasible quadratic storage

function parameterized by S(τ) : [0, T]→ Rn×n as the optimal solution to the following program

min
γ,S

γ (5.42a)

s.t

T ′2
T ′1

S(τ+
0)
[
T2 T1

]
−

S(τ−0) 0

0 γ2

 � 0 (5.42b)

− Ṡ � (A+BK)′S + S(A+BK) +Q+K ′RK ∀τ 6= τ+
0 , τ

−
0 (5.42c)

S(T) � S(0) (5.42d)

S(T) � 0 (5.42e)

Unfortunately this optimization problem is hard to handle for two reasons:

1. The decision variable S is a phase-parameterized matrix function, so there are infinitely many S

matrices, instead of a single matrix.

2. The constraint 5.42c is a differential inequality for infinitely many time instances. It is hard to compute

Ṡ in the closed form representation while regarding S as a decision variable.

However, as can be seen in the following analysis, the optimal solutions to the optimization problem 5.42a

possess some special properties, and a semidefinite programming can be formulated to find such optimal

solutions. The analysis starts with reformulating the differential inequality 5.42c first.

Lemma 5.2.3. For a general differential Lyapunov function

− Ṗ = F ′P + PF +M (5.43)

The solution is given by

P (t) = ΦF (tf , t)
′P (tf)ΦF (tf , t) +

∫ tf

t

ΦF (σ, t)′M(σ)ΦF (σ, t)dσ (5.44)

43

Where ΦF (σ, t) is the state transition matrix of the system U̇ = FU from time t to time σ.

In our case 5.42c, we have a general differential Lyapunov inequality. For this case, the following lemma

will help

Corollary 5.2.4. For the differential Lyapunov Inequality

− Ṡ � F ′S + SF +M

The solution satisfies

S(t) � ΦF (tf , t)
′S(tf)ΦF (tf , t) +

∫ tf

t

ΦF (σ, t)′M(σ)ΦF (σ, t)dσ ∀ t < tf

Proof. Note that the condition is equivalent to ∃ N � 0

− Ṡ = F ′S + SF +M +N

With Lemma (5.2.3), we know the solution to the equations above are

S(t) = ΦF (tf , t)
′S(tf)ΦF (tf , t) +

∫ tf

t

ΦF (σ, t)′(M(σ) +N(σ))ΦF (σ, t)dσ

� ΦF (tf , t)
′S(tf)ΦF (tf , t) +

∫ tf

t

ΦF (σ, t)′M(σ)ΦF (σ, t)dσ

Applying Corollary (5.2.4 to the differential inequality constraint 5.42c, and substitute the square term

γ2 = ζ, the optimization program is simplified as

min
ζ,S(0),S(τ−

0),S(τ+
0),S(T)

ζ (5.45a)

s.t

T ′2
T ′1

S(τ+
0)
[
T2 T1

]
−

S(τ−0) 0

0 ζ

 � 0 (5.45b)

S(τ+
0) � ΦF (T, τ+

0)′S(T)ΦF (T, τ+
0) +

∫ T

τ+
0

ΦF (σ, τ+
0)′(Q+K ′RK)ΦF (σ, τ+

0)dσ (5.45c)

S(0) � ΦF (τ−0 , 0)′S(τ−0)ΦF (τ−0 , 0) +

∫ τ−
0

0

ΦF (σ, 0)′(Q+K ′RK)ΦF (σ, 0)dσ (5.45d)

S(T) � S(0) (5.45e)

S(T) � 0 (5.45f)

44

Note that for the given matrixA,B,K, the state transition matrix ΦF and the integral term
∫ t2
t1

ΦF (σ, t1)′(Q+

K ′RK)ΦF (σ, t1)dσ in equations 5.45c and 5.45d can all be numerically computed. Thus the optimization

problem 5.45a is a semidefinite programming problem for the decision variables ζ, S(0), S(τ−0), S(τ+
0), S(T).

Moreover, this semidefinite formulation can be further simplified by investigating the optimal condition.

Lemma 5.2.5. For the semidefinite programming problem 5.45a-5.42e, the optimal solution satisfy S∗(0) =

S∗(T)

Proof. Notice that if there exists a feasible solution (ζ1, S1(0), S1(τ−0), S1(τ+
0), S1(T)) to the constraint 5.45b-

5.42e, and a set of matrices S2(0), S2(τ−0), S2(τ+
0), S2(T) satisfying S2(0) = S2(T), S2(τ+

0) = S1(τ+
0), S2(T) =

S1(T), then there exists an S2(τ−0) such that S2(0), S2(τ−0) satisfy constraint 5.45d and S2(τ−0) � S1(τ−0).

Actually since S2(0) = S2(T) = S1(T) � S1(0), by setting

S2(τ−0) = S1(τ−0) +
λmin(S2(0)− S1(0))

λmax(ΦF (τ−0)′ΦF (τ−0 , 0))
I (5.46)

we have S2(τ−0) � S1(τ−0) and S2(0), S2(τ−0) satisfy constraint 5.45d. So (S2(0), S2(τ−0), S2(τ+
0), S2(T))

satisfy constraint 5.45c-5.42e. For constraint 5.45b, we haveT ′2
T ′1

S2(τ+
0)
[
T2 T1

]
−

S2(τ−0) 0

0 ζ1


=

T ′2
T ′1

S1(τ+
0)
[
T2 T1

]
−

S1(τ−0) 0

0 ζ1

+

S1(τ−0)− S2(τ−0) 0

0 0


� 0

then (ζ1, S2) also satisfies the jump constraint 5.45b, thus (ζ, S2(0), S2(τ−0), S2(τ+
0), S2(T)) is also a feasible

solution to the same optimization problem, indicating the infimum of the set

{ζ|S = S2; (ζ, S) satisfying constraint 5.45b}

is no larger than the infimum of the set

{ζ|S = S1; (ζ, S) satisfying constraint 5.45b}

For the given matrices S1, S2 constructed as before. Thus the optimal solution always satisfy S∗(0) =

S∗(T).

45

Thus all S(0) in the previous optimization program can be replaced by S(T), and only three matrix

decision variables are left. In the next lemma, we will see that only two matrix decision variables are

necessary.

Lemma 5.2.6. Suppose (ζ, S2(0), S2(τ−0), S2(τ+
0), S2(T)) satisfy constraint 5.45b-5.42d, then S(T) � 0 if

and only if S(τ+
0) � 0.

Proof. If S(τ+
0) � 0, then by Schur Complement, for constraint 5.45b, in the upper left corner of the matrix

in the left hand-side, S(τ−0) � T ′2S(τ+
0)T2 � 0. By constraint 5.45d, S(0) � 0. By 5.42d, S(T) � S(0) � 0.

If S(T) � 0, then by constraint 5.45c, S(τ+
0) � 0.

Based on lemma 5.2.5 and 5.2.6, the decision variables S(0), S(T) can be dropped. And the optimization

program to find the L2 gain can be reformulated as follows, for simplicity, denote S(τ+
0) = S+, S(τ−0) =

S−,ΦF (τ−0 , 0)ΦF (T, τ+
0) = ΨF ,ΦF (T, τ+

0)′
(∫ τ−

0

0
ΦF (σ, 0)′(Q+K ′RK)ΦF (σ, 0)dσ

)
ΦF (T, τ+

0)+
∫ T
τ+
0

ΦF (σ, τ+
0)′(Q+

K ′RK)ΦF (σ, τ+
0)dσ = M̄ .

min
ζ,S+,S−

ζ (5.47)

s.t

T ′2
T ′1

S+
[
T2 T1

]
−

S− 0

0 ζ

 � 0

S+ � Ψ′FS
−ΨF + M̄

S+ � 0

And an upper bound L2 equals to
√
ζ. By using semidefinite programming software like SeDuMi [41], the

optimization problem 5.47 can be efficiently solved.

5.3 Robust Controller Design for a given L2 gain

In the last section, for a given fixed periodic linear controller ū = Kx̄, the scheme for computing an upper

bound of the L2 gain is derived. Since the ultimate goal of this chapter is to minimize the L2 gain by

designing a robust controller, such that the robot can walk more steadily on the rough terrain, naturally, the

next question would be, given a constant γ as an upper bound of the L2 gain, is there a scheme to construct

such a periodic linear controller K? We will answer this question in this section. Based on theorem 5.2.2,

and lemma 5.2.6, a sufficient condition for such a robust controller is that there exists a quadratic storage

46

function V (τ, x̄) = x̄′S(τ)x̄ where S(τ) : [0, T]→ Rn×n, such that

T ′2
T ′1

S(τ+
0)
[
T2 T1

]
−

S(τ−0) 0

0 γ2

 � 0 (5.48a)

− Ṡ � (A+BK)′S + S(A+BK) +Q+K ′RK ∀τ 6= τ+
0 , τ

−
0 (5.48b)

S(T) � S(0) (5.48c)

S(τ+) � 0 (5.48d)

This controller cannot be determined through semidefinite programming problem as in the last section, since

equation 5.48b is quadratic in the control gain K instead of a matrix linear inequality, causing it intractable

for the semidefinite programming. However, we will see that in there exist a solution K1, S1, γ satisfying

all constraints 5.48a-5.48d, then there will be a constructive way to compute another solution K2, S2, γ

satisfying the same constraints.

As is discussed in Lemma 5.2.5, if S1,K1, γ satisfy constraints 5.48a-5.48d, S2,K2 satisfy constraint 5.48b-

5.48d and extra constraint S2(τ+
0) = S1(τ+

0), S2(τ−0) � S1(τ−0), then S2, γ satisfy constraint 5.48a, thus

S2,K2, γ satisfy all constraints 5.48a-5.48d, and K2 would also be a γ sub-optimal controller.

The constraint 5.48b involves controller K, and also it is a differential inequality constraint. We would show

that there exists a sub-optimal controller K as a function of matrix S, and we can restrain 5.48b to be an

equality equation. We start by proving the following lemma

Lemma 5.3.1. For two matrix functions X,Y : R→ Rn×n satisfying

− Ẋ � A′X +XA+Q−XBR−1B′X

− Ẏ = A′Y + Y A+Q− Y BR−1B′Y

X(0) = Y (0)

Where (A,B) is controllable,Q ∈ Rn×n, Q = Q′ � 0, R ∈ Rm×m, R = R′ � 0. The following condition holds

X(t) � Y (t) ∀ t > 0

Proof. Define

Z = Y −X

47

The dynamics of Z satisfies

−Ż � (A−BR−1B′Y)′Z + Z(A−BR−1B′Y) + ZBR−1B′Z

Z(0) = 0

Denote A−BR−1B′Y = Ā, ZBR−1B′Z = N,N � 0, by lemma 5.2.4, the solution of Z(t), t > 0 satisfies

Z(0) � ΦĀ(t, 0)′Z(t)ΦĀ(t, 0) +

∫ t

0

ΦĀ(σ, 0)′N(σ)ΦĀ(σ, 0)dσ

Since (A,B) is controllable, Y is the solution to the differential Riccati equation, we know that ΦA is

nonsingular. Since Z(0) = 0, we then know Z(t) � 0 ∀t > 0. Thus X(t) � Y (t) ∀ t > 0.

Corollary 5.3.2. For two matrix functions X,Y : R→ Rn×n satisfying

− Ẋ � A′X +XA+Q−XBR−1B′X

− Ẏ = A′Y + Y A+Q− Y BR−1B′Y

X(0) = Y (0)

Where (A,B) is controllable,Q ∈ Rn×n, Q = Q′ � 0, R ∈ Rm×m, R = R′ � 0. The following condition holds

X(t) � Y (t) ∀ t > 0

Proof. ∃N ∈ Rn×n, N = N ′ � 0, s.t

− Ẋ = A′X +XA+ (Q+N)−XBR−1B′X

− Ẏ � A′Y + Y A+ (Q+N)− Y BR−1B′Y

X(0) = Y (0)

By the previous lemma,

X(t) � Y (t) ∀ t > 0

So for any storage function S and K satisfying the constraints 5.48a-5.48d, by using completion of squares,

48

it can be shown that

Ṡ � −((K +R−1B′S)′R(K +R−1B′S) +A′S + SA+Q− SBR−1B′S) (5.49)

� −(A′S + SA+Q− SBR−1B′S)

Namely, the derivative of this storage function is upper bounded by the Riccati function −(A′S +SA+Q−

SBR−1B′S). So by constructing a new storage function S̄ and a controller K̄ satisfying

K̄ = −R−1B′S̄

− ˙̄S = (A′S̄ + S̄A+Q− S̄BR−1B′S̄)

S̄(τ+
0) = S(τ+

0), S̄(0) = S(0)

By the corollary 5.3.2, we know the storage function satisfies S̄(T) � S(T) � S(0) = S̄(0), and S̄(τ−0) �

S(τ−0), so the newly constructed storage function S̄ and controller K̄ satisfy the constraints 5.48a-5.48d.

Namely, if there exists a γ sub-optimal controller for the system, then the controller K satisfying the

following constraints is such a controller.

∃ S : [0, T]→ Rn×n s.t

T ′2
T ′1

S(τ+)
[
T2 T1

]
−

S(τ−) 0

0 γ2

 � 0 (5.50a)

− Ṡ = A′S + SA+Q− SBR−1B′S (5.50b)

S(T) � S(0) (5.50c)

S(τ+
0) � 0 (5.50d)

K = −R−1B′S (5.50e)

The next step is to show that the constraint 5.50c can be strict. To show that, consider the following lemma

Lemma 5.3.3. For the Riccati equation

− Ṡ = A′S + SA+Q− SBR−1B′S

And two solutions to this Riccati equation, with X(0) � Y (0). Then the following condition holds

X(t) � Y (t) ∀ t > 0

49

Proof. Define Z = X − Y , the dynamics of Z is

− Ż = (A−BR−1B′X)′Z + Z(A−BR−1B′X) + ZBR−1B′Z

Denote Ā = A−BR−1B′X,M = ZBR−1B′Z � 0, then the solution of Z satisfies

Z(0) = ΦĀ(t, 0)′Z(t)ΦĀ(t, 0) +

∫ t

0

ΦĀ(σ, 0)′M(σ)ΦĀ(σ, 0)dσ

Since Z(0) = X(0)− Y (0) � 0, then Z(t) � 0, namely X(t) � Y (t) ∀ t > 0

So for any storage function S satisfying 5.50a-5.50d, we can construct a matrix function S̄, such that

S̄(0) = S(T) > S(0), S̄(τ+
0) = S(τ+

0),− ˙̄S = A′S̄ + S̄A + Q − S̄BR−1B′S̄. Thus the newly constructed S̄

satisfies S̄(τ−0) � S(τ−0), S̄(T) = S(T) = S̄(0), so S̄ also satisfies constraint 5.50a-5.50d. So construct a new

controller K̄ = −R−1B′S̄, and it will also be a γ sub-optimal controller. In all, if there exists a γ sub-optimal

controller, then the controller K satisfying the following constraint would be such a controller

∃ S : [0, T]→ Rn×n s.t

T ′2
T ′1

S(τ+
0)
[
T2 T1

]
−

S(τ−0) 0

0 γ2

 � 0 (5.51a)

− Ṡ = A′S + SA+Q− SBR−1B′S ∀τ 6= τ+
0 , τ

−
0 (5.51b)

S(T) = S(0) (5.51c)

S(τ+
0) � 0 (5.51d)

K = −R−1B′S (5.51e)

By Schur’s Complement, when γ2 > T ′1S(τ+
0)T1, the jump transition 5.51a is equivalent to

S(τ−0) � T ′2S(τ+
0)[I − γ−2T1T

′
1S(τ+

0)]−1T2

An important observation is that the current conditions for a γ sub-optimal controller to exist for the hybrid

system, is equivalent to the case that the following linearized periodic system S̄ has an L2 gain no larger

than γ

ẋ(t) =A(t)x(t) ∀t 6= τ−0 +NT, τ+
0 +NT,N ∈ Z

x(t+) =T2x(t−) + T1h̄ t = τ0 +NT,N ∈ Z

It is known that the following statements are equivalent [47]

1. S̄ has an L2 gain no larger than γ

50

2. If γ2 > T ′1S(τ+
0)T1, then there exists a periodic solution to the following periodic Riccati equation

S(τ−0) = T ′2S(τ+
0)[I − γ−2T1T

′
1S(τ+

0)]−1T2 (5.52a)

−Ṡ = A′S + SA+Q− SBR−1B′S ∀τ 6= τ+
0 , τ

−
0 (5.52b)

Thus the controller K can be computed by first solving the periodic Riccati equations 5.52a, 5.52b to find the

storage matrix S, and K = −R−1B′S. From the previous theorem 4.2.1 on the periodic Riccati equation,

such solution is unique, and can be computed by backward integration until the solution converges.

5.4 Iteratively minimize the L2 gain

The goal is to minimize the upper bound of the L2 gain of the hybrid system by designing a robust controller.

Based on theorem 5.2.2, this is not a semidefinite programming problem, thus cannot be efficiently solved.

Instead, an iterative approach is used here. In each iteration, given a linear controller, a storage function is

searched through a semidefinite programming, so as to compute the upper bound γ of L2 associated with

such controller. Then for such upper bound, solve the periodic Riccati equation to determine a controller,

such that the feedback system has an L2 gain no larger than γ. And this controller is used as the given

controller in the next iteration. The algorithm is stated as in Algorithm 1. The initial guess of the controller

can be any periodic linear controller (the LQR controller, zero control, etc.)

Apparently the upper bound γi is nondecreasing in each iteration. Since in each iteration, the semidefinite

programming will find a lower γ. This alternative search stops when the γ gap between two consecutive

iterations gets below some threshold.

5.5 Result

5.5.1 Compute L2 gain

The algorithm above are applied to the compass gait walker. We first compare the upper bound of the L2

gain for two types of limit cycles, the robust limit cycle computed in Chapter 4, and the passive limit cycle.

For both cycles with the periodic LQR controller Q = diag([1 1 10 10]) and R = 1, the robust cycle has

γ = 21.3043, while the passive cycle has γ = 292.6646, more than 13 times larger than that of the robust

cycle. Such large discrepancy in the L2 gain and the huge distinction in the number of steps on the rough

terrain (≥ 10, 000 vs ≈ 10) indicates that L2 gain is a good measurement of the actual ability to traverse

the rough terrain.

51

Algorithm 1 Iterative optimization

1: At iteration i, given γi as an upper bound of the L2 gain, find a periodic solution to the following Riccati
equation

Pi(τ
−
0) = T ′2Pi(τ

+
0)(I − γ−2T1T

′
1Pi(τ

+
0))−1T2

− Ṗi = A′Pi + PiA+Q− PiBR−1B′Pi ∀ τ 6= τ+
0 , τ

−
0

Find the γi-suboptimal controller Ki

Ki = −R−1B′Pi

2: With the controller Ki, solve the following semidefinite programming problem

min
S+
i ,S

−
i ,ζi

ζi

s.t

[
T ′2
T ′1

]
S+
i

[
T2 T1

]
−
[
S−i 0
0 ζi

]
� 0

S+
i � Ψ′Fi

S−i ΨFi
+ M̄i

S+
i � 0

ζi > T ′1S
+
i T1

Where

Fi =A+BKi

M̄i =

∫ tf

t

ΦFi(σ, t)
′(Q+K ′iRKi)ΦFi(σ, t)dσ

3: i← i+ 1, with γi+1 =
√
ζi

5.5.2 Minimize the L2 gain

We minimize the L2 gain of the passive limit cycle by designing the robust controller associated with it. In

6 iterations, the L2 gain drops from 292.6646 to 269.9908, the decreasing sequence of γi is plotted in Fig 5-2.

The γ sequence drops quickly in the first two iterations, and then converges. We simulate the compass gait

tracking the passive cycle on the rough terrain with three controllers, the LQR controller with γ = 292.6646,

the robust controller 1 with γ = 269.9908, and another robust controller 2 with γ = 274.2038. The robust

controller 1 is computed after the sixth iteration in the optimization algorithm, while robust controller 2

is computed after the second iteration. The terrain slope is a uniform distribution within [4◦, 6◦]. Note

that the terrain disturbance is very small in magnitude. The reason is that the linearized method can only

be effective in the small neighborhood of the nominal terrain (slope equals to 5◦). The simulation results

are depicted in Fig 5-3. 100 simulations are run, and the number of steps traversed before falling down are

drawn in each plots. In Fig 5-3a, the number of steps traversed in the same unknown terrain is compared

between the LQR controller (γ = 292.6646) and the robust controller 1 (γ = 269.9908), in a large amount of

52

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
265

270

275

280

285

290

295

iteration
γ

Figure 5-2: γ for the passive cycle in each iteration

(a) Compare LQR and robust controller 1 (b) Compare robust controller 2 and robust controller 1

Figure 5-3: number of steps traversed on the rough terrain in each simulation

trials, the robust controller 1 makes the robot takes much more steps than the LQR does. In Fig 5-3b, the

robust controller 1 (γ = 269.9908) and the robust controller 2 (γ = 274.2038) perform very similarly on the

unknown terrain. But the control gain of those two robust controllers are noticeably different. The control

gain at τ−0 of the robust controller 1 is around 2.3 times larger than that of the robust controller 2. This

big difference suggest that although the controller are quite different in the gain value, as their L2 gain are

close, their performance on the rough terrain are similar, implies that L2 gain is a good measurement of the

terrain sensitivity.

The average number of steps for the three controllers are shown in the following table. By decreasing the

controller LQR Robust2 Robust1
γ 292.6646 274.2038 269.9908
average number of steps
before falling down

40.61 89.27 96.21

53

Figure 5-4: Phase plot of compass gait following passive cycle with a robust controller, walking 300 steps on the
rough terrain

L2 gain of the linearized system from 292.6646 to 269.9908, the average number of steps traversed on the

rough terrain gets doubled. Given the compass gait is extremely sensitive to the terrain disturbances, it is

not strange that a 10% drop of the L2 gain can double the number of steps.

A phase plot of the compass gait on the rough terrain with robust controller γ = 269.9908 is shown in

Fig 5-4. The red curve is the passive limit cycle, and the blue curves are the simulated trajectory for 300

steps. Although the robot does not fall down, it is clear that the volume of the trajectory bundle does not

shrink along the nominal trajectory, which happens in the robust cycle case. This comparison indicates

that constructing a linear robust controller is not as powerful as designing a robust limit cycle, in terms of

improving the robustness of the hybrid system.

54

Chapter 6

Conclusion

6.1 Contributions

In this thesis, to improve the ability of a bipedal robot traversing the rough terrain, we model the problem

as a hybrid system with uncertainty in the guard function, and propose two metrics quantifying the robust-

ness of such systems. For each metric, an optimization scheme is presented to bring down the sensitivity

measurement.

We design a walking gait that is intrinsically more robust on a stochastic terrain. The metric considered

in this case is the expected LQR cost-to-go of the post-impact states. And we use nonlinear optimization

techniques to solve this trajectory optimization problem. Simulations shows that the number of steps on the

rough terrain can be drastically improved.

We then design a linear controller to steer the robot following the designated walking gait. The metric used

is the worst-case performance for the linearized system, and an iterative optimization approach is used to

bring down the sensitivity of the linearized system. In each iteration, a semidefinite programming problem is

optimized to compute the upper bound of the L2 gain, and a periodic Riccati equation is solved to construct

the linear controller with the desired L2 gain. Simulation demonstrate that this approach can marginally

improve the number of steps on a terrain with minor elevation.

6.2 Discussion

From our simulation results, designing an intrinsically robust walking gait is much more effective than

designing a robust controller, as by following the robust limit cycle, the robot never falls down, while on

a less rugged terrain, even with the robust controller, the passive cycle still falls down within around 100

steps. This matches our common intuition, as human adapt to different terrains by noticeably changing

55

his walking gait (lowering the center of mass, taking smaller steps, etc). Although powerful, solving this

trajectory optimization problem is not very efficient, for at least two reasons

1. The trajectory optimization is a nonlinear optimization problem, instead of a convex optimization

problem. Solving NLP is generally more time-consuming, and subject to the local minimum.

2. This NLP has a large number of decision variables. To compute the cost-to-go, a matrix with size

n × n is chosen as a decision variable for every discretized knot. So the size of the optimization

problem grows as n2. For system with large degrees of freedom, solving such a large-scale nonlinear

optimization problem is extremely challenging.

The second approach, to linearize the system and minimize the L2 gain, is not as powerful as the first one.

In the compass gait example, the L2 gain drops by less than 10% after the optimization, and can only

marginally increase the number of steps traversed in the landscape with slight terrain elevation. One major

reason for its shortage is that this approach only handles the linearized system, while for the hybrid system

with uncertainty in the guard function, the dynamics is extremely nonlinear, thus the linearization is only

valid within a small neighborhood of the nominal trajectory. For this reason, the nonlinear trajectory

optimization can drastically improve the robust performance, while optimizing the L2 gain for the linearized

system does not produce equally satisfactory results. On the other hand, the second approach has its own

advantage, as it is a small-scale semidefinite programming problem, and can be solved very efficiently, and

it scales well to more complicated robot with high degrees of freedom.

6.3 Future work

To apply the optimization scheme to real humanoids, the algorithm should scale well when the degrees of

freedom increases. Unfortunately, optimizing the robust limit cycle suffers from the ‘curse of dimensionality’,

mostly because the cost-to-go matrix at every knot point is chosen as decision variables. Other than LQR

cost-to-go, we will seek for a better metric in the state space with less computation burden.

As discussed above, when designing the robust controller for the bipedal walker, a linear controller for the

linearized system is not very satisfactory. The future work will be to design the controller for the nonlinear

hybrid system directly. The optimization objective can be the largest terrain perturbation that can be

tolerated. To design such a controller, we can use the Sum of Squares technique to construct the funnel

around the nominal trajectory, and such funnel should be invariant under the terrain disturbances.

56

Bibliography

[1] Betts and J.T. Practical methods for optimal control and estimation using nonlinear programming.

Society for Industrial & Applied, 2010.

[2] Robert R. Bitmead, Michel R. Gevers, Ian R. Petersen, and R.John Kaye. Monotonicity and

stabilizability- properties of solutions of the riccati difference equation: Propositions, lemmas, theo-

rems, fallacious conjectures and counterexamples. Systems and Control Letters, 5(5):309 – 315, 1985.

[3] S. Bittanti, P. Colaneri, and G. De Nicolao. The periodic riccati equation. In S. Bittanti, A. J. Laub,

and J. C. Willems, editors, The Riccati Equation, chapter 6. Springer-Verlag, 1991.

[4] R. Blickhan. The spring-mass model for running and hopping. Journal of Biomechanics, 22(1112):1217

– 1227, 1989.

[5] M.S. Branicky. Studies in hybrid systems: Modeling, analysis, and control. PhD thesis, 1995.

[6] Peng Cheng, LaValle, and S.M. Reducing metric sensitivity in randomized trajectory design. Intelligent

Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on, 1:43–48 vol.1,

2001.

[7] Christine Chevallereau, J. W. Grizzle, and Ching-Long Shih. Asymptotically stable walking of a five-link

underactuated 3-d bipedal robot. IEEE Transactions on Robotics, 25(1):37–50, February 2009.

[8] Steven H. Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Efficient bipedal robots based on

passive-dynamic walkers. Science, 307:1082–1085, February 18 2005.

[9] Steven H. Collins, Martijn Wisse, and Andy Ruina. A three-dimensional passive-dynamic walking robot

with two legs and knees. International Journal of Robotics Research, 20(7):607–615, July 2001.

[10] Elnagar, G., Kazemi, M.A., Razzaghi, and M. The pseudospectral legendre method for discretizing

optimal control problems. Automatic Control, IEEE Transactions on, 40(10):1793 –1796, oct 1995.

57

[11] Paul J. Enright and Bruce A. Conway. Optimal finite-thrust spacecraft trajectories using collocation

and nonlinear programming. J. Guidance, 14(5):981–985, Sept-Oct 1991.

[12] Michael Ernst, Hartmut Geyer, and Reinhard Blickhan. Spring-legged locomotion on uneven ground:

a control approach to keep the running speed constant. In International Conference on Climbing and

Walking Robots, pages 639–644, 2009.

[13] Garg, Divya, Patterson, Michael, Francolin, Camila, Darby, Christopher, Huntington, Geoffrey, Hager,

William, Rao, and Anil. Direct trajectory optimization and costate estimation offinite-horizon and

infinite-horizon optimal control problems using a radau pseudospectral method. Computational Opti-

mization and Applications, 49:335–358, 2011. 10.1007/s10589-009-9291-0.

[14] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm for large-scale

constrained optimization. SIAM Review, 47(1):99–131, 2005.

[15] Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s Guide for SNOPT Version 7: Software

for Large -Scale Nonlinear Programming, February 12 2006.

[16] Elena Leah Glassman. A quadratic regulator-based heuristic for rapidly exploring state space. Master’s

thesis, Massachusetts Institute of Technology, February 2010.

[17] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlinear programming and

collocation. J Guidance, 10(4):338–342, July-August 1987.

[18] Hobbelen, D.G.E., Wisse, and M. A disturbance rejection measure for limit cycle walkers: The gait

sensitivity norm. Robotics, IEEE Transactions on, 23(6):1213 –1224, dec. 2007.

[19] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry, and Stefan Schaal. Learning, planning,

and control for quadruped locomotion over challenging terrain. I. J. Robotic Res., 30(2):236–258, 2011.

[20] J. Zico Kolter and Andrew Y. Ng. The stanford littledog: A learning and rapid replanning approach to

quadruped locomotion. I. J. Robotic Res., 30(2):150–174, 2011.

[21] Ian R. Manchester, Uwe Mettin, Fumiya Iida, and Russ Tedrake. Stable dynamic walking over rough

terrain: Theory and experiment. In Proceedings of the International Symposium on Robotics Research

(ISRR), 2009.

[22] T. Mcgeer. Passive bipedal running. Proceedings of the Royal Society of London, 240(1297):107–134,

May 1990.

[23] Tad McGeer. Passive dynamic walking. International Journal of Robotics Research, 9(2):62–82, April

1990.

58

[24] Tad McGeer. Passive walking with knees. pages 1640 – 1645. IEEE International Conference on Robotics

and Automation (ICRA), 1990.

[25] Tad McGeer. Dynamics and control of bipedal locomotion. Journal of Theoretical Biology, 163:277–314,

1993.

[26] Alexandre Megretski. Personal communication, 2008.

[27] Katja D. Mombaur. Stability Optimization of Open-Loop Controlled Walking Robots. PhD thesis,

Heidelberg, August 2001.

[28] Jun Morimoto and Christopher Atkeson. Minimax differential dynamic programming: An application

to robust biped walking. Advances in Neural Information Processing Systems, 2002.

[29] Jun Morimoto, Jun Nakanishi, Gen Endo, Gordon Cheng, Christopher G Atkeson, and Garth Zeglin.

Poincare-map-based reinforcement learning for biped walking. ICRA, 2005.

[30] Toshimitsu Nishimura and Hiroyuki Kano. Periodic strong solutions of periodically time-varying matrix

riccati equations. International Journal of Control, 49(1):193–205, 1989.

[31] Hae-Won Park. Control of a Bipedal Robot Walker on Rough Terrain. PhD thesis, University of

Michigan, 2012.

[32] Michael Posa and Russ Tedrake. Direct trajectory optimization of rigid body dynamical systems through

contact. In To appear in the Proceedings of the Workshop on the Algorithmic Foundations of Robotics,

2012.

[33] Marc H. Raibert. Legged Robots That Balance. The MIT Press, 1986.

[34] C. David Remy. Optimal Exploitation of Natural Dynamics in Legged Locomotion. PhD thesis, ETH

ZURICH, 2011.

[35] Shai Revzen. Neuromechanical control architectures in arthropod locomotion. PhD thesis, University of

California, Berkeley, 2009.

[36] Andre Seyfarth, Hartmut Geyer, and Hugh Herr. Swing-leg retraction: a simple control model for stable

running. The Journal of Experimental Biology, 206:2547–2555, Feb 2003.

[37] Alexander Shkolnik, Michael Levashov, Ian R. Manchester, and Russ Tedrake. Bounding on rough

terrain with the littledog robot. The International Journal of Robotics Research (IJRR), 30(2):192–215,

Feb 2011.

59

[38] Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, and JW. A compliant hybrid zero dynamics controller

for stable, efficient and fast bipedal walking on MABEL. International Journal of Robotics Research,

2010.

[39] Manoj Srinivasan and Andy Ruina. Computer optimization of a minimal biped model discovers walking

and running. Nature, 439:72–75, January 5 2006.

[40] Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry,

and Engineering. Perseus Books, 1994.

[41] Jos F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optimization

Methods and Software, 11(1-4):625 – 653, 1999.

[42] Russ Tedrake. Underactuated Robotics: Learning, Planning, and Control for Efficient and Agile Ma-

chines: Course Notes for MIT 6.832. Working draft edition, 2012.

[43] Russ Tedrake, Ian R. Manchester, Mark M. Tobenkin, and John W. Roberts. LQR-Trees: Feedback

motion planning via sums of squares verification. International Journal of Robotics Research, 29:1038–

1052, July 2010.

[44] O. von Stryk and R. Bulirsch. Direct and indirect methods for trajectory optimization. Annals of

Operations Research, 37:357–373, 1992.

[45] Eric R. Westervelt, Jessy W. Grizzle, Christine Chevallereau, Jun Ho Choi, and Benjamin Morris.

Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton, FL, 2007.

[46] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming. Math. Program., 106(1):25–57, May 2006.

[47] Lihua Xie, de Souza, and C.E. H infin; state estimation for linear periodic systems. Automatic Control,

IEEE Transactions on, 38(11):1704 –1707, nov 1993.

[48] Zhou, Kemin, Doyle, John C., Glover, and Keith. Robust and optimal control. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1996.

[49] Matthew Zucker, Nathan D. Ratliff, Martin Stolle, Joel E. Chestnutt, J. Andrew Bagnell, Christopher G.

Atkeson, and James Kuffner. Optimization and learning for rough terrain legged locomotion. I. J.

Robotic Res., 30(2):175–191, 2011.

60

	Introduction
	Motivation
	Contributions
	Organization

	Previous Work
	Passive Robot walker
	Robots robust walking
	Trajectory Optimization
	Periodic Motion

	Problem Formulation
	Optimizing the robust limit cycle
	Intuition
	Distance metric
	(Weighted) Euclidean Distance
	optimal cost-to-go

	LQR cost-to-go for rough terrain walking
	Phase propagation
	Linearized state dynamics
	Optimizing expected cost-to-go
	Sampling and discretization

	Results
	Spring Loaded Inverted Pendulum
	Compass Gait Walker

	Robust Control Synthesis
	Background of robust control
	L2 gain
	Dissipation inequality
	KYP lemma for linear system

	L2 gain for periodic linearized system
	Periodic phase tracking system
	Periodic storage function
	Linearized system
	Quadratic storage function within one cycle
	Computing L2 gain through LMI

	Robust Controller Design for a given L2 gain
	Iteratively minimize the L2 gain
	Result
	Compute L2 gain
	Minimize the L2 gain

	Conclusion
	Contributions
	Discussion
	Future work

