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Abstract
Computing optimal, collision-free trajectories for high-dimensional systems is a challenging and important problem.
Sampling-based planners struggle with the dimensionality, whereas trajectory optimizers may get stuck in local minima due
to inherent nonconvexities in the optimization landscape. The use of mixed-integer programming to encapsulate these
nonconvexities and find globally optimal trajectories has recently shown great promise, thanks in part to tight convex
relaxations and efficient approximation strategies that greatly reduce runtimes. These approaches were previously limited
to Euclidean configuration spaces, precluding their use with mobile bases or continuous revolute joints. In this paper, we
handle such scenarios by modeling configuration spaces as Riemannian manifolds, and we describe a reduction procedure
for the zero-curvature case to a mixed-integer convex optimization problem. We further present a method for obtaining
approximate solutions via piecewise-linear approximations that is applicable to manifolds of arbitrary curvature. We
demonstrate our results on various robot platforms, including producing efficient collision-free trajectories for a PR2
bimanual mobile manipulator.
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1. Introduction

Planning the motion of robots through environments with
obstacles is a long-standing and ever-present problem in
robotics. In this paper, we aim to find the shortest path
between a start and goal configuration with guaranteed
collision avoidance. We are particularly motivated by
planning for bimanual mobile manipulators, such as the
PR2 (Willow Garage). Such robots are well suited for a
variety of tasks in human environments but present various
challenges for existing motion planning algorithms.

Most popular approaches for this task fall into two
categories: sampling-based planners and trajectory opti-
mizers. The trajectory optimization problem is inherently
nonconvex when there are obstacles in the scene, so solvers
frequently get stuck in local minima. In that case, they may
output a path that is longer than the global optimum or even
fail to produce a valid path even when one exists.

On the other hand, sampling-based planners can avoid
getting stuck in local minima, but the path may be locally
suboptimal, resulting in jerky and uneven motion.
Sampling-based planners may also suffer from the so-called
“Curse of Dimensionality.” Because they rely on covering
the configuration space with discrete samples, in the worst
case, the number of samples required may increase

exponentially with the dimension. The PR2 has two 7-DoF
arms and a mobile base, and sampling-based planners
struggle with the instances we study here.

Recently, Marcucci et al. (2023) described a new type of
motion planning, based on a decomposition of the
collision-free subset of configuration space (C-Free) into
convex sets. They leverage a new optimization framework,
a Graph of Convex Sets (GCS), where each vertex is as-
sociated with a convex set and each edge is associated with
a convex function (Marcucci et al., 2021). Motion plan-
ning becomes a shortest-path problem in this space. This
GCS Trajectory Optimization approach (abbreviated as
GcsTrajOpt) has been successfully applied to challenging,
high-dimensional problems, including bimanual manipu-
lation problems.
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However, GcsTrajOpt is limited to Euclidean configu-
ration spaces. Amobile manipulator’s configuration space is
inherently non-Euclidean due to the mobile base: the robot
can rotate through a full 360°, and its configuration is
identical to when it started. Continuous revolute joints
present a similar issue. Although the configuration spaces of
interest are inherently non-Euclidean, they are still “locally”
Euclidean, leading to elegant descriptions as differentiable
manifolds. With a Riemannian metric, which allows one to
measure distance on a manifold, the concepts of convexity
generalize to nonlinear spaces. This in turn allows opti-
mization on manifolds with rigorous guarantees, analogous
to those obtained from convex optimization on Euclidean
spaces.

A conference version of this paper is published in Cohn
et al. (2023). This manuscript extends the results to more
general classes of robot configuration spaces via a
piecewise-linear approximation. This encompasses closed
kinematic chains, whose configuration spaces can naturally
be represented as the (generally nonconvex) feasible set of a
system of nonlinear equality constraints. This also allows
planning over the group of 3D rotations, enabling our
method to handle ball joints and free bodies. (The ap-
proximation strategy is required in this case due to the
inherent nonconvexity of the distance function; see Sub-
section 6.5 for details).

In this paper, we formulate the general problem of
shortest-path motion planning around obstacles on Rie-
mannian manifolds. We define a graph of geodesically
convex sets (GGCS), the analogue to GCS on a Riemannian
manifold. We prove that this formulation has all the req-
uisite properties needed to inherit the same guarantees as
(Euclidean) GCS for a certain class of robot configuration
spaces, encompassing open kinematic chains with contin-
uous revolute joints and mobile bases. In this case, our
theoretical developments lead to simple and elegant mod-
ifications to the original GcsTrajOpt. We entitle this gen-
eralization GGCS Trajectory Optimization (abbreviated as
GgcsTrajOpt), and demonstrate its efficacy with several
challenging motion planning experiments.

2. Related work

In the world of continuous motion planning around ob-
stacles, most popular techniques fall into two categories:
sampling-based planners and trajectory optimizers.

Sampling-based motion planners partially cover C-Free
with a large number of discrete samples. Two of the
foundational sampling-based planning algorithms are
Probabilistic Roadmaps (PRMs) (Kavraki et al., 1996) and
Rapidly-Exploring Random Trees (RRTs) (LaValle, 1998).
Such algorithms are probabilistically complete, that is, with
enough samples, they will always find a valid path (if one
exists). However, these algorithms are only effective if a
valid plan can be produced with a reasonable number of
samples. Hence, the “curse of dimensionality” is a potential
obstacle to sampling-based planning, and such techniques

have struggled with high-dimensional problems such as
bimanual manipulation. In most cases, planning for bi-
manual tasks is accomplished by planning for one arm, then
planning the second arm independently while treating the
first arm as a dynamic obstacle. This is a reasonable heu-
ristic for some tasks, but it sacrifices even probabilistic
completeness.

An alternative approach is to formulate motion planning
as an optimization problem. This requires parametrizing the
space of all trajectories and defining constraints and cost
functions that describe the suitability of each trajectory.
Examples of kinematic trajectory optimization include B-
spline parametrizations using constrained optimization
(Tedrake, 2022, §7.2), CHOMP (Zucker et al., 2013),
STOMP (Kalakrishnan et al., 2011), and KOMO (Toussaint,
2014). Trajectory optimization approaches do not suffer
from the curse of dimensionality, and are suitable for much
more complex robotic systems. But the optimization
landscape is inherently nonconvex, so trajectory optimi-
zation methods cannot guarantee global optimality, and
often fail to produce feasible trajectories altogether.

The use of mixed integer programming (MIP) to solve
motion planning problems to global optimality has recently
seen an increase in popularity as new theoretical results,
greater computational resources, and powerful commercial
solvers (Gurobi Optimization LLC, 2023; MOSEK ApS,
2019) have been brought to bear. The survey paper of Ioan
et al. (2021) provides an overview of the use of MIP in
motion planning. Besides the work of Marcucci et al.
(2021), Landry et al. (2016) used MIP to plan aggressive
quadrotor flights through obstacle-dense environments.
MIP has been used to plan footstep locations for humanoid
robots (Deits and Tedrake, 2014) and for quadrupeds
(Aceituno-Cabezas et al., 2017; Valenzuela, 2016). Dai et al.
(2019) used MIP to globally solve the inverse kinematics
problem. Finally, MIP has seen extensive use in hybrid task
and motion planning (Adu-Bredu et al., 2022; Chen et al.,
2022; Saha and Julius, 2017; Tika et al., 2022; Yi et al.,
2022).

Mixed integer programs can take a long time to solve in
the worst case, but it is often possible to mitigate this
problem with appropriate relaxations or approximations
(Marcucci et al., 2023; Suh et al., 2020). GCS in particular
uses an MIP formulation with a small number of integer
variables, making branch-and-bound tractable. Further-
more, the convex relaxation is tight, enabling efficient
approximation by solving only a convex problem combined
with a randomized rounding strategy. Marcucci et al. (2023)
argued that for single-arm manipulators, this approach can
find more optimal plans in less time than PRMs. These
valuable properties carry over to our extension of GCS.

Another recent trend in motion planning has been the use
of Riemannian geometry to model the problem. Riemannian
Motion Policies (RMPs) (Ratliff et al., 2018) combine
acceleration-based controllers across different task spaces
into a single unified controller. A Riemannian metric in each
task space determines the priority of a given controller, and
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smooth maps between the manifolds enable the averaging of
controllers. RMPs have seen continued improvement
(Cheng et al., 2018; Rana et al., 2021) and generalization
(Bylard et al., 2021; VanWyk et al., 2022). However, RMPs
and their extensions are still known to struggle with local
minima, similar to nonconvex trajectory optimizers. Klein
et al. (2022) envision Riemannian geometry as a tool for
generating and combining elegant motion synergies for
complex robotic systems.

One can solve optimization problems in these spaces
with rigorous guarantees by using a generalization of
convexity to Riemannian manifolds, called geodesic con-
vexity (g-convexity). Unfortunately, existing research into
g-convex optimization often focuses on specific classes of
manifolds that do not encompass the configuration spaces of
interest (Bacak, 2014; Zhang and Sra, 2016). In addition,
there is little existing literature studying mixed-integer
Riemannian convex optimization, and techniques com-
monly used in the Euclidean case, such as cutting planes
(Marchand et al., 2002), may not generalize to Riemannian
manifolds.

3. Preliminaries

In this section, we cover some of the relevant mathematical
background. We supply intuitive definitions; for further
reference on Riemannian geometry, see the textbooks of Do
Carmo (1992) and Lee (2013, 2018). Boumal (2022)
provides an excellent treatment of optimization over
manifolds. We use the notation ½n� ¼ 1,…, nf g.

3.1. Riemannian geometry

A d-dimensional (topological) manifold M is a locally
Euclidean topological space: for any p2M, there is an open
neighborhood U of p and a continuous map ψ :U→R

d

which is a homeomorphism onto its image. The pair ðU ,ψUÞ
is called a coordinate chart, and for any pair of overlapping
charts ðU,ψUÞ and ðV,ψVÞ, we have a transition map

τU ,V ¼ ψV◦ψ�1
U
��
ψU ðU\VÞ

: (1)

A collection of charts whose domains cover the manifold
is called an atlas. We only consider C∞-smooth manifolds,
where all transition maps in the atlas are C∞.

For each p2M, the tangent space TpM is a d-di-
mensional vector space representing the set of directional
derivatives at p. Given a differentiable curve
γ : ð�ϵ, ϵÞ→M with p = γ(0), this affords an interpretation
of the velocity of γ at p, γ0(0), as an element of TpM. For a
smooth map of manifolds f :M→N , the pushforward of f
at p is a linear map f

*, p
: TpM→ Tf ðpÞN , generalizing the

Jacobian matrix (Lee, 2013: 55). The pushforward is defined
so that, with γ defined as above, f

*,p
(γ0(0)) = ( f◦γ)0(0).

A Riemannian metric g is a smoothly-varying positive-
definite bilinear form overM that gives each tangent space

TpM an inner product �, �h iðM, gÞ
p . This inner product

induces a norm

vj jj jp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v, vh iðM, gÞ

p

q
(2)

for v2TpM. The pair ðM, gÞ is a Riemannian manifold,
and we frequently refer to M exclusively when the choice
of metric is unambiguous. (Similarly, we drop the super-
script from the Riemannian inner product and norm when
the choice of manifold and metric is unambiguous.) A
Riemannian metric allows one to measure the length of a
curve, invariant to reparametrizations (Lee, 2018: 34); if
γ : ½a, b�→M is piecewise continuously differentiable, then

LðγÞ ¼
Z b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0ðsÞ, γ0ðsÞh iðM, gÞ

γðsÞ

q
ds: (3)

We call the integrand the speed of γ. The distance be-
tween any two points p, q2M is defined as the infimum of
the arc length of all curves connecting them,

dMðp, qÞ ¼
inf LðγÞjγ2C1

pwð½0; 1�,MÞ, γð0Þ ¼ p, γð1Þ ¼ q
n o

,
(4)

where C1pwð½0; 1�,MÞ is the set of parametric piecewise-
continuously differentiable curves from the interval [0, 1] to
M. A curve that achieves this infimum need not exist in
general (Do Carmo, 1992: 146). We also define dUðp, qÞ for
p, q2U4M to be the infimum of the length of paths whose
image is contained in U.

IfM is connected, it is a metric space with respect to dM.
Given two Riemannian manifolds ðM, gÞ and ðN , hÞ, a
smooth function f :M→N is a local isometry if

u, vh iðM, gÞ
p ¼ f

*, p
ðuÞ, f

*, p
ðvÞ

D EðN , hÞ

f ðpÞ
(5)

"p2M, "u, v2TpM. If f is also a diffeomorphism, and
M and N are connected, then f preserves distances (Lee,
2018: 37), and is an isometry of metric spaces. The converse
is also true (Myers and Steenrod, 1939).

A geodesic is a locally length-minimizing curve, pa-
rameterized to be constant speed. Locally length-
minimizing means that for two points on the geodesic
that are close enough, the geodesic traces out the shortest
path between them. For example, geodesics in Euclidean
space with the natural metric are lines, rays, and line
segments, and geodesics on the sphere (with the induced
metric from Euclidean space) are great circles. Constructing
the shortest geodesic between two points is a variational
calculus problem, so the solution must satisfy the Euler–
Lagrange system of differential equations. Thus, initial
conditions p2M and v2TpM uniquely define a geodesic,
such that v is the velocity of the geodesic as it passes through
p. This is used to define the exponential map
expp : TpM→M, where the direction of a vector v defines
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the direction of the geodesic, and the magnitude of v de-
termines how far to move in that direction away from p.

A Riemannian metric induces curvature on a manifold,
capturing how local geometry differs from the standard
Euclidean case. The sectional curvature at a point p is a real-
valued function defined on two-dimensional subspaces of
the tangent space TpM (Do Carmo, 1992, §4.3). (We write
Kðu, vÞ for any vectors u and v that span the subspace).
Informally, the sectional curvature corresponds to the dis-
tortion of angles in triangles, as shown in Figure 1. Man-
ifolds that have everywhere-zero curvature are called flat,
and are locally isometric to Euclidean space.

The Cartesian product of two Riemannian manifolds is
itself a Riemannian manifold. The curvature of the com-
ponent manifolds influences the curvature of the product.
Importantly, the product of flat manifolds is flat (Atceken
and Keles, 2003). As we explain in Section 5, this implies
that a robot with a mobile base and (potentially many)
continuous revolute joints has a flat configuration space.

3.2. Convex analysis on manifolds

To define convexity on a Riemannian manifold ðM, gÞ, we
replace the notion of lines with geodesics. In general, there
is not a unique geodesic (or even a unique shortest geodesic)
between two points, so a more intricate definition is re-
quired. A subset U4M is strongly geodesically convex (or
g-convex) if "p, q2U, there is a unique length-minimizing
geodesic connecting p and q, and it is entirely contained in
U. This definition ensures that the intersection of g-convex
sets is g-convex, and that there is a unique shortest path
between any pair of points in a g-convex set. Weaker
definitions used in other works (Vishnoi, 2018; Zhang and
Sra, 2016) do not provide these guarantees. Boumal (2022,
§11.3) presents a detailed comparison of the various defi-
nitions of geodesic convexity.

G-convex neighborhoods exist around every point (Do
Carmo, 1992: 77). For any p2M, there is a convexity
radius rp > 0, such that the open ball

BrðpÞ ¼ exppðqÞ j q2TpM, qj jj jp < r
n o

(6)

is g-convex for any r < rp (where the norm is induced by the
Riemannian metric). Intuitively, the convexity radius
quantifies how large a set can be before minimizing

geodesics can go “the wrong way around” the manifold. On
the product of two Riemannian manifolds, each geodesic is
naturally the product of geodesics on its components. Thus,
the product of g-convex sets is g-convex in the product
manifold.

A function f :M→R is said to be geodesically convex
(g-convex) on U4M if, for any geodesic γ : ½0; 1�→U,
( f◦γ) is a convex function on [0, 1]. That is, "t 2 [0, 1],

f ðγðtÞÞ ≤ ð1� tÞf ðγð0ÞÞ þ tf ðγð1ÞÞ: (7)

The primary manifolds of interest in this paper are
compact, which presents a major obstacle to using g-con-
vexity. IfM is compact and f :M→R is g-convex on all of
M, then fmust be constant on each connected component of
M (Boumal, 2022, Cor. 11.10). For example, consider the
function which returns the squared geodesic distance from a
given point to (0, 1) on the unit circle. This function attains a
local maximum at the point (0, �1), so it is clearly not
g-convex. However, it is g-convex when restricted to the
subset of points on the circle with positive y-value.

We say that f is locally g-convex if for any p2M, there
exists a neighborhood Up of p such that the restriction of f to
U is g-convex. We make careful use of local g-convexity in
our optimization framework: given a locally g-convex
objective function f, we construct an atlas such that f is
g-convex when restricted to each chart. Importantly, the
geodesic distance function dM2 is locally g-convex if M is
flat.

3.3. Shortest paths in graphs of convex sets

A Graph of Convex Sets is a directed graph G = (V, E)
together with associated convex sets X v, "v 2 V, and
nonnegative convex functionsle :Xu ×X v →R, "e = (u, v)
2 E. Given two vertices p, q 2 V, a path π from p to q is a

sequence of distinct vertices ðvkÞKk¼0 such that v0 = p, vK = q,
and (vk�1, vk) 2 E, "k 2 [K]. The shortest path problem
entails finding a path π from p to q, along with continuous
variables

xπ ¼ ðx0,…, xKÞ 2X πd∏
K

k¼0
X vk , (8)

so as to achieve a minimum length, which is defined to be

lπðxπÞ ¼
XK
k¼1

lðvk�1, vk Þðxvk�1, xvkÞ: (9)

If we let Π describe the set of paths from p to q, then the
shortest path problem on a graph of convex sets can be
concisely stated as

min
π2Π

min
xπ2Xπ

lπðxπÞ: (10)

This formulation implicitly admits edge constraints of
the form ðxu, xvÞ 2Xðu, vÞ, where Xðu, vÞ is convex, by de-
finingl(u,v)(xu, xv) = ∞ for ðxu, xvÞÏXðu, vÞ. Vertex costs are

Figure 1. Examples of geodesic triangles Ti in manifoldsMi with
various sectional curvatures. In positive curvature spaces, the
interior angles sum to more than 180°, and the edges bow
outwards. The opposite is true in negative curvature spaces. (a)
Positive. (b) Zero (flat). (c) Negative.
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also admissible, as they can be applied as edge costs to all
outgoing edges.

Marcucci et al. (2021) presented a mixed-integer non-
linear programming (MINLP) formulation of this problem,
and then constructed a tight mixed-integer convex re-
formulation. The MINLP formulation builds upon the
standard formulation of a graph shortest path problem as a
network flow problem (Hillier and Lieberman, 2015: 387).
Associate to each e 2 E a flow variable λe 2 0; 1f g, and let

Eout
v (resp. Ein

v ) denote the outgoing (resp. incoming) edges
of a vertex v 2 V. Then the shortest path problem can be
written as the network flow problem

min
X

e¼ðu, vÞ2E
λeleðxu, xvÞ

s:t:
X
e2Eoutp

λe ¼
X
e2Einq

λe ¼ 1,

X
e2Eoutv

λe ¼
X
e2Einv

λe, "v2Vn p, qf g,

xv 2X v, "v2V ,

λe 2 0; 1f g, "e2E:

(11)

When this problem is solved to optimality, the nonzero
flow variables will describe a path π, and the corresponding
xπ will be optimal for (10).

The product terms λele(xu, xv) make the objective
function nonconvex. Marcucci et al. (2021) describes a
tight mixed-integer convex reformulation of (11), which
can be handled by standard mathematical optimization
solvers, including Gurobi Optimization LLC (2023) and
MOSEK ApS (2019). Furthermore, the convex relaxa-
tion of this MICP (obtained by replacing the constraints
λe 2 0; 1f g with λe 2 [0, 1], "e 2 E) is generally very
tight.

Building off of this fact, Marcucci et al. (2023) presented
a heuristic strategy for quickly obtaining suboptimal so-
lutions. If the optimal value of each flow variable (from the
convex relaxation) is interpreted as the likelihood that the
shortest path traverses that edge, one can obtain candidate
paths via a randomized depth-first search. For each can-
didate path π, one solves a small convex program to de-
termine the optimal xπ, and the best such path is returned.
This approach generally produces high quality trajectories
for motion planning problems, although they may not be
globally optimal.

4. Problem statement

We may now precisely state our kinematic planning
problem in the language of Riemannian geometry devel-
oped thus far. Let ðQ, gÞ be the configuration space of a
robot, realized as a connected Riemannian manifold, and
further assume that Q is complete (Lee, 2013: 598) with
respect to the metric induced by g. Suppose that the set of
collision-free configurations is a bounded open subset

M4Q, and without loss of generality, assume that M is
path-connected. (If M is not path-connected, then we re-
strict ourselves to planning within a single connected
component).

Suppose we want to find the shortest path between two
points p and q in M, the closure of M (i.e., the smallest
closed set containing M). This can be written as the op-
timization problem

argmin LðγÞ
s:t: γ2C1

pwð½0; 1�,MÞ,
γð0Þ ¼ p,

γð1Þ ¼ q,

(12)

where L is the Riemannian arc length, given in eq. (3). In the
following sections, we develop machinery to solve opti-
mization problems of this form.

5. Graphs of geodesically convex sets

We now introduce a graph of geodesically convex sets
(GGCS), a Riemannian optimization framework that, in
Section 6, we show is general enough to encompass Problem
(12). A GGCS is a directed graph G = (V, E) with certain
properties, designed as a generalization of ordinary (Eu-
clidean) GCS fromMarcucci et al. (2021, §2) to Riemannian
manifolds. The definition of a GGCS closely mirrors that of a
GCS, as described in Subsection 3.3. Each vertex v 2 V has a
corresponding g-convex subset Yv of some Riemannian
manifold ðMv, gvÞ. With each edge e = (u, v) 2 E, we as-

sociate a cost functionlY
e :Yu ×Yv →R≥0[ ∞f g, which must

be g-convex with respect to the product metric onMu ×Mv.
For all problems considered in this paper, every g-convex set
will be a subset of a single Riemannian manifold.

Given distinct source and target vertices p, q 2 V, a
path π from p to q is a sequence of distinct vertices

ðvkÞKk¼0 such that v0 = p, vK = q, and (vk�1, vk) 2 E for all k
2 [K]. Associate to this path a sequence of points yπ =
(y0, …, yK) such that each yv 2Yv; then the length of this
path is

lY
π ðyπÞ ¼

XK
k¼1

lY
ðvk�1, vk Þðyk�1, ykÞ: (13)

LetΠ denote the set of all paths from p to q, and for any π
2 Π, define its feasible vertices as Yπ ¼ Yv0 ×/ ×YvK . The
problem of finding the shortest path from p to q can be
written as

min
π2Π

min
yπ2Yπ

lY
π ðyπÞ: (14)

Note that any GCS is an instance of a GGCS, since we can
take each ðMv, gvÞ to be an ordinary Euclidean space.

Solving Problem (14) to optimality is intractable in
complete generality, so we propose to transform it into an
ordinary GCS problem. To each v 2 V, associate a chart ψv,
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and define X v ¼ ψvðYvÞ. For each edge e = (u, v) 2 E, we
define the edge cost on ðxu, xvÞ 2X u ×X v:

leðxu, xvÞ ¼lY
e ðψ�1

u ðxuÞ,ψ�1
v ðxvÞÞ: (15)

This construction is shown in Figure 2. To apply the GCS
machinery, we require that the sets X v and edge costsle(xu,
xv) are convex. As we show in Subsection 6.5, this is
hopeless for manifolds with positive curvature. Luckily, for
flat manifolds, convexity can be ensured, as will be shown
in Subsection 6.1.

Importantly, many robot configuration spaces can be
realized as flat manifolds. SE (2) is flat, all one-dimensional
manifolds are flat (Lee, 2018: 47) (this encompasses con-
tinuous revolute joints), and products of flat manifolds are
flat. Thus, any robotic system whose configuration can be
described using a series of single-degree-of-freedom joints
(and potentially a mobile base) will have a flat configuration
space, and thus can be handled by our methodology. 2-DoF
universal joints can also be handled, as they can be perfectly
represented as two juxtaposed 1-DoF joints. 3-DoF ball
joints cannot be handled perfectly, because decomposing a
ball joint into 1-DoF joints distorts the underlying geometry.
Instead, one can use a piecewise-linear approximation of
this configuration space—see Subsection 6.5 for further
discussion. The configuration spaces of certain closed
linkages can be explicitly represented as a flat manifold; one
constructs a parametrization, and defines the metric on the
manifold as the pushforward of the metric in Euclidean
space Cohn et al. (2024). Like decomposing a ball joint into
1-DoF revolute joints, this distorts the underlying geometry,
so the optimal solutions of the resulting GGCS problem will
not be the true shortest paths according to the original
metric.

6. Motion planning with GGCS

Wewant to use GGCS to make motion plans on Riemannian
manifolds by solving Problem (12). Thus, we must prove
that the optimal value is achieved by some trajectory that is
feasible for a GGCS problem. We use the initialism ROSC

(Riemannian Open Subset Closure) to describe closures of
open subsets of Riemannian manifolds, notablyM. ROSCs
are topological manifolds-with-boundary, but the boundary
may not be smooth; for example, polytopic obstacles lead to
corners on the boundary of M. The theory of manifolds-
with-corners is not well developed in full generality, so for
the sake of completeness, we confirm some expected
properties of paths through ROSCs.

Theorem 1. (Existence of Optimal Trajectories) For
any p, q2M, there exists a continuous curve γ con-
necting them such that LðγÞ ¼ dðp, qÞ.
Proof. The proof follows by verifying that M satisfies
the preconditions of Theorem 2.5.23 of Burago et al.
(2001: 50). We defer the details to Appendix A.1.
Assumption 1. We are given a finite atlas
A ¼ ðZv,ψvÞf gv2V of M, and nonempty open sets

Yv4Zv. For each v, the closure Yv is g-convex as a
subset of Q, and we have Yv4Zv. Additionally,
[v2VYv ¼ M.

These requirements will not hold in general, but we will
discuss how to construct such an atlas in Subsection 6.2.
With this information, we can prove a strong result about the
shortest paths in M.

Theorem 2. (Piecewise Geodesic Optimal Paths) Let
p, q2M, and suppose the sets Yv satisfy Assumption 1.
Then there is a curve γ* 2C1pwð½a, b�,MÞ connecting

them, such that the following are true:

· Lðγ*Þ ¼ dðp, qÞ.
· γ* is a piecewise geodesic of Q.
· Each geodesic segment is contained in some Yv.
· γ* passes through each Yv at most once.

Proof. Let γ0 be a continuous minimizing path con-
necting p to q (guaranteed to exist by Theorem 1); we
will use this to construct an appropriate γ*. Select an
arbitrary order v1,…, v Vj j to iterate over all of the vertices
in V. We will construct a sequence of curves γ1,…, γ Vj j,

such that γ Vj j has the desired properties.

For each i, if γi�1 does not pass through Yvi, let γi = γi�1.
Otherwise, let Ti ¼ t j γi�1ðtÞ 2Yvi

� �
, let a0i ¼ minðTiÞ, and

let b0i ¼ maxðTiÞ. Then by the g-convexity of Yvi, there is a

unique minimizing geodesic αi : ½a0i, b0i�→Yvi connecting
γi�1ða0iÞ and γi�1ðb0iÞ. Let γi be a new curve, defined by

γiðtÞ ¼
γi�1ðtÞ t Ï ½a0i, b0i�
αiðtÞ t 2 ½a0i, b0i�

�
: (16)

Because LðαiÞ ≤ Lðγi�1j½a0i , b0i�Þ, we have L(γi) ≤ L(γi�1), and
since γi�1 is of minimum length, we must have L(γi) = L
(γi�1). Continue until we have iterated over all of the v 2 V.
Then by construction, Lðγ Vj jÞ ¼ dðp, qÞ, γ Vj j is piecewise
geodesic in Q, each geodesic segment is contained in some
Yv, and γ Vj j passes through each Yv at most once.

Figure 2. Moving edges and sets from Riemannian manifolds to
Euclidean spaces with coordinate charts. In this diagram, Yu and
Yv are visualized as part of the same Riemannian manifold,
although this need not be true in general.
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6.1. Formulation as a GCS problem

To transform the GGCS problem into a GCS problem, we
require that the sets and edge costs are convex in Euclidean
space. The following is sufficient (and still encompasses
robots with mobile bases and continuous revolute joints):

Assumption 2. Q is flat. Also, each ψv is a local isometry
into Euclidean space, viewed as a Riemannian manifold
with the canonical Euclidean metric.

Assumptions 1 and 2 together yield three important
results:

· X v ¼ ψvðYvÞ is convex
· "y0, y1 2Yv, dðy0, y1Þ ¼ ψvðy0Þ � ψvðy1Þj jj j2
· τu,v is a Euclidean isometry (see Lemma 4 in

Appendix A.2), and hence affine (Väisälä, 2003).

The first two results are true because Yv is g-convex, ψv

maps geodesics to geodesics (Lee, 2018: 125), and geo-
desics are unique in Euclidean space. For most robotic
configuration spaces we consider, Q can be decomposed as
the product of one-dimensional manifolds. In this case, the
coordinate systems can be globally aligned, so that every
transition map is a translation.

To formulate the problem with GCS, we follow an
approach similar to Marcucci et al. (2023), where deci-
sion variables describe line segments contained within
each convex set. For each set Yv, there is a corresponding
vertex v 2 V, whose convex set in the GCS is X 2

v .

"v2Vn vp, vq
� �

, we have xv ¼ ðxv, 0, xv, 1Þ 2X 2
v , where xv,0

is the start point of the line segment, and xv,1 is the end
point. The edge set is

E ¼ ðu, vÞ j Yu \Yv ≠ Ø
� �

: (17)

Recall that edges are directed, so if two sets Yu and Yv

intersect, then (u, v), (v, u) 2 E. For each edge e = (u, v) 2 E,
we define the edge cost to be the length of the segment
associated with the starting vertex,

leðxu, xvÞ ¼ dðψ�1
u ðxu, 0Þ,ψ�1

u ðxu, 1ÞÞ ¼ xu, 0 � xu, 1j jj j2:
(18)

This will ensure that the optimal solution has minimal
arc length among all possible feasible trajectories, as
shown in Theorem 3. We also encode equality constraints
to ensure the endpoints of adjacent segments are in
agreement:

ψ�1
u ðxu, 1Þ ¼ ψ�1

v ðxv, 0Þ 5 τu, vðxu, 1Þ ¼ xv, 0: (19)

This constraint is convex because τu,v is affine.
Let p, q2M be the start and goal points, and suppose

p2Yv0 and q2Yv1. We define a new vertex set
V 0 ¼ V [ vp, vq

� �
, where vp and vq are associated with the

convex set ψv0ðpÞ
� �

and ψv1ðqÞ
� �

, respectively. The

corresponding edge set is E0 ¼ E [ ðvp, v0Þ, ðv1, vqÞ
� �

.
Both (vp, v0) and (v1, vq) have equality constraint (19).lðv1, vqÞ
is defined as in (18), andlðvp, v0Þ is defined to be zero. Thus,
the cost of the final g-convex set traversed by a trajectory is
represented by the edge cost from that set to the “goal”
vertex. The start and goal positions are fixed by the equality
constraints on the new edges.

Altogether, the sets and edges above describe the fol-
lowing GCS problem:

min
X

v2πn vp , vqf g
xv, 0 � xv, 1j jj j2

s:t: π ¼ ðvp, v0,…, vK , vqÞ 2Π,

xv, 0, xv, 1 2X v, "v2V ,

τvi�1, viðxvi�1, 1Þ ¼ xvi , 0, "i2 ½K�,
xv0, 0 ¼ ψ�1

v0
ðpÞ,

xvK , 1 ¼ ψ�1
vK
ðqÞ,

(20)

where Π denotes the set of all paths in (V0, E0) from vp to vq.
(20) closely mirrors the original optimization problem (12)
that we sought to solve. The objective function penalizes the
length of a path; the remaining constraints enforce conti-
nuity, differentiability at all but finitely many points, and the
start and goal points.

By using the relaxation strategy of Marcucci et al.
(2021), (20) can be solved as a mixed-integer convex
program. Alternatively, it can be solved approximately by
solving the convex relaxation and using a randomized
rounding strategy (Marcucci et al., 2023). After solving the
GCS problem, we obtain a path

xπ ¼ ðx0;0, x0;1, x1;0, x1;1,…, xK, 0, xK, 1Þ (21)

with x0,0 = ψ0(p), xK,1 = ψK(q), and ψi(xi,1) = ψi+1(xi+1,0),
"i2 1,…,K � 1f g. Such a path naturally lifts to a path on
M,

yπ ¼ ðy0 ¼ p, y1, y2,…, yK , yKþ1 ¼ qÞ
¼ ðψ�1

0 ðx0;0Þ,ψ�1
1 ðx1;0Þ,…,ψ�1

K ðxK, 0Þ,ψ�1
K ðxK, 1ÞÞ,

(22)

where we have removed duplicate points from the trajec-
tory, as ψ�1

i�1ðxi�1;1Þ ¼ ψ�1
i ðxi, 0Þ for each i 2 [K]. This

process is visualized for a simple cylinder manifold
S
1 × ½0; 1� in Figure 3.
For each i2 0,…,Kf g, yi and yi+1 are contained in a g-

convex set Yi, so there is a unique minimizing geodesic γi
connecting them and completely contained in Yi. Thus, a
path yπ uniquely defines a piecewise geodesic γπ connecting
p to q that is completely contained inM. With this fact, we
can formally prove the equivalence of the GGCS problem
and the GCS problem.

Theorem 3. (Proof of Problem Equivalence) If the path
xπ given in eq. (21) is optimal for the GCS problem
defined by eqs. (18) and (19), then the piecewise geodesic
γπ defined by eq. (22) is optimal for Problem (12).
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Proof. The proof strategy is as follows. First, we show that
feasible solutions to the GCS problem have cost greater than
or equal to the optimal solution for Problem (12). Then, we
show that optimal solutions for Problem (12) are feasible
solutions to the GCS problem. Thus, optimal solutions to the
GCS problem are optimal solutions to Problem (12).
In particular, any feasible path xπ for the GCS problem

yields a piecewise continuously differentiable curve γπ
whose image is contained inM and connecting p to q. Then
the length of this curve satisfies

LðγπÞ ¼
XK
i¼0

dðyi, yiþ1Þ ¼
XK
i¼0

xi, 0 � xi, 1j jj j2 ¼lπðxπÞ:

Thus, the optimal value of Problem (12) is no worse than
the optimal value of the GCS problem.

Now, consider an optimal γ* for Problem (12), with the
properties of Theorem 2. Then γ* is the concatenation of
geodesics γ1, …, γK, where γi : ½0; 1�→Yvi for i = 1, …, K,
and each vi is distinct. Define xπ by

ðxi, 0, xi, 1Þ ¼ ψiðγið0ÞÞ,ψiðγið1ÞÞð Þ,

"i 2 [K]. By construction,lπ(xπ) = L(γ*). γi(1) = γi+1(0), and
the vi are distinct, so xπ is feasible for the GCS problem.

Thus, the GCS problem achieves the optimal value of
Problem (12).

6.2. Construction of the atlas

A key part of motion planning with GGCS is the con-
struction of an appropriate atlas A ¼ ðZv,ψvÞf gv2V of M
and sets Yv. Recall thatAmust be finite, each Yv must be g-
convex, and each ψv must be a local isometry. Here, we
present a procedure for constructing such an atlas for a robot
with continuous revolute joints (and potentially a mobile
base).

As in Marcucci et al. (2023), we construct an inner
approximation of C-Free using the extension of IRIS
(Amice et al., 2023, Alg. 2) to handle nonconvex obstacles.
This algorithm takes in a “seed” point and grows a convex
collision-free polytope around it, but it is only applicable to
robots with joint limits. Given a seed point in Q, we add
artificial joint limits to all continuous revolute joints (and the
rotational degree of freedom of the mobile base, if it is
present). In this way, we grow the region in Euclidean space,
but we have an implicit mapping to the manifold, allowing
us to construct the transition maps needed for (19).

To ensure the set is g-convex when lifted toQ, we bound
the region by the convexity radius on a per-joint basis. If ri is
the convexity radius of the ith joint’s configuration space,
we constrain that joint to take values within an open ball of
radius ri, centered at the seed point. (Computationally, we
use a closed ball of radius ri � ϵ, with a small ϵ > 0).

Consider the case of the cylinder manifold S
1 × ½0; 1�

shown in Figure 3. Representing S
1 as the unit circle with

circumference 2π, the convexity radius along the first di-
mension is π/2, and the convexity radius along the second
dimension is infinite. Thus, at least three g-convex sets are
necessary to cover the manifold. The sets shown in Figure 3
are of the form [x + ϵ, x + π/3 � ϵ], for x2 0, π=3; 2π=3f g
and a small positive constant ϵ.

For revolute joints without limits and the rotational
degree of freedom of mobile bases, the convexity radius is
π/2 (as their configuration space is precisely S

1). For a 1-
DoF joint, the closed ball that must bound the set is just the
interval [x � ri + ϵ, x + ri � ϵ], where x is the given seed
point. If the manifold is flat, this guarantees g-convexity
(see proof in Appendix A.2).

Theorem 4. SupposeQ ¼ Q1 ×/×Qm, where eachQi

has a convexity radius ri. Let ðZ,ψÞ be a coordinate
chart, Y4Z as in Assumption 1, with ψ a local isometry
and ψðYÞ convex in Euclidean space. IfQ is flat and the
diameter of projQi

ðYÞ is less than 2ri for each i 2 [m],

then Y is g-convex.

Given two regions X u and X v generated by this ap-
proach, we must determine if they intersect onQ, and if so,
what their transition map is. We compute the corresponding
axis-aligned bounding boxes Bu and Bv. Along each di-
mension i corresponding to a continuous revolute joint, we

Figure 3. The process of transforming a GGCS problem into a
GCS problem for a simple cylinder manifold. Each of the three
charts maps to a Euclidean space, with transition maps encoding
the equality constraints across chart domains. The line segments
then lift to a piecewise geodesic on the manifold.
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search for an offset o such that ðBu þ oÞ \Bv ≠ Ø. The ith
component of o must be a multiple of 2π if the ith degree of
freedom is a continuous revolute joint (or corresponds to the
rotational degree of of freedom of the mobile base); oth-
erwise, oi must be 0.

If such an o exists, we then solve the small convex
program

find x
s:t: x2X u,

xþ o2X v:
(23)

If such an x exists, then the regions overlap, and their
transition map is xu1xu + o. If no such offset exists, or if
(23) returns infeasible, then the regions do not overlap.

We also assumed full coverage ofM by the union of the
Yv. In scenarios where we only have an inner approximation
of C-Free, we treat all points outside of that approximation
as obstacles. Thus, our planner finds the globally optimal
path within “certified” C-Free, which is a subset of the
whole C-Free.

In general, the computational complexity of the resulting
GCS problem grows with both the number of g-convex sets
and the density of their overlap graph. So atlases with fewer,
larger sets generally lead to faster solve times. Methods used
for generating individual convex subsets of C-Free gener-
ally attempt to maximize the volume of the resulting sets
(Amice et al., 2023; Deits and Tedrake, 2015; Petersen and
Tedrake, 2023; Yang and Lavalle, 2004). Werner et al.
(2024) attempt to construct an inner covering of an arbi-
trarily high fraction of C-Free with as few convex sets as
possible. Wu et al. (2024) attempt to cover the part of C-Free
surrounding a known collision-free trajectory, toward im-
proving that path. In general, building an approximation of
C-Free that is ideal for motion planning is an area of active
research that is beyond the scope of this paper.

6.3. Additional costs and constraints

Marcucci et al. (2023) extended GcsTrajOpt to parametrize
trajectories as piecewise Bézier curves, in order to handle a
greater variety of costs and constraints. This includes pe-
nalizing the duration and energy of a trajectory, adding
velocity bounds, and requiring the trajectory to be differ-
entiable a certain number of times. Bézier curves generalize
naturally to Riemannian manifolds by interpolating along
the minimizing geodesics between control points (Park and
Ravani, 1995; Popiel and Noakes, 2007). Because we re-
strict ourselves to flat manifolds, the local geometry is
unchanged from Euclidean space. Thus, all costs and
constraints that operate on individual segments of the
piecewise Bézier curve trajectory can be used with no
changes.

To enforce the differentiability of the overall trajectory
where two segments connect, we must compare tangent
vectors across different coordinate systems. In particular,
suppose we need differentiability η times for an edge (i, j),

with transition map τi,j. Let γi and γj be adjoining Bézier
curve segments in Yi and Y j, and let their kth derivatives be

νðkÞi and νðkÞj at the point where they connect, called w. Using
the pushforward of the transition map at w, this constraint
can be written as

ðτi, jÞ*,ψ�1
i ðwÞ νðkÞi

� �
¼ νðkÞj , "l2 ½η�: (24)

Because the transition map is a Euclidean isometry, its
pushforward is a linear transformation described by an
orthogonal matrix, and if the coordinate systems are
globally aligned (as described in Subsection 6.1), then the
pushforward is the identity map. When Q is flat, the de-
rivative of a Bézier curve is a linear expression of its control
points, so eq. (24) is a convex constraint.

6.4. Beyond flat manifolds

The guarantees afforded by GgcsTrajOpt derive from As-
sumptions 1 and 2. Assumption 1 affects the completeness
and optimality of the algorithm, and it may be impossible to
construct an appropriate atlas if the boundary ofM is not a
piecewise-totally-geodesic submanifold. However, we can
always construct a finite atlas of g-convex sets to cover all
but an arbitrarily small subset ofM. In practice, we simply
work with an inner approximation of M, and GgcsTrajOpt
will find the shortest path contained within that inner
approximation.

Assumption 2 is used to guarantee that the resulting
optimization problem is convex; without it, we may have
nonconvex costs or constraints, and can make no guarantees
of finding an optimal (or even feasible) solution. But many
manifolds of interest in robotics do not satisfy these re-
quirements. Certain configuration spaces are inherently not
flat manifolds. Examples include SO(3), which is the
configuration space of a ball joint and SE(3), which is the
configuration space of a free rigid body. Planning problems
where general kinematic or dynamic constraints have been
imposed can also yield a constrained configuration space as
an embedded non-flat submanifold of the full configuration
space.

6.4.1. Piecewise-linear approximations. To handle arbi-
trary manifolds, we turn our attention to piecewise-linear
(PL) approximations. In particular, we consider a triangu-
lation of the manifold: a simplicial (or polytopic) mesh of
appropriate dimension whose topology matches the mani-
fold. For certain known manifolds, obtaining PL approxi-
mations is straightforward; for example, one can tessellate
the two-sphere by iteratively subdividing the faces of an
icosahedron, and lifting the new vertices to the surface
(Dahl et al., 2014, §2.B.1). For an arbitrary manifold which
has a known atlas, one can tessellate the image of each chart
in Euclidean space, and lift that tessellation to the manifold
(Cohn et al., 2022). For implicitly defined manifolds, there
is extensive literature on the method of continuation, where
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a single point known to lie on the manifold is used to
generate an explicit PL approximation (Dankowicz and
Schilder, 2013; Ghosh, 2012; Henderson, 2002). Contin-
uation in particular has been successfully integrated with
sampling-based motion planning algorithms, in order to
solve motion planning problems with nonlinear equality
constraints (Porta and Jaillet, 2010).

The GCS machinery can be used to plan along a PL
approximation; indeed, the original GCS paper directly
considers piecewise-affine systems (Marcucci et al., 2021,
§9.3). In the context of approximating a smooth manifold,
we will treat each simplex as a chart domain, replace the
transition map with the mapping between two adjacent
simplices, and approximate the arc length on the manifold
with the arc length along the PL approximation.

We consider a similar problem setup to Jaillet and Porta
(2013). The configuration space Q is a d-dimensional
embedded submanifold of Rn, defined as the zero level set
of a smooth function F :Rn →R

n�d whose Jacobian is full
rank everywhere. We are given a piecewise-linear ap-
proximation of Q composed of convex polytopes Pi4R

n.
For each polytope Pi, the orthogonal projection
ψi :M→ affðPiÞ (where aff ðPiÞ denotes the affine hull of
Pi) forms a coordinate chart when its domain is appro-
priately restricted, due to the quantitative implicit function
theorem (Liverani, 2019). As in Jaillet and Porta (2013), the
preimage of each polytope serves as a conservative ap-
proximation of the domain of the chart.

Given an atlas of Q, we can produce an atlas of M by
taking polytopic subsets of Pi, whose image is a collision-
free set. The IRIS algorithm naturally extends to growing
polytopic regions through a general nonlinear coordinate
chart (Cohn et al., 2024, §3.E). The nonlinear continuation
approaches used to generate the atlas ofQ do not enforce g-
convexity of the chart domains, but compactness ofM will
guarantee the convexity radius is finite, so we can simply
partition any oversized charts into g-convex pieces. We
label these new polytopes Pv, and obtain a finite atlas A ¼
ðZv,ψvÞf gv2V and sets Yv satisfying Assumption 1. For

convenience of notation, we define the inverse Ψv ¼ ψ�1
v ,

restricted to the appropriate domain.
We cannot satisfy Assumption 2, as Q may not be flat,

and the chart mappings ψv are not isometries. However,
our sets Pv are convex in Euclidean space, and we can
replace each transition map τu,v with the affine mapping
from one Pu to its neighbor Pv. Any point x on the
boundary between two polytopes Pu and Pv will be lifted
to two different representatives yu and yv on the manifold
by their corresponding charts. We ensure paths are well
defined as they cross the boundary between two polytopes
by requiring that

ΨuðPu \PvÞ4domψv:

We will leverage this fact in the procedure for lifting a
path xπ in the PL approximation to a path yπ onM. So if we

mirror the transformation procedure described in Subsection
6.1, we obtain a valid GCS problem.

Solving the shortest path problem on the PL approxi-
mation yields a path xπ as in (21). However, we generally do
not have Ψu(xu,1) = Ψv(xv,0), so the process for lifting to a
path yπ on M is more complex. For each i2 ½K� [ 0f g, we
define yi,0 = Ψi(xi,0) and yi,1 = Ψi(xi,1). We begin at y0,0 and
trace the minimizing geodesic from y0,0 toward y0,1. At the
transition from chart i � 1 to i, if yi�1;1 2ΨiðPiÞ, and if

ψiðyi�1;1Þ � xi, 1j jj j2 ≤ xi, 0 � xi, 1j jj j2,

then we trace the minimizing geodesic from yi�1,1 to yi,1.
Otherwise, we simply trace the minimizing geodesic from
yi�1,1 to yi,0 and then to yi,1.

Overall, solving the shortest path problem gives us a path
(x0,0, x0,1,…, xK,0, xK,1), where xi�1,1 = xi,0 for each i 2 [K].
We lift it to a sequence of waypoints (y0,0, y0,1, …, yK,0,
yK,1), where we may have yi�1,1 ≠ yi,0 for some i 2 [K].
Finally, for each i2 [K], if it would be shorter to skip yi,0 and
go straight from yi�1,1 to yi,1, we drop yi,0 from the path.
Such a “skip” occurs when paths along the PL approxi-
mation are longer than those along the manifold. As an
example, consider a circle manifold, inscribed within a
regular hexagon (which serves as the PL approximation). If
a path along the hexagon were projected onto the circle, then
traversing from yi�1,1 to yi,0 would require doubling back—
the path is shorter if one goes straight from yi�1,1 to yi,1.

We now endeavor to prove this GCS problem provides a
useful approximation of Problem (12). We introduce the
following notation to describe the length of a path along the
PL approximation:

LPLðxπÞ ¼
XK
i¼0

xi, 0 � xi, 1j jj j2: (25)

The PL approximation then becomes a metric space with
distance function dPL by taking the infimum of the arc
lengths, analogous to (4). Let p2Pp and q2Pq. Solving
our approximation to global optimality yields a path xπ*
whose length LPLðxπ*Þ is minimal among all paths xπ from p
to q. In practice, we use the relax-and-round strategy, so we
do not assume that LPLðxπ*Þ ¼ dPLðp, qÞ.

We will provide an upper bound on dðΨpðpÞ,ΨqðqÞÞ in
terms of LPLðxπ*Þ, K (xπ* traverses K + 1 sets per (21)), and
the following numerical quantities derived from the PL
approximation:

· ϵH: The maximum chart Hausdorff distance
maxi dH ðPi,ΨiðPiÞÞ.

· αmax: The largest principal angle (Knyazev and Zhu,
2012) between any pair of adjacent charts.

Hausdorff distance is a common metric to quantify the
difference between two approximations of a geometric
object (Cignoni et al., 1998). The largest principal angle
between charts, together with the radius of the smallest
chart, presents a coarse bound on the curvature of the
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manifold. Taking a finer discretization generally leads to
both quantities decreasing; for example, see Figure 4.
Furthermore, compactness of the manifold ensures that the
curvature is bounded, so ϵH and αmax can be made arbitrarily
small with finitely many charts.

We leverage two lemmata in deriving a global upper
bound on the path length (see proofs in Appendix A.3).

Lemma 1. Fix a chart ðZi,ψiÞ and points
x0, x1 2ψiðYiÞ. Let y0 = Ψi (x0) and y1 = Ψi (x1). Then

dðy0, y1Þ ≤ x0 � x1j jj j2 1þ max
x2ψiðYiÞ

DΨiðxÞ � Ij jj jop

 !
:

This demonstrates that the error within a chart is upper
bounded by how much the total derivative of the chart
mapping deviates from the identity mapping. When con-
structing charts as in Jaillet and Porta (2013), the polytope is
constructed so as to lie along the tangent space of some point
on the manifold. Thus, there is always some x2ψiðYiÞ such
that DΨ(x) = I. By smoothness, this entails that
maxx2ψðYÞ DΨðxÞ � Ij jj jop can be made arbitrary small by

using a finer atlas ðZv,ψvÞ and sets Yv whose images have
smaller diameter.

Still, an upper bound on the whole path across multiple
charts can also incur error along the chart transitions. This
is because we have replaced the transition maps with
approximations, so the portions of the path on the
manifold that cross the boundary between charts may be
collapsed to zero length. The following lemma quantifies
this error by projecting that portion of the path onto one of
the charts.

Lemma 2. For subsequent charts i, i + 1 traversed by xπ,

dðyi, 1, yiþ1;0Þ ≤ ϵH sin αmax

1þmax
x2Pi

DΨiðxÞ � Ij jj jop
	 


:

We now have an upper bound on the error within a
chart and across subsequent charts. Thus, by solving the
PL-approximation, we obtain an optimal path length
LPLðxπ*Þ, and use this to compute an upper bound on the true
distance along the manifold dðΨpðpÞ,ΨqðqÞÞ.

Theorem 5. (Approximation Upper Bound)

dðΨpðpÞ,ΨqðqÞÞ ≤ LPLðxπ*Þ þ KϵH sin αmax

� ��
1þ max

v2V
x2Pv

DΨvðxÞ � Ij jj jop
�
,

(26)

where K + 1 is the number of charts traversed by xπ*.
Proof. Let xπ* be the optimal path. Then we leverage
the triangle inequality for the manifold distance metric,
along with Lemmata 1 and 2, to obtain the desired
bound:

dðp,qÞ ≤
XK
i¼0

dðy
i,0
* ,y

i,1
* Þþ

XK�1

i¼0

dðy
i,1
* ,y

iþ1;0
* Þ

≤
XK
i¼0

xi,0* � xi,1*
�� ���� ��

2
1þmax

x2Pi

DΨiðxÞ� Ij jj jop
	 


þ
XK�1

i¼0

ϵH sin αmax 1þmax
x2Pi

DΨiðxÞ� Ij jj jop
	 


≤ðLPLðxπ*ÞþKϵH sin αmaxÞ�
1þmax

v2V
x2Pv

DΨiðxÞ� Ij jj jop
�
:

□

Roughly speaking, ϵH sin αmax is a linear approximation
of the portion of the path not accounted for within each
polytope. If this quantity can be bounded above a multi-
plicative factor of the portion of the path in each polytope,
we can obtain a multiplicative upper bound on
dðΨpðpÞ,ΨqðqÞÞ.

Corollary 1. If ∃c > 0 such that
ϵH sin αmax ≤ c � dðyi, 0, yi, 1Þ for all i, then

Figure 4. A shortest path problem on the unit sphere solved with GgcsTrajopt using an increasingly fine discretization. The blue and
green markers denote the start and end configurations, respectively. The solid black path denotes the shortest path along the mesh
(found with GgcsTrajOpt), and the dotted black path is the result obtained when that path is lifted back to the sphere. Conversely, the red
dotted path is the ground truth shortest path along the sphere, and the solid red path is its projection onto the PL approximation.
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dðΨpðpÞ,ΨqðqÞÞ ≤ LPLðxπ*Þ 1þ cð Þ�
1þ max

v2V
x2Pv

DΨvðxÞ � Ij jj jop
�
: (27)

6.5. Planning over SO(3)

The Lie group SO(3) is of great interest in robotics, and thus
merits special consideration. For example, the configuration
space of a ball joint is a subset of SO(3), and the config-
uration space of a free moving object in R

3 is
SEð3Þ@ SOð3Þ×R3. Under the standard Riemannian
metric, the manifold has positive curvature (a direct result of
Corollary 3.19 of Cheeger et al. (1975)), and unfortunately,
even a single point of positive curvature implies that the
Riemannian distance function is not g-convex, even on
arbitrarily small neighborhoods of that point (see proof in
Appendix A.4).

Theorem 6. Let M be a Riemannian manifold, let
A1 2M and u, v2TA1M such that Kðu, vÞ> 0. Then for
any neighborhood U containing A1, d :M2 →R is
nonconvex on U2.

One way to get around this problem is to instead use
Euler angles, where a rotation is represented as the product
of three rotations, about the x, y, and z axes in a given
coordinate system. As a manifold, the set of Euler angles is
T
3, and it has a natural flat Riemannian metric. This makes

the Euler angles parametrization very easy to plan over with
GgcsTrajOpt. However, this parametrization has degener-
acies due to gimbal lock, and the flat metric distorts the true
distance.

Another option is to use the approximation strategy
described in Subsection 6.4 that can handle arbitrary
manifolds, which naturally encompasses SO(3). One can
describe SO(3) as the subset of R

3×3 satisfying six
nonlinear constraints, but it is more common to work with
more compact descriptions. One such description is the
unit quaternions, which is geometrically equivalent to the
three-sphere S3. The unit quaternions form a double cover
of SO(3), as the unit quaternions v and �v correspond to
the same rotation. A naive way to handle this is to simply
solve the shortest path problem to the goal and its anti-
pode, and take the shorter path. Another representation of
SO(3) is the axis-angle convention, S2 × S1. Each nonzero
rotation corresponds to two axis-angle representations
(related by having axis vectors pointing in opposite di-
rections, and opposite angles), except for the identity
rotation, which can be represented by any axis and the
zero angle. Although the axis-angle convention is less
elegant topologically, S1 is flat, so the approximation is
only needed for the manifold S

2.
We empirically compare both of these approximations

to the Euler angles parametrization in Subsection 7.5.
Based on these comparisons, we recommend using the

axis-angle parametrization if optimality is a concern, since it
can provide a finer approximation than quaternions at a
reduced computational cost. If algorithmic runtime is the
primary concern, the Euler angles parametrization will lead to
the fastest runtimes, but this comes at the cost of suboptimal
solutions.

7. Experiments

We demonstrate our GgcsTrajOpt on various robotic plat-
forms.We present illustrative toy examples of planning for a
point robot on a toroidal world and an arm in the plane with
multiple continuous revolute joints. We also build plans for
a KUKA iiwa arm (with the base joint modified to be
continuous revolute) and a PR2 bimanual mobile manip-
ulator, implemented in Drake (Tedrake and the Drake
Development Team, 2019). We make interactive record-
ings of these trajectories available online at our results
website. For each experiment, we explicitly state the con-
figuration space, using I to refer to a general bounded
interval in R. Each of the robot experiments in Subsections
7.1 to 7.4 have flat configuration spaces, and we use the
canonical metric which equally weights velocities for each
degree of freedom. Besides the robot experiments, we
compute shortest paths along SO (3) with each of the three
approximation strategies discussed in Subsection 6.5. Fi-
nally, we compute shortest paths for a block, with con-
figuration space SE (3), moving through a maze.

7.1. Point robot

Consider a point robot moving about a toroidal world
(configuration space T2, modeled as a unit square with the
edges identified), with convex planar obstacles. It is easy to
visualize the obstacles, g-convex sets, and graph edges, as
shown in Figure 5. We also show an example of an optimal
trajectory produced by GgcsTrajOpt, which “wraps around”
the toroidal world. This plan was computed in 0.79 s.

7.2. Planar arm

Consider a robot arm with a fixed base, composed of five
continuous revolute joints (configuration space T5), moving
through a planar workspace with convex obstacles. (We
assume the arm does not suffer from self-collisions.) We
present sample plans produced by GgcsTrajOpt in Figure 6,
together with the swept collision volumes. These two plans
were found in 5.36 and 4.63 s, respectively. Avideo of these
trajectories is available at our results website.

7.3. Modified KUKA iiwa arm

We also demonstrate that GgcsTrajOpt can be used to plan a
series of motions using a KUKA iiwa robot arm. The
KUKA iiwa is a 7-DoF robot arm where each joint is a
revolute joint with limits; in simulation, we remove the
limits on the first joint, so the configuration space is T1 × I6.

12 The International Journal of Robotics Research 0(0)



We consider a scenario where the arm is mounted on a table,
surrounded by three sets of shelves, with mugs arranged on
the shelves. The goal of the task is to sort the mugs onto
different shelves, organized by color. We specify the order
of motions that are needed to achieve this goal and use
GgcsTrajOpt to find the path from start to goal for each
motion.

For this experiment, we used a set of 18 convex regions
to achieve approximate coverage of the collision-free space.
These regions were adjusted as the mugs were moved about
the environment and were used to plan the complete motion
of the arm—no heuristic motion or “pre-grasp pose” was
needed to reach the grasp configuration. Several configu-
rations used to seed the region generation are shown in
Figure 7, and the initial and final states are shown in
Figure 8. Avideo and an interactive recording of the plan are
available at our results website.

The experiment consisted of 14 motions, which were
each planned individually, and we use the region refinement
method from Petersen and Tedrake (2023) to account for the
current placement of the mugs. This ensured that both the
arm and the grasped mugwere collision-free for the entirety
of each trajectory segment. The robot takes full advantage of
the base joint’s lack of limits—always choosing the shortest
path and never needing to unwind any rotations. For each
segment, planning a trajectory took an average of 25.75 s
(with a range of 4.63 to 50.30 s).

7.4. PR2 bimanual mobile manipulator

In addition to its mobile base, the PR2 has two continuous
revolute joints in each arm. We have fixed the wrist

rotation and gripper joints, so the configuration space is
SEð2Þ×T2 × I 10 @T

3 × I 12. We consider a scenario where
the robot is driving around a square table that has an
outward-pointing stack of three shelves on each side.
The robot must reach into the different shelves with both
arms. This represents a challenging motion planning
scenario for all existing approaches due to the obstacle-rich
environment and high dimensionality of the configuration
space.

The performance of GgcsTrajOpt is largely driven by the
choice of g-convex sets. For each set of shelves, we generate
IRIS regions for the robot to reach into the top, middle, and
bottom shelves with both arms simultaneously. We also
generate two additional regions where the robot reaches into
the middle shelf with one arm and the bottom shelf with the
other while crossing its arms. Finally, we manually add
various intermediate regions to promote graph connectivity
and cover more of C-Free. In Figure 9, we show several
robot configurations along a trajectory produced by
GgcsTrajOpt.

Figure 5. Results for a point robot in a toroidal world, realized as a
unit square with opposite edges identified. Obstacles are shown
in red, and each IRIS region is given a distinct pastel color. Note
that one of the regions “wraps around” along the horizontal
dimension, connecting opposite sides of the world. Grey dashed
lines indicate which regions overlap. The optimal path between
the start and end points is shown in black.

Figure 6. Two plans produced by GgcsTrajOpt for a planar arm
around task-space obstacles (shown in red). We display both the
swept collision volume and individual poses in the trajectory
(colored by time, as indicated by the color bar).
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For the planning scenarios considered with the PR2, we
compare GgcsTrajOpt to existing approaches. Trajectory
lengths are listed in Table 1, plan times are listed in Table 2,
and interactive recordings of all trajectories are available
online at our results website. We compare our algorithm to
kinematic trajectory optimization (Tedrake, 2022, §7.2)
(abbreviated as Drake-TrajOpt), utilizing the general
nonlinear optimizer SNOPT (Gill et al., 2005, 2018).
Drake-TrajOpt struggles to figure out how to move the
arms into or out of the shelf; we often have to add way-
points to force the robot to back out of the shelf by moving
its base.

We also compare it to a sampling-based PRM planner. To
mitigate the curse of dimensionality and ensure connectivity
between seed points, we initialize the PRM with the
skeleton of the GGCS graph: for each pair of overlapping
regions, we place a node in the Chebyshev center (Boyd
et al., 2004: 148) of their intersection. We then add 100,000
additional samples, drawn uniformly across C-Free (with
rejection sampling). This process takes 124.39 s. In

comparison, it takes an average of 30.20 s to generate an
IRIS region (with a range of 8.56 to 75.42 s). With par-
allelization, all of the IRIS regions were generated in only
156.63 s.

The plans produced by the PRM are significantly longer
than those from the GgcsTrajOpt, so we also examine using
the output of the PRM planner as the initial guess for the
trajectory optimization. (In principle, this should help
prevent Drake-TrajOpt from getting stuck in local minima.)
When post-processing PRM plans with Drake-TrajOpt, it
sometimes produces shorter final trajectories than
GgcsTrajOpt, at the expense of colliding slightly with the
environment (an example is shown in Figure 10). This is
likely due to the challenge of balancing the collision-free
constraint with the minimum distance objective (and be-
cause collision-free constraints can only be applied at
discrete points).

Finally, we compare our GgcsTrajOpt to two work-
arounds for applying ordinary GCS to non-Euclidean
motion planning. One could add artificial joint limits to
prevent the wraparound, but placing the joint limits in-
correctly could make the optimal path infeasible. The planar
arm experiment clearly demonstrates this problem; during
the second trajectory in Figure 6, the middle joint traverses
more than 360° in the course of the plan. Thus, the optimal
trajectory is infeasible for every possible choice of joint
limits.

Another option is treating the angles as real numbers
with no bound (and ignoring the fact that 0° ≡ 360°). But in
this case, the correct joint angle modulo 360° must be
chosen to get the optimal path. Furthermore, many copies of
each convex set must be made to account for each possible
choice of angle modulo 360°, increasing the size of the
optimization problem.

With both workarounds, a priori knowledge about the
solution is required to guarantee that it is found, so in each
comparison, we separately consider the best and worst
cases. We use the same seed points across GgcsTrajOpt and
both GcsTrajOpt workarounds.

Figure 7. Key configurations (overlaid) used for a mug
reorganization demo.

Figure 8. Initial (left) and final (right) states for the mug
reorganization demo.

Figure 9. Individual poses along a trajectory produced by
GgcsTrajOpt for the PR2 robot, labeled with their order in the
plan.

14 The International Journal of Robotics Research 0(0)



An interesting result is that the best case for the
GcsTrajOpt workarounds is sometimes slightly better than
GgcsTrajOpt. This is because the sets are not bounded by
the convexity radius, so they can grow larger (and cover

more of C-Free) with the same seed points. If the work-
arounds are restricted to using the same regions as
GgcsTrajOpt, then, in the best case, their performance is
indistinguishable.

7.5. Planning over SO(3)

As discussed in Subsection 6.5, it is necessary to use an
approximation strategy to plan over SO(3) with our
methodology. To compare the efficacy of the approximation
strategies, we consider an abstract planning problem, where
we have to find the shortest path (with respect to the ca-
nonical bi-invariant Riemannian metric) between
two configurations in SO(3). Since there are no obstacles,
we can compare the solution from each approximation to the
closed-form solution, obtained from spherical linear inter-
polation (SLERP) (Dam et al., 1998). For numerical pur-
poses, we slightly expand the charts throughout these
experiments, so as to achieve a positive-measure overlap.

Table 1. A comparison of trajectory lengths (in configuration space) for each PR2 experiment across different methods. Experiments are
titled by the start and goal configurations. The configuration names indicate the shelf positions on the table (1 through 4), followed by the
position of the grippers. T, M, B, CL, and CR stand for top, middle, bottom, cross left over right, and cross right over left (respectively).
Table cells that are struck through indicate that the trajectory is not collision-free, and the time stamps below the trajectory length indicate
when the collisions occurred. The shortest collision-free trajectory for each experiment is bolded. For both GcsTrajOpt workarounds, we
include the best- and worst-case results (in general, achieving the best-case results requires a priori knowledge of the optimal plan).
Interactive recordings of each trajectory are available online at our results website, https://ggcs-anonymous-submission.github.io/.

Experiment GgcsTrajOpt Drake-TrajOpt PRM PRM + Drake-TrajOpt GcsTrajOpt (joint limits) GcsTrajOpt (no joint limits)

1T to 1B 1.829 1.803 4.359 1.808 1.826 1.839
1CL to 1CR 2.255 2.204 9.219 2.182 2.239 2.247
1M to 4M 3.875 6.938

t = 0.275,
5.272

14.554 5.874
t = 0.714,
4:381

6.482 / 10.478 3.990 / 12.589

1CL to 2CR 4.473 5.409
t = 2.155

12.110 4.108
t = 0.49

4.441 / 13.815 4.640 / 13.233

1CL to 3CR 8.182 10.263 15.250 7.166
t = 0.7, 1.87,
2.02,2.77

7.820 / 12.125 8.501 / 12.125

1CL to 4CR 4.382 7.583 17.459 6.088
t = 0.27,
0.555,4.39

4.728 / 9.961 4.559 / 12.418

1T to 4B 4.538 8.781 12.351 5.949
t = 0.34,
0:68

5.320 / 14.928 5.473 / 14.160

Table 2. A comparison of online planning times (in seconds) for each PR2 experiment across different methods. (We omit the GCS
workaround comparisons, as they are indistinguishable from the corresponding GgcsTrajOpt runtimes.) Experiment names match
Table 1.

Experiment GgcsTrajOpt Drake-TrajOpt PRM PRM + Drake-TrajOpt

1T to 1B 25.51 12.69 0.49 11.61
1CL to 1CR 39.42 15.23 0.49 16.11
1M to 4M 46.61 2.26 0.53 25.51
1CL to 2CR 62.87 9.74 0.54 21.48
1CL to 3CR 58.60 7.82 0.52 27.30
1CL to 4CR 66.15 4.32 0.54 40.10
1T to 4B 29.89 10.92 0.54 15.36

Figure 10. An example of the slight collisions typical of the
trajectories produced by Drake-TrajOpt. (The blue circle
highlights the point of collision).
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https://ggcs-anonymous-submission.github.io/meshcat/1CL-2CR/best_naive_gcs_no_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-2CR/worst_naive_gcs_no_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-3CR/ggcs.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-3CR/trajopt.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-3CR/prm.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-3CR/hybrid.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-3CR/best_naive_gcs_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-3CR/worst_naive_gcs_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-3CR/best_naive_gcs_no_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-3CR/worst_naive_gcs_no_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-4CR/ggcs.html
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https://ggcs-anonymous-submission.github.io/meshcat/1CL-4CR/best_naive_gcs_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-4CR/worst_naive_gcs_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-4CR/best_naive_gcs_no_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1CL-4CR/worst_naive_gcs_no_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1T-4B/ggcs.html
https://ggcs-anonymous-submission.github.io/meshcat/1T-4B/trajopt.html
https://ggcs-anonymous-submission.github.io/meshcat/1T-4B/prm.html
https://ggcs-anonymous-submission.github.io/meshcat/1T-4B/hybrid.html
https://ggcs-anonymous-submission.github.io/meshcat/1T-4B/best_naive_gcs_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1T-4B/worst_naive_gcs_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1T-4B/best_naive_gcs_no_limits.html
https://ggcs-anonymous-submission.github.io/meshcat/1T-4B/worst_naive_gcs_no_limits.html


The Euler angles description is equivalent to T
3, which

we realize as a cube with opposing faces identified.We use a
flat metric on T3, where the velocity along each component
is weighted equally. We use sets of the form [x, x + 2π/3] ×
[y, y + 2π/3] × [z, z + 2π/3] for x, y, z2 0; 2π=3; 4π=3f g. In
our experiments, we have a GGCS with 27 sets and 702
directed edges, as the graph is fully connected.

The axis-angle description is equivalent to S
2 × S1, where

the first, two-sphere-valued component denotes the axis of
rotation and the second, circle-valued component denotes the
angle rotated about that axis. We use a product metric on
S
2 × S1, wherewe evenlyweight the canonical flatmetric on S1

and the metric induced on S2 as a submanifold of R3 with the
standard Euclidean metric. We use an icosahedron as our PL
approximation of the unit sphere, although higher resolution
approximations can easily be constructed by subdividing the
faces (Dahl et al., 2014, §2.B.1). Sets are of the form
Pv × ½θ, θ þ 2π=3� for a face Pv of the PL approximation and
θ2 0; 2π=3; 4π=3f g. In our experiments, we have a GGCS
with 60 charts and 660 directed edges. Because the axis-angle
representation almost perfectly double-covers SO(3) (outside
of the identity configuration), we solve two planning problems,
to ensurewe plan to the closest representative of the orientation.

The quaternion description is equivalent to S
3, and we

use the metric induced as a submanifold of R4 with the
standard Euclidean metric. We construct a tiling with respect
to the hyperspherical coordinate system (Blumenson, 1960).
We evenly tile the angular variables ψ1, ψ2, ψ3 2 [0, 2π] to a
desired resolution, and then map the corners onto S

3 (by
taking the radius of each point to be 1). The polytopes Pv are
then taken to be the convex hulls of the corners of each tile. If
we subdivide each angular dimension into three pieces, we
have 27 charts and 390 directed edges. Subdividing into four
pieces yields 64 charts and 2240 directed edges. Similarly to
axis-angle representation, S3 double-covers SO(3), so we
solve two planning problems, to ensure we plan to the closest
representative of the orientation.

To compare these approximations, we uniformly sampled
random start and goal orientations, and computed the shortest
path between them for each approximation strategy. We
measure their length according to the geodesic distance
between each successive control point of the path, and
compare to the ground truth distance between the start and
goal. Ground truth for this distance metric can be obtained in
closed form with spherical linear interpolation (Dam et al.,
1998), allowing us to measure the approximation error for
each method. In Figure 11, we plot the distribution of the
relative errors for each of the three methods. The mean
relative errors for each representation are listed in Table 3.

The distance in the Euler angles representation is known
to distort the true distance between orientations, so it is
unsurprising that this choice of approximation has higher
error. If algorithmic runtime is the primary concern, the Euler
angles parametrization will lead to the fastest runtimes, but
this comes at the cost of suboptimal solutions. When the
higher-resolution approximation of the quaternionic sphere is

used, its relative error is roughly equivalent to that of the axis-
angle approximation. However, this requires a much larger
graph (and many more edges), yielding a more computa-
tionally costly optimization program. Thus, we recommend
using the axis-angle parametrization, as it strikes the best
balance between accuracy and computational efficiency.

7.6. Planning over SE(3)

In this experiment, we use GgcsTrajOpt to produce plans for
a block moving freely throughout a maze. The maze has a

Table 3. A comparison of the mean relative error for each of the
four choices of SO (3) representations used with GGCS. All
statistics are taken from the experiment with 1000 random
samples, except for the high resolution discretization of the
quaternion description, which used 250 samples.

Parametrization Mean relative error (%)

Euler angles 41.2
Axis-angle 15.4
Quaternion (low resolution) 22.9
Quaternion (high resolution) 15.2

Figure 11. The distribution of relative error across many sampled
start and goal configurations when planning using various SO
(3) approximations strategies. (a) Compared across 1000 random
samples, using the lower-resolution approximation of quaternionic
sphere. (b) Compared across 250 random samples, using the
higher-resolution approximation of quaternionic sphere.
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2D layout, similar to the maze shown in Figure 2 of
(Marcucci et al., 2023), but the walls of the maze enclose a
3D world. The block is allowed to move freely through the
maze—its configuration space is SE(3). However, it is not
allowed to leave the maze along the vertical direction; the
center of the block is constrained to lie between the top and
bottom of the maze walls. We produce plans between nine
different key poses of the block, shown within the maze in
Figure 12. Above each of these poses, the orientation of the
block is annotated with a coordinate frame. These various
orientations differ by rotations of up to 180° along all three
axes. Thus the planner must carefully reason about which
way the block should rotate around any given axis over the
course of the trajectory.

We use Euler angles in our representation of SE(3)
because we do not yet know how to get collision free re-
gions with PL approximations. We treat the three Euler
angles as if they are three successive continuous revolute
joints. So we allow the regions to grow up to π � ϵ in
diameter along each revolute axis. We construct a coarse
grid roadmap of the maze and grow regions to cover a subset
of the edges so as to connect the key poses. This results in a
GGCS with 200 sets and 4744 (directed) edges. The pol-
ytopes were described by an average of 26.095 halfspaces
(minimum 21, maximum 35) and took 65.434 s to compute
(without leveraging any parallelization).

Given this GGCS, we solve the shortest path problem for
every choice of start and goal. Due to the large size of this
problem instance, the memory and runtime requirements to
solve the convex relaxation are prohibitive. As a mitigation
strategy, we replace the 2-norm in the objective of (20) with
the 1-norm when solving the convex relaxation. This yields

a linear program, which can be solvedmuchmore efficiently
than the second-order cone program that would result from
the 2-norm objective. We observe that in this problem in-
stance, the objective functions are similar enough that we
can still use the downstream rounding process to produce
high-quality trajectories. We still use the original 2-norm
objective to minimize path length in the rounding stage.
This can be seen as an instance of the technique, introduced
in von Wrangel (2024), of using different costs and con-
straints for the relaxation and rounding stages.

We also use relatively loose tolerances when solving the
relaxation to further improve runtimes. (In particular, we use
10�3 as the termination tolerance for primal feasibility, dual
feasibility, and relative gap.) This is acceptable because the
downstream rounding process is robust to such inaccuracies;
the flows are known to only heuristically indicate the shortest
path, evenwhen the convex relaxation is solved to an arbitrarily
tight numerical tolerance. In the rounding stage, each individual
optimization problem is much smaller, so we can use a tight
tolerance to ensure constraints on the trajectory are properly
enforced. The average solve time with this approach was
354.98 s, and we visualize a planned trajectory in Figure 13.

An alternative approach to solving GCS problems with
excessively large graphs is the GCS* algorithm (Chew Chia
et al., 2024). GCS* solves a shortest path problem on a GCS
using graph search techniques, similar to the famous A*
search algorithm (Hart et al., 1968). The average solve time
with GCS* was only 46.71 s—13.5% of the runtime of the
relax-and-round solution method. And the paths produced
by GCS* were only 4.4% longer than those found with the
relax-and-round strategy.

8. Discussion

In this paper, we have formulated the general problem of
motion planning around obstacles on Riemannian mani-
folds as a shortest path problem in a graph of geodesically
convex sets, and we have presented sufficient conditions

Figure 12. The maze environment used for an SE (3) planning
problem. The block is allowed to move freely within the maze,
including arbitrary rotations and translations in 3D space. The
nine configurations shown have various orientations, which are
indicated by the coordinate frames superimposed above each
configuration. Note that some of these orientations include
requiring a complete flip of 180° about a horizontal axis (e.g.,
between the top-right and top-center configurations).

Figure 13. Solution path for a planning problem in the maze
environment. Paths were obtained with the relax-and-round
strategy.
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under which this formulation inherits the same guarantees as
in the ordinary Euclidean case. We describe how these
theoretical developments inform simple and elegant mod-
ifications to the original GcsTrajOpt, in order to handle
robots with mobile bases and continuous revolute joints.
This enables us to solve motion planning problems on such
robotic platforms to global optimality and guarantee that the
trajectory is collision-free at every point in time. Approx-
imate solving techniques still guarantee that trajectories are
collision-free, and empirically, such trajectories are very
close to optimal.

The PL approximation strategy has the benefit of being
applicable to arbitrary manifolds, and can produce arbi-
trarily fine approximations given sufficient computation
time. However, it remains to be seen whether that runtime
will become prohibitive if this strategy is used for more
complex robot configuration spaces. The use of heuristic
strategies to handle large problems, such as GCS* (Chew
Chia et al., 2024) is a promising direction for keeping
computational costs low even as the problems grow in
complexity. Another limitation of the PL approximation
strategy is the lack of a general approach for producing
collision-free regions. For now, we must rely on work-
arounds such as flat parametrizations and accept the re-
sulting distortion of the objective function.

We have demonstrated that GgcsTrajOpt is a powerful
tool for robot motion planning. It is capable of producing
plans for high degree-of-freedom systems operating in
obstacle-dense configuration spaces, such as a PR2 bi-
manual mobile manipulator reaching into and out of
shelves. Although the planning and optimization frame-
works used in GgcsTrajOpt are still in their infancy, they are
already capable of producing high-quality results that are
competitive with existing methods. As further research and
technical improvements are made, its performance will
continue to improve.

Acknowledgements

The authors would like to thank Tobia Marcucci and Seiji Shaw for
their valuable suggestions throughout the course of this work. The
authors would also like to thank David von Wrangel for his as-
sistance with the implementation of the PRM comparisons and
Shao Yuan Chew Chia for applying the GCS* algorithm to our
problem domain.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by (in alphabetical order) Amazon.com, PO
No. 2D-06310236 and the Frederick and Barbara Cronin
Fellowship.

ORCID iD

Thomas Cohn  https://orcid.org/0000-0002-5411-0710

References

Aceituno-Cabezas B,Mastalli C, Dai H, et al. (2017) Simultaneous
contact, gait, and motion planning for robust multilegged
locomotion via mixed-integer convex optimization. IEEE
Robotics and Automation Letters 3(3): 2531–2538.

Adu-Bredu A, Devraj N and Jenkins OC (2022) Optimal con-
strained task planning as mixed integer programming. ArXiv
preprint arXiv:2211.09632.

Amice A, Dai H, Werner P, et al. (2023) Finding and optimizing
certified, collision-free regions in configuration space for
robot manipulators. In: International workshop on the algo-
rithmic foundations of robotics, College Park, MD, 22–24
June 2022, 328–348. Springer.

Atceken M and Keles S (2003) On the product Riemannian man-
ifolds. Differential Geometry - Dynamical Systems 5(1): 1–7.

Bacak M (2014) Convex Analysis and Optimization in Hadamard
Spaces. Berlin, Germany: Walter de Gruyter GmbH & Co
KG, Vol. 22.

Blumenson L (1960) A derivation of n-dimensional spherical co-
ordinates. The American Mathematical Monthly 67(1): 63–66.

Boumal N (2022) An Introduction to Optimization on Smooth
Manifolds. Cambridge, UK: Cambridge University Press.
URL: https://www.nicolasboumal.net/book.

Boyd S, Boyd SP and Vandenberghe L (2004) Convex Optimi-
zation. Cambridge, UK: Cambridge University Press. URL:
https://web.stanford.edu/boyd/cvxbook/.

Burago D, Burago Y and Ivanov S (2001) A Course in Metric
Geometry. Providence, RI: American Mathematical Society,
Vol. 33.

Bylard A, Bonalli R and Pavone M (2021) Composable geometric
motion policies using multi-task pullback bundle dynamical
systems. In: 2021 IEEE international conference on robotics
and automation (ICRA), Xi’an, China, 30 May–5 June 2021,
7464–7470. IEEE.
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Appendix

A. Proofs

A.1. Proof of Theorem 1. Lemma 3. For any p, q2M,
there is a piecewise-smooth path connecting p and q.
Proof. Because M is path connected, there is a con-
tinuous curve γ : ½a, b�→M joining them. Let (U1, ψ1),
…, (Un, ψn) be a series of charts of Q that cover the
image of γ, with p 2 U1, q 2 Un, and Ui \Uiþ1 \M ≠ Ø
for each i. (Such a finite covering exists because the
image of γ is compact.) Let t0,…, tn 2 [a, b] such that t0 =
a, tn = b, and for each i = 1,…, n � 1, γ (ti) 2 Ui \ Ui+1.
For each i = 1,…, n� 1, leteγi be a smooth curve joining
ψi(γ(ti)) to ψi+1(γ(ti+1)) that is contained within
ψiðUi \MÞ. Let eγ0 join ψ1(γ(t0)) to ψ1(γ(t1)) and be
contained within ψ1ðU1 \MÞ, and let eγn join ψn (γ
(tn�1)) to ψn(q) and be contained within ψnðUn \MÞ.
Then by lifting each of these curves to M, and con-
catenating them, we obtain a piecewise-smooth curve
connecting p and q.
Proof of Theorem 1. The proof follows by verifying that
M is a complete, locally compact length space, so that
we can apply Theorem 2.5.23 of Burago et al. (2001: 50).
A length space is a metric space in which the distance
between any two points is given by the infimum of the
arc lengths of all paths connecting those two points. A
length space is complete if the distance between any two
points is finite. Thus, M inherits a length structure from
Q (with the restriction to curves that are entirely con-
tained in M). All topological manifolds are locally
compact. To check thatM is complete, let p, q2M. By
Lemma 3, there is a piecewise-smooth curve connecting
p and q, so the set of arc lengths of curves connecting p
and q is nonempty. It is also bounded below, so its in-
fimum is finite, and thus dðp, qÞ exists. We conclude that
M is a complete, locally compact length space.

A.2. Proof of Theorem 4. We first prove some facts about
locally isometric coordinate charts: the transition map be-
tween two locally isometric coordinate charts is a Euclidean
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isometry (Lemma 4), and the preimage under such a chart of
a convex set is g-convex (Lemma 5). To prove Theorem 4,
we construct a Riemannian normal coordinate system
covering Y, and leverage the fact that such a chart is a local
isometry for flat manifolds.

Lemma 4. Let ðZ1,ψ1Þ and ðZ2,ψ2Þ be coordinate
charts ofM, with ψ1 and ψ2 local isometries. If Z1 \Z2

is connected, then there is a Euclidean isometry ξ such
that "p2Z1\Z2, ψ1(p) = (ξ◦ψ2)(p).
Proof. ψ1 ◦ψ�1

2 is a local isometry between two con-
nected open subsets of Euclidean space, so
ðψ1◦ψ�1

2 Þ
*, p

is an orthogonal matrix for any p. Thus,

we can apply Theorem 1.8–1 of Ciarlet (1988: 44).
Lemma 5. Consider Y4Z4M, where Z is g-convex,
and we have a coordinate chart ðZ,ψÞ such that ψ is a
local isometry. If ψðYÞ is convex, then Y is g-convex.
Proof. Fix p, q2Y. Then there is a unique minimizing
geodesic γ connecting p to q, and γ is contained in Z.
Because ψ is a local isometry, it maps γ to a line segment
in ψðZÞ. ψðpÞ,ψðqÞ 2ψðYÞ, so by convexity of ψðYÞ,
ψ ◦ γ is contained in ψðYÞ. Thus, γ is contained in Y, so
Y is g-convex.
Proof of Theorem 4. For each i2 [m], we can construct a
ball BsiðciÞJ projQi

ðYÞ, with si < ri. Define
Z ¼ ∏i2½m�BsiðciÞ, a g-convex set. Consider the Rie-

mannian normal coordinates of Q at (c1, …, cm). This
coordinate system, restricted to Z, induces a coordinate
chart φ. Because Q is flat, φ is a local isometry, so by
Lemma 4 there is a Euclidean isometry ξ such that
φðYÞ ¼ ξðψðYÞÞ, so φðYÞ is convex. Thus, by Lemma 5,
Y is g-convex.

A.3. Proofs of Lemmata 1 and 2. Proof of Lemma 1.
Define γ(t) = tx0 + (1 � t)x1. Then (Ψi ◦ γ) (0) = y0 and
(Ψ ◦ γ) (1) = y1, so dðy0, y1Þ ≤LðΨ◦ γÞ. Let Δx = x1 �
x0. Well,

ðΨ◦ γÞ0ðtÞ
�� ���� ��

2
¼ DΨðtÞγ0ðtÞj jj j2 ¼ DΨðtÞΔxj jj j2
¼ Δxþ ðDΨiðtÞ � IÞΔxj jj j2
≤ Δxj jj j2 þ ðDΨðtÞ � IÞΔxj jj j2
≤ Δxj jj j2 þ DΨðtÞ � Ij jj jop Δxj jj j2,

where we have leveraged the triangle and operator norm
inequalities. By considering the largest possible operator
norm over ψðY iÞ, we obtain

LðΨ◦ γÞ ≤
Z 1

0

Δxj jj j2 þ DΨðtÞ � Ij jj jop Δxj jj j2dt

≤
Z 1

0

Δxj jj j2 1þ max
x2ψðYiÞ

DΨðxÞ � Ij jj jop

 !
dt

¼ Δxj jj j2 1þ max
x2ψðYiÞ

DΨðxÞ � Ij jj jop

 !
,

which is the desired upper bound.

Proof of Lemma 2. Construct a triangle whose three
vertices are xi,1 = xi+1,0, yi,1, and ψi+1(yi,1). We note that
∠xi,1yi,1ψi+1(yi,1) is equal to the angle between Pi and
Piþ1 along the plane through those three points (which
we call α), and hence is bounded above by αmax.

xiþ1;0 � ψiþ1ðyi, 1Þ
�� ���� ��

2
¼ xiþ1;0 � yi, 1j jj j2 sin α
≤ ϵH sin αmax

Applying Lemma 1 to xi+1,0 and ψi+1(yi,1) completes the
proof.

A.4. Proof of Theorem 6. Proof of Theorem 6. Fix a
neighborhood U of A1. For the remainder of the proof, all
Riemannian norms and inner products are acting on
tangent vectors in TA1M, so we omit the subscripts for
notational brevity. Since the sectional curvature is in-
variant with respect to a change of basis, suppose without
loss of generality that uj jj jA1

¼ vj jj jA1
¼ 1 and

u, vh iA1
¼ 0. To prove this result, we will construct a

geodesic γ on U2 such that d◦ γ achieves smaller values
on its endpoints than at its center. This relies on the
properties of specially constructed Levi-Civita paral-
lelogramoids on U.
Let ϵ > 0 be small, such that exppðB2ϵð0ÞÞ4U. Let α :

t1 expp(tv), let B1 = α(ϵ), and let u0 ¼ ΓðαÞϵ0ðuÞ be u
parallel transported from A1 to B1. Let γA : t1expA1

ðtuÞ and
γB : t1expB1

ðtu0Þ, with domain [�ϵ, ϵ]. Then γ = (γA, γB) is a

geodesic of U2. Define A0 = γA(�ϵ), B0 = γB (�ϵ), A2 = γA(ϵ),
and B2 = γB(ϵ). This construction is visualized in Figure 14.
We want to show that dðA0,B0Þ< dðA1,B1Þ and
dðA2,B2Þ< dðA1,B1Þ.

The points A1, B1, A2, and B2 describe a Levi-Civita
parallelogramoid, with base A1B1 and suprabase A2B2.
Thus, we can relate the length of the base and suprabase via
the formula of Cartan (1983: 244):

Figure 14. The construction of two Levi-Civita parallelogramoids
used in the proof of Theorem 6. dðA0,B0Þ< dðA1,B1Þ and
dðA2,B2Þ < dðA1,B1Þ, which demonstrates the nonconvexity of
d around A1. ∠A0B0B1 and ∠A2B2B1 are obtuse.
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dðA2,B2Þ2 ¼ dðA1,B1Þ2 þ
8

3
Rðϵu, ϵvÞϵu, ϵvh i þ Oðϵ5Þ:

Because uj jj j ¼ vj jj j ¼ 1 and u, vh i ¼ 0,

Rðϵu, ϵvÞϵu, ϵvh i ¼ �ϵ4 Rðu, vÞv, uh i ¼ �ϵ4Kðu, vÞ < 0:

So as ϵ is decreased toward 0, the fifth and higher order
terms vanish, and dðA2,B2Þ < dðA1,B1Þ. A similar calcu-
lation shows that dðA0,B0Þ< dðA1,B1Þ. Thus, d ◦ γ has a
local minimum, so we conclude that d is nonconvex on U.

B. Experiment implementation details

In this appendix, we present further details about the
setup of our experiments and demonstrations. Throughout
the robot experiments, we use the sum of the trajectory
length and duration as our objective, as was done for the
quadrotor and bimanual motion planning experiments in
Marcucci et al. (2023). Given the presence of joint velocity
and acceleration limits, adding a trajectory duration cost
biases the planner toward producing a path that admits a
faster traversal.

B.1. Planar arm. The trajectories shown in Subsection 7.2
were generated with a GGCS that had 19 sets. We generated
IRIS regions for the start and goal configurations, and hand-
picked several seed points along the narrow gap between the
two lower obstacles to help ensure connectivity between the
start and goal. We then generated the remaining IRIS re-
gions with random seed points (chosen uniformly from C-
Free with rejection sampling).

The GgcsTrajOpt results shown used the sum of the path
length and path duration as the objective. We used the relax-
and-round approximation strategy to produce the trajecto-
ries shown in the paper. The first trajectory had a path length
of 7.749, and the second had a path length of 8.448. When
solving the integer program with branch-and-bound, the
first trajectory had a path length of 7.274, and the second
had a path length of 8.008. (Note that the optimal solution
for the latter trajectory still had the middle joint of the arm
traverse more than 360°).

B.2. KUKA iiwa arm. The motions shown in Subsection
7.3 used regions generated from 18 seed points. The seeds
consisted of one seed for each middle and top shelf (the
bottom shelves are excluded because they are kinematically
unreachable), one seed above each shelf, one seed directly
between each shelf, and two seeds per shelf to aid moving
between the top and middle shelves. Regions were gener-
ated for each seed with both an empty hand and a mug in the
hand to aid both types of trajectory planning. Regions were
post-processed to remove redundant hyperplanes with the
ReduceInequalities algorithm from Drake.

GgcsTrajOpt minimized both time and path length of the
trajectory while ensuring continuity of the path, velocity,
and acceleration. For velocity limits, the real velocity limits

of the KUKA iiwa hardware were used. Trajectories were
computed using the relax-and-round approximation
strategy.

B.3. PR2 bimanual mobile manipulator. To model the PR2
robot, we use the URDF file and object meshes included
with Drake. For each link, we take the convex hull of the
mesh and use that as the collision geometry. (Collisions
annotated in Table 1 are determined based on the true
collision geometry, not the convex hulls). The plans we
produce take into account the robot’s base joint, torso lift
joint, and all arm joints (up to the final wrist rotation joint
and gripper joints). All other joints are fixed.

For the experiments demonstrated in Subsection 7.4, we
first constructed IRIS regions for each of the possible goals:
reaching into each of the three shelves in a set with both
arms, crossing right-over-left on the middle and bottom
shelves, and crossing left-over-right. (See Figure 15 for a
visualization of these cross-over poses). We then hand select
a few intermediate seed points; the regions around these
points are used to promote connectivity among the various
shelf-reaching regions. We construct these regions for each
set of shelves, except for the experiments where the start and
goal are within the same set of shelves.

We take several actions to improve the efficiency of
GgcsTrajOpt. To reduce the number of constraints needed,
we simplify the IRIS regions by removing redundant
halfspaces from their polyhedral representation, using the
ReduceInequalities algorithm in Drake. We also
only include shelf-reaching regions if they are the start or
goal of the plan. This greatly reduces the size of the op-
timization problem, promoting faster solve times. Empiri-
cally, it also leads to a shorter trajectory, likely due to a
tightening of the convex relaxation. For GgcsTrajOpt, we
use the same objective as the planar arm experiments (the
sum of the trajectory length and duration), and we use the
relax-and-round strategy.

For the comparison to kinematic trajectory optimization
(Drake-TrajOpt), we use the same objective asGgcsTrajOpt: the
sum of the trajectory duration and length. However, the tra-
jectories are parametrized as B-splines instead of linear seg-
ments (or Bézier curves if the extensions in Subsection 6.3 are
utilized). The KinematicTrajectoryOptimization

Figure 15. The start and goal pose for one of our motion planning
experiments, using the PR2 bimanual mobile manipulator.
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can automatically construct the nonlinear optimization
problem for a given scenario, which we then solve with
SNOPT. We first solve the problem without collision-free
constraints. The output of this initial problem is used as the
initial guess for the full problem (i.e., including collision-free
constraints). The collision-free constraint is encoded with the
MinimumDistanceConstraint class. We set a mini-
mum distance of 1 mm and begin applying a penalty at 1 cm.
This constraint is applied to 50 points along the trajectory.
(Such a constraint can only be evaluated pointwise). For
motion planning tasks where the robot had to move between
shelves, Drake-TrajOpt was unable to produce a collision-
free trajectory. Thus, we added waypoints near the beginning

and end of the trajectory, in which the robot was in the same
configuration as the start and goal (respectively), but the base
was moved away from the shelf. This was only sometimes
effective at finding collision-free trajectories.

As in Marcucci et al. (2023), we use the PRM planner
from the Common Robotics Utilities library (Phillips-
Grafflin, 2023), with the modifications described in Sub-
section 7.4. Given a piecewise-linear trajectory from the
PRM, we construct a B-spline that passes through the nodes
on this trajectory for use as an initial guess for Drake-TrajOpt.
In this case, when solving the optimization problem, we
begin applying a distance penalty at 1 m and perform col-
lision checking at 100 points along the trajectory.
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