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Introduction 
Over the past few years, there have been a number of 
impressive demonstrations of UAV aerobatic flight 
(e.g. [1]). However, the maneuverability of these UAVs 
is no match for a human piloted aircraft, where the 
pilot is capable of executing extreme aerobatic 
maneuvers and quick recoveries in spite of turbulent 
airflows.  We believe that maneuverable flight can be 
characterized by the need to maintain energy-efficient 
and time-dependent interactions with the surrounding 
airflow, a characteristic we believe can be formulated 
as an optimal control problem. To this end, we have 
begun an intensive research project in system 
identification, controllability analysis, and optimal control for a fixed-wing hovering 
aircraft (Fig 1). This abstract describes preliminary results on a practical 
implementation of a linear controller on a real aircraft and extensions to optimal 
control for a learned linear dynamic model in simulation. 
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Stabilizing a Hovering UAV 
 We have begun with an investigation into the controllability of our plane in a 
Vicon MX motion capture environment during vertical hover. The motion capture 
environment provides real-time sub-millimeter tracking of the plane along with its 
control surface deflections and has provided a convenient and non-obtrusive way 
of collecting flight data for system identification.  Our initial task was to regulate 
the orientation of the aircraft to a vertical hovering state. Orientation control is 
trivial, and can be regulated through simple P.D. control on the orientation error. 
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We were interested in testing the basin of attraction of this simple controller and 
performed a few trials of the plane starting from horizontal (i.e. normal flight 
orientation) and were surprised to find the robustness of this simple controller 
away from the linearization point. Fig. 1 shows five samples of the basin of 
attraction (for pitch) starting from horizontal. However, as shown in Fig. 2, the 
noisy environment in combination with suboptimal gains makes the plane drift 
away from its initial state in (x,y) coordinates. The regulation of these state 
variables becomes non-trivial due to the fact that we are completely 
underactuated in these degrees of freedom. Our goal is then to learn a dynamic 
model of the plane such that we can control all state variables using linear 
optimal control. 
 
Controllability Analysis and Optimal Control 
 Since we are simultaneously trying to regulate orientation as well as absolute 
position, the task becomes non-trivial. Namely, for a given desired orientation 
and position (e.g. in an aerobatic maneuver), the required control surface 
deflections will differ and will depend on the aircraft’s control derivatives.  We fit a 
linear state-space model of our aircraft by logging motion capture data of the 
orientations, positions, and control surface deflections (Fig. 3). Using the learned 
model, we computed an optimal linear controller for the regulation task (LQR). 
The task was to regulate all states to zero from an arbitrarily chosen state 
(x=1,y=1,z=1, roll=.1,pitch=.1,yaw=.1 ; units in meters and radians).  
 

 
Figure 3.  
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Figure 4. Figure 5. 
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Fig. 4 shows the position path and Fig. 5 shows the Euler angle orientation 
trajectories. Currently, we are performing statistical test for error bounding our 
dynamic model. A controllability analysis on our currently learned model shows 
that it is full-state controllable. Once this analysis is complete and we are 
confident in our model, we will transfer our control system to the real plane. 
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