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Abstract— In order for a bimanual robot to manipulate an
object that is held by both hands, it must construct motion
plans such that the transformation between its end effectors
remains fixed. This amounts to complicated nonlinear equality
constraints in the configuration space, which are difficult for
trajectory optimizers. In addition, the set of feasible configura-
tions becomes a measure zero set, which presents a challenge
to sampling-based motion planners. We leverage an analytic
solution to the inverse kinematics problem to parametrize the
configuration space, resulting in a lower-dimensional repre-
sentation where the set of valid configurations has positive
measure. We describe how to use this parametrization with
existing algorithms for motion planning, including sampling-
based approaches, trajectory optimizers, and techniques that
plan through convex inner-approximations of collision-free
space.

I. INTRODUCTION

Constrained bimanual planning presents a major challenge
to traditional motion planning algorithms. When moving an
object that is held by both hands, the robot must carefully
move both arms in concert to ensure that the transformation
between the end effectors remains constant. Such task space
constraints appear as complicated nonlinear equalities in con-
figuration space. In effect, the feasible set becomes measure
zero, so samples must either be drawn directly from the
constraint manifold or projected onto it. Furthermore, these
implicit constraints do not have an obvious explicitization.

In the existing literature, there are general techniques
for handling task-space constraints in configuration-space
planning. Sampling-based planners can project samples onto
the constraint manifold [1], or use numerical continuation [2]
to construct piecewise-linear approximations. Constraints can
also be relaxed [3] or enforced directly with trajectory
optimization [4]. In the case of certain bimanual planning
problems, there is additional structure that is not exploited
by these general methods. For certain classes of robot arms,
analytic inverse kinematics (analytic IK) can be used to map
an end-effector pose (along with additional parameters to
resolve kinematic redundnacy) to joint angles in closed form.
Such solutions are specific to certain classes of robot arms,
but are a powerful tool to be leveraged if available. Fortu-
nately, analytic IK is available for many popular robot arms
available today, including the KUKA iiwa. See Figure 1.
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Fig. 1: Hardware setup for our experiments. The two KUKA
iiwa arms must work together to move an objects between
the shelves, avoiding collisions and respecting the kinematic
constraint.

If a robot must move an object that it is holding with both
hands, we propose constructing a plan for one “controllable”
arm, and then the other “subordinate” arm can be made to
follow it via an analytic IK mapping. Configurations where
the subordinate arm cannot reach the end-effector of the
primary arm, or where doing so would require violating joint
limits, are treated as obstacles. In this way, we parametrize
the constraint manifold, so that the feasible set has positive
measure in the new planning space. This enables most
standard motion planning algorithms to be applied with only
slight modifications.

The remainder of this paper is organized as follows.
First, we give an overview of the existing techniques used
for constrained motion planning, and describe the available
analytic IK solutions. Then, we present our parametriza-
tion of the constraint manifold for bimanual planning, and
discuss its relevant geometric and topological properties.
We describe the slight modifications which are necessary
to adapt standard planning algorithms (including sampling-
based planning and trajectory optimization) to operate in
this framework. We then present a technique for generating
convex sets in this new configuration space, such that every
configuration within such a set is collision free and kinemati-
cally valid. These sets are essential for planning frameworks
such as the Graph of Convex Sets (GCS) [5]. Finally, we
present various experiments demonstrating the efficacy of
these new techniques.

II. RELATED WORK

Motion planning with task constraints is a well-studied
problem in robotics. Techniques for sampling-based planning
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can broadly be categorized by their methodologies:
• Relax the constraints (with real or simulated compli-

ance) to give the feasible set nonzero volume [3], [6].
• Project samples to the constraint manifold [1], [7], [8].
• Construct piecewise-linear approximations of the con-

straint manifold [9], [10], [11], [12].
• Parametrize of the constraint manifold to eliminate

constraints [13], [14].
• Build offline approximations of the constraint manifold,

to simplify online planning [15], [16].
See the survey paper [17] for an overview of these methods.

Beyond sampling-based planning, standard nonconvex tra-
jectory optimization approaches can handle arbitrary con-
straints, although they will generally only converge to a
feasible solution with good initialization [17]. [4] performed
nonconvex trajectory optimization on manifolds.

Inverse kinematics (IK) – computing robot joint angles so
as to place the end effector at a given configuration – is a
powerful tool for handling certain kinematic constraints. IK
can be leveraged to find stable, collision-free configurations
for a humanoid robot, towards whole-body planning [18],
to help a robot arm follow a prescribed task-space trajec-
tory [19], and to satisfy the kinematic constraints that arise
when manipulating articulated objects [20]. Differential IK
techniques can be used to follow task space trajectories,
while satisfying constraints [21, §10.3], [22, §3.10].

A key part of our work is to use IK to parametrize the
constraint manifold, thus eliminating the nonlinear equality
constraints. IK solutions are often computed by solving a
nonconvex mathematical program. The tools of algebraic
geometry can be used to reformulate certain IK problems
as systems of polynomial equations, which can be solved as
eigenvalue problems [23], [24], [25]. While simpler than a
nonconvex optimization problem, we require a closed-form
solution for our desired parametrization. For robot arms with
six revolute joints with certain kinematic structure, closed-
form geometric solutions can be found by dividing the joints
into two sets of three joints, and treating each of these as
“virtual” spherical joints [26, §2.12]. IKFast [27] can be used
to automatically construct analytic IK solutions for broad
classes of robot arm kinematics, and is available as part
of the OpenRAVE toolkit [28]. Some arms have geometric
solutions, such as the Universal Robotics UR-5/UR-10 [29].

Robot arms with more than six degrees of freedom have
kinematic redundancy – the arm can be moved while keeping
its end effector fixed. This is called self-motion and is
useful for avoiding obstacles and joint limits, but implies
the kinematic mapping cannot be bijective. [30] avoids this
problem by computing a globally-consistent pseudoinverse,
but this discards the redundancy, artificially restricting the
configuration space. Other approaches characterize the re-
dundancy as an additional parameter to be controlled in
addition to the end-effector pose. [31] presents a strategy
for treating specific joints in a 7DoF arm as free parameters,
reducing the problem to that of a 6DoF arm with a structure
amenable to a closed-form solution. IKFast can discretize any
additional joints. Similar to the sphere-sphere 6DoF arms,

certain 7DoF arms have a sphere-revolute-sphere kinematic
structure, leading to elegant geometric solutions [32], [33].
Specific geometric solutions are available for many common
robot arms, including the KUKA iiwa [34], Franka Emika
Panda [35], and the Barrett WAM [36].

Our parametrization can be combined with many planning
algorithms to form a complete system. In this paper, we
specifically examine the canonical sampling-based planners:
Rapidly-Exploring Random Trees (RRTs) [37] and Proba-
bilistic Roadmaps (PRMs) [38]. Our contributions can also
be used with the many extensions to these techniques [39],
[40], [41], [42], [43], [44], [45]. We also describe how to use
standard kinematic trajectory optimization techniques [22,
§7.2], [46], [47], [48]. Finally, we describe how to extend the
IRIS-NP algorithm [49] for computing convex collision-free
sets to use our parametrization of the configuration space;
such sets can be planned across with the GCS planning
framework [5]. (These sets can also be used with other
“convex set planning algorithms” [50], [51], [52].)

III. METHODOLOGY

We introduce a bijective mapping between joint angles
and end-effector pose for a single arm with analytic IK.
We then use this mapping to parametrize the set of valid
configurations for constrained bimanual manipulation. The
joint angles of one arm are treated as free variables for the
parametrized configuration space, and the aforementioned
mapping is used to determine the joint angles for the other
arm. Finally, we explain the modifications needed to adapt
existing planning algorithms to utilize this parametrization.

A. Topology of Inverse Kinematics

The topological and geometric properties of inverse kine-
matic mappings are a classic area of study in robotics [53],
[54], [55]. For an arm with n ≥ 6 revolute joints, the
configuration space is C ⊆ Tn, where Tn denotes the n-
torus. The forward kinematic mapping f : C → SE(3)
computes the end-effector pose of the arm for a given choice
of each joint angle. We define the reachable set X =
{f(θ) : θ ∈ C} ⊆ SE(3). To construct a homeomorphism
between subsets of C and X , we must restrict our domain
of attention to avoid singular configurations, and augment X
with additional degrees of freedom to match dimensions.

We give an overview of the terminology introduced in [54]
for describing the global behavior of inverse kinematic
mappings. A configuration for which the Jacobian of f is
full-rank is called a regular point; otherwise, it is called a
critical point. Because f is not injective, the preimage of
a single end-effector pose may contain only critical points,
only regular points, or some of both; it is respectively called
a critical value, regular value, and coregular value.W-sheets
are the connected components of regular values in X whose
boundaries are the coregular values of f . The connected
components of the preimages of W-sheets are called C-
bundles and form a partition the regular points of C. For



Fig. 2: Continuous (left) and discrete (right) self motions of
a 7DoF arm.

a regular value x ∈ X , we have

f−1(x) =

m⋃
i=1

Mi(x), (1)

where the Mi(x) are self-motion manifolds of x, so called
because motion within them does not affect the end-effector
pose. The label i is called the global configuration parame-
ter, and a choice of ψ ∈ Mi(x) is called the redundancy
parameter. For robot arms in 3D space, the number of
self-motion manifolds is at most 16; within a C-bundle,
the self-motion manifolds are homotopic; and if the arm
has only revolute joints, then the self-motion manifolds
are diffeomorphic to Tn−6 [54]. (If n = 6, then the Mi

are zero-dimensional, i.e., discrete points.) Examples of the
continuous and discrete self motions for a 7DoF arm are
shown in Figure 2.

The C-bundle/W-sheet machinery allows us to construct
well-defined IK mappings. Let Wj ⊆ X be a W-sheet,
and let x0 ∈ Wj . Then there is an smooth injection gi,j :
Wj × Mi(x0) → C. Since the self-motion manifolds are
homotopic within a C-bundle, they are uniquely described in
terms of their choice of C-bundle andW-sheet, so we use the
shorthandMi,j in place ofMi(x0). If we let hi,j map joint
angles to their corresponding redundancy parameter, then
(f, hi,j) ◦ gi,j is the identity mapping on Wj ×Mi,j . Thus,
with appropriate restrictions in domain and range, we have
a bijection between the arm’s joint angles and the product
of its end-effector pose and redundancy parameters. The set
Ci,j , defined as the image of gi,j , is the set of joint angles
which can be handled by these mappings.

B. Parametrizing the Kinematically Constrained Space

Now, we turn our attention to the bimanual case. We use
an additional subscript to denote which arm the sets and
maps correspond to; for example, XL is the reachable set
of the “left” arm, and gi,j,R denotes the inverse kinematic
mapping for the “right” arm.

When a rigid object is held with both end effectors, a rigid
transformation T ∈ SE(3) between them becomes fixed; we
let ϕT : XL → SE(3) take in an end-effector pose for the
left arm (henceforth called the controlled arm), and output
the target end-effector pose for the right arm (henceforth
called the subordinate arm). We let XT := {(x, ϕT (x)) :
x ∈ XL} ⊂ XL × SE(3) denote the space of end-effector
poses which are feasible for the controlled arm and for which
the pose of subordinate end-effector respects transformation

T . Note that this latter pose may not be reachable for the
subordinate arm, and a choice of redundancy parameter may
require a violation of its joint limits. We treat both of these
cases as abstract obstacles in the configuration space.

For the remainder of the paper, we fix the global config-
uration parameter i and choice of W-sheet j for the second
arm. Let T be the desired end-effector transformation. We
define a parametrized configuration spaceQ := CL×Mi,j,R.
q ∈ Q determines joint angles for both arms via the mapping

ξ : (θL, ψR) 7→ (θL, gi,j,R(ϕT (fL(θL)), ψR)). (2)

For more details on why we select this specific parametriza-
tion, see Section V. Let θmin and θmax be the lower and
upper joint limits. A configuration (θL, ψR) is valid if:

ϕT (fL(θL)) ∈ Wj,R (Respect reachability.) (3a)
θmin ≤ ξ(θL, ψR) ≤ θmax (Respect joint limits.) (3b)

We call the set of configurations satisfying these constraints
QVALID. For q ∈ Q, if the robot is collision free for the joint
angles ξ(q), we say q ∈ QFREE.

C. Reformulating the Motion Planning Problem

Let s, t ∈ CL × CR be the start and goal configurations.
The constrained motion planning problem requires finding a
path γ = (γL, γR) : [0, 1]→ CL × CR by solving:

argmin L(γ) (4a)
s.t. γ(t) collision free ∀t ∈ [0, 1] (4b)

ϕT (fL(γL(t))) = fR(γR(t)) ∀t ∈ [0, 1] (4c)
γ(0) = s, γ(1) = t. (4d)

(L denotes the arc length functional, but can be replaced with
another cost.) The main challenge this formulation presents
is the nonlinear equality constraint (4c), as this requires γ lie
along a measure-zero set. Trajectory optimizers may struggle
with (4c), and sampling-based planners must use one of the
techniques described in Section II.

Our parametrized motion planning problem is written in
terms of a trajectory γ̄ : [0, 1] → Q, with start s̄ and goal t̄
satisfying ξ(s̄) = s and ξ(̄t) = t:

argmin L(ξ ◦ γ̄) (5a)
s.t. (ξ ◦ γ̄)(t) collision free ∀t ∈ [0, 1] (5b)

γ̄(t) ∈ QVALID ∀t ∈ [0, 1] (5c)
γ̄(0) = s̄, γ̄(1) = t̄. (5d)

This formulation includes the implicit requirement that the
entire planned trajectory be within a single C-bundle, due
to the restricted domain of ξ. In Section IV, we demonstrate
that this theoretical limitation is not a major roadblock to our
framework’s efficacy. A major advantage our parametrization
(and parametrization methods in general) is that by construc-
tion, the end-effector poses (fL, fR)◦ξ(γ̄(t)) are guaranteed
to be related by transformation T . For other methodologies,
the constraints are only satisfied at discrete points along the
trajectory. (See Figure 3.)
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Fig. 3: Most existing planners can only enforce constraints
at discrete points along the trajectory. Parametrization-based
planners (including our approach) satisfy constraints at all
points by construction.

D. Motion Planning with the Parametrization

Constraint (5c) is a nonlinear inequality constraint, so
feasible trajectories are constrained to lie in a positive volume
set QVALID ∩QFREE. This enables standard, unconstrained
motion planning algorithms to function with only slight
modifications.

1) Sampling-Based Planning: The changes required for
sampling based planners can be summarized as treating
points outside QVALID as being in collision. Because
QVALID ∩ QFREE has positive measure, rejection sampling
can be used to draw valid samples. When connecting samples
(as in the “Extend” procedure of an RRT or “Connect”
procedure of a PRM), the frequency with which collisions are
checked must be adjusted, since distance in the parametrized
space Q differs from distance in the full configuration space
CL × CR. In particular, a small motion in Q can lead to a
relatively large motion in CL × CR, so collision checking
must be done more frequently (or at a varying scale).

2) Trajectory Optimization: Trajectory optimization in
configuration space is already nonconvex, so implementing
constraints (5b) and (5c) requires no algorithmic changes.
As with sampling-based planning, collision avoidance (and
other constraints applied to the full configuration space) must
be enforced at a finer resolution.

3) Graph of Convex Sets: Let U ⊆ QVALID ∩ QFREE

be convex. Then the kinematic validity (and collision-free
nature) of a linear path through U is guaranteed if its
endpoints are contained in U . Thus, the Graph of Convex
Sets Planner (GCS) can function as expected with two
small modifications. We minimize the arc length in the
parametrized space L(γ̄), as this objective provides a useful
convex surrogate for the true (nonconvex) objective (5a).
Also, for robot arms composed of revolute joints, the self-
motion parameters are angle-valued, so one can either make
cuts to the configuration space and treat it as Euclidean,
or use the extension Graphs of Geodesically-Convex Sets
(GGCS) [56]. The product of the angle-valued self-motion
parameters will be a circle or n-torus, both of which admit a
flat metric [57, p.345]. If we plan across geodesically convex
(g-convex) subsets of QVALID ∩ QFREE, then the problem
satisfies the sufficient conditions presented in Assumptions 1
and 2 of [56]. These assumptions guarantee that the resulting

Algorithm 1: Constrained IRIS (Single Iteration)

Input: Bounding Box H0(A0, b0)
Hyperellipsoid E(C, d) s.t. d ∈ H0(A0, b0)
Constraint Sets CS1, . . . ,CSk

Output: Halfspace Intersection H(A, b)
1 A← A0, b← b0
2 for CS = CS1, . . . ,CSk do
3 repeat
4 (a⋆, b⋆)← SOLVE[(6), {A, b, C, d,CS}]
5 A← VSTACK(A, a⋆), b← VSTACK(b, b⋆)
6 until INFEASIBLE
7 return H(A, b)

path will be kinematically valid and collision-free at all
times.

E. Constructing Convex Valid Sets

To use (G)GCS, one must construct (g-)convex subsets
of QVALID ∩ QFREE. Our approach is based on the IRIS-
NP algorithm [49], which uses a counterexample search
to find configurations where the robot is in collision, and
putting up hyperplanes to avoid such configurations. Given
a hyperellipsoid E(C, d) = {q : ||q − d||2C ≤ 1} (using the
notation ||q − d||2C = (q − d)TCTC(q − d)), a halfspace
intersection H(A, b) = {q : Aq ≤ b}, and a constraint set
CS, the generalized counterexample search program is

min
q
||q − d||2C (6a)

s.t. Aq ≤ b (6b)
q ̸∈ CS. (6c)

Given a bounding box H0(A0, b0), a hyperellipsoid
E(C, d) with d ∈ H0(A0, b0), and a list of configuration-
space constraints CS1, . . . ,CSk to enforce, Algorithm 1
produces a halfspace intersection H(A, b) ⊆ H0(A0, b0)
such that every point in H(A, b) satisfies the constraints.

We now describe the constraint sets CS needed for Algo-
rithm 1 to generate g-convex sets in QVALID ∩QFREE, and
how to encode (6c). For q = (θL, ψR) (or q = (θL, ψR, T ) if
the end effector transformation is allowed to vary), consider
the auxiliary variable θR denoting the joint angles of the
subordinate arm, computed with (θL, θR) = ξ(q).

First, we require that any inverse trigonometric functions
used in the analytic IK mapping gi,j,R do not violate their
domains. Although this constraint would be enforced by
the later constraints, specifically handling this case first
greatly improves the performance of the later counterexample
searches. For example, [34, Eq. 4] takes the arccos of an
argument w, so we encode (6c) as |w| ≥ 1+ ϵ. When using
the analytic IK solution for the KUKA iiwa, we enforce this
constraint for equations (4), (6), (18), and (23) of [34].

Next, we check the joint limits (3b), encoded for (6c) as

max(ξ(q)− θmax, θmin − ξ(q)) ≥ ϵ.
For reachability counterexamples (3a), we compute the
squared Frobenius norm of the difference between desired



and realized end-effector pose, encoding (6c) as

||ϕT (fL(θL))− fR(θR)||2F ≥ ϵ.
These three constraints will ensureH(A, b) ⊆ QVALID. To

also enforceH(A, b) ⊆ QFREE, we search for configurations
q such that the robot is in collision. We separately find coun-
terexamples for each pair of collision bodies, using equation
(2) of [49]. Note that this equation operates on the full
configuration (θL, θR), as obtained from the parametrized
configuration with ξ. Because (6) is a nonlinear program, we
solve it using SNOPT [58] with random initializations until
a solution is obtained or a predefined number of consecutive
failures is reached (and in that case, return infeasible).

IV. RESULTS

We demonstrate our new constrained planning frame-
work using a bimanual manipulation setup with two KUKA
iiwa 7DoF arms. Interactive recordings of all trajectories
are available online at https://cohnt.github.io/Bimanual-Web/.
We compute the analytic IK maps according to the method-
ology presented in [34]. To evaluate the merits of our IK
parametrization for constrained planning, we consider a task
where the two arms must move an object around a set of
shelves, while avoiding collisions. We test four approaches
under our parametrization:
1a. IK-BiRRT. We use the single-query bidirectional RRT

(BiRRT) algorithm [39].
2a. IK-Trajopt We directly solve (5) with kinematic trajec-

tory optimization [59, §10.3], using the Drake modeling
toolbox [60]. We use the output of the BiRRT planner
as the initial guess for the trajectory optimizer.

3a. IK-PRM. We use the multi-query PRM algorithm [38],
initialized with nodes from multiple BiRRTs to ensure
connectivity, as in [5, §C].

4a. IK-GCS. We use GCS-planner [5] with 19 regions,
constructed from hand-selected seed points.

For both the BiRRT and PRM plans, we use short-cutting
to post-process the paths [61]. We solved the GCS problems
with Mosek [62]. We compare these parametrized planners
with constrained planning baselines.
1b. Constrained Trajectory Optimization. We solve (4) with

kinematic trajectory optimization, using the IK-BiRRT
plan as the initial guess to compare with IK-Trajopt.

2b. Sampling-Based Planning. For sampling-based plan-
ners, we use the single-query Atlas-BiRRT and multi-
query Atlas-PRM algorithms [12], as implemented in
the Open Motion Planning Library [63]. The atlas and
PRM are initialized from multiple Atlas-BiRRT runs.

We do not compare to any GCS baseline without IK, as the
constraint manifold is inherently nonconvex; IK-GCS is the
first proposal for extending GCS to this class of problems.

Constraint Violations: Because the baseline methods can
only enforce the kinematic constraint at discrete points, the
constraint violation can be significant between such points.
The OMPL planners experienced a maximum constraint
violation of 6.76 cm, and the trajectory optimization base-
line experienced a maximum constraint violation of 7.00

Method Top to Middle Middle to Bottom Bottom to Top
Trajopt 4.24* 2.66* 6.10*

Atlas-BiRRT 5.57 5.60 6.76
Atlas-PRM 7.24 7.09 8.56
IK-Trajopt 2.64 3.00 4.75
IK-BiRRT 9.19 10.63 18.36
IK-PRM 4.13 13.75 13.65
IK-GCS 2.09 3.32 5.62

TABLE I: Path lengths (measured in configuration space) for
each method with various start and goal configurations. Paths
marked with an asterisk were not collision-free.

Method Top to Middle Middle to Bottom Bottom to Top
Trajopt 43.78 48.03 61.50

Atlas-BiRRT 118.66 253.34 421.30
Atlas-PRM 7.54 14.71 17.28
IK-Trajopt 63.92 94.92 109.84
IK-BiRRT 57.10 70.50 97.08
IK-PRM 31.38 45.88 32.36
IK-GCS 3.41 2.32 3.32

TABLE II: Online planning time (in seconds) for each
method with various start and goal configurations. Atlas-
BiRRT runtimes were only averaged over successful runs
(not including timeouts).

cm. In comparison, our parametrization methods maintained
all constraints within 0.001 cm. Plans from the trajectory
optimization baseline also collided with obstacles.

Path Length & Planning Time: Across all methods, for
various start and goal configurations, we compare path length
in Table I and online planning time in Table II. We ran
both BiRRT methods 10 times for each plan, and report the
average path length and planning time. We set a maximum
planning time of 10 minutes for Atlas-BiRRT, and omit these
from the averaging. Out of the 30 runs used for the table,
Atlas-BiRRT timed out 22 times. IK-BiRRT never timed
out; the longest plan took 319.12 seconds to compute. In
Figure 4, we visualize several plans produced by the various
constrained planning algorithms.

Table II does not include offline compute time. The
time to construct the Atlas-PRM varies greatly; with three
random seeds, it took 326.30, 1878.30, and 5405.54 seconds.
Constructing the IK-PRM took 12124.21 seconds, and con-
structing the IRIS regions for GCS took 18361.36 seconds
(966.39 seconds per region on average). The IRIS region
construction can also be parallelized, improving runtime.

Overall, GCS is consistently able to achieve the fastest
online runtimes, as a result of the offline precomputation of
IRIS regions. IK-Trajopt is sometimes able to find shorter
paths than GCS, since it has fewer constraints, but it can
get stuck in local minima (see Figure 4). Although the atlas
methodologies may find shorter paths than their IK counter-
parts, this is at the cost of significantly higher runtimes and
potentially large kinematic constraint violations.

Task Space Coverage of IRIS Regions. In Figure 5,
we superimpose the end-effector poses from many sampled
bimanual configurations within individual IRIS regions. De-
spite the complicated nonlinear mapping, these convex sets

https://cohnt.github.io/Bimanual-Web/index.html
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Fig. 5: Robot configurations sampled from various IRIS regions.

are able to cover large swaths of task space, as shown in
Figure 5 (a). In Figure 5 (b), we demonstrate that IRIS
regions can reliably encompass the motions required to reach
into and out of a shelf. And in Figure 5 (c), we visualize an
IRIS region that allows the grasp distance to vary. GCS can
use such regions to plan motions for objects of different; we
include hardware demonstrations in our results video.

V. DISCUSSION

We presented a novel parametrization of the constrained
configuration space that arises in bimanual manipulation,
which can be leveraged by both sampling-based planners
and trajectory optimizers for more efficient planning. Our
parametrization can be used to find shorter paths more
quickly than existing approaches, and these paths will satisfy
the kinematic constraints at all points along the trajectory.
This parametrization also enables the use of planners such as
GCS, which previously could not be applied to configuration
spaces with nonlinear equality constraints.

Our parametrization is inherently asymmetric. Other
choices of parametrization may seem more natural, such as:

1) Treating the end-effector configuration and redundancy
parameters for both arms as the free variables, and using
analytic IK for both arms.

2) Treating the first four joints of each arm as free vari-
ables, and solving IK for the remaining six joints as a
virtual 6DoF arm whose middle link is represented by
the object held by both end-effectors.

For the first option, we would have to choose global
configuration parameters for both arms; in the case of the
KUKA iiwa, this involves 64 choices (instead of the 8
options for our parametrization). Also, the shortest paths for
the end effector may lead to very inefficient paths in joint
space. (Our parametrization can at least minimize the work
for one of the arms.) Finally, it requires planning over SO(3),
which cannot be used in with GCS (see [56, Thm. 5]).

For the second option, the choice of end-effector transfor-
mation T determines the kinematic structure of the virtual
arm, so different grasps would require different analytic
IK solutions. Constructing such solutions would be time-
consuming, and they may not always exist.
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