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ABSTRACT

Collision-free motion planning is a fundamental problem in robotics. Most motion plan-
ning algorithms operate in the configuration space of a robot, where each dimension corre-
sponds to an individual degree of freedom. Oftentimes, these configuration spaces can be
viewed as Euclidean spaces, and many motion planning algorithms treat them as such. How-
ever, many configuration spaces of interest are inherently non-Euclidean, including those of
mobile robots, robot arms that have revolute joints without limits or ball joints, and flying
robots, as well as the constrained configuration spaces that arise when planning with task-
space constraints. In this thesis, we treat the problem of motion planning along Riemannian
manifolds, a broader class of spaces that encompasses many of the problems of interest.

In the first chapter, we present a generalization of the graph of convex sets (GCS) planning
framework that can handle smooth manifolds. GCS uses convex optimization, and is thus
restricted to Euclidean configuration spaces. Our analysis utilizes geodesic convexity to
achieve the same guarantees on Riemannian manifolds, and we leverage this to produce
motion plans for mobile robots whose arms have unbounded revolute joints.

In the second chapter, we specifically consider the problem of constrained bimanual ma-
nipulation, where a robot has to move an object that is being grasped with two hands.
The set of kinematically-valid configurations is a union of submanifolds, implicitly defined
by nonlinear equality constraints This presents significant challenges for standard uncon-
strained planning algorithms. We construct a smooth parametrization of the feasible set,
recasting the problem without equality constraints. Our approach is algorithm-agnostic, and
we demonstrate that unconstrained planners (working through the parametrization) produce
favorable results.

Thesis supervisor: Russell L. Tedrake
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

Robot motion planning is one of the central problems in robotics. It is the question of how
self-driving cars can navigate city streets, robot arms can move parts on an assembly line,
or drones can fly through obstacle-rich environments. Within the famous “sense, plan, act”
paradigm for autonomous robotics, motion planning is a key part of the “plan” stage: given
a model of the world, as obtained from prior knowledge and sensor information, the robot
must plan its motion to accomplish a given task.

If we consider the set of all possible configurations a robot could be in throughout the
world (called the robot’s configuration space [1]), then motion planning can be posed as
finding a continuous path from one configuration to another. While this is a simple overall
problem statement, one can consider further objectives or constraints in the problem, de-
pending on the robot’s morphology. For example, a drone flying through a forest may need
to plan a path that avoids tree branches, while also respecting the constraints that result
from the dynamics of flying. A robot arm on an assembly line may want to plan paths
that can be traversed as quickly as possible, to maximize throughput and productivity. A
self-driving car may take into account road closures, speed limits, and traffic conditions, so
as to plan a faster route.

The great variety of specific motion planning problems has driven researchers to produce
a rich body of literature over the past decades. One specific problem domain we will focus
on in this thesis is collision-free kinematic motion planning.

“Kinematic” denotes the fact that we are not considering the dynamics of the robot – we
consider the physical path the robot travels along, but not how fast it goes along that path,
or whether such a path is even possible to follow. Such a modeling choice is appropriate
for holonomic robots, i.e., robots which can instantaneously move in any direction. Some
common examples of holonomic robots are the robot arms (such as those used in manu-
facturing) and wheeled mobile manipulators : mobile robots with arm(s) that can work in
human environments, and even collaborate with humans. These types of robot systems can
generally follow any path through their configuration space, although they may need to slow
down if there are sharp turns.

13



1.1.1 Challenges Associated with Obstacle Avoidance

“Collision-free” denotes the primary challenge in this type of motion planning. For a robot
working in obstacle-rich environments (including human environments), a robot should care-
fully avoid bumping into obstacles1. Checking if a hypothetical configuration of the robot
is in collision with the world is straightforward [2], [3]. The three-dimensional pose in the
world of each piece of the robot can be determined via forward kinematics, which amounts to
a few matrix multiplications. From there, detecting collisions reduces to a well-studied and
completely tractable geometric computation. However, it is very challenging to invert this
forward kinematic mapping, so it is generally intractable to explicitly describe the obstacles
in configuration space.

Fortunately, there are many approaches to plan robot motions without such explicit ob-
stacle descriptions. One option is to extend collision-checking to compute the direction which
will move the robot away from nearby obstacles. This can be used across the configuration
space to try and push a candidate trajectory away from collisions. Another family of strate-
gies relies on drawing random samples from configuration space, and checking each one for
collisions. Those in collision are discarded, and those not in collision are connected into a
roadmap, building up an inner-approximation of the collision-free configuration space.

Recent work [4], [5] has gone a step beyond working with individual collision-free points,
instead building plans through voluminous collision-free regions of configuration space. This
has gone hand-in-hand with new algorithms that can build such regions in more complex
and challenging configuration spaces [6]–[8]. However, these methods have been intricately
tied to Euclidean configuration spaces, which does not encompass all of the robots in use
today.

1.1.2 Non-Euclidean Configuration Spaces

Euclidean space is a generalization of the ordinary three-dimensional space we exist in to any
number of dimensions. Thus, many robot configuration spaces can naturally be interpreted
as a Euclidean space. For example, the configuration space of a robot arm with n joints can
be viewed as a box subset of Rn. Each joint of the arm corresponds with one dimension
of the configuration space, where the upper and lower bounds of the box correspond to the
upper and lower joint limits.

However, certain robot configuration spaces are inherently non-Euclidean. Consider a
mobile robot that is turning around in place. This corresponds to moving in a straight line
in configuration space; when traveling along a straight line, one will never return to the same
point. But after making a full revolution, the robot is right back where it started. Certain
robots may have revolute joints that do not have any limits (often called continuous revolute
joints); these joint types exhibit the same property. The set of orientations in 3D space –
essential for describing the configuration of a flying or underwater robot – exhibits an even
more complicated non-Euclidean structure. Furthermore, certain constraints that are often

1An alternative paradigm would be to move cautiously and gently, so that collisions will not damage the
robot or its surroundings. The use of force or tactile sensing is essential for the robot to notice when it
bumps into obstacles and modify its motion. But rigorously planning collision-free paths is crucial for fast
motions.
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added to motion planning problems can lead to the configuration space being non-Euclidean.
For example, when two robot arms grasp a shared object, the relative pose of the hands must
remain constant.

One way to describe these configuration spaces is as a smooth manifold, a generalization
of the idea of a smooth surface to any number of dimensions. Although smooth manifolds are
fundamentally more complex than the ordinary Euclidean space, many valuable properties of
Euclidean space carry over. The mathematical study of smooth manifolds is called differential
geometry, and we can leverage results from that field of study to build better motion planning
algorithms.

1.2 Contributions

In this thesis, we examine the problem of collision-free kinematic motion planning for robots
whose configuration spaces are smooth manifolds. First, we examine the general theory of
motion planning along manifolds, building upon a state-of-the-art motion planning frame-
work based on finding shortest paths through graphs of convex sets (GCS) in Euclidean
space [9]. GCS is based on convex analysis, which is specific to Euclidean space. However,
geodesic convexity is a natural generalization of convexity to smooth manifolds, and we use
this notion to propose a Graph of Geodesically-Convex Sets. We present a rigorous theoret-
ical analysis of this new framework, demonstrating that such a representation is appropriate
for motion planning. These mathematical results inform simple and elegant algorithmic
modifications, while preserving the guarantees of ordinary GCS. Theoretical and empirical
results demonstrate the value of using our approach for mobile robots and those robots which
have continuous revolute joints. We also carefully analyze the limitations of this framework,
explaining how certain configuration spaces have fundamental aspects that preclude the use
of our framework.

Then, we will turn our attention to the problem of constrained bimanual manipulation,
where a robot moves an object that is held with both hands. The configuration space that
arises as a result of this constraint is a smooth manifold. Unlike the configuration spaces
of mobile robots and arms with continuous revolute joints, this configuration is implicitly
described as the set of solutions to a complex system of nonlinear equations. A standard ap-
proach would be to construct an approximation of this space, but we build upon a wealth of
literature on robot kinematics to describe an explicit parametrization. Acting entirely within
the parametrized space, abstracts away the challenging constraints. Thus, our parametriza-
tion strategy allows general motion planning algorithms to handle this planning domain,
without any specialization to handle the constraints. We empirically demonstrate that our
parametrization synergizes with a variety of standard motion planning algorithms. Further-
more, the parametrization approach enables the use of planning with GCS in this domain,
which previously could not be applied to such configuration spaces.
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1.3 Organization

The remainder of the thesis is organized as follows. In Chapter 2, we describe the Graph
of Geodesically-Convex Sets. This includes an overview of the necessary background in
differential geometry in Section 2.3 and a detailed explanation of how to specialize this
framework for motion planning in Section 2.6. Many of the proofs for this chapter are
deferred to Appendix A..

In Chapter 3, we specifically treat the problem of planning motions for bimanual robots
that are jointly grasping an object with both hands. Our parametrization relies on previous
work that carefully describes the topological structure of inverse kinematics, which we sum-
marize in Subsection 3.3.1, before presenting our explicit parametrization in Subsection 3.3.2.
In Subsection 3.3.4, we describe the modifications that are needed to use the major motion
planning paradigms together with our parametrization.

Finally, we conclude with a discussion of high-level takeaways in Chapter 4. Motion
planning along manifolds remains an active and exciting area of research; we present mul-
tiple directions for future work building upon both the general GGCS framework (in Sub-
section 4.1.1) and the parametrization strategy for bimanual motion planning (in Subsec-
tion 4.1.2).
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Chapter 2

Non-Euclidean Motion Planning with
Graphs of Geodesically-Convex Sets

The work in this chapter was originally published in the proceedings of Robotics: Science and
Systems XIX [10].

2.1 Introduction

Planning the motion of robots through environments with obstacles is a long-standing and
ever-present problem in robotics. In this chapter, we aim to find the shortest path between
a start and goal configuration with guaranteed collision avoidance. We are particularly
motivated by planning for bimanual mobile manipulators, such as the PR2 (Willow Garage).
Such robots are well-suited for a variety of tasks in human environments but present various
challenges for existing motion planning algorithms.

Most popular approaches for this task fall into two categories: sampling-based planners
and trajectory optimizers. The trajectory optimization problem is inherently nonconvex
when there are obstacles in the scene, so solvers frequently get stuck in local minima. In
that case, they may output a path that is longer than the global optimum or even fail to
produce a valid path even when one exists.

On the other hand, sampling-based planners can avoid getting stuck in local minima, but
the path may be locally suboptimal, resulting in jerky and uneven motion. Sampling-based
planners may also suffer from the so-called “Curse of Dimensionality”. Because they rely
on covering the configuration space with discrete samples, in the worst case, the number of
samples required may increase exponentially with the dimension. The PR2 has two 7-DoF
arms and a mobile base, and sampling-based planners struggle with the instances we study
here.

Recently, Marcucci, Petersen, Wrangel, et al. [4] described a new type of motion planning,
based on a decomposition of the collision-free subset of configuration space (C-Free) into
convex sets. They leverage a new optimization framework, a Graph of Convex Sets (GCS),
where each vertex is associated with a convex set and each edge is associated with a convex
function [9]. Motion planning becomes a shortest-path problem in this space. This GCS
Trajectory Optimization approach (abbreviated as GcsTrajOpt) has been successfully applied
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Figure 2.1: The start and goal pose for one of our motion planning experiments, using the
PR2 bimanual mobile manipulator.

to challenging, high-dimensional problems, including bimanual manipulation problems.
However, GcsTrajOpt is limited to Euclidean configuration spaces. A mobile manipula-

tor’s configuration space is inherently non-Euclidean due to the mobile base: the robot can
rotate through a full 360°, and its configuration is identical to when it started. Continuous
revolute joints present a similar issue. Although the configuration spaces of interest are in-
herently non-Euclidean, they are still “locally” Euclidean, leading to elegant descriptions as
differentiable manifolds. With a Riemannian metric, which allows one to measure distance
on a manifold, the concepts of convexity generalize to nonlinear spaces. This in turn al-
lows optimization on manifolds with rigorous guarantees, analogous to those obtained from
convex optimization on Euclidean spaces.

In this chapter, we formulate the general problem of shortest-path motion planning
around obstacles on Riemannian manifolds. We define a graph of geodesically-convex sets
(GGCS), the analogue to GCS on a Riemannian manifold. We prove that this formulation
has all the requisite properties needed to inherit the same guarantees as (Euclidean) GCS.
We then turn our attention to a certain class of robot configuration spaces, encompassing
open kinematic chains with continuous revolute joints and mobile bases. We show that in
this case, our theoretical developments lead to simple and elegant modifications to the origi-
nal GcsTrajOpt. We entitle this generalization GGCS Trajectory Optimization (abbreviated
as GgcsTrajOpt), and demonstrate its efficacy with several challenging motion planning ex-
periments.
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2.2 Related Work

In the world of continuous motion planning around obstacles, most popular techniques fall
into two categories: sampling-based planners and trajectory optimizers.

Sampling-based motion planners partially cover C-Free with a large number of discrete
samples. Two of the foundational sampling-based planning algorithms are Probabilistic
Roadmaps (PRMs) [11] and Rapidly-Exploring Random Trees (RRTs) [12]. Such algorithms
are probabilistically complete, i.e., with enough samples, they will always find a valid path (if
one exists). However, these algorithms are only effective if a valid plan can be produced with
a reasonable number of samples. Hence, the “curse of dimensionality” is a potential obsta-
cle to sampling-based planning, and such techniques have struggled with high-dimensional
problems such as bimanual manipulation. In most cases, planning for bimanual tasks is
accomplished by planning for one arm, then planning the second arm independently while
treating the first arm as a dynamic obstacle. This is a reasonable heuristic for some tasks,
but it sacrifices even probabilistic completeness.

An alternative approach is to formulate motion planning as an optimization problem.
This requires parametrizing the space of all trajectories and defining constraints and cost
functions that describe the suitability of each trajectory. Examples of kinematic trajectory
optimization include B-spline parametrizations using constrained optimization [13, §7.2],
CHOMP [14], STOMP [15], and KOMO [16]. Trajectory optimization approaches do not
suffer from the curse of dimensionality, and are suitable for much more complex robotic
systems. But the optimization landscape is inherently nonconvex, so trajectory optimization
methods cannot guarantee global optimality, and often fail to produce feasible trajectories
altogether.

The use of mixed integer programming (MIP) to solve motion planning problems to global
optimality has recently seen an increase in popularity as new theoretical results, greater
computational resources, and powerful commercial solvers [17], [18] have been brought to
bear. The survey paper of Ioan, Prodan, Olaru, et al. [19] provides an overview of the use
of MIP in motion planning. Besides the work of Marcucci, Umenberger, Parrilo, et al. [9],
Landry, Deits, Florence, et al. [20] used MIP to plan aggressive quadrotor flights through
obstacle-dense environments. MIP has been used to plan footstep locations for humanoid
robots [21] and for quadrupeds [22], [23]. Dai, Izatt, and Tedrake [24] used MIP to globally
solve the inverse kinematics problem. Finally, MIP has seen extensive use in hybrid task
and motion planning [25]–[29].

Mixed integer programs can take a long time to solve in the worst case, but it is often
possible to mitigate this problem with appropriate relaxations or approximations [4], [30].
GCS in particular uses an MIP formulation with a small number of integer variables, making
branch-and-bound tractable. Furthermore, the convex relaxation is tight, enabling efficient
approximation by solving only a convex problem combined with a randomized rounding
strategy. [4] argued that for single-arm manipulators, this approach can find more optimal
plans in less time than PRMs. These valuable properties carry over to our extension of GCS.

Another recent trend in motion planning has been the use of Riemannian geometry to
model the problem. Riemannian Motion Policies (RMPs) [31] combine acceleration-based
controllers across different task spaces into a single unified controller. A Riemannian metric
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in each task space determines the priority of a given controller, and smooth maps between the
manifolds enable the averaging of controllers. RMPs have seen continued improvement [32],
[33] and generalization [34], [35]. Klein, Jaquier, Meixner, et al. [36] envision Riemannian
geometry as a tool for generating and combining elegant motion synergies for complex robotic
systems.

2.3 Preliminaries

In this section, we cover some of the relevant mathematical background. We supply intuitive
definitions; for further reference on Riemannian geometry, see the textbooks of Do Carmo
[37] and Lee [38], [39]. Boumal [40] provides an excellent treatment of optimization over
manifolds. We use the notation [n] = {1, . . . , n}.

2.3.1 Riemannian Geometry

A d-dimensional (topological) manifold M is a locally Euclidean topological space: for any
p ∈M, there is an open neighborhood U of p and a continuous map ψ : U → Rd which is a
homeomorphism onto its image. The pair (U , ψU) is called a coordinate chart, and for any
pair of overlapping charts (U , ψU) and (V , ψV), we have a transition map

τU ,V = ψV ◦ ψ−1
U
⃓⃓
ψU (U∩V) (2.1)

A collection of charts whose domains cover the manifold is called an atlas. We only consider
C∞-smooth manifolds, where all transition maps in the atlas are C∞.

For each p ∈ M, the tangent space TpM is a d-dimensional vector space representing
the set of directional derivatives at p. Given a differentiable curve γ : (−ϵ, ϵ) → M with
p = γ(0), this affords an interpretation of the velocity of γ at p, γ′(0), as an element of TpM.
For a smooth map of manifolds f : M → N , the pushforward of f at p is a linear map
f∗,p : TpM → Tf(p)N , generalizing the Jacobian matrix [38, page 55]. The pushforward is
defined so that, with γ defined as above, f∗,p(γ′(0)) = (f ◦ γ)′(0).

A Riemannian metric g is a smoothly-varying positive-definite bilinear form over M
that gives each tangent space TpM an inner product ⟨ · , · ⟩(M,g)

p . The pair (M, g) is a
Riemannian manifold, and we frequently refer toM exclusively when the choice of metric is
unambiguous. A Riemannian metric allows one to measure the length of a curve, invariant
to reparametrizations [39, page 34]; if γ : [a, b]→M is piecewise continuously differentiable,
then

L(γ) =

∫︂ b

a

√︂
⟨γ′(s), γ′(s)⟩(M,g)

γ(s) ds (2.2)

We call the integrand the speed of γ. The distance between any two points p, q ∈ M is
defined as the infimum of the arc length of all curves connecting them:

dM(p, q) = inf
{︁
L(γ)

⃓⃓
γ ∈ C1pw([0, 1],M), γ(0) = p, γ(1) = q

}︁
(2.3)

where C1pw([0, 1],M) is the set of parametric piecewise-continuously differentiable curves from
the interval [0, 1] to M. A curve that achieves this infimum need not exist in general [37,
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M1

T1

(a) Positive

M2

T2

(b) Zero (flat)

M3

T3

(c) Negative

Figure 2.2: Examples of geodesic triangles Ti in manifoldsMi with various sectional curva-
tures. In positive curvature spaces, the interior angles sum to more than 180°, and the edges
bow outwards. The opposite is true in negative curvature spaces.

page 146]. We also define dU(p, q) for p, q ∈ U ⊆M to be the infimum of the length of paths
whose image is contained in U .

If M is connected, it is a metric space with respect to dM. Given two Riemannian
manifolds (M, g) and (N , h), a smooth function f :M→N is a local isometry if

⟨u, v⟩(M,g)
p = ⟨f∗,p(u), f∗,p(v)⟩(N ,h)

f(p) (2.4)

∀p ∈ M, ∀u, v ∈ TpM. If f is also a diffeomorphism, and M and N are connected, then f
preserves distances [39, page 37], and is an isometry of metric spaces. The converse is also
true [41].

A geodesic is a locally length-minimizing curve, parameterized to be constant speed.
Locally length-minimizing means that for two points on the geodesic that are close enough,
the geodesic traces out the shortest path between them. For example, geodesics in Euclidean
space with the natural metric are lines, rays, and line segments, and geodesics on the sphere
(with the induced metric from Euclidean space) are great circles. Constructing the shortest
geodesic between two points is a variational calculus problem, so the solution must satisfy
the Euler-Lagrange system of differential equations. Thus, initial conditions p ∈ M and
v ∈ TpM uniquely define a geodesic, such that v is the velocity of the geodesic as it passes
through p. This is used to define the exponential map expp : TpM→M, where the direction
of a vector v defines the direction of the geodesic, and the magnitude of v determines how
far to move in that direction away from p.

A Riemannian metric induces curvature on a manifold, capturing how local geometry
differs from the standard Euclidean case. The sectional curvature at a point p is a real-
valued function defined on 2-dimensional subspaces of the tangent space TpM [37, §4.3].
(We write K(u, v) for any vectors u and v that span the subspace.) Informally, the sectional
curvature corresponds to the distortion of angles in triangles, as shown in Fig. 2.2. Manifolds
that have everywhere-zero curvature are called flat, and are locally isometric to Euclidean
space.

The Cartesian product of two Riemannian manifolds is itself a Riemannian manifold. The
curvature of the component manifolds influences the curvature of the product. Importantly,
the product of flat manifolds is flat [42]. As we explain in Section 2.5, this implies that
a robot with a mobile base and (potentially many) continuous revolute joints has a flat
configuration space.
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The curvature is a fourth-order tensor with complex symmetries, but the derived sectional
curvature (defined in terms of 2-dimensional subsets of the tangent space) provides a much
more intuitive interpretation. A region of positive curvature locally looks similar to a sphere,
whereas a region of negative curvature locally looks similar to a saddle.

2.3.2 Convex Analysis on Manifolds

To define convexity on a Riemannian manifold (M, g), we replace the notion of lines with
geodesics. In general, there is not a unique geodesic (or even a unique shortest geodesic)
between two points, so a more intricate definition is required. A subset U ⊆ M is strongly
geodesically convex (or g-convex ) if ∀p, q ∈ U , there is a unique length-minimizing geodesic
connecting p and q, and it is entirely contained in U . This definition ensures that the
intersection of g-convex sets is g-convex, and that there is a unique shortest path between
any pair of points in a g-convex set. Weaker definitions used in other works [43], [44] do not
provide these guarantees. See [40, §11.3] for further discussion.

G-convex neighborhoods exist around every point [37, page 77] For any p ∈ M, there is
a convexity radius rp > 0, such that the open ball

Br(p) =
{︁
expp(q)

⃓⃓
q ∈ TpM, ||q|| < r

}︁
(2.5)

is g-convex for any r < rp (where the norm is induced by the Riemannian metric). Intuitively,
the convexity radius quantifies how large a set can be before minimizing geodesics can go
“the wrong way around” the manifold. On the product of two Riemannian manifolds, each
geodesic is naturally the product of geodesics on its components. Thus, the product of
g-convex sets is g-convex in the product manifold.

A function f :M→ R is said to be geodesically convex (g-convex ) on U ⊆M if, for any
geodesic γ : [0, 1]→ U , (f ◦ γ) is a convex function on [0, 1]. That is, ∀t ∈ [0, 1],

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)) (2.6)

We say that f is locally g-convex if for any p ∈M, there exists a neighborhood Up of p such
that the restriction of f to U is g-convex.

Unfortunately, existing research into g-convex optimization often focuses on specific
classes of manifolds that do not encompass the configuration spaces of interest [44], [45].
In addition, there is little existing literature studying mixed-integer Riemannian convex op-
timization, and techniques commonly used in the Euclidean case (e.g., cutting planes [46])
may not generalize to Riemannian manifolds.

2.4 Problem Statement

We may now precisely state our kinematic planning problem in the language of Riemannian
geometry developed thus far. Let (Q, g) be the configuration space of a robot, realized as a
connected Riemannian manifold, and further assume that Q is complete [38, page 598] with
respect to the metric induced by g. Suppose that the set of collision-free configurations is
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a bounded open subset M ⊆ Q, and without loss of generality, assume that M is path-
connected. (If M is not path-connected, then we restrict ourselves to planning within a
single connected component.)

Suppose we want to find the shortest path between two points p and q inM, the closure
of M (i.e., the smallest closed set containing M). This can be written as the optimization
problem

argmin L(γ)
s.t. γ ∈ C1pw([0, 1],M)

γ(0) = p
γ(1) = q

(2.7)

where L is the Riemannian arc length, given in Eq. (2.2). In the following sections, we
develop machinery to solve optimization problems of this form.

2.5 Graphs of Geodesically-Convex Sets

We now introduce a graph of geodesically convex sets (GGCS), a Riemannian optimization
framework that, in Section 2.6, we show is general enough to encompass Problem (2.7). A
GGCS is a directed graph G = (V,E) with certain properties, designed as a generalization of
ordinary (Euclidean) GCS from Marcucci, Umenberger, Parrilo, et al. [9, §2] to Riemannian
manifolds. Each vertex v ∈ V has a corresponding g-convex subset Yv of some Riemannian
manifold (Mv, gv). With each edge e = (u, v) ∈ E, we associate a cost function ℓYe :
Yu × Yv → R≥0 ∪ {∞}, which must be g-convex with respect to the product metric on
Mu ×Mv. For all problems considered in this chapter, every g-convex set will be a subset
of a single Riemannian manifold.

Given distinct source and target vertices p, q ∈ V , a path π from p to q is a sequence
of distinct vertices (vk)

K
k=0 such that v0 = p, vK = q, and (vk−1, vk) ∈ E for all k ∈ [K].

Associate to this path a sequence of points yπ = (y0, . . . , yK) such that each yv ∈ Yv; then
the length of this path is

ℓYπ (yπ) =
K∑︂
k=1

ℓY(vk−1,vk)
(yk−1, yk) (2.8)

Let Π denote the set of all paths from p to q, and for any π ∈ Π, define its feasible vertices
as Yπ = Yv0×· · ·×YvK . The problem of finding the shortest path from p to q can be written
as

min
π∈Π

min
yπ∈Yπ

ℓYπ (yπ) (2.9)

Solving Problem (2.9) to optimality is intractable in complete generality, so we propose to
transform it into an ordinary GCS problem. To each v ∈ V , associate a chart ψv, and define
Xv = ψv(Yv). For each edge e = (u, v) ∈ E, we define the edge cost on (xu, xv) ∈ Xu ×Xv:

ℓe(xu, xv) = ℓYe (ψ
−1
u (xu), ψ

−1
v (xv)). (2.10)

This construction is shown in Fig. 2.3. To apply the GCS machinery, we require that the
sets Xv and edge costs ℓe(xu, xv) are convex. As we show in Subsection 2.6.5, this is hopeless
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Xu

Yu

Xv

Yv

ℓe
xu xv

ℓYe

yu yv

ψu ψv

Figure 2.3: Moving edges and sets from Riemannian manifolds to Euclidean spaces with
coordinate charts. In this diagram, Yu and Yv are visualized as part of the same Riemannian
manifold, although this need not be true in general.

for manifolds with positive curvature. Luckily, for flat manifolds, convexity can be ensured,
as will be shown in Subsection 2.6.1.

Importantly, many robot configuration spaces can be realized as flat manifolds. SE(2) is
flat, all 1-dimensional manifolds are flat [39, page 47] (this encompasses continuous revolute
joints), and products of flat manifolds are flat. Thus, any robotic system whose configuration
can be described using a series of single-degree-of-freedom joints (and potentially a mobile
base) will have a flat configuration space, and thus can be handled by our methodology.
2-DoF universal joints can also be handled, as they can be perfectly represented as two
juxtaposed 1-DoF joints. 3-DoF ball joints cannot be handled perfectly, because decomposing
a ball joint into 1-DoF joints distorts the underlying geometry. Instead, one can use a
piecewise-linear approximation of this configuration space – see Subsection 2.6.5 for further
discussion.

2.6 Motion Planning with GGCS

We want to use GGCS to make motion plans on Riemannian manifolds by solving Prob-
lem (2.7). Thus, we must prove that the optimal value is achieved by some trajectory that
is feasible for a GGCS problem. We use the initialism ROSC (Riemannian Open Subset
Closure) to describe closures of open subsets of Riemannian manifolds, notablyM. ROSCs
are topological manifolds-with-boundary, but the boundary may not be smooth; for example,
polytopic obstacles lead to corners on the boundary of M. The theory of manifolds-with-
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corners is not well developed in full generality, so for the sake of completeness, we confirm
some expected properties of paths through ROSCs.

Theorem 1. (Existence of Optimal Trajectories) For any p, q ∈ M, there exists a
continuous curve γ connecting them such that L(γ) = d(p, q).

Proof. The proof follows by verifying that M satisfies the preconditions of Theorem 2.5.23
of Burago, Burago, and Ivanov [47, page 50]. We defer the details to Appendix A.1.

Assumption 1. We are given a finite atlas A = {(Yv, ψv)}v∈V of M. For each v, the
closure Yv is g-convex as a subset of Q. Furthermore, the union of the closures Yv covers
M.

These requirements will not hold in general, but we will discuss how to construct such
an atlas in Subsection 2.6.2. We can also extend each ψv to be defined on Y . With this
information, we can prove a strong result about the shortest paths inM.

Theorem 2. (Piecewise Geodesic Optimal Paths) Let p, q ∈ M, and suppose the sets
Yv satisfy Assumption 1. Then there is a curve γ∗ ∈ C1pw([a, b],M) connecting them, such
that the following are true:

• L(γ∗) = d(p, q)

• γ∗ is a piecewise geodesic of Q

• Each geodesic segment is contained in some Yv
• γ∗ passes through each Yv at most once.

Proof. Let γ0 be a continuous minimizing path connecting p to q (guaranteed to exist by
Theorem 1); we will use this to construct an appropriate γ∗. Select an arbitrary order
v1, . . . , v|V | to iterate over all of the vertices in V . We will construct a sequence of curves
γ1, . . . , γ|V |, such that γ|V | has the desired properties.

For each i, if γi−1 does not pass through Yvi , let γi = γi−1. Otherwise, let Ti ={︁
t
⃓⃓
γi−1(t) ∈ Yvi

}︁
, let a′i = min(Ti), and let b′i = max(Ti). Then by the g-convexity of

Yvi , there is a unique minimizing geodesic αi : [a′i, b′i]→ Yvi connecting γi−1(a
′
i) and γi−1(b

′
i).

Let γ̃ be a new curve, defined by

γ̃(t) =

®
γi−1(t) t ̸∈ [a′i, b

′
i]

αi(t) t ∈ [a′i, b
′
i]

(2.11)

Because L(αi) ≤ L(γi−1|[a′,b′]), we have L(γ̃) ≤ L(γi−1), and since γi−1 is of minimum length,
we must have L(γ̃) = L(γi−1). Define γi to be γ̃, and continue until we have iterated over all
of the v ∈ V . Then by construction, L(γ|V |) = d(p, q), γ|V | is piecewise geodesic in Q, each
geodesic segment is contained in some Yv, and γ|V | passes through each Yv at most once.
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2.6.1 Formulation as a GCS Problem

To transform the GGCS problem into a GCS problem, we require that the sets and edge
costs are convex in Euclidean space. The following is sufficient (and still encompasses robots
with mobile bases and continuous revolute joints):

Assumption 2. Q is flat. Also, each ψv is a local isometry into Euclidean space, viewed as
a Riemannian manifold with the canonical Euclidean metric.

Assumptions 1 and 2 together yield three important results:

• Xv = ψv(Yv) is convex.

• ∀y0, y1 ∈ Yv, d(y0, y1) = ||ψv(y0)− ψv(y1)||2
• τu,v is a Euclidean isometry (see Lemma 4 in Appendix A.2), and hence affine [48].

The first two results are true because Yv is g-convex, ψv maps geodesics to geodesics [39,
page 125], and geodesics are unique in Euclidean space. For most robotic configuration
spaces we consider, Q can be decomposed as the product of one-dimensional manifolds. In
this case, the coordinate systems can be globally aligned, so that every transition map is a
translation.

To formulate the problem with GCS, we follow an approach similar to [4], where decision
variables describe line segments contained within each convex set. In particular, ∀v ∈ V ,
we have xv = (xv,0, xv,1) ∈ X 2

v , where xv,0 is the start point of the line segment, and xv,1 is
the end point. For each edge e = (u, v) ∈ E, the length of the segment associated with the
starting vertex is used as the edge cost:

ℓe(xu, xv) = d(ψ−1
u (xu,0), ψ

−1
u (xu,1)) = ||xu,0 − xu,1||2 (2.12)

We also encode equality constraints to ensure the endpoints of adjacent segments are in
agreement:

ψ−1
u (xu,1) = ψ−1

v (xv,0) ⇔ τu,v(xu,1) = xv,0 (2.13)

This constraint is convex because τu,v is affine. Thus, we have a valid GCS formulation,
which can be solved as a mixed-integer convex program. Alternatively, it can be solved
approximately by solving the convex relaxation and using a randomized rounding strategy [4].
If we have p ∈ X0 and q ∈ XK , then after solving the GCS problem, we obtain a path

xπ = (x0,0, x0,1, x1,0, x1,1, . . . , xK,0, xK,1) (2.14)

with x0,0 = ψ0(p), xK,1 = ψK(q), and ψi(xi,1) = ψi+1(xi+1,0), ∀i ∈ {1, . . . , K − 1}. Such a
path naturally lifts to a path onM:

yπ = (y0 = p, y1, y2, . . . , yK , yK+1 = q) (2.15)
= (ψ−1

0 (x0,0), ψ
−1
1 (x1,0), . . . , ψ

−1
K (xK,0), ψ

−1
K (xK,1))

where we have removed duplicate points from the trajectory. This process is visualized for
a simple cylinder manifold in Fig. 2.4.
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Figure 2.4: The process of transforming a GGCS problem into a GCS problem for a simple
cylinder manifold. Each of the three charts maps to a Euclidean space, with transition maps
encoding the equality constraints across chart domains. The line segments then lift to a
piecewise geodesic on the manifold.
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For each i ∈ {0, . . . , K}, yi and yi+1 are contained in a g-convex set Y i, so there is a
unique minimizing geodesic γi connecting them and completely contained in Y i. Thus, a path
yπ uniquely defines a piecewise geodesic γπ connecting p to q that is completely contained
inM. With this fact, we can formally prove the equivalence of the GGCS problem and the
GCS problem.

Theorem 3. (Proof of Problem Equivalence) If the path xπ given in Eq. (2.14) is
optimal for the GCS problem defined by Eqs. (2.12) and (2.13), then the piecewise geodesic
γπ defined by Eq. (2.15) is optimal for Problem (2.7).

Proof. Any feasible path xπ for the GCS problem yields a piecewise continuously differen-
tiable curve γπ whose image is contained in M and connecting p to q. Then the length of
this curve satisfies

L(γπ) =
K∑︂
i=0

d(yi, yi+1) =
K∑︂
i=0

||xi,0 − xi,1||2 = ℓπ(xπ)

Thus, the optimal value of Problem (2.7) is no worse than the optimal value of the GCS
problem.

Now, consider an optimal γ∗ for Problem (2.7), with the properties of Theorem 2. Then
γ∗ is the concatenation of geodesics γ1, . . . , γK , where γi : [0, 1]→ Yvi for i = 1, . . . , K, and
each vi is distinct. Define xπ by

(xi,0, xi,1) = (ψi(γi(0)), ψi(γi(1)))

∀i ∈ [K]. By construction, ℓπ(xπ) = L(γ∗). γi(1) = γi+1(0), and the vi are distinct, so
xπ is feasible for the GCS problem. Thus, the GCS problem achieves the optimal value of
Problem (2.7).

2.6.2 Construction of the Atlas

A key part of motion planning with GGCS is the construction of an appropriate atlas A =
{(Yv, ψv)}v∈V of M. Recall that A must be finite, each Yv must be g-convex, and each ψv
must be a local isometry.

As was done in [4], we construct an inner approximation of C-Free using the extension
of IRIS [7, Alg. 2] to handle nonconvex obstacles. Given a seed point in Q, we grow a
region about that point with respect to a local coordinate system. In this way, we grow the
region in Euclidean space, but we have an implicit mapping to the manifold, allowing us to
construct the transition maps needed for Eq. (2.13).

To ensure the set is g-convex when lifted to Q, we bound the region by the convexity
radius on a per-joint basis. If ri is the convexity radius of the ith joint’s configuration space,
we constrain that joint to take values within an open ball of radius ri, centered at the seed
point. For revolute joints without limits and mobile bases, the convexity radius is π/2.
(Computationally, we use a closed ball of radius ri − ϵ, with a small ϵ > 0.) For a 1DoF
joint, this is just the interval [x− ri + ϵ, x+ ri − ϵ] for seed point x. If the manifold is flat,
this guarantees g-convexity (see proof in Appendix A.2).
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Theorem 4. Suppose Q = Q1 × · · · × Qm, where each Qi has a convexity radius ri. Let
(Y , ψ) be a coordinate chart, with ψ a local isometry and ψ(Y) convex in Euclidean space.
If Q is flat and the diameter of projQi

(Y) is less than 2ri, then Y is g-convex.

We also assumed full coverage ofM by the union of the Yv. In scenarios where we only
have an inner approximation of C-Free, we treat all points outside of that approximation as
obstacles. Thus, our planner finds the globally optimal path within “certified” C-Free, which
is a subset of the whole C-Free.

2.6.3 Additional Costs and Constraints

Marcucci, Petersen, Wrangel, et al. [4] extended GcsTrajOpt to parametrize trajectories as
piecewise Bézier curves, in order to handle a greater variety of costs and constraints. This
includes penalizing the duration and energy of a trajectory, adding velocity bounds, and re-
quiring the trajectory to be differentiable a certain number of times. Bézier curves generalize
naturally to Riemannian manifolds by interpolating along the minimizing geodesics between
control points [49], [50]. Because we restrict ourselves to flat manifolds, the local geometry is
unchanged from Euclidean space. Thus, all costs and constraints that operate on individual
segments of the piecewise Bézier curve trajectory can be used with no changes.

To enforce the differentiability of the overall trajectory where two segments connect, we
must compare tangent vectors across different coordinate systems. In particular, suppose we
need differentiability η times for an edge (i, j), with transition map τi,j. Let γi and γj be
adjoining Bézier curve segments in Yi and Yj, and let their kth derivatives be ν(k)i and ν

(k)
j

at the point where they connect, called w. Using the pushforward of the transition map at
w, this constraint can be written as

(τi,j)∗,ψ−1
i (w)

Ä
ν
(k)
i

ä
= ν

(k)
j ∀l ∈ [η] (2.16)

Because the transition map is a Euclidean isometry, its pushforward is a linear transformation
described by an orthogonal matrix, and if the coordinate systems are globally aligned (as
described in Subsection 2.6.1), then the pushforward is the identity map. When Q is flat,
the derivative of a Bézier curve is a linear expression of its control points, so Eq. (2.16) is a
convex constraint.

2.6.4 Beyond Flat Manifolds

The guarantees afforded by GgcsTrajOpt derive from Assumptions 1 and 2. Assumption 1 af-
fects the completeness and optimality of the algorithm, and it may be impossible to construct
an appropriate atlas if the boundary of M is not a piecewise-totally-geodesic submanifold.
However, we can always construct a finite atlas of g-convex sets to cover all but an arbitrarily
small subset ofM. Indeed, in practice, we simply work with an inner approximation ofM,
and GgcsTrajOpt will find the shortest path contained within that inner approximation.

Assumption 2 is used to guarantee that the resulting optimization problem is convex;
without it, we may have nonconvex costs or constraints, and can make no guarantees of
finding an optimal (or even feasible) solution. But many manifolds of interest in robotics do
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not satisfy these requirements. Certain configuration spaces are inherently not flat manifolds.
Examples include SO(3), which is the configuration space of a ball joint and SE(3), which is
the configuration space of a free rigid body. Planning problems where general kinematic or
dynamic constraints have been imposed can also yield a constrained configuration space as
an embedded non-flat submanifold of the full configuration space.

Piecewise-Linear Approximations

To handle arbitrary manifolds, we turn our attention to piecewise-linear (PL) approxima-
tions. In particular, we consider a triangulation of the manifold: a simplicial (or polytopic)
mesh of appropriate dimension whose topology matches the manifold. The GCS machinery
can be used to plan along a PL approximation; indeed, the original GCS paper directly con-
siders piecewise-affine systems [9, §8.2]. In the context of approximating a smooth manifold,
we will treat each simplex as a chart domain, replace the transition map with the mapping
between two adjacent simplices, and approximate the arc length on the manifold with the
arc length along the PL approximation.

We consider a similar problem setup to [51]. The configuration spaceQ is a d-dimensional
embedded submanifold of Rn, defined as the zero level set of a smooth function F : Rn →
Rn−d whose Jacobian is full rank everywhere. We are given a piecewise-linear approximation
ofQ composed of convex polytopes Pi ⊆ Rn. For each polytope Pi, the orthogonal projection
ψi :M→ aff(Pi) (where aff(Pi) denotes the affine hull of Pi) forms a coordinate chart when
its domain is appropriately restricted, due to the quantitative implicit function theorem [52].
As in [51], the preimage of each polytope serves as a conservative approximation of the
domain of the chart.

Given an atlas of Q, we can produce an atlas of M by taking polytopic subsets of Pi,
whose image is a collision-free set. The IRIS algorithm naturally extends to growing poly-
topic regions through a general nonlinear coordinate chart [53]. The nonlinear continuation
approaches used to generate the atlas of Q do not enforce g-convexity of the chart domains,
but compactness ofM will guarantee the convexity radius is finite, so we can simply parti-
tion any oversized charts into g-convex pieces. We label these new polytopes Pv, and obtain
a finite atlas A = {(Yv, ψv)}v∈V ofM satisfying Assumption 1. For convenience of notation,
we define the inverse Ψv = ψ−1

v , restricted to the appropriate domain.
We cannot satisfy Assumption 2, as Q may not be flat, and the chart mappings ψv are

not isometries. However, our sets Pv are convex in Euclidean space, and we can replace each
transition map τu,v with the affine mapping from one Pu to its neighbor Pv. Any point x on
the boundary between two polytopes Pu and Pv will be lifted to two different representatives
yu and yv on the manifold by their corresponding charts. We ensure paths are well-defined
as they cross the boundary between two polytopes by requiring that

Ψu(Pu ∩ Pv) ⊆ domψv. (2.17)

We will leverage this fact in the procedure for lifting a path xπ in the PL approximation to a
path yπ onM. So if we mirror the transformation procedure described in Subsection 2.6.1,
we obtain a valid GCS problem.

Solving the shortest path problem on the PL approximation yields a path xπ as in (2.14).
However, we generally do not have Ψu(xu,1) = Ψv(xv,0), so the process for lifting to a path yπ
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onM is more complex. We define yi,0 = Ψi(xi,0) and yi,1 = Ψi(xi,1), and trace the minimizing
geodesic from y0,0 towards y0,1. At the transition from chart i to i + 1, if yi,1 ∈ Ψi+1(Pi+1),
and if

||ψi+1(yi,1)− xi+1,1|| ≤ ||xi+1,0 − xi+1,1|| , (2.18)

then we trace the minimizing geodesic from yi,1 to yi+1,1. Otherwise, we simply trace the
minimizing geodesic from yi,1 to yi+1,0 and then to yi+1,1.

We now endeavor to prove this GCS problem provides a useful approximation of Problem
(2.7). We introduce the following notation to describe the length of a path along the PL
approximation:

LPL(xπ) =
K∑︂
i=0

||xi,0 − xi,1|| . (2.19)

The PL approximation then becomes a metric space with distance function dPL by taking
the infimum of the arc lengths, analogous to (2.3). Let p ∈ Pp and q ∈ Pq. Solving our
approximation to global optimality yields a path x∗π whose length LPL(x

∗
π) is minimal among

all paths xπ from p to q. In practice, we use the relax-and-round strategy, so we do not
assume that LPL(x

∗
π) = dPL(p, q).

We will provide an upper bound on d(Ψp(p),Ψq(q)) in terms of LPL(x
∗
π), K (x∗π tra-

verses K + 1 sets per (2.14)), and the following numerical quantities derived from the PL
approximation:

• ϵH : the maximum chart Hausdorff distance maxi dH(Pi,Ψi(Pi)).

• αmax: the largest principal angle [54] between any pair of adjacent charts.

Hausdorff distance is a common metric to quantify the difference between two approximations
of a geometric object [55]. The largest principal angle between charts, together with the
radius of the smallest chart, presents a coarse bound on the curvature of the manifold.
Taking a finer discretization generally leads to both quantities decreasing; for example, see
Fig. 2.5. Furthermore, compactness of the manifold ensures that the curvature is bounded,
so ϵH and αmax can be made arbitrarily small with finitely many charts.

We leverage two lemmata in deriving a global upper bound on the path length (see proofs
in Appendix A.3).

Lemma 1. Fix a chart (Y , ψ), and points x0, x1 ∈ ψi(Yi). Let y0 = Ψ(x0) and y1 = Ψ(x1).
Then

d(y0, y1) ≤ ||x0 − x1||
(︂
1 + max

x∈ψ(Y)
||DΨ(x)− I||op

)︂
. (2.20)

This demonstrates that the error within a chart is upper bounded by how much the total
derivative of the chart mapping deviates from the identity mapping. When constructing
charts as in [51], the polytope is constructed so as to lie along the tangent space of some
point on the manifold. Thus, there is always some x ∈ ψ(Y) such that DΨ(x) = I. By
smoothness, this entails that

max
x∈ψ(Y)

||DΨ(x)− I||op (2.21)
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Figure 2.5: A shortest path problem on the unit sphere, solved with GgcsTrajopt using
an increasingly fine discretization. The blue and green markers denote the start and end
configurations, respectively. The solid black path denotes the shortest path along the mesh
(found with GgcsTrajOpt), and the dotted black path is the result obtained when that path
is lifted back to the sphere. Conversely, the red dotted path is the ground truth shortest
path along the sphere, and the solid red path is its projection onto the PL approximation.

can be made arbitrary small by using a finer atlas of charts (Yv, ψv) whose images have
smaller diameter.

Still, an upper bound on the whole path across multiple charts can also incur error along
the chart transitions. This is because we have replaced the transition maps with approxima-
tions, so the portions of the path on the manifold that cross the boundary between charts
may be collapsed to zero length. The following lemma quantifies this error by projecting
that portion of the path onto one of the charts.

Lemma 2. For subsequent charts i, i+ 1 traversed by xπ,

d(yi,1, yi+1,0) ≤ ϵH sinαmax

(︂
1 + max

x∈Pi

||DΨi(x)− I||op
)︂
. (2.22)

We now have an upper bound on the error within a chart and across subsequent charts.
Thus, by solving the PL-approximation, we obtain an optimal path length LPL(x

∗
π), and use

this to compute an upper bound on the true distance along the manifold d(Ψp(p),Ψq(q)).

Theorem 5. (Approximation Upper Bound)

d(Ψp(p),Ψq(q)) ≤ (LPL(x
∗
π) +KϵH sinαmax)

(︂
1 + max

v∈V
x∈Pv

||DΨv(x)− I||op
)︂
, (2.23)

where K + 1 is the number of charts traversed by x∗π.

Proof. Let x∗π be the optimal path. Then we leverage the triangle inequality for the manifold
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distance metric, along with Lemmata 1 and 2, to obtain the desired bound:

d(p, q) ≤
K∑︂
i=0

d(y∗i,0, y
∗
i,1) +

K−1∑︂
i=0

d(y∗i,1, y
∗
i+1,0) (2.24)

≤
K∑︂
i=0

⃓⃓⃓⃓
x∗i,0 − x∗i,1

⃓⃓⃓⃓ (︂
1 + max

x∈Pi

||DΨi(x)− I||op
)︂

(2.25)

+
K−1∑︂
i=0

ϵH sinαmax

(︂
1 + max

x∈Pi

||DΨi(x)− I||op
)︂

(2.26)

≤ (LPL(x
∗
π) +KϵH sinαmax)

(︂
1 + max

v∈V
x∈Pv

||DΨi(x)− I||op
)︂
. (2.27)

Roughly speaking, ϵH sinαmax is a linear approximation of the portion of the path not
accounted for within each polytope. If this quantity can be bounded above a multiplicative
factor of the portion of the path in each polytope, we can obtain a multiplicative upper
bound on d(Ψp(p),Ψq(q)).

Corollary 1. If ∃c > 0 such that ϵH sinαmax ≤ c · d(yi,0, yi,1) for all i, then

d(Ψp(p),Ψq(q)) ≤ LPL(x
∗
π) (1 + c)

(︂
1 + max

v∈V
x∈Pv

||DΨv(x)− I||op
)︂
. (2.28)

2.6.5 Planning over SO(3)

The Lie group SO(3) is of great interest in robotics, and thus merits special consideration.
For example, the configuration space of a ball joint is a subset of SO(3), and the configuration
space of a free moving object in R3 is SE(3) ∼= SO(3)×R3. Under the standard Riemannian
metric, the manifold has positive curvature (a direct result of Corollary 3.19 of [56]), and
unfortunately, even a single point of positive curvature implies that the Riemannian distance
function is not g-convex, even on arbitrarily small neighborhoods of that point (see proof in
Appendix A.4).

Theorem 6. Let M be a Riemannian manifold, let A1 ∈ M and u, v ∈ TA1M such that
K(u, v) > 0. Then for any neighborhood U containing A1, d :M2 → R is nonconvex on U2.

One way to get around this problem is to instead use Euler angles, where a rotation
is represented as the product of three rotations, about the x, y, and z axes in a given
coordinate system. As a manifold, the set of Euler angles is T3, and it has a natural flat
Riemannian metric. This makes the Euler angles parametrization very easy to plan over
with GgcsTrajOpt. However, this parametrization has degeneracies due to gimbal lock, and
the flat metric distorts the true distance.

Another option is to use the approximation strategy described in Subsection 2.6.4 that
can handle arbitrary manifolds, which naturally encompasses SO(3). One can describe SO(3)
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as the subset of R3×3 satisfying six nonlinear constraints, but it is more common to work
with more compact descriptions. One such description is the unit quaternions, which is
geometrically equivalent to the 3-sphere S3. The unit quaternions form a double cover of
SO(3), as the unit quaternions v and −v correspond to the same rotation. A naive way
to handle this is to simply solve the shortest path problem to the goal and its antipode,
and take the shorter path. Another representation of SO(3) is the axis-angle convention,
S2 × S1. Each nonzero rotation corresponds to two axis-angle representations (related by
having axis vectors pointing in opposite directions, and opposite angles), except for the
identity rotation, which can be represented by any axis and the zero angle. Although the
axis-angle convention is less elegant topologically, S1 is flat, so the approximation is only
needed for the manifold S2. We empirically compare both of these approximations to the
Euler angles parametrization in Subsection 2.7.5.

2.7 Experiments

We demonstrate our GgcsTrajOpt on various robotic platforms. We present illustrative toy
examples of planning for a point robot on a toroidal world and an arm in the plane with
multiple continuous revolute joints. We also build plans for a KUKA iiwa arm (with the
base joint modified to be continuous revolute) and a PR2 bimanual mobile manipulator,
implemented in Drake [57]. We make interactive recordings of these trajectories available
online at our results website. For each experiment, we explicitly state the configuration space,
using I to refer to a general bounded interval in R. Finally, we compute shortest paths along
SO(3) with each of the three approximation strategies discussed in Subsection 2.6.5.

2.7.1 Point Robot

Consider a point robot moving about a toroidal world (configuration space T2, modeled as a
unit square with the edges identified), with convex planar obstacles. It is easy to visualize the
obstacles, g-convex sets, and graph edges, as shown in Fig. 2.6. We also show an example of
an optimal trajectory produced by GgcsTrajOpt, which “wraps around” the toroidal world.
This plan was computed in 0.79 seconds.

2.7.2 Planar Arm

Consider a robot arm with a fixed base, composed of five continuous revolute joints (config-
uration space T5), moving through a planar workspace with convex obstacles. (We assume
the arm does not suffer from self-collisions.) We present sample plans produced by Ggcs-
TrajOpt in Fig. 2.7, together with the swept collision volumes. These two plans were found
in 5.36 and 4.63 seconds, respectively. A video of these trajectories is available at our results
website.
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Figure 2.6: Results for a point robot in a toroidal world, realized as a unit square with
opposite edges identified. Obstacles are shown in red, and each IRIS region is given a distinct
pastel color. Note that one of the regions “wraps around” along the horizontal dimension,
connecting opposite sides of the world. Grey dashed lines indicate which regions overlap.
The optimal path between the start and end points is shown in black.
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Figure 2.7: Two plans produced by GgcsTrajOpt for a planar arm around task-space obsta-
cles (shown in red). We display both the swept collision volume and individual poses in the
trajectory (colored by time, as indicated by the colorbar).
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2.7.3 Modified KUKA iiwa Arm

We also demonstrate that GgcsTrajOpt can be used to plan a series of motions using a
KUKA iiwa robot arm. The KUKA iiwa is a 7-DoF robot arm where each joint is a revolute
joint with limits; in simulation, we remove the limits on the first joint, so the configuration
space is T1 × I6. We consider a scenario where the arm is mounted on a table, surrounded
by three sets of shelves, with mugs arranged on the shelves. The goal of the task is to sort
the mugs onto different shelves, organized by color. We specify the order of motions that
are needed to achieve this goal and use GgcsTrajOpt to find the path from start to goal for
each motion.

For this experiment, we used a set of 18 convex regions to achieve approximate coverage
of the collision-free space. These regions were adjusted as the mugs were moved about the
environment and were used to plan the complete motion of the arm – no heuristic motion or
“pre-grasp pose” was needed to reach the grasp configuration. Several configurations used to
seed the region generation are shown in Fig. 2.8, and the initial and final states are shown in
Fig. 2.9. A video and an interactive recording of the plan are available at our results website.

The experiment consisted of 14 motions, which were each planned individually, and we
use the region refinement method from [8] to account for the current placement of the mugs.
This ensured that both the arm and the grasped mug were collision-free for the entirety of
each trajectory segment. The robot takes full advantage of the base joint’s lack of limits
– always choosing the shortest path and never needing to unwind any rotations. For each
segment, planning a trajectory took an average of 25.75 seconds (with a range of 4.63 to
50.30 seconds).

2.7.4 PR2 Bimanual Mobile Manipulator

In addition to its mobile base, the PR2 has two continuous revolute joints in each arm. We
have fixed the wrist rotation and gripper joints, so the configuration space is SE(2)× T2 ×
I10 ∼= T3 × I12. We consider a scenario where the robot is driving around a square table
that has an outward-pointing stack of three shelves on each side. The robot must reach into
the different shelves with both arms. This represents a challenging motion planning scenario
for all existing approaches due to the obstacle-rich environment and high dimensionality of
the configuration space.

The performance of GgcsTrajOpt is largely driven by the choice of g-convex sets. For
each set of shelves, we generate IRIS regions for the robot to reach into the top, middle,
and bottom shelves with both arms simultaneously. We also generate two additional regions
where the robot reaches into the middle shelf with one arm and the bottom shelf with the
other while crossing its arms. Finally, we manually add various intermediate regions to
promote graph connectivity and cover more of C-Free. In Fig. 2.11, we show several robot
configurations along a trajectory produced by GgcsTrajOpt.

For the planning scenarios considered with the PR2, we compare GgcsTrajOpt to existing
approaches. Trajectory lengths are listed in Table 2.1, plan times are listed in Table 2.2,
and interactive recordings of all trajectories are available online at our results website. We
compare our algorithm to kinematic trajectory optimization [13, §7.2] (abbreviated as Drake-
Trajopt), utilizing the general nonlinear program solver SNOPT [58], [59]. Drake-Trajopt
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Figure 2.8: Key configurations (overlaid) used for a mug reorganization demo.
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Figure 2.9: Initial (left) and final (right) states for the mug reorganization demo.

struggles to figure out how to move the arms into or out of the shelf; we often have to add
waypoints to force the robot to back out of the shelf by moving its base.

We also compare it to a sampling-based PRM planner. To mitigate the curse of di-
mensionality and ensure connectivity between seed points, we initialize the PRM with the
skeleton of the GGCS graph: for each pair of overlapping regions, we place a node in the
Chebyshev center [60, page 148] of their intersection. We then add 100,000 additional sam-
ples, drawn uniformly across C-Free (with rejection sampling). This process takes 124.39
seconds. In comparison, it takes an average of 30.20 seconds to generate an IRIS region
(with a range of 8.56 to 75.42 seconds). With parallelization, all of the IRIS regions were
generated in only 156.63 seconds.

The plans produced by the PRM are significantly longer than those from the GgcsTraj-
Opt, so we also examine using the output of the PRM planner as the initial guess for the
trajectory optimization. (In principle, this should help prevent Drake-Trajopt from getting
stuck in local minima.) When post-processing PRM plans with Drake-Trajopt, it sometimes
produces shorter final trajectories than GgcsTrajOpt, at the expense of colliding slightly
with the environment (an example is shown in Fig. 2.10). This is likely due to the challenge
of balancing the collision-free constraint with the minimum distance objective (and because
collision-free constraints can only be applied at discrete points).

Finally, we compare our GgcsTrajOpt to two workarounds for applying ordinary GCS
to non-Euclidean motion planning. One could add artificial joint limits to prevent the
wraparound, but placing the joint limits incorrectly could make the optimal path infeasible.
The planar arm experiment clearly demonstrates this problem; during the second trajectory
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Figure 2.10: An example of the slight collisions typical of the trajectories produced by Drake-
Trajopt. (The blue circle highlights the point of collision.)

in Fig. 2.7, the middle joint traverses more than 360° in the course of the plan. Thus, the
optimal trajectory is infeasible for every possible choice of joint limits.

Another option is treating the angles as real numbers with no bound (and ignoring the
fact that 0° ≡ 360°). But in this case, the correct joint angle modulo 360° must be chosen
to get the optimal path. Furthermore, many copies of each convex set must be made to
account for each possible choice of angle modulo 360°, increasing the size of the optimization
problem.

With both workarounds, a priori knowledge about the solution is required to guarantee
that it is found, so in each comparison, we separately consider the best and worst cases. We
use the same seed points across GgcsTrajOpt and both GcsTrajOpt workarounds.

An interesting result is that the best case for the GcsTrajOpt workarounds is sometimes
slightly better than GgcsTrajOpt. This is because the sets are not bounded by the convexity
radius, so they can grow larger (and cover more of C-Free) with the same seed points. If
the workarounds are restricted to using the same regions as GgcsTrajOpt, then, in the best
case, their performance is indistinguishable.

2.7.5 Planning over SO(3)

As discussed in Subsection 2.6.5, it is necessary to use an approximation strategy to plan
over SO(3) with our methodology. To compare the efficacy of the approximation strategies,
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Experiment GgcsTrajOpt Drake-
Trajopt

PRM PRM +
Drake-
Trajopt

GcsTrajOpt
(Joint
Limits)

GcsTrajOpt
(No Joint
Limits)

1T to 1B 1.829 1.803 4.359 1.808 1.826 1.839
1CL to
1CR

2.255 2.204 9.219 2.182 2.239 2.247

1M to 4M 3.875
���6.938

t = 0.275,
5.272

14.554
�
��5.874

t = 0.714,
4.381

6.482 /
10.478

3.990 /
12.589

1CL to
2CR

4.473 ���5.409
t = 2.155

12.110 ���4.108
t = 0.49

4.441 /
13.815

4.640 /
13.233

1CL to
3CR

8.182 10.263 15.250

�
��7.166
t =

0.7, 1.87,
2.02, 2.77

7.820 /
12.125

8.501 /
12.125

1CL to
4CR

4.382 7.583 17.459
���6.088
t = 0.27,
0.555, 4.39

4.728 /
9.961

4.559 /
12.418

1T to 4B 4.538 8.781 12.351
���5.949
t = 0.34,
0.68

5.320 /
14.928

5.473 /
14.160

Table 2.1: A comparison of trajectory lengths (in configuration space) for each PR2 experi-
ment across different methods. Experiments are titled by the start and goal configurations.
The configuration names indicate the shelf positions on the table (1 through 4), followed
by the position of the grippers. T, M, B, CL, and CR stand for top, middle, bottom, cross
left over right, and cross right over left (respectively). Table cells that are struck through
indicate that the trajectory is not collision-free, and the time stamps below the trajectory
length indicate when the collisions occurred. For both GcsTrajOpt workarounds, we include
the best- and worst-case results (in general, achieving the best-case results requires a priori
knowledge of the optimal plan). Interactive recordings of each trajectory are available online
at our results website. Each cell is linked to its corresponding recording.

Experiment GgcsTrajOpt Drake-Trajopt PRM PRM + Drake-Trajopt
1T to 1B 25.51 12.69 0.49 11.61

1CL to 1CR 39.42 15.23 0.49 16.11
1M to 4M 46.61 2.26 0.53 25.51

1CL to 2CR 62.87 9.74 0.54 21.48
1CL to 3CR 58.60 7.82 0.52 27.30
1CL to 4CR 66.15 4.32 0.54 40.10

1T to 4B 29.89 10.92 0.54 15.36

Table 2.2: A comparison of online planning times (in seconds) for each PR2 experiment across
different methods. (We omit the GCS workaround comparisons, as they are indistinguishable
from the corresponding GgcsTrajOpt runtimes.) Experiment names match Table 2.1.
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Figure 2.11: Individual poses along a trajectory produced by GgcsTrajOpt for the PR2
robot, labeled with their order in the plan.
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we consider an abstract planning problem, where we have to find the shortest1 path between
two configurations in SO(3). Since there are no obstacles, we can compare the solution from
each approximation to the closed-form solution, obtained from spherical linear interpolation
(SLERP) [61]. For numerical purposes, we slightly expand the charts throughout these
experiments, so as to achieve a positive-measure overlap.

The Euler angles description is equivalent to T3, which we realize as a cube with opposing
faces identified. We use charts of the form [x, x + 2π

3
] × [y, y + 2π

3
] × [z, z + 2π

3
] for x, y, z ∈{︁

0, 2π
3
, 4π

3

}︁
. In our experiments, we have a GGCS with 27 sets and 702 directed edges, as

the graph is fully connected.
The axis-angle description is equivalent to S2× S1, where the first, 2-sphere-valued com-

ponent denotes the axis of rotation and the second, circle-valued component denotes the
angle rotated about that axis. We use an icosahedron as our PL approximation of the unit
sphere, although higher resolution approximations can easily be constructed by subdividing
the faces [62, §2.B.1]. Charts are of the form Pv × [θ, θ+ 2π

3
] for a face Pv of the PL approx-

imation and θ ∈
{︁
0, 2π

3
, 4π

3

}︁
. In our experiments, we have a GGCS with 60 charts and 660

directed edges. Because the axis-angle representation almost perfectly double-covers SO(3)
(outside of the identity configuration), we have to solve two planning problems, to ensure
we plan to the closest representative of the orientation.

The quaternion description is equivalent to S3. We construct a tiling with respect to
the hyperspherical coordinate system [63]. We evenly tile the angular variables ψ1, ψ2, ψ3 ∈
[0, 2π] to a desired resolution, and then map the corners onto S3 (by taking the radius of each
point to be 1). The polytopes Pv are then taken to be the convex hulls of the corners of each
tile. If we subdivide each angular dimension into 3 pieces, we have 27 charts and 390 directed
edges. Subdividing into 4 pieces yields 64 charts and 2240 directed edges. Similarly to axis-
angle representation, S3 double-covers SO(3), so we have to solve two planning problems, to
ensure we plan to the closest representative of the orientation.

To compare these approximations, we uniformly sampled random start and goal orienta-
tions, and computed the shortest path between them for each approximation strategy. We
measure their length according to the geodesic distance between each successive control point
of the path, and compare to the ground truth distance between the start and goal. Ground
truth for this distance metric can be obtained in closed form with spherical linear interpola-
tion [61], allowing us to measure the approximation error for each method. In Fig. 2.12, we
plot the distribution of the relative errors for each of the three methods.

The distance in the Euler angles representation is known to distort the true distance
between orientations, so it is unsurprising that this choice of approximation has higher
error. When the higher-resolution approximation of the quaternionic sphere is used, its
relative error is roughly equivalent to that of the axis-angle approximation. However, this
requires a much larger graph (and many more edges), yielding a more computationally
costly optimization program. Thus, we recommend using the axis-angle parametrization, as
it strikes the best balance between accuracy and computational efficiency.

1We measure the length of a path in SO(3) according to the canonical bi-invariant Riemannian metric.
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(a) Compared across 1000 random samples, using the lower-resolution
approximation of quaternionic sphere.
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(b) Compared across 250 random samples, using the higher-resolution
approximation of quaternionic sphere.

Figure 2.12: The distribution of relative error across many sampled start and goal configu-
rations when planning using various SO(3) approximations strategies.
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2.8 Discussion

In this chapter, we have formulated the general problem of motion planning around obstacles
on Riemannian manifolds as a shortest path problem in a graph of geodesically convex
sets, and we have proved this formulation inherits the same guarantees as in the ordinary
Euclidean case. We describe how these theoretical developments inform simple and elegant
modifications to the original GcsTrajOpt, in order to handle robots with mobile bases and
continuous revolute joints. This enables us to solve motion planning problems on such
robotic platforms to global optimality and guarantee that the trajectory is collision-free at
every point in time. Approximate solving techniques still guarantee that trajectories are
collision-free, and empirically, such trajectories are very close to optimal.

We have demonstrated that GgcsTrajOpt is a powerful tool for robot motion planning.
It is capable of producing plans for high degree-of-freedom systems operating in obstacle-
dense configuration spaces, such as a PR2 bimanual mobile manipulator reaching into and
out of shelves. Although the planning and optimization frameworks used in GgcsTrajOpt
are still in their infancy, they are already capable of producing high-quality results that
are competitive with existing methods. As further research and technical improvements are
made, its performance will continue to improve.
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Chapter 3

Constrained Bimanual Planning with
Analytic Inverse Kinematics

The work in this chapter will be published in the proceedings of the IEEE International
Conference on Robotics and Automation 2024 [53].

In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of the Massachusetts Institute of Technology’s products or ser-
vices. Internal or personal use of this material is permitted. If interested in reprinting/repub-
lishing IEEE copyrighted material for advertising or promotional purposes or for creating new
collective works for resale or redistribution, please go to http://www.ieee.org/publications_
standards/publications/rights/rights_link.html to learn how to obtain a License from
RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives
of Canada may supply single copies of the dissertation.

3.1 Introduction

Enabling bimanual robots to execute coordinated actions with both arms is essential for
achieving (super)human-like skill in automation and home contexts. There exists a variety
of tasks that are only solvable when two arms manipulate in concert [64], such as carrying
an unwieldy object, folding clothes, or assembling parts. In many manipulation tasks, one
gripper can be used to provide fixture to the manipuland, while the other performs the
desired action [65]; such tasks include opening a bottle, chopping vegetables, and tightening
a bolt. Furthermore, some tools explicitly require two arms to use, such as hand mixers,
rolling pins, and can openers.

To accomplish many of these desired tasks, the motion of the robot arms becomes subject
to equality constraints imposed in task space. For example, when moving an object that
is held by both hands, the robot must ensure that the transformation between the end
effectors remains constant. Such task space constraints appear as complicated nonlinear
equality constraints in configuration space, posing a major challenge to traditional motion
planning algorithms.

In the existing literature, there are general techniques for handling task-space constraints
in configuration-space planning. Sampling-based planners can project samples onto the
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Figure 3.1: Hardware setup for our experiments. The two arms must work together to move
an objects between the shelves, avoiding collisions and respecting the kinematic constraint.

constraint manifold [66] or use numerical continuation [67] to construct piecewise-linear
approximations. Constraints can also be relaxed [68] or enforced directly with trajectory
optimization [69]. In the case of certain bimanual planning problems, there is additional
structure that is not exploited by these general methods. For certain classes of robot arms,
analytic inverse kinematics (analytic IK) can be used to map an end-effector pose (along
with additional parameters to resolve kinematic redundnacy) to joint angles in closed form.
Such solutions are specific to certain classes of robot arms, but are a powerful tool to be
leveraged if available. Fortunately, analytic IK is available for many popular robot arms
available today, including the KUKA iiwa. See Fig. 3.1.

If a robot must move an object that it is holding with both hands, we propose constructing
a plan for one “controllable” arm, and then the other “subordinate” arm can be made to
follow it via an analytic IK mapping. Configurations where the subordinate arm cannot
reach the end-effector of the primary arm, or where doing so would require violating joint
limits, are treated as obstacles. In this way, we parametrize the constraint manifold so
that the feasible set has positive measure in the new planning space. Because we no longer
have to consider the equality constraints, sampling-based planning algorithms can be applied
without modification. We can also differentiate through the IK mapping, enabling the direct
application of trajectory optimization approaches.

The remainder of this chapter is organized as follows. First, we give an overview of the
existing techniques used for constrained motion planning, and describe the available analytic
IK solutions. Then, we present our parametrization of the constraint manifold for bimanual
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planning, and discuss its relevant geometric and topological properties. We describe the
slight modifications which are necessary to adapt standard planning algorithms (including
sampling-based planning and trajectory optimization) to operate in this framework. We
then present a technique for generating convex sets in this new configuration space, such
that every configuration within such a set is collision free and kinematically valid. These
sets are essential for planning frameworks such as Graph of Convex Sets (GCS) [4], [9].
Finally, we present various experiments demonstrating the efficacy of these new techniques.

3.2 Related Work

Constrained bimanual planning is an instance of the general problem of motion planning with
task-space constraints, a well-studied problem in robotics. There has been extensive research
into sampling-based approaches; these techniques fall under a number of broad categories:

• Relax the constraints (with real or simulated compliance) to give the feasible set
nonzero volume [68], [70].

• Project samples to the constraint manifold [66], [71], [72].

• Construct piecewise-linear approximations of the constraint manifold [73]–[76].

• Parametrize of the constraint manifold to eliminate constraints [77], [78].

• Build offline approximations of the constraint manifold, to simplify online planning [79],
[80].

See the survey paper [81] for a more detailed summary.
Beyond sampling-based planning, standard nonconvex trajectory optimization approaches

can handle arbitrary constraints, although they will generally only converge to a feasible so-
lution with good initialization [81]. [69] used sequential convex programming on manifolds
for nonconvex trajectory optimization. [82] greatly reduced constraint violations when com-
puting trajectories on manifolds by enforcing collocation constraints in local coordinates.

Other approaches are designed specifically for the constraints that arise from robot kine-
matics. Inverse kinematics (IK) – computing robot joint angles so as to place the end effector
at a given configuration – has been especially applicable. IK has long been used to sample
constraint-satisfying configurations for bimanual robots, enabling the use of sampling-based
planning algorithms [83]–[86]. IK can be leveraged to find stable, collision-free configura-
tions for a humanoid robot [87], to help a robot arm follow a prescribed task-space trajec-
tory [88], and to satisfy the kinematic constraints that arise when manipulating articulated
objects [89]. Differential IK techniques can be used to follow task space trajectories, while
satisfying constraints [90, §10.3], [91, §3.10].

A key part of our work is the use of a smooth IK mapping to parametrize the constraint
manifold. Oftentimes, IK solutions are computed by solving a nonconvex mathematical
program. The tools of algebraic geometry can be used to reformulate certain IK problems
as systems of polynomial equations, which can be solved as eigenvalue problems [92]–[94].
However, neither of these methods yield closed-form IK solutions, nor do they guarantee
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smoothness. Smooth IK solutions for certain 6DoF arms can be produced by dividing the
joints into two sets of three, and treating each of these as “virtual” spherical joints [95,
§2.12]. IKFast [96] can be used to automatically construct analytic IK solutions for broad
classes of robot arm kinematics, and is available as part of the OpenRAVE toolkit [97].
Some arms have specifically-designed geometric solutions, such as the Universal Robotics
UR-5/UR-10 [98].

Robot arms with more than six degrees of freedom have kinematic redundancy – the arm
can be moved while keeping its end effector fixed. This is called self-motion and is useful for
avoiding obstacles and joint limits, but it implies that the forward kinematic mapping cannot
be bijective. [99] computes a globally-consistent pseudoinverse (discarding the redundancy),
but this artificially restricts the configuration space. Other approaches characterize the
redundancy as a free parameter to be controlled in addition to the end-effector pose. [100]
presents a strategy for treating specific joints in a 7DoF arm as free parameters, reducing
the problem to that of a 6DoF arm. IKFast can discretize any additional joints. Similar to
the sphere-sphere 6DoF arms, certain 7DoF arms have a sphere-revolute-sphere kinematic
structure (similar to the human arm), leading to elegant geometric solutions [101], [102].
Specific geometric solutions are available for many common robot arms, including the KUKA
iiwa [103], Franka Emika Panda [104], and the Barrett WAM [105].

Our parametrization can be combined with many planning algorithms to form a complete
system. In this chapter, we specifically examine the canonical sampling-based planners:
Rapidly-Exploring Random Trees (RRTs) [12] and Probabilistic Roadmaps (PRMs) [11].
Our contributions can also be used with the many extensions to these techniques [106]–[112].
We also describe how to use standard kinematic trajectory optimization techniques [91, §7.2],
[14], [15], [113]. Finally, we describe how to extend the IRIS-NP algorithm [8] for computing
convex collision-free sets to use our parametrization of the configuration space; such sets can
be planned across with the GCS planning framework [4]. (These sets can also be used with
other “convex set planning algorithms” [5], [114], [115].)

3.3 Methodology

We introduce a bijective mapping between joint angles and end-effector pose for a single arm
with analytic IK. We then use this mapping to parametrize the set of valid configurations
for constrained bimanual manipulation. The joint angles of one arm are treated as free vari-
ables for the parametrized configuration space, and the aforementioned mapping is used to
determine the joint angles for the other arms (visualized in Fig. 3.2). Finally, we explain the
modifications needed to adapt existing planning algorithms to utilize this parametrization.

3.3.1 Topology of Inverse Kinematics

The topological and geometric properties of inverse kinematic mappings are a classic area of
study in robotics [116]–[118]. For an arm with n ≥ 6 revolute joints, the configuration space
is C ⊆ Tn, where Tn denotes the n-torus. The forward kinematic mapping f : C → SE(3)
computes the end-effector pose of the arm for a given choice of each joint angle. We define the
reachable set X = {f(θ) : θ ∈ C} ⊆ SE(3). To construct a homeomorphism between subsets
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Figure 3.2: A high level description of our parametrization. The controlled arm can move
freely, and analytic IK is used to position the subordinate arm so as to maintain a fixed
transformation between the end-effectors.

51



of C and X , we must restrict our domain of attention to avoid singular configurations, and
augment X with additional degrees of freedom to match dimensions.

We give an overview of the terminology introduced in [117] for describing the global
behavior of inverse kinematic mappings. A configuration for which the Jacobian of f is full-
rank is called a regular point ; otherwise, it is called a critical point. Because f is not injective,
the preimage of a single end-effector pose may contain only critical points, only regular points,
or some of both; it is respectively called a critical value, regular value, and coregular value.
W-sheets are the connected components of regular values in X whose boundaries are the
coregular values of f . The connected components of the preimages of W-sheets are called
C-bundles and are composed of regular points of C. For a regular value x ∈ X , we have

f−1(x) =
m⋃︂
i=1

Mi(x), (3.1)

where theMi(x) are self-motion manifolds of x, so called because motion within them does
not affect the end-effector pose. The label i is called the global configuration parameter, and
a choice of ψ ∈ Mi(x) is called the redundancy parameter. According to [117], for robot
arms in 3D space, the number of self-motion manifolds is at most 16; within a C-bundle, the
self-motion manifolds are homotopic; and if the arm has only revolute joints, then the self-
motion manifolds are diffeomorphic to Tn−6. (If n = 6, then the Mi are zero-dimensional,
i.e., discrete points.) Examples of the continuous and discrete self motions for a 7DoF arm
are shown in Fig. 3.3.

The C-bundle/W-sheet machinery allows us to construct well-defined IK mappings. Let
Wj ⊆ X be a W-sheet, and let x0 ∈ Wj. Then there is an smooth injection

gi,j :Wj ×Mi(x0)→ C. (3.2)

Since the self-motion manifolds are homotopic within a C-bundle, they are uniquely described
in terms of their choice of C-bundle and W-sheet, so we use the shorthand Mi,j in place of
Mi(x0). If we let hi,j map joint angles to their corresponding redundancy parameter, then
(f, hi,j) ◦ gi,j is the identity mapping on Wj ×Mi,j. Thus, with appropriate restrictions in
domain and range, we have a bijection between the arm’s joint angles and the product of its
end-effector pose and redundancy parameters. The set Ci,j, defined as the image of gi,j, is
the set of joint angles which can be handled by these mappings.

3.3.2 Parametrizing the Kinematically Constrained Space

Now, we turn our attention to the bimanual case. We use an additional subscript to denote
which arm the sets and maps correspond to; for example, XL is the reachable set of the “left”
arm, and gi,j,R denotes the inverse kinematic mapping for the “right” arm.

When a rigid object is held with both end effectors, a rigid transformation T ∈ SE(3)
between them becomes fixed; we let ϕT : XL → SE(3) take in an end-effector pose for the
left arm (henceforth called the controlled arm), and output the target end-effector pose for
the right arm (henceforth called the subordinate arm). We let

XT := {(x, ϕT (x)) : x ∈ XL} ⊂ XL × SE(3) (3.3)
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Figure 3.3: Continuous (top) and discrete (bottom) self-motions of a 7DoF arm. The contin-
uous self-motion yields an additional degree of freedom for the planner to consider, whereas
the discrete self-motion is not utilized.
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denote the space of end-effector poses which are feasible for the controlled arm and for which
the pose of subordinate end-effector respects transformation T . Note that this latter pose
may not be reachable for the subordinate arm, and a choice of redundancy parameter may
require a violation of its joint limits. We treat both of these cases as abstract obstacles in
the configuration space.

For the remainder of the chapter, we fix the global configuration parameter i and choice
of W-sheet j for the second arm. Let T be the desired end-effector transformation. We
define a parametrized configuration space Q := CL ×Mi,j,R. q ∈ Q determines joint angles
for both arms via the mapping

ξ : (θL, ψR) ↦→ (θL, gi,j,R(ϕT (fL(θL)), ψR)). (3.4)

The individual degrees of freedom of this parametrization are shown in Fig. 3.4. For more
details on why we select this specific parametrization, see Section 3.5. Let θmin and θmax be
the lower and upper joint limits. A configuration (θL, ψR) is valid if:

ϕT (fL(θL)) ∈ Wj,R (Respect reachability.) (3.5a)
θmin ≤ ξ(θL, ψR) ≤ θmax (Respect joint limits.) (3.5b)

We call the set of configurations satisfying these constraints QVALID. For q ∈ Q, if the robot
is collision free for the joint angles ξ(q), we say q ∈ QFREE.

3.3.3 Reformulating the Motion Planning Problem

Let s, t ∈ CL × CR be the start and goal configurations. The constrained motion planning
problem requires finding a path γ = (γL, γR) : [0, 1]→ CL × CR by solving:

argmin L(γ) (3.6a)
s.t. γ(t) collision free ∀t ∈ [0, 1] (3.6b)

ϕT (fL(γL(t))) = fR(γR(t)) ∀t ∈ [0, 1] (3.6c)
γ(0) = s, γ(1) = t. (3.6d)

(L denotes the arc length functional, but can be replaced with another cost.) The main
challenge this formulation presents is the nonlinear equality constraint (3.6c), as this requires
γ lie along a measure-zero set. Trajectory optimizers may struggle with (3.6c), and sampling-
based planners must use one of the techniques described in Section 3.2.

Our parametrized motion planning problem is written in terms of a trajectory γ̄ : [0, 1]→
Q, with start s̄ and goal t̄ satisfying ξ(s̄) = s and ξ(t̄) = t:

argmin L(ξ ◦ γ̄) (3.7a)
s.t. (ξ ◦ γ̄)(t) collision free ∀t ∈ [0, 1] (3.7b)

γ̄(t) ∈ QVALID ∀t ∈ [0, 1] (3.7c)
γ̄(0) = s̄, γ̄(1) = t̄. (3.7d)

This formulation includes the implicit requirement that the entire planned trajectory be
within a single C-bundle, due to the restricted domain of ξ. In Section 3.4, we demonstrate
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Figure 3.4: The individual degrees of freedom in our parametrization of the constrained
bimanual configuration space.
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Figure 3.5: Most existing planners can only enforce constraints at discrete points along the
trajectory. Parametrization-based planners (including our approach) satisfy constraints at
all points by construction.

that this theoretical limitation is not a major roadblock to our framework’s efficacy. A
major advantage of parametrization methods is that by construction, the end-effector poses
(fL, fR)◦ξ(γ̄(t)) are guaranteed to be related by transformation T . For other methodologies,
the constraints are only satisfied at discrete points along the trajectory. (See Fig. 3.5.)

3.3.4 Motion Planning with the Parametrization

Constraint (3.7c) is a nonlinear inequality constraint, so feasible trajectories are constrained
to lie in a positive volume set QVALID ∩ QFREE. Thus, unconstrained motion planning
algorithms can function with only slight modifications.

Sampling-Based Planning

The changes required for sampling based planners can be summarized as treating points
outside QVALID as being in collision. Because QVALID∩QFREE has positive measure, rejection
sampling can be used to draw valid samples. When connecting samples (as in the “Extend”
procedure of an RRT or “Connect” procedure of a PRM), the frequency with which collisions
are checked must be adjusted, since distance in the parametrized spaceQ differs from distance
in the full configuration space CL × CR. In particular, a small motion in Q can lead to a
relatively large motion in CL×CR, so collision checking must be done more frequently (or at
a varying scale).

Trajectory Optimization

Trajectory optimization in configuration space is already nonconvex, so implementing con-
straints (3.7b) and (3.7c) requires no algorithmic changes. As with sampling-based planning,
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collision avoidance (and other constraints applied to the full configuration space) must be
enforced at a finer resolution.

Graph of Convex Sets

Let U ⊆ QVALID ∩QFREE be convex. Then the kinematic validity (and collision-free nature)
of a linear path through U is guaranteed if its endpoints are contained in U . Thus, the Graph
of Convex Sets Planner (GCS) can function as expected with two small modifications. We
minimize the arc length in the parametrized space L(γ̄), as this objective provides a useful
convex surrogate for the true (nonconvex) objective (3.7a). Also, for robot arms composed of
revolute joints, the self-motion parameters are angle-valued, so one can either make cuts to
the configuration space and treat it as Euclidean, or use the extension Graphs of Geodesically-
Convex Sets (GGCS) [10]. The product of the angle-valued self-motion parameters will
be a circle or n-torus, both of which admit a flat metric [119, p.345]. If we plan across
geodesically convex (g-convex) subsets of QVALID ∩ QFREE, then the problem satisfies the
conditions presented in Assumptions 1 and 2 of [10]. These assumptions guarantee that the
resulting path will be kinematically valid and collision-free at all times.

3.3.5 Constructing Convex Valid Sets

To use (G)GCS, one must construct (g-)convex subsets of QVALID ∩ QFREE. The IRIS-NP
algorithm [8] uses a counterexample search to find configurations in collision and constructs
hyperplanes to separate the set from such configurations. IRIS-NP can support inequality
constraints beyond collision-avoidance, but they must be inequalities. By running IRIS-NP
through our parametrization, we avoid the equality constraints that would otherwise be
present in our constrained bimanual manipulation problem. Given a hyperellipsoid

E(C, d) = {q : ||q − d||2C ≤ 1}, (3.8)

defined using the notation

||q − d||2C = (q − d)TCTC(q − d), (3.9)

a halfspace intersection
H(A, b) = {q : Aq ≤ b} , (3.10)

and a constraint set CS, the generalized counterexample search program is

min
q
||q − d||2C (3.11a)

s.t. Aq ≤ b (3.11b)
q ̸∈ CS. (3.11c)

Given a bounding box H0(A0, b0), a hyperellipsoid E(C, d) with d ∈ H0(A0, b0), and a list
of configuration-space constraints CS1, . . . ,CSk to enforce, Algorithm 1 produces a halfspace
intersection H(A, b) ⊆ H0(A0, b0) such that every point in H(A, b) satisfies the constraints.

We now describe the constraint sets CS needed for Algorithm 1 to generate g-convex sets
in QVALID ∩ QFREE, and how to encode (3.11c). For q = (θL, ψR) (or q = (θL, ψR, T ) if the
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Input: Bounding Box H0(A0, b0)
Hyperellipsoid E(C, d) s.t. d ∈ H0(A0, b0)
Constraint Sets CS1, . . . ,CSk

Output: Halfspace Intersection H(A, b)
1 A← A0, b← b0
2 for CS = CS1, . . . ,CSk do
3 repeat
4 (a⋆, b⋆)← Solve[(3.11), {A, b, C, d,CS}]
5 A← VStack(A, a⋆), b← VStack(b, b⋆)
6 until Infeasible
7 return H(A, b)

Algorithm 1: Constrained IRIS (Single Iteration)

end effector transformation is allowed to vary), consider the auxiliary variable θR denoting
the joint angles of the subordinate arm, computed with (θL, θR) = ξ(q).

First, we require that any inverse trigonometric functions used in the analytic IK mapping
gi,j,R do not violate their domains. Although this constraint would be enforced by the later
constraints, specifically handling this case first greatly improves the performance of the later
counterexample searches. For example, [103, Eq. 4] takes the arccos of an argument w, so
we encode (3.11c) as |w| ≥ 1 + ϵ. When using the analytic IK solution for the KUKA iiwa,
we enforce this constraint for equations (4), (6), (18), and (23) of [103].

Next, we check the joint limits (3.5b), encoded for (3.11c) as

max(ξ(q)− θmax, θmin − ξ(q)) ≥ ϵ. (3.12)

Finally, a configuration q is said to be reachable if ϕT (fL(θL)) = fR(θR). Although this is
an equality constraint, the set of configurations satisfying the constraint has positive volume
in the parametrized space, so Algorithm 1 can still be used to generate a convex inner-
approximation. For reachability counterexamples (3.5a), we compute the squared Frobenius
norm of the difference between desired and realized end-effector pose, encoding (3.11c) as

||ϕT (fL(θL))− fR(θR)||2F ≥ ϵ. (3.13)

These three constraints will ensure H(A, b) ⊆ QVALID. To also enforce H(A, b) ⊆ QFREE,
we search for configurations q such that the robot is in collision. We separately find coun-
terexamples for each pair of collision bodies, using equation (2) of [8]. Note that this equation
operates on the full configuration (θL, θR), as obtained from the parametrized configuration
with ξ. Because (3.11) is a nonlinear program, we solve it using SNOPT [58] with random
initializations until a solution is obtained or a predefined number of consecutive failures is
reached (and in that case, return infeasible).

3.4 Results

We demonstrate our new constrained planning framework using a bimanual manipulation
setup with two KUKA iiwa 7DoF arms. Interactive recordings of all trajectories are available
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Method Top to Middle Middle to Bottom Bottom to Top
Trajopt 4.58* 2.85* 4.35*

Atlas-BiRRT 4.72 5.04 6.61
Atlas-PRM 5.43 5.67 6.99
IK-Trajopt 4.24* 1.81* 8.87
IK-BiRRT 9.91 8.69 11.42
IK-PRM 4.67 8.93 9.21
IK-GCS 2.09 3.32 5.62

Table 3.1: Path lengths (measured in configuration space) for each method with various
start and goal configurations. Paths marked with an asterisk were not collision-free.

online at https://cohnt.github.io/Bimanual-Web/. We use the analytic IK map presented
in [103]. To evaluate the merits of our IK parametrization for constrained planning, we
consider a task where the two arms must move an object around a set of shelves, while
avoiding collisions. We test four approaches under our parametrization:

1a. IK-BiRRT. We use the single-query bidirectional RRT (BiRRT) algorithm [106].

2a. IK-Trajopt We directly solve (3.7) with kinematic trajectory optimization [120, §10.3],
using the Drake modeling toolbox [57]. We use the output of the BiRRT planner as
the initial guess for the trajectory optimizer.

3a. IK-PRM. We use the multi-query PRM algorithm [11], initialized with nodes from
multiple BiRRTs to ensure connectivity, as in [4, §C].

4a. IK-GCS. We use GCS-planner [4] with 19 regions, constructed from hand-selected seed
points.

For both the BiRRT and PRM plans, we use short-cutting to post-process the paths [121].
We solve the GCS problems with Mosek [18]. We compare these parametrized planners with
constrained planning baselines.

1b. Constrained Trajectory Optimization. We solve (3.6) with kinematic trajectory opti-
mization, using the IK-BiRRT plan as the initial guess to compare with IK-Trajopt.

2b. Sampling-Based Planning. For sampling-based planners, we use the single-query Atlas-
BiRRT and multi-query Atlas-PRM algorithms [76], as implemented in the Open Mo-
tion Planning Library [122]. The atlas and PRM are initialized from multiple Atlas-
BiRRT runs.

We do not compare to any GCS baseline without IK, as the constraint manifold is inherently
nonconvex; IK-GCS is the first proposal for extending GCS to this class of problems.

Constraint Violations: Because the baseline methods can only enforce the kinematic
constraint at discrete points, the constraint violation can be significant between such points.
The OMPL planners experienced a maximum constraint violation of 6.62 cm, and the tra-
jectory optimization baseline experienced a maximum constraint violation of 3.22 cm. In
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Method Top to Middle Middle to Bottom Bottom to Top
Trajopt 10.37 5.36 7.25

Atlas-BiRRT 140.82 155.91 201.32
Atlas-PRM 0.69 0.86 0.96
IK-Trajopt 19.48 18.70 22.29
IK-BiRRT 49.42 52.53 54.10
IK-PRM 0.46 0.64 0.61
IK-GCS 3.41 2.32 3.32

Table 3.2: Online planning time (in seconds) for each method with various start and goal
configurations. Atlas-BiRRT runtimes were only averaged over successful runs (not including
timeouts).

comparison, our parametrization methods maintained all constraints within 0.001 cm. Plans
from the trajectory optimization baseline also had slight collisions with obstacles.

Path Length & Planning Time: Across all methods, for various start and goal con-
figurations, we compare path length in Table 3.1 and online planning time in Table 3.2.
We ran both BiRRT methods 10 times for each plan, and report the average path length
and planning time. We set a maximum planning time of 10 minutes for Atlas-BiRRT, and
omit these from the averaging. Out of the 30 runs used for the table, Atlas-BiRRT timed
out twice. IK-BiRRT never timed out; the longest plan took 81.17 seconds to compute. In
Fig. 3.6, we visualize several plans produced by the various constrained planning algorithms.

Table 3.2 does not include offline compute time. The time to construct the Atlas-PRM
varies greatly; with three random seeds, it took 33.25, 437.93, and 554.90 seconds. Con-
structing the IK-PRM took 2648.79 seconds, and constructing the IRIS regions for GCS
took 18361.36 seconds (966.39 seconds per region on average). The IRIS region construction
can also be parallelized, improving runtime.

Overall, the PRM methods have the shortest online runtimes. GCS is consistently faster
than the other optimization approaches, as a result of the offline precomputation of IRIS
regions. The other optimization approaches are sometimes able to find shorter paths than
GCS, since they have fewer constraints, but can get stuck in local minima. Although the
atlas methodologies may find shorter paths than their IK counterparts, this is at the cost of
significantly higher runtimes and potentially large kinematic constraint violations.

Task Space Coverage of IRIS Regions. In Fig. 3.7, we superimpose the end-effector
poses from many sampled bimanual configurations within individual IRIS regions. Despite
the complicated nonlinear mapping, these convex sets are able to cover large swaths of task
space, as shown in Fig. 3.7 (a). In Fig. 3.7 (b), we demonstrate that IRIS regions can
reliably encompass the motions required to reach into and out of a shelf. And in Fig. 3.7
(c), we visualize an IRIS region that allows the grasp distance to vary. This is accomplished
by treating the grasp distance as an additional degree of freedom in Algorithm 1. GCS
can use such regions to plan motions for objects of different sizes; we include hardware
demonstrations in our results video.
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3.5 Discussion

We presented a novel parametrization of the constrained configuration space that arises in
bimanual manipulation, which can be leveraged by both sampling-based planners and trajec-
tory optimizers for more efficient planning. Our parametrization can be used to find shorter
paths more quickly than existing approaches, and these paths will satisfy the kinematic
constraints at all points along the trajectory. This parametrization also enables the use of
planners such as GCS, which previously could not be applied to configuration spaces with
nonlinear equality constraints.

Other parametrizations for the constrained configuration space are symmetric, and may
seem more natural:

1. Treating the end-effector configuration and redundancy parameters for both arms as
the free variables, and using analytic IK for both arms.

2. Treating the first four joints of each arm as free variables, and solving IK for the
remaining six joints as a virtual 6DoF arm whose middle link is represented by the
object held by both end-effectors.

But these choices present other disadvantages.
For the first option, we would have to choose global configuration parameters for both

arms; in the case of the KUKA iiwa, this involves 64 choices (instead of the 8 options for our
parametrization). Also, the shortest paths for the end effector may lead to very inefficient
paths in joint space – our parametrization can at least minimize the joint space distance for
one arm. Finally, it requires planning over SO(3), which is not possible for GCS (see [10,
Thm. 5]).

For the second option, the choice of end-effector transformation T determines the kine-
matic structure of the virtual arm, so different grasps would require different analytic IK
solutions. Constructing such solutions would be time-consuming, and they may not always
exist.
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Figure 3.6: Planned trajectories for reaching into shelves. The paths denote the end effector’s
motion, and are colored by method. Red denotes Trajopt, green denotes Atlas-BiRRT, blue
denotes Atlas-PRM, yellow denotes IK-Trajopt, pink denotes IK-BiRRT, cyan denotes IK-
PRM, and black denotes IK-GCS.
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(a) The coverage of a single convex region, as
presented by a random collection of configura-
tions.

(b) A collection of configurations from a region
that represents motions that reach into and out
of a shelf.

(c) A region that represents varying grasp dis-
tances, in addition to collision-free configurations
in the shelf (not shown).

Figure 3.7: Robot configurations sampled from various IRIS regions.
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Chapter 4

Conclusion

In this thesis, we have considered the problem of planning motions for robots whose config-
uration spaces are naturally represented as manifolds. In Chapter 1, we examined why it is
necessary to generalize configuration-space planning approaches from the ordinary Euclidean
case. As we summarize our contributions towards tackling this more general problem, we
focus on a common theme of leveraging deep theoretical ideas to inform practical and elegant
algorithmic changes, as well as a common approach in transforming a problem on a manifold
into an equivalent problem in Euclidean space.

In Chapter 2, we built upon a state-of-the-art motion planning framework based on find-
ing shortest paths through graphs of convex sets in Euclidean space. We described a natural
generalization of such a framework to Riemannian manifolds and presented rigorous theoret-
ical analysis. We proved such a representation encompasses shortest paths on Riemannian
manifolds and described a reduction procedure that yields an ordinary GCS problem. We
provided sufficient conditions for when such a problem is convex and can be solved to global
optimality, which encompasses the configuration spaces of mobile robots and arms with
continuous revolute joints. We also proved this problem is fundamentally nonconvex for a
certain class of manifolds, encompassing several common robot configuration spaces (e.g.
the configuration space of a ball joint or a flying robot).

In Chapter 3, we turned our attention to constrained bimanual manipulation. The con-
figuration space that arises when an object is grasped in two hands is an implicitly-defined
submanifold of the full configuration space, so most existing work has relied on numeri-
cal approximations. We presented an explicit parametrization that utilizes analytic inverse
kinematics, eliminating the challenging nonlinear equality constraints. Computers can dif-
ferentiate through this closed form expression, enabling optimization software to handle con-
straints and objectives in both the parametrized and full configuration space. As a result,
the parametrization can be used with any motion planning algorithm.
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4.1 Directions for Future Work

4.1.1 Non-Euclidean Motion Planning with Graphs of Geodesically-
Convex Sets

Riemannian Optimization

As discussed in Section 2.2, we focused on constructing a optimization problem on a manifold
that could easily be transformed into a convex optimization problem in Euclidean space.
Another option would be to directly cast this problem as a geodesically-convex optimization
problem, and leverage a Riemannian optimization framework, such as Manopt [123]. These
frameworks generally assume there are no constraints besides the set constraint that decision
variables lie along a given manifold. However, there has been research into geodesically-
convex optimization with constraints [124], [125]. As these methods become more mature,
their performance will become more competitive with the state-of-the-art (Euclidean) convex
optimization frameworks. In that case, it may no longer be necessary to construct problem
transformations, as these packages would be able to directly parse manifold optimization
problems.

Moving Beyond Flat Manifolds

Adapting GCS to work on flat manifolds was a natural starting point. Because a flat manifold
is locally isometric to a Euclidean space, there are no changes to the local geometry of the
space, and the only concerns are handling global, topological differences.

Generalizing GGCS to work on non-positively curved manifolds is a clear next step.
Although the underlying geometry is fundamentally different from a Euclidean space, it still
has several nice properties that can allow GGCS to work. For example, the Riemannian
distance function on a non-positively curved manifold is geodesically convex [126, page 4],
a result which does not hold for manifolds of positive curvature. Thus, one could use the
Riemannian distance function as edge weights for GGCS, in order to solve the shortest path
problem. However, the equality constraints imposed in the motion planning formulation
built on GGCS will no longer be affine, preventing a direct generalization.

Examples of manifolds of non-positive curvature include:

• Hyperbolic spaces, which have a constant sectional curvature of −1.

• Spaces of positive definite matrices, whose sectional curvature range from −1
2

to 0
(inclusive), with respect to the standard affine-invariant metric [127, page 71]1.

While these manifolds do not directly appear as robot configuration spaces, the GCS opti-
mization framework has seen use for control problems [9, §8], as well other graph problems
with neighborhoods [9, Appendix A]. Given the use of positive semidefinite matrices in con-
trol [128] and the use of hyperbolic spaces to represent hierarchical graph data [129], such
capabilities may of both theoretical and practical interest.

1The lower bound is given explicitly; the upper bound follows directly from the given formula for sectional
curvature, as any matrix of the form ATA is positive semidefinite, and hence has nonnegative trace.
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4.1.2 Constrained Bimanual Planning with Analytic Inverse Kine-
matics

Broader Classes of Robot Arm Kinematics

The work in this thesis purely focused on hand-derived analytic IK solutions, constructed
by examining the geometry of the arm kinematics. A more general strategy could leverage
the fact that the kinematics of any robot arm can always be represented as a system of poly-
nomial equations [7, §4.1]. This new representation can be solved via specialized computer
algebra systems, such as IKFast [96]. IKFast handles kinematic redundancy by discretiz-
ing redundant joints, so finite-differencing would be necessary to differentiate through these
solutions.

Alternatively, one can transform the IK problem into an eigenvalue problem, where each
eigenvalue-eigenvector pair can be used to construct a solution [93, §3]. However, to come up
with a consistent parametrization, it is essential to keep track of which solution is being used.
Otherwise, the subordinate robot arm could “jump” between the solutions, making any re-
sulting plan discontinuous (and thus impossible for the arms to actually follow). Fortunately,
there are tools from computational algebraic geometry, such as homotopy continuation [130],
that could be brought to bear on this type of problem.

Objectives Beyond Path Length

In our proposed parametrization for the constrained bimanual planning problem, the shortest
path corresponds to the shortest path for the controlled arm, while the subordinate arm could
take a much longer trajectory. Furthermore, the shortest path may not be the fastest path, as
robots are limited in how fast they can accelerate. Optimizing for these objectives renders the
problem nonconvex, potentially losing the safety and optimality guarantees we care about.
However, because the constraints still describe a convex feasible set, the problem has not lost
all useful structure. General nonlinear optimization techniques, such as projected gradient
descent, could be used to guarantee feasibility and producing a trajectory that is locally
optimal with respect to an arbitrary objective function [131]. We could then choose an
objective function that more faithfully measures the distance traveled by both arms to find
short paths. Instead of acceleration limits, we could use an objective function that penalizes
the curvature of the path, to promote smoother and more dynamically elegant paths.

Planning Across C-Bundles

In the constrained bimanual planning problem, the set of kinematically valid configurations
inherently has singularities, and these singular configurations partition the overall config-
uration space into disconnected pieces [117], [118]. We have demonstrated in Section 3.4
that many motions are possible by staying within one of these pieces, and indeed, there are
algorithms which intentionally avoid singularities [74]. However, we want to give the robot
total freedom of motion, so we need to tackle the challenges that singularities provide to
planning.

In particular, sampling-based planners struggle because the singularities form a measure-
zero set. This means the probability that a random sample is drawn from one is zero, so
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a sampling-based planner must deliberately construct singular configurations. Also, near
singularities, trajectory optimizers may suffer from numerical difficulties, as the gradients
may tend to infinity. Fortunately, analytic IK algorithms and the more general eigenvalue
methods introduced in Subsection 4.1.2 could be used to characterize the sets of singular
configurations. The presence of discrete decisions – corresponding to which singular con-
figurations the robot passes through – suggests that GCS could be a promising method for
tackling these problems.
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Appendices
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A. Proofs

A.1 Proof of Theorem 1

Lemma 3. For any p, q ∈M, there is a piecewise-smooth path connecting p and q.

Proof. Because M is path connected, there is a continuous curve γ : [a, b] → M joining
them. Let (U1, ψ1), . . . , (Un, ψn) be a series of charts of Q that cover the image of γ, with
p ∈ U1, q ∈ Un, and Ui ∩ Ui+1 ∩M ̸= ∅ for each i. (Such a finite covering exists because
the image of γ is compact.) Let t0, . . . , tn ∈ [a, b] such that t0 = a, tn = b, and for each
i = 1, . . . , n − 1, γ(ti) ∈ Ui ∩ Ui+1. For each i = 1, . . . , n − 1, let γ̃i be a smooth curve
joining ψi(γ(ti)) to ψi+1(γ(ti+1)) that is contained within ψi(Ui ∩M). Let γ̃0 join ψ1(γ(t0))
to ψ1(γ(t1)) and be contained within ψ1(U1∩M), and let γ̃n join ψn(γ(tn−1)) to ψn(q) and be
contained within ψn(Un∩M). Then by lifting each of these curves toM, and concatenating
them, we obtain a piecewise-smooth curve connecting p and q.

Proof of Theorem 1. The proof follows by verifying that M is a complete, locally compact
length space, so that we can apply Theorem 2.5.23 of Burago, Burago, and Ivanov [47, page
50]. A length space is a metric space in which the distance between any two points is given
by the infimum of the arc lengths of all paths connecting those two points. A length space is
complete if the distance between any two points is finite. Thus,M inherits a length structure
from Q (with the restriction to curves that are entirely contained in M). All topological
manifolds are locally compact. To check that M is complete, let p, q ∈ M. By Lemma 3,
there is a piecewise-smooth curve connecting p and q, so the set of arc lengths of curves
connecting p and q is nonempty. It is also bounded below, so its infimum is finite, and thus
d(p, q) exists. We conclude thatM is a complete, locally compact length space.

A.2 Proof of Theorem 4

Lemma 4. Let (Y1, ψ1) and (Y2, ψ2) be coordinate charts ofM, with ψ1 and ψ2 local isome-
tries, and Y1 and Y2 g-convex. Then there is a Euclidean isometry ξ such that ∀p ∈ Y1∩Y2,
ψ1(p) = (ξ ◦ ψ2)(p).

Proof. Y1 ∩ Y2 is g-convex, and hence connected. ψ1 ◦ ψ−1
2 is a local isometry between

two connected open subsets of Euclidean space (with appropriate restriction of domain and
range), so (ψ1 ◦ψ−1

2 )∗,p is an orthogonal matrix for any p. Thus, we can apply Theorem 1.8-1
of Ciarlet [132, page 44].

Lemma 5. Consider Y ⊆ Z ⊆ M, where Z is g-convex, and we have a coordinate chart
(Z, ψ) such that ψ is a local isometry. If ψ(Y) is convex, then Y is g-convex.

Proof. Fix p, q ∈ Y . Then there is a unique minimizing geodesic γ connecting p to q, and
γ is contained in Z. Because ψ is a local isometry, it maps γ to a line segment in ψ(Z).
ψ(p), ψ(q) ∈ ψ(Y), so by convexity of ψ(Y), ψ ◦γ is contained in ψ(Y). Thus, γ is contained
in Y , so Y is g-convex.
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Proof of Theorem 4. For each i ∈ [m], we can construct a ball Bsi(ci) ⊇ projQi
(Y), with si <

ri. Define Z =
∏︁

i∈[m]Bsi(ci), a g-convex set. Consider the Riemannian normal coordinates
of Q at (c1, . . . , cm). This coordinate system, restricted to Z, induces a coordinate chart φ.
Because Q is flat, φ is a local isometry, so by Lemma 4 there is a Euclidean isometry ξ such
that φ(Y) = ξ(ψ(Y)), so φ(Y) is convex. Thus, by Lemma 5, Y is g-convex.

A.3 Proofs of Lemmata 1 and 2

Proof of Lemma 1. Define γ(t) = tx0+(1− t)x1. Then (Ψi ◦ γ)(0) = y0 and (Ψ ◦ γ)(1) = y1,
so d(y0, y1) ≤ L(Ψ ◦ γ). Let ∆x = x1 − x0. Well,

||(Ψ ◦ γ)′(t)|| = ||DΨ(t)γ′(t)|| = ||DΨ(t)∆x|| (A.1)
= ||∆x+ (DΨi(t)− I)∆x|| (A.2)
≤ ||∆x||+ ||(DΨ(t)− I)∆x|| (A.3)
≤ ||∆x||+ ||DΨ(t)− I||op ||∆x|| (A.4)

where we have leveraged the triangle inequality (A.3) and the operator norm inequality
(A.4). By considering the largest possible operator norm over ψ(Y), we obtain

L(Ψ ◦ γ) ≤
∫︂ 1

0

||∆x||+ ||DΨ(t)− I||op ||∆x|| dt (A.5)

≤
∫︂ 1

0

||∆x||
Å
1 + max

x∈ψ(Y)
||DΨ(x)− I||op

ã
dt (A.6)

= ||∆x||
Å
1 + max

x∈ψ(Y)
||DΨ(x)− I||op

ã
, (A.7)

which is the desired upper bound.

Proof of Lemma 2. Construct a triangle whose three vertices are xi,1 = xi+1,0, yi,1, and
ψi+1(yi,1). We note that ∠xi,1yi,1ψi+1(yi,1) is equal to the angle between Pi and Pi+1 along
the plane through those three points (which we call α), and hence is bounded above by αmax.

||xi+1,0 − ψi+1(yi,1)|| = ||xi+1,0 − yi,1|| sinα ≤ ϵH sinαmax (A.8)

Applying Lemma 1 to xi+1,0 and ψi+1(yi,1) completes the proof.

A.4 Proof of Theorem 6

Proof of Theorem 6. Fix a neighborhood U of A1. Since the sectional curvature is invariant
with respect to a change of basis, suppose without loss of generality that ||u|| = ||v|| = 1
and ⟨u, v⟩ = 0. To prove this result, we will construct a geodesic γ on U2 such that d ◦ γ
achieves smaller values on its endpoints than at its center. This relies on the properties of
specially constructed Levi-Civita parallelogramoids on U .
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Figure A.1: The construction of two Levi-Civita parallelogramoids used in the proof of
Theorem 6. d(A0, B0) < d(A1, B1) and d(A2, B2) < d(A1, B1), which demonstrates the
nonconvexity of d around A1. ∠A0B0B1 and ∠A2B2B1 are obtuse.

Let ϵ > 0 be small, such that expp(B2ϵ(0)) ⊆ U . Let α : t ↦→ expp(tv), let B1 = α(ϵ),
and let u′ = Γ(α)ϵ0(u) be u parallel transported from A1 to B1. Let γA : t ↦→ expA1

(tu) and
γB : t ↦→ expB1

(tu′), with domain [−ϵ, ϵ]. Then γ = (γA, γB) is a geodesic of U2. Define
A0 = γA(−ϵ), B0 = γB(−ϵ), A2 = γA(ϵ), and B2 = γB(ϵ). This construction is visualized in
Fig. A.1. We want to show that d(A0, B0) < d(A1, B1) and d(A2, B2) < d(A1, B1).

The points A1, B1, A2, and B2 describe a Levi-Civita parallelogramoid, with base A1B1

and suprabase A2B2. Thus, we can relate the length of the base and suprabase via the
formula of [133, page 244]

d(A2, B2)
2 = d(A1, B1)

2 + 8
3
⟨R(ϵu, ϵv)ϵu, ϵv⟩+O(ϵ5) (A.9)

Because ||u|| = ||v|| = 1 and ⟨u, v⟩ = 0,

⟨R(ϵu, ϵv)ϵu, ϵv⟩ = −ϵ4 ⟨R(u, v)v, u⟩ = −ϵ4K(u, v) < 0 (A.10)

So as ϵ is decreased towards 0, the fifth and higher order terms vanish, and d(A2, B2) <
d(A1, B1). A similar calculation shows that d(A0, B0) < d(A1, B1). Thus, d ◦ γ has a local
minimum, so we conclude that d is nonconvex on U .

B. Experiment Implementation Details

In this appendix, we present further details about the setup of our experiments and demon-
strations.

B.1 Planar Arm

The trajectories shown in Subsection 2.7.2 were generated with a GGCS that had 19 sets. We
generated IRIS regions for the start and goal configurations, and hand-picked several seed
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points along the narrow gap between the two lower obstacles to help ensure connectivity
between the start and goal. We then generated the remaining IRIS regions with random
seed points (chosen uniformly from C-Free with rejection sampling).

The GgcsTrajOpt results shown used the sum of the path length and path duration as the
objective. We used the relax-and-round approximation strategy to produce the trajectories
shown in the results. The first trajectory had a path length of 7.749, and the second had a
path length of 8.448. When solving the integer program with branch-and-bound, the first
trajectory had a path length of 7.274, and the second had a path length of 8.008. (Note that
the optimal solution for the latter trajectory still had the middle joint of the arm traverse
more than 360°.)

B.2 KUKA iiwa Arm

The motions shown in Subsection 2.7.3 used regions generated from 18 seed points. The
seeds consisted of one seed for each middle and top shelf (the bottom shelves are excluded
because they are kinematically unreachable), one seed above each shelf, one seed directly
between each shelf, and two seeds per shelf to aid moving between the top and middle shelves.
Regions were generated for each seed with both an empty hand and a mug in the hand to
aid both types of trajectory planning. Regions were post-processed to remove redundant
hyperplanes with the ReduceInequalities algorithm from Drake.

GgcsTrajOpt minimized both time and path length of the trajectory while ensuring
continuity of the path, velocity, and acceleration. For velocity limits, the real velocity limits
of the KUKA iiwa hardware were used. Trajectories were computed using the relax-and-
round approximation strategy.

B.3 PR2 Bimanual Mobile Manipulator

To model the PR2 robot, we use the URDF file and object meshes included with Drake.
For each link, we take the convex hull of the mesh and use that as the collision geometry.
(Collisions annotated in Table 2.1 are determined based on the true collision geometry, not
the convex hulls.) The plans we produce take into account the robot’s base joint, torso lift
joint, and all arm joints (up to the final wrist rotation joint and gripper joints). All other
joints are fixed.

For the experiments demonstrated in Subsection 2.7.4, we first constructed IRIS regions
for each of the possible goals: reaching into each of the three shelves in a set with both arms,
crossing right-over-left on the middle and bottom shelves, and crossing left-over-right. (See
Fig. 2.1 for a visualization of these cross-over poses.) We then hand select a few intermediate
seed points; the regions around these points are used to promote connectivity among the
various shelf-reaching regions. We construct these regions for each set of shelves, except for
the experiments where the start and goal are within the same set of shelves.

We take several actions to improve the efficiency of GgcsTrajOpt. To reduce the number
of constraints needed, we simplify the IRIS regions by removing redundant halfspaces from
their polyhedral representation, using the ReduceInequalities algorithm in Drake. We
also only include shelf-reaching regions if they are the start or goal of the plan. This greatly
reduces the size of the optimization problem, promoting faster solve times. Empirically, it
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also leads to a shorter trajectory, likely due to a tightening of the convex relaxation. For
GgcsTrajOpt, we use the same objective as the planar arm experiments (the sum of the
trajectory length and duration), and we use the relax-and-round strategy.

For the comparison to kinematic trajectory optimization (Drake-Trajopt), we use the
same objective as GgcsTrajOpt: the sum of the trajectory duration and length. However,
the trajectories are parametrized as B-splines instead of linear segments (or Bézier curves if
the extensions in Subsection 2.6.3 are utilized). The KinematicTrajectoryOptimization
can automatically construct the nonlinear optimization problem for a given scenario, which
we then solve with SNOPT. We first solve the problem without collision-free constraints. The
output of this initial problem is used as the initial guess for the full problem (i.e., including
collision-free constraints). The collision-free constraint is encoded with the MinimumDistance
Constraint class. We set a minimum distance of 1mm and begin applying a penalty at 1cm.
This constraint is applied to 50 points along the trajectory. (Such a constraint can only be
evaluated pointwise.) For motion planning tasks where the robot had to move between
shelves, Drake-Trajopt was unable to produce a collision-free trajectory. Thus, we added
waypoints near the beginning and end of the trajectory, in which the robot was in the same
configuration as the start and goal (respectively), but the base was moved away from the
shelf. This was only sometimes effective at finding collision-free trajectories.

As in [4], we use the PRM planner from the Common Robotics Utilities library [134],
with the modifications described in Subsection 2.7.4. Given a piecewise-linear trajectory
from the PRM, we construct a B-spline that passes through the nodes on this trajectory
for use as an initial guess for Drake-Trajopt. In this case, when solving the optimization
problem, we begin applying a distance penalty at 1m and perform collision checking at 100
points along the trajectory.
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