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Abstract— In order for a bimanual robot to manipulate an
object that is held by both hands, it must construct motion
plans such that the transformation between its end effectors
remains fixed. This amounts to complicated nonlinear equality
constraints in the configuration space, which are difficult for
trajectory optimizers. In addition, the set of feasible configura-
tions becomes a measure zero set, which presents a challenge
to sampling-based motion planners. We leverage an analytic
solution to the inverse kinematics problem to parametrize the
configuration space, resulting in a lower-dimensional repre-
sentation where the set of valid configurations has positive
measure. We describe how to use this parametrization with
existing motion planning algorithms, including sampling-based
approaches, trajectory optimizers, and techniques that plan
through convex inner-approximations of collision-free space.

I. INTRODUCTION

Enabling bimanual robots to execute coordinated actions
with both arms is essential for achieving (super)human-like
skill in automation and home contexts. There exists a variety
of tasks that are only solvable when two arms manipulate in
concert [1], such as carrying an unwieldy object, folding
clothes, or assembling parts. In many manipulation tasks,
one gripper can be used to provide fixture to the manipuland,
while the other performs the desired action [2]; such tasks
include opening a bottle, chopping vegetables, and tightening
a bolt. Furthermore, some tools explicitly require two arms
to use, such as hand mixers, rolling pins, and can openers.

To accomplish many of these desired tasks, the motion
of the robot arms becomes subject to equality constraints
imposed in task space. For example, when moving an object
that is held by both hands, the robot must ensure that the
transformation between the end effectors remains constant.
Such task space constraints appear as complicated nonlinear
equality constraints in configuration space, posing a major
challenge to traditional motion planning algorithms.

In the existing literature, there are general techniques
for handling task-space constraints in configuration-space
planning. Sampling-based planners can project samples onto
the constraint manifold [3] or use numerical continuation [4]
to construct piecewise-linear approximations. Constraints can
also be relaxed [5] or enforced directly with trajectory
optimization [6]. In the case of certain bimanual planning
problems, there is additional structure that is not exploited
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Fig. 1: Hardware setup for our experiments. The two arms
must work together to move an objects between the shelves,
avoiding collisions and respecting the kinematic constraint.

by these general methods. For certain classes of robot arms,
analytic inverse kinematics (analytic IK) can be used to map
an end-effector pose (along with additional parameters to
resolve kinematic redundnacy) to joint angles in closed form.
Such solutions are specific to certain classes of robot arms,
but are a powerful tool to be leveraged if available. Fortu-
nately, analytic IK is available for many popular robot arms
available today, including the KUKA iiwa. See Figure 1.

If a robot must move an object that it is holding with both
hands, we propose constructing a plan for one “controllable”
arm, and then the other “subordinate” arm can be made to
follow it via an analytic IK mapping. Configurations where
the subordinate arm cannot reach the end-effector of the
primary arm, or where doing so would require violating joint
limits, are treated as obstacles. In this way, we parametrize
the constraint manifold so that the feasible set has positive
measure in the new planning space. Because we no longer
have to consider the equality constraints, sampling-based
planning algorithms can be applied without modification. We
can also differentiate through the IK mapping, enabling the
direct application of trajectory optimization approaches.

The remainder of this paper is organized as follows.
First, we give an overview of the existing techniques used
for constrained motion planning, and describe the available
analytic IK solutions. Then, we present our parametriza-
tion of the constraint manifold for bimanual planning, and
discuss its relevant geometric and topological properties.
We describe the slight modifications which are necessary
to adapt standard planning algorithms (including sampling-
based planning and trajectory optimization) to operate in
this framework. We then present a technique for generating
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convex sets in this new configuration space, such that every
configuration within such a set is collision free and kinemat-
ically valid. These sets are essential for planning frameworks
such as Graph of Convex Sets (GCS) [7], [8]. Finally, we
present various experiments demonstrating the efficacy of
these new techniques.

II. RELATED WORK

Constrained bimanual planning is an instance of the gen-
eral problem of motion planning with task-space constraints,
a well-studied problem in robotics. There has been extensive
research into sampling-based approaches; these techniques
fall under a number of broad categories:

• Relax the constraints (with real or simulated compli-
ance) to give the feasible set nonzero volume [5], [9].

• Project samples to the constraint manifold [3], [10],
[11].

• Construct piecewise-linear approximations of the con-
straint manifold [12], [13], [14], [15].

• Parametrize of the constraint manifold to eliminate
constraints [16], [17].

• Build offline approximations of the constraint manifold,
to simplify online planning [18], [19].

See the survey paper [20] for a more detailed summary.
Beyond sampling-based planning, standard nonconvex tra-

jectory optimization approaches can handle arbitrary con-
straints, although they will generally only converge to a feasi-
ble solution with good initialization [20]. [6] used sequential
convex programming on manifolds for nonconvex trajectory
optimization. [21] greatly reduced constraint violations when
computing trajectories on manifolds by enforcing collocation
constraints in local coordinates.

Other approaches are designed specifically for the con-
straints that arise from robot kinematics. Inverse kinematics
(IK) – computing robot joint angles so as to place the
end effector at a given configuration – has been especially
applicable. IK has long been used to sample constraint-
satisfying configurations for bimanual robots, enabling the
use of sampling-based planning algorithms [22], [23], [24],
[25]. IK can be leveraged to find stable, collision-free
configurations for a humanoid robot [26], to help a robot
arm follow a prescribed task-space trajectory [27], and to
satisfy the kinematic constraints that arise when manipulat-
ing articulated objects [28]. Differential IK techniques can
be used to follow task space trajectories, while satisfying
constraints [29, §10.3], [30, §3.10].

A key part of our work is the use of a smooth IK
mapping to parametrize the constraint manifold. Oftentimes,
IK solutions are computed by solving a nonconvex math-
ematical program. The tools of algebraic geometry can be
used to reformulate certain IK problems as systems of
polynomial equations, which can be solved as eigenvalue
problems [31], [32], [33]. However, neither of these meth-
ods yield closed-form IK solutions, nor do they guarantee
smoothness. Smooth IK solutions for certain 6DoF arms can
be produced by dividing the joints into two sets of three, and
treating each of these as “virtual” spherical joints [34, §2.12].

Fig. 2: A high level description of our parametrization. The
controlled arm can move freely, and analytic IK is used
to position the subordinate arm so as to maintain a fixed
transformation between the end-effectors.

IKFast [35] can be used to automatically construct analytic
IK solutions for broad classes of robot arm kinematics, and is
available as part of the OpenRAVE toolkit [36]. Some arms
have specifically-designed geometric solutions, such as the
Universal Robotics UR-5/UR-10 [37].

Robot arms with more than six degrees of freedom have
kinematic redundancy – the arm can be moved while keeping
its end effector fixed. This is called self-motion and is useful
for avoiding obstacles and joint limits, but it implies that
the forward kinematic mapping cannot be bijective. [38]
computes a globally-consistent pseudoinverse (discarding the
redundancy), but this artificially restricts the configuration
space. Other approaches characterize the redundancy as a
free parameter to be controlled in addition to the end-effector
pose. [39] presents a strategy for treating specific joints in a
7DoF arm as free parameters, reducing the problem to that
of a 6DoF arm. IKFast can discretize any additional joints.
Similar to the sphere-sphere 6DoF arms, certain 7DoF arms
have a sphere-revolute-sphere kinematic structure (similar to
the human arm), leading to elegant geometric solutions [40],
[41]. Specific geometric solutions are available for many
common robot arms, including the KUKA iiwa [42], Franka
Emika Panda [43], and the Barrett WAM [44].

Our parametrization can be combined with many planning
algorithms to form a complete system. In this paper, we
specifically examine the canonical sampling-based planners:
Rapidly-Exploring Random Trees (RRTs) [45] and Proba-
bilistic Roadmaps (PRMs) [46]. Our contributions can also
be used with the many extensions to these techniques [47],
[48], [49], [50], [51], [52], [53]. We also describe how to use
standard kinematic trajectory optimization techniques [30,
§7.2], [54], [55], [56]. Finally, we describe how to extend the
IRIS-NP algorithm [57] for computing convex collision-free
sets to use our parametrization of the configuration space;
such sets can be planned across with the GCS planning
framework [8]. (These sets can also be used with other
“convex set planning algorithms” [58], [59], [60].)

III. METHODOLOGY

We introduce a bijective mapping between joint angles
and end-effector pose for a single arm with analytic IK.
We then use this mapping to parametrize the set of valid
configurations for constrained bimanual manipulation. The



joint angles of one arm are treated as free variables for the
parametrized configuration space, and the aforementioned
mapping is used to determine the joint angles for the other
arms (visualized in Figure 2). Finally, we explain the mod-
ifications needed to adapt existing planning algorithms to
utilize this parametrization.

A. Topology of Inverse Kinematics

The topological and geometric properties of inverse kine-
matic mappings are a classic area of study in robotics [61],
[62], [63]. For an arm with n ≥ 6 revolute joints, the
configuration space is C ⊆ Tn, where Tn denotes the n-
torus. The forward kinematic mapping f : C → SE(3)
computes the end-effector pose of the arm for a given choice
of each joint angle. We define the reachable set X =
{f(θ) : θ ∈ C} ⊆ SE(3). To construct a homeomorphism
between subsets of C and X , we must restrict our domain
of attention to avoid singular configurations, and augment X
with additional degrees of freedom to match dimensions.

We give an overview of the terminology introduced in [62]
for describing the global behavior of inverse kinematic
mappings. A configuration for which the Jacobian of f is
full-rank is called a regular point; otherwise, it is called a
critical point. Because f is not injective, the preimage of
a single end-effector pose may contain only critical points,
only regular points, or some of both; it is respectively called
a critical value, regular value, and coregular value.W-sheets
are the connected components of regular values in X whose
boundaries are the coregular values of f . The connected
components of the preimages of W-sheets are called C-
bundles and are composed of regular points of C. For a
regular value x ∈ X , we have

f−1(x) =

m⋃
i=1

Mi(x), (1)

where the Mi(x) are self-motion manifolds of x, so called
because motion within them does not affect the end-effector
pose. The label i is called the global configuration param-
eter, and a choice of ψ ∈ Mi(x) is called the redundancy
parameter. According to [62], for robot arms in 3D space,
the number of self-motion manifolds is at most 16; within
a C-bundle, the self-motion manifolds are homotopic; and
if the arm has only revolute joints, then the self-motion
manifolds are diffeomorphic to Tn−6. (If n = 6, then the
Mi are zero-dimensional, i.e., discrete points.) Examples of
the continuous and discrete self motions for a 7DoF arm are
shown in Figure 3.

The C-bundle/W-sheet machinery allows us to construct
well-defined IK mappings. Let Wj ⊆ X be a W-sheet,
and let x0 ∈ Wj . Then there is an smooth injection gi,j :
Wj × Mi(x0) → C. Since the self-motion manifolds are
homotopic within a C-bundle, they are uniquely described in
terms of their choice of C-bundle andW-sheet, so we use the
shorthandMi,j in place ofMi(x0). If we let hi,j map joint
angles to their corresponding redundancy parameter, then
(f, hi,j) ◦ gi,j is the identity mapping on Wj ×Mi,j . Thus,
with appropriate restrictions in domain and range, we have

Fig. 3: Continuous (left) and discrete (right) self-motions of
a 7DoF arm. The continuous self-motion yields an additional
degree of freedom for the planner to consider, whereas the
discrete self-motion is not utilized.

a bijection between the arm’s joint angles and the product
of its end-effector pose and redundancy parameters. The set
Ci,j , defined as the image of gi,j , is the set of joint angles
which can be handled by these mappings.

B. Parametrizing the Kinematically Constrained Space

Now, we turn our attention to the bimanual case. We use
an additional subscript to denote which arm the sets and
maps correspond to; for example, XL is the reachable set
of the “left” arm, and gi,j,R denotes the inverse kinematic
mapping for the “right” arm.

When a rigid object is held with both end effectors, a rigid
transformation T ∈ SE(3) between them becomes fixed; we
let ϕT : XL → SE(3) take in an end-effector pose for the
left arm (henceforth called the controlled arm), and output
the target end-effector pose for the right arm (henceforth
called the subordinate arm). We let XT := {(x, ϕT (x)) :
x ∈ XL} ⊂ XL × SE(3) denote the space of end-effector
poses which are feasible for the controlled arm and for which
the pose of subordinate end-effector respects transformation
T . Note that this latter pose may not be reachable for the
subordinate arm, and a choice of redundancy parameter may
require a violation of its joint limits. We treat both of these
cases as abstract obstacles in the configuration space.

For the remainder of the paper, we fix the global config-
uration parameter i and choice of W-sheet j for the second
arm. Let T be the desired end-effector transformation. We
define a parametrized configuration spaceQ := CL×Mi,j,R.
q ∈ Q determines joint angles for both arms via the mapping

ξ : (θL, ψR) 7→ (θL, gi,j,R(ϕT (fL(θL)), ψR)). (2)

For more details on why we select this specific parametriza-
tion, see Section V. Let θmin and θmax be the lower and
upper joint limits. A configuration (θL, ψR) is valid if:

ϕT (fL(θL)) ∈ Wj,R (Respect reachability.) (3a)
θmin ≤ ξ(θL, ψR) ≤ θmax (Respect joint limits.) (3b)

We call the set of configurations satisfying these constraints
QVALID. For q ∈ Q, if the robot is collision free for the joint
angles ξ(q), we say q ∈ QFREE.

C. Reformulating the Motion Planning Problem

Let s, t ∈ CL × CR be the start and goal configurations.
The constrained motion planning problem requires finding a



path γ = (γL, γR) : [0, 1]→ CL × CR by solving:

argmin L(γ) (4a)
s.t. γ(t) collision free ∀t ∈ [0, 1] (4b)

ϕT (fL(γL(t))) = fR(γR(t)) ∀t ∈ [0, 1] (4c)
γ(0) = s, γ(1) = t. (4d)

(L denotes the arc length functional, but can be replaced with
another cost.) The main challenge this formulation presents
is the nonlinear equality constraint (4c), as this requires γ lie
along a measure-zero set. Trajectory optimizers may struggle
with (4c), and sampling-based planners must use one of the
techniques described in Section II.

Our parametrized motion planning problem is written in
terms of a trajectory γ̄ : [0, 1] → Q, with start s̄ and goal t̄
satisfying ξ(s̄) = s and ξ(̄t) = t:

argmin L(ξ ◦ γ̄) (5a)
s.t. (ξ ◦ γ̄)(t) collision free ∀t ∈ [0, 1] (5b)

γ̄(t) ∈ QVALID ∀t ∈ [0, 1] (5c)
γ̄(0) = s̄, γ̄(1) = t̄. (5d)

This formulation includes the implicit requirement that the
entire planned trajectory be within a single C-bundle, due to
the restricted domain of ξ. In Section IV, we demonstrate
that this theoretical limitation is not a major roadblock to
our framework’s efficacy. A major advantage of parametriza-
tion methods is that by construction, the end-effector poses
(fL, fR) ◦ ξ(γ̄(t)) are guaranteed to be related by transfor-
mation T . For other methodologies, the constraints are only
satisfied at discrete points along the trajectory.

D. Motion Planning with the Parametrization

Constraint (5c) is a nonlinear inequality constraint, so
feasible trajectories are constrained to lie in a positive volume
set QVALID ∩QFREE. Thus, unconstrained motion planning
algorithms can function with only slight modifications.

1) Sampling-Based Planning: The changes required for
sampling based planners can be summarized as treating
points outside QVALID as being in collision. Because
QVALID ∩ QFREE has positive measure, rejection sampling
can be used to draw valid samples. When connecting samples
(as in the “Extend” procedure of an RRT or “Connect”
procedure of a PRM), the frequency with which collisions are
checked must be adjusted, since distance in the parametrized
space Q differs from distance in the full configuration space
CL × CR. In particular, a small motion in Q can lead to a
relatively large motion in CL × CR, so collision checking
must be done more frequently (or at a varying scale).

2) Trajectory Optimization: Trajectory optimization in
configuration space is already nonconvex, so implementing
constraints (5b) and (5c) requires no algorithmic changes.
As with sampling-based planning, collision avoidance (and
other constraints applied to the full configuration space) must
be enforced at a finer resolution.

3) Graph of Convex Sets: Let U ⊆ QVALID ∩ QFREE

be convex. Then the kinematic validity (and collision-free
nature) of a linear path through U is guaranteed if its
endpoints are contained in U . Thus, the Graph of Convex
Sets Planner (GCS) can function as expected with two
small modifications. We minimize the arc length in the
parametrized space L(γ̄), as this objective provides a useful
convex surrogate for the true (nonconvex) objective (5a).
Also, for robot arms composed of revolute joints, the self-
motion parameters are angle-valued, so one can either make
cuts to the configuration space and treat it as Euclidean,
or use the extension Graphs of Geodesically-Convex Sets
(GGCS) [64]. The product of the angle-valued self-motion
parameters will be a circle or n-torus, both of which admit a
flat metric [65, p.345]. If we plan across geodesically convex
(g-convex) subsets of QVALID ∩ QFREE, then the problem
satisfies the conditions presented in Assumptions 1 and 2
of [64]. These assumptions guarantee that the resulting path
will be kinematically valid and collision-free at all times.

E. Constructing Convex Valid Sets

To use (G)GCS, one must construct (g-)convex subsets
of QVALID ∩ QFREE. The IRIS-NP algorithm [57] uses a
counterexample search to find configurations in collision
and constructs hyperplanes to separate the set from such
configurations. IRIS-NP can support inequality constraints
beyond collision-avoidance, but they must be inequalities.
By running IRIS-NP through our parametrization, we avoid
the equality constraints that would otherwise be present in
our constrained bimanual manipulation problem. Given a
hyperellipsoid E(C, d) = {q : ||q − d||2C ≤ 1} (using the
notation ||q − d||2C = (q − d)TCTC(q − d)), a halfspace
intersection H(A, b) = {q : Aq ≤ b}, and a constraint set
CS, the generalized counterexample search program is

min
q
||q − d||2C (6a)

s.t. Aq ≤ b (6b)
q ̸∈ CS. (6c)

Given a bounding box H0(A0, b0), a hyperellipsoid
E(C, d) with d ∈ H0(A0, b0), and a list of configuration-
space constraints CS1, . . . ,CSk to enforce, Algorithm 1
produces a halfspace intersection H(A, b) ⊆ H0(A0, b0)
such that every point in H(A, b) satisfies the constraints.

We now describe the constraint sets CS needed for Algo-
rithm 1 to generate g-convex sets in QVALID ∩QFREE, and
how to encode (6c). For q = (θL, ψR) (or q = (θL, ψR, T ) if
the end effector transformation is allowed to vary), consider
the auxiliary variable θR denoting the joint angles of the
subordinate arm, computed with (θL, θR) = ξ(q).

First, we require that any inverse trigonometric functions
used in the analytic IK mapping gi,j,R do not violate their
domains. Although this constraint would be enforced by
the later constraints, specifically handling this case first
greatly improves the performance of the later counterexample
searches. For example, [42, Eq. 4] takes the arccos of an
argument w, so we encode (6c) as |w| ≥ 1+ ϵ. When using



Algorithm 1: Constrained IRIS (Single Iteration)

Input: Bounding Box H0(A0, b0)
Hyperellipsoid E(C, d) s.t. d ∈ H0(A0, b0)
Constraint Sets CS1, . . . ,CSk

Output: Halfspace Intersection H(A, b)
1 A← A0, b← b0
2 for CS = CS1, . . . ,CSk do
3 repeat
4 (a⋆, b⋆)← SOLVE[(6), {A, b, C, d,CS}]
5 A← VSTACK(A, a⋆), b← VSTACK(b, b⋆)
6 until INFEASIBLE
7 return H(A, b)

the analytic IK solution for the KUKA iiwa, we enforce this
constraint for equations (4), (6), (18), and (23) of [42].

Next, we check the joint limits (3b), encoded for (6c) as

max(ξ(q)− θmax, θmin − ξ(q)) ≥ ϵ.

Finally, a configuration q is said to be reachable if
ϕT (fL(θL)) = fR(θR). Although this is an equality con-
straint, the set of configurations satisfying the constraint has
positive volume in the parametrized space, so Algorithm 1
can still be used to generate a convex inner-approximation.
For reachability counterexamples (3a), we compute the
squared Frobenius norm of the difference between desired
and realized end-effector pose, encoding (6c) as

||ϕT (fL(θL))− fR(θR)||2F ≥ ϵ.

These three constraints will ensureH(A, b) ⊆ QVALID. To
also enforceH(A, b) ⊆ QFREE, we search for configurations
q such that the robot is in collision. We separately find coun-
terexamples for each pair of collision bodies, using equation
(2) of [57]. Note that this equation operates on the full
configuration (θL, θR), as obtained from the parametrized
configuration with ξ. Because (6) is a nonlinear program, we
solve it using SNOPT [66] with random initializations until
a solution is obtained or a predefined number of consecutive
failures is reached (and in that case, return infeasible).

IV. RESULTS

We demonstrate our new constrained planning framework
using a bimanual manipulation setup with two KUKA iiwa
7DoF arms. Interactive recordings of all trajectories are avail-
able online at https://cohnt.github.io/Bimanual-Web/. We use
the analytic IK map presented in [42]. To evaluate the
merits of our IK parametrization for constrained planning,
we consider a task where the two arms must move an object
around a set of shelves, while avoiding collisions. We test
four approaches under our parametrization:
1a. IK-BiRRT. We use the single-query bidirectional RRT

(BiRRT) algorithm [47].
2a. IK-Trajopt We directly solve (5) with kinematic trajec-

tory optimization [67, §10.3], using the Drake modeling
toolbox [68]. We use the output of the BiRRT planner
as the initial guess for the trajectory optimizer.

Method Top to Middle Middle to Bottom Bottom to Top
Trajopt 4.58* 2.85* 4.35*

Atlas-BiRRT 4.72 5.04 6.61
Atlas-PRM 5.43 5.67 6.99
IK-Trajopt 4.24* 1.81* 8.87
IK-BiRRT 9.91 8.69 11.42
IK-PRM 4.67 8.93 9.21
IK-GCS 2.09 3.32 5.62

TABLE I: Path lengths (measured in configuration space) for
each method with various start and goal configurations. Paths
marked with an asterisk were not collision-free.

Method Top to Middle Middle to Bottom Bottom to Top
Trajopt 10.37 5.36 7.25

Atlas-BiRRT 140.82 155.91 201.32
Atlas-PRM 0.69 0.86 0.96
IK-Trajopt 19.48 18.70 22.29
IK-BiRRT 49.42 52.53 54.10
IK-PRM 0.46 0.64 0.61
IK-GCS 3.41 2.32 3.32

TABLE II: Online planning time (in seconds) for each
method with various start and goal configurations. Atlas-
BiRRT runtimes were only averaged over successful runs
(not including timeouts).

3a. IK-PRM. We use the multi-query PRM algorithm [46],
initialized with nodes from multiple BiRRTs to ensure
connectivity, as in [8, §C].

4a. IK-GCS. We use GCS-planner [8] with 19 regions,
constructed from hand-selected seed points.

For both the BiRRT and PRM plans, we use short-cutting
to post-process the paths [69]. We solve the GCS problems
with Mosek [70]. We compare these parametrized planners
with constrained planning baselines.
1b. Constrained Trajectory Optimization. We solve (4) with

kinematic trajectory optimization, using the IK-BiRRT
plan as the initial guess to compare with IK-Trajopt.

2b. Sampling-Based Planning. For sampling-based plan-
ners, we use the single-query Atlas-BiRRT and multi-
query Atlas-PRM algorithms [15], as implemented in
the Open Motion Planning Library [71]. The atlas and
PRM are initialized from multiple Atlas-BiRRT runs.

We do not compare to any GCS baseline without IK, as the
constraint manifold is inherently nonconvex; IK-GCS is the
first proposal for extending GCS to this class of problems.

Constraint Violations: Because the baseline methods can
only enforce the kinematic constraint at discrete points, the
constraint violation can be significant between such points.
The OMPL planners experienced a maximum constraint
violation of 6.62 cm, and the trajectory optimization baseline
experienced a maximum constraint violation of 3.22 cm.
In comparison, our parametrization methods maintained all
constraints within 0.001 cm. Plans from the trajectory opti-
mization baseline also had slight collisions with obstacles.

Path Length & Planning Time: Across all methods, for
various start and goal configurations, we compare path length
in Table I and online planning time in Table II. We ran
both BiRRT methods 10 times for each plan, and report the

https://cohnt.github.io/Bimanual-Web/index.html


(a) The coverage of a single convex
region, as presented by a random
collection of configurations.

(b) A collection of configurations from a
region that represents motions that reach into
and out of a shelf.

(c) A region that represents varying grasp
distances, in addition to collision-free config-
urations in the shelf (not shown).

Fig. 4: Robot configurations sampled from various IRIS regions.

average path length and planning time. We set a maximum
planning time of 10 minutes for Atlas-BiRRT, and omit these
from the averaging. Out of the 30 runs used for the table,
Atlas-BiRRT timed out twice. IK-BiRRT never timed out;
the longest plan took 81.17 seconds to compute.

Table II does not include offline compute time. The time
to construct the Atlas-PRM varies greatly; with three random
seeds, it took 33.25, 437.93, and 554.90 seconds. Construct-
ing the IK-PRM took 2648.79 seconds, and constructing
the IRIS regions for GCS took 18361.36 seconds (966.39
seconds per region on average). The IRIS region construction
can also be parallelized, improving runtime.

Overall, the PRM methods have the shortest online run-
times. GCS is consistently faster than the other optimization
approaches, as a result of the offline precomputation of IRIS
regions. The other optimization approaches are sometimes
able to find shorter paths than GCS, since they have fewer
constraints, but can get stuck in local minima. Although the
atlas methodologies may find shorter paths than their IK
counterparts, this is at the cost of significantly higher run-
times and potentially large kinematic constraint violations.

Task Space Coverage of IRIS Regions. In Figure 4,
we superimpose the end-effector poses from many sampled
bimanual configurations within individual IRIS regions. De-
spite the complicated nonlinear mapping, these convex sets
are able to cover large swaths of task space, as shown in
Figure 4 (a). In Figure 4 (b), we demonstrate that IRIS
regions can reliably encompass the motions required to reach
into and out of a shelf. And in Figure 4 (c), we visualize an
IRIS region that allows the grasp distance to vary. This is
accomplished by treating the grasp distance as an additional
degree of freedom in Algorithm 1. GCS can use such regions
to plan motions for objects of different sizes; we include
hardware demonstrations in our results video.

V. DISCUSSION

We presented a novel parametrization of the constrained
configuration space that arises in bimanual manipulation,
which can be leveraged by both sampling-based planners
and trajectory optimizers for more efficient planning. Our
parametrization can be used to find shorter paths more
quickly than existing approaches, and these paths will satisfy
the kinematic constraints at all points along the trajectory.

This parametrization also enables the use of planners such as
GCS, which previously could not be applied to configuration
spaces with nonlinear equality constraints.

Other parametrizations for the constrained configuration
space are symmetric, and may seem more natural:

1) Treating the end-effector configuration and redundancy
parameters for both arms as the free variables, and using
analytic IK for both arms.

2) Treating the first four joints of each arm as free vari-
ables, and solving IK for the remaining six joints as a
virtual 6DoF arm whose middle link is represented by
the object held by both end-effectors.

But these choices present other disadvantages.
For the first option, we would have to choose global

configuration parameters for both arms; in the case of the
KUKA iiwa, this involves 64 choices (instead of the 8
options for our parametrization). Also, the shortest paths for
the end effector may lead to very inefficient paths in joint
space – our parametrization can at least minimize the joint
space distance for one arm. Finally, it requires planning over
SO(3), which is not possible for GCS (see [64, Thm. 5]).

For the second option, the choice of end-effector transfor-
mation T determines the kinematic structure of the virtual
arm, so different grasps would require different analytic
IK solutions. Constructing such solutions would be time-
consuming, and they may not always exist.

There are clear directions for future work. Enabling the
planner to move between C-bundles would unlock a greater
variety of arm motions, potentially allowing the selected
planner to compute shorter paths. Another important future
step is to explicitly consider singular configurations. The
IK mapping used in this work is still defined at singular
configurations, but nearby configurations may violate the
subordinate arm joints limits or reachability constraints. This
makes the IRIS region generation process implicitly avoid
singular configurations, but the other planning methodologies
may not detect infeasible configurations near singularities.
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Springer, 2008, vol. 200.

[30] R. Tedrake, Robotic Manipulation, 2023. [Online]. Available:
http://manipulation.mit.edu

[31] M. Raghavan and B. Roth, “Inverse kinematics of the general 6r
manipulator and related linkages,” Journal of Mechanical Design,
vol. 115, no. 3, pp. 502–508, sep 1993. [Online]. Available:
https://doi.org/10.1115/1.2919218

[32] J. Nielsen and B. Roth, “On the kinematic analysis of robotic mech-
anisms,” The International Journal of Robotics Research, vol. 18,
no. 12, pp. 1147–1160, 1999.

[33] S. Xie, L. Sun, G. Chen, Z. Wang, and Z. Wang, “A novel solution
to the inverse kinematics problem of general 7r robots,” IEEE Access,
vol. 10, pp. 67 451–67 469, 2022.

[34] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics.
Springer London, 2009.

[35] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, Carnegie Mellon University, The Robotics
Institute Pittsburgh, 2010.

[36] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-08-34, vol. 79, 2008.

[37] K. P. Hawkins, “Analytic inverse kinematics for the universal robots
ur-5/ur-10 arms,” Georgia Institute of Technology, Tech. Rep, 2013.

[38] K. Hauser, “Continuous pseudoinversion of a multivariate function:
Application to global redundancy resolution,” in Algorithmic Founda-
tions of Robotics XII: Proceedings of the Twelfth Workshop on the
Algorithmic Foundations of Robotics. Springer, 2020, pp. 496–511.

[39] A. Hemami, “A more general closed-form solution to the inverse
kinematics of mechanical arms,” Advanced robotics, vol. 2, no. 4,
pp. 315–325, 1987.

[40] J. M. Hollerbach, “Optimum kinematic design for a seven degree of
freedom manipulator,” in Robotics research: The second international
symposium. Citeseer, 1985, pp. 215–222.

[41] M. Shimizu, H. Kakuya, W.-K. Yoon, K. Kitagaki, and K. Kosuge,
“Analytical inverse kinematic computation for 7-dof redundant manip-
ulators with joint limits and its application to redundancy resolution,”
IEEE Transactions on robotics, vol. 24, no. 5, pp. 1131–1142, 2008.

[42] C. Faria, F. Ferreira, W. Erlhagen, S. Monteiro, and E. Bicho,
“Position-based kinematics for 7-dof serial manipulators with global
configuration control, joint limit and singularity avoidance,” Mecha-
nism and Machine Theory, vol. 121, pp. 317–334, 2018.

[43] Y. He and S. Liu, “Analytical inverse kinematics for franka emika
panda–a geometrical solver for 7-dof manipulators with unconven-
tional design,” in 2021 9th International Conference on Control,
Mechatronics and Automation (ICCMA). IEEE, 2021, pp. 194–199.

[44] G. K. Singh and J. Claassens, “An analytical solution for the inverse
kinematics of a redundant 7dof manipulator with link offsets,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2010, pp. 2976–2982.

[45] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for
path planning,” 1998.

https://doi.org/10.1177/02783649231198560
http://manipulation.mit.edu
https://doi.org/10.1115/1.2919218


[46] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[47] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE,
2000, pp. 995–1001.

[48] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in
Proceedings 2000 ICRA. Millennium conference. IEEE international
conference on robotics and automation. Symposia proceedings (Cat.
No. 00CH37065), vol. 1. IEEE, 2000, pp. 521–528.

[49] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning
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