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Abstract—Computing optimal, collision-free trajectories for
high-dimensional systems is a challenging problem. Sampling-
based planners struggle with the dimensionality, whereas trajec-
tory optimizers may get stuck in local minima due to inherent
nonconvexities in the optimization landscape. The use of mixed-
integer programming to encapsulate these nonconvexities and
find globally optimal trajectories has recently shown great
promise, thanks in part to tight convex relaxations and efficient
approximation strategies that greatly reduce runtimes. These
approaches were previously limited to Euclidean configuration
spaces, precluding their use with mobile bases or continuous
revolute joints. In this paper, we handle such scenarios by
modeling configuration spaces as Riemannian manifolds, and we
describe a reduction procedure for the zero-curvature case to a
mixed-integer convex optimization problem. We demonstrate our
results on various robot platforms, including producing efficient
collision-free trajectories for a PR2 bimanual mobile manipulator.

I. INTRODUCTION

Planning the motion of robots through environments with
obstacles is a long-standing and ever-present problem in
robotics. In this paper, we aim to find the shortest path
between a start and goal configuration with guaranteed col-
lision avoidance. We are particularly motivated by planning
for bimanual mobile manipulators, such as the PR2 (Willow
Garage). Such robots are well-suited for a variety of tasks
in human environments but present various challenges for
existing motion planning algorithms.

Most popular approaches for this task fall into two cat-
egories: sampling-based planners and trajectory optimizers.
Trajectory optimizers formulate the motion planning problem
as an optimization problem. This problem is inherently non-
convex when there are obstacles in the scene, so trajectory
optimizers frequently get stuck in local minima. In that case,
they may output a path that is longer than the global optimum
or even fail to produce a valid path at all.

On the other hand, sampling-based planners can avoid
getting stuck in local minima, but the path may be locally
suboptimal, resulting in jerky and uneven motion. Sampling-
based planners may also suffer from the so-called “Curse of
Dimensionality”. Because they rely on covering the config-
uration space with discrete samples, in the worst case, the
number of samples required may increase exponentially with

Fig. 1: The start and goal pose for one of our motion planning
experiments, using the PR2 bimanual mobile manipulator.

the dimension. The PR2 has two 7-DoF arms and a mobile
base, and sampling-based planners struggle with the instances
we study here.

Recently, Marcucci et al. [1, 2] described a new type of
motion planning, based on a decomposition of the collision-
free subset of configuration space (C-Free) into convex sets.
They leverage a new optimization framework, a Graph of
Convex Sets (GCS), where each vertex is associated with a
convex set and each edge is associated with a convex function.
Motion planning becomes a shortest-path problem in this
space. This GCS-Planner has been successfully applied to
challenging, high-dimensional problems, including bimanual
manipulation problems.

However, GCS-Planner is limited to Euclidean configuration
spaces. A mobile manipulator’s configuration space is inher-
ently non-Euclidean due to the mobile base: the robot can
rotate through a full 360°, and its configuration is identical to
when it started. Continuous revolute joints present a similar
issue. Although the configuration spaces of interest are inher-
ently non-Euclidean, they are still “locally” Euclidean, leading
to elegant descriptions as differentiable manifolds. With a
Riemannian metric, which allows one to measure distance on
a manifold, the concepts of convexity generalize to nonlinear
spaces. This in turn allows optimization on manifolds with
rigorous guarantees, analogous to those obtained from convex



optimization on Euclidean spaces. However, this does preclude
us from considering nonconvex costs and constraints, such as
those derived from nonlinear dynamics and closed kinematic
chains. We also cannot handle ball joints, as their configuration
spaces lead to unavoidable nonconvexities, which we describe
in Subsection VI-D.

In this paper, we formulate the general problem of shortest-
path motion planning around obstacles on Riemannian mani-
folds. We define a graph of geodesically-convex sets (GGCS),
the analogue to GCS on a Riemannian manifold. We prove
that this formulation has all the requisite properties needed
to inherit the same guarantees as (Euclidean) GCS. We then
turn our attention to a certain class of robot configuration
spaces, encompassing open kinematic chains with continu-
ous revolute joints and mobile bases. We show that in this
case, our theoretical developments lead to simple and elegant
modifications to the original GCS-Planner. We entitle this
generalization GGCS-Planner, and demonstrate its efficacy
with several challenging motion planning experiments.

II. RELATED WORK

In the world of continuous motion planning around ob-
stacles, most popular techniques fall into two categories:
sampling-based planners and trajectory optimizers.

Sampling-based motion planners partially cover C-Free with
a large number of discrete samples. Two of the founda-
tional sampling-based planning algorithms are Probabilistic
Roadmaps (PRMs) [3] and Rapidly-Exploring Random Trees
(RRTs) [4]. Such algorithms are probabilistically complete,
i.e., with enough samples, they will always find a valid path
(if one exists). However, these algorithms are only effective
if a valid plan can be produced with a reasonable number of
samples. Hence, the “curse of dimensionality” is a potential
obstacle to sampling-based planning, and such techniques have
struggled with high-dimensional problems such as bimanual
manipulation. In most cases, planning for bimanual tasks is
accomplished by planning for one arm, then planning the
second arm independently while treating the first arm as a
dynamic obstacle. This is a reasonable heuristic for some tasks,
but it sacrifices even probabilistic completeness.

An alternative approach is to formulate motion planning
as an optimization problem. This requires parametrizing the
space of all trajectories and defining constraints and cost
functions that describe the suitability of each trajectory.
Examples of kinematic trajectory optimization include B-
spline parametrizations using constrained optimization [5,
§7.2], CHOMP [6], STOMP [7], and KOMO [8]. Trajec-
tory optimization approaches do not suffer from the curse
of dimensionality, and are suitable for much more complex
robotic systems. But the optimization landscape is inherently
nonconvex, so trajectory optimization methods often cannot
achieve global optimality and can often fail to produce feasible
trajectories when solutions exist.

The use of mixed integer programming (MIP) to solve
motion planning problems to global optimality has recently
seen an increase in popularity as new theoretical results,

greater computational resources, and powerful commercial
solvers [9, 10] have been brought to bear. The survey paper
of Ioan et al. [11] provides an overview of the use of MIP
in motion planning. Besides the work of Marcucci et al. [1],
Landry et al. [12] used MIP to plan aggressive quadrotor
flights through obstacle-dense environments. MIP has been
used to plan footstep locations for humanoid robots [13] and
for quadrupeds [14, 15]. Dai et al. [16] used MIP to globally
solve the inverse kinematics problem. Finally, MIP has seen
extensive use in hybrid task and motion planning [17, 18, 19,
20, 21].

Mixed integer programs can take a long time to solve in
the worst case, but it is often possible to mitigate this problem
with appropriate relaxations or approximations [22, 2]. GCS
in particular uses an MIP formulation with a small number
of integer variables, making branch-and-bound tractable. Fur-
thermore, the convex relaxation is tight, enabling efficient
approximation by solving only a convex problem combined
with a randomized rounding strategy. [2] argued that for
single-arm manipulators, this approach can find more optimal
plans in less time than PRMs. These valuable properties carry
over to our extension of GCS.

Another recent trend in motion planning has been the use
of Riemannian geometry to model the problem. Rieman-
nian Motion Policies (RMPs) [23] combine acceleration-based
controllers across different task spaces into a single unified
controller. A Riemannian metric in each task space determines
the priority of a given controller, and smooth maps between the
manifolds enable the averaging of controllers. RMPs have seen
continued improvement [24, 25] and generalization [26, 27].
Klein et al. [28] envision Riemannian geometry as a tool
for generating and combining elegant motion synergies for
complex robotic systems.

III. PRELIMINARIES

In this section, we cover some of the relevant mathematical
background. We supply intuitive definitions; for further refer-
ence on Riemannian geometry, see the textbooks of Do Carmo
[29] and Lee [30, 31]. Boumal [32] provides an excellent
treatment of optimization over manifolds. We use the notation
[n] = {1, . . . , n}.

A. Riemannian Geometry

A d-dimensional (topological) manifold M is a locally
Euclidean topological space: for any p ∈ M, there is an open
neighborhood U of p and a continuous map ψ : U → Rd
which is a homeomorphism onto its image. The pair (U , ψU )
is called a coordinate chart, and for any pair of overlapping
charts (U , ψU ) and (V, ψV), we have a transition map

τU,V = ψV ◦ ψ−1
U

∣∣
ψU (U∩V)

(1)

A collection of charts whose domains cover the manifold is
called an atlas. We only consider C∞-smooth manifolds, where
all transition maps in the atlas are C∞.

For each p ∈ M, the tangent space TpM is a d-dimensional
vector space representing the set of directional derivatives at



p. Given a differentiable curve γ : (−ϵ, ϵ) → M with p =
γ(0), this affords an interpretation of the velocity of γ at p,
γ′(0), as an element of TpM. For a smooth map of manifolds
f : M → N , the pushforward of f at p is a linear map
f∗,p : TpM → Tf(p)N , generalizing the Jacobian matrix [30,
p. 55]. The pushforward is defined so that, with γ defined as
above, f∗,p(γ′(0)) = (f ◦ γ)′(0).

A Riemannian metric g is a smoothly-varying positive-
definite bilinear form over M that gives each tangent space
TpM an inner product ⟨ · , · ⟩(M,g)

p . The pair (M, g) is a Rie-
mannian manifold, and we frequently refer to M exclusively
when the choice of metric is unambiguous. A Riemannian
metric allows one to measure the length of a curve, invariant to
reparametrizations [31, p. 34]; if γ : [a, b] → M is piecewise
continuously differentiable, then

L(γ) =

∫ b

a

√
⟨γ′(s), γ′(s)⟩(M,g)

γ(s) ds (2)

We call the integrand the speed of γ. The distance between
any two points p, q ∈ M is defined as the infimum of the arc
length of all curves connecting them:

dM(p, q)=inf
{
L(γ)

∣∣γ ∈ C1
pw([0, 1],M), γ(0)=p, γ(1)=q

}
where C1

pw([0, 1],M) is the set of parametric piecewise-
continuously differentiable curves from the interval [0, 1] to
M. A curve that achieves this infimum need not exist in gen-
eral [29, p. 146]. We also define dU (p, q) for p, q ∈ U ⊆ M to
be the infimum of the length of paths whose image is contained
in U .

If M is connected, it is a metric space with respect to
dM. Given two Riemannian manifolds (M, g) and (N , h),
a smooth function f : M → N is a local isometry if

⟨u, v⟩(M,g)
p = ⟨f∗,p(u), f∗,p(v)⟩(N ,h)

f(p)

∀p ∈ M, ∀u, v ∈ TpM. If f is also a diffeomorphism, and M
and N are connected, then f preserves distances [31, p. 37],
and is an isometry of metric spaces. The converse is also
true [33].

A geodesic is a locally length-minimizing curve, parameter-
ized to be constant speed. Locally length-minimizing means
that for two points on the geodesic that are close enough,
the geodesic traces out the shortest path between them. For
example, geodesics in Euclidean space with the natural metric
are lines, rays, and line segments, and geodesics on the sphere
(with the induced metric from Euclidean space) are great
circles. Constructing the shortest geodesic between two points
is a variational calculus problem, so the solution must satisfy
the Euler-Lagrange system of differential equations. Thus,
initial conditions p ∈ M and v ∈ TpM uniquely define
a geodesic, such that v is the velocity of the geodesic as
it passes through p. This is used to define the exponential
map expp : TpM → M, where the direction of a vector v
defines the direction of the geodesic, and the magnitude of v
determines how far to move in that direction away from p.

A Riemannian metric induces curvature on a manifold, cap-
turing how local geometry differs from the standard Euclidean

M1

T1

(a) Positive

M2

T2

(b) Zero (flat)

M3

T3

(c) Negative

Fig. 2: Examples of geodesic triangles Ti in manifolds Mi

with various sectional curvatures. In positive curvature spaces,
the interior angles sum to more than 180°, and the edges bow
outwards. The opposite is true in negative curvature spaces.

case. The sectional curvature at a point p is a real-valued
function defined on 2-dimensional subspaces of the tangent
space TpM [29, §4.3]. (We write K(u, v) for any vectors u and
v that span the subspace.) Informally, the sectional curvature
corresponds to the distortion of angles in triangles, as shown
in Fig. 2. Manifolds that have everywhere-zero curvature are
called flat, and are locally isometric to Euclidean space.

The Cartesian product of two Riemannian manifolds is
itself a Riemannian manifold. The curvature of the component
manifolds influences the curvature of the product. Importantly,
the product of flat manifolds is flat [34]. As we explain
in Section V, this implies that a robot with a mobile base
and (potentially many) continuous revolute joints has a flat
configuration space.

B. Convex Analysis on Manifolds

To define convexity on a Riemannian manifold (M, g), we
replace the notion of lines with geodesics. In general, there
is not a unique geodesic (or even a unique shortest geodesic)
between two points, so a more intricate definition is required.
A subset U ⊆ M is strongly geodesically convex (or g-convex)
if ∀p, q ∈ U , there is a unique length-minimizing geodesic
connecting p and q, and it is entirely contained in U . This
definition ensures that the intersection of g-convex sets is g-
convex, and that there is a unique shortest path between any
pair of points in a g-convex set. Weaker definitions used in
other works [35, 36] do not provide these guarantees. See
[32, §11.3] for further discussion.

G-convex neighborhoods exist around every point [29,
p. 77] For any p ∈ M, there is a convexity radius rp > 0,
such that the open ball

Br(p) =
{
expp(q)

∣∣ q ∈ TpM, ||q|| < r
}

(3)

is g-convex for any r < rp (where the norm is induced by the
Riemannian metric). Intuitively, the convexity radius quantifies
how large a set can be before minimizing geodesics can go
“the wrong way around” the manifold. On the product of two
Riemannian manifolds, each geodesic is naturally the product
of geodesics on its components. Thus, the product of g-convex
sets is g-convex in the product manifold.

A function f : M → R is said to be geodesically convex
(g-convex) on U ⊆ M if, for any geodesic γ : [0, 1] → U ,
(f ◦ γ) is a convex function on [0, 1]. That is, ∀t ∈ [0, 1],

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)) (4)



We say that f is locally g-convex if for any p ∈ M, there
exists a neighborhood Up of p such that the restriction of f to
U is g-convex.

Unfortunately, existing research into g-convex optimization
often focuses on specific classes of manifolds that do not
encompass the configuration spaces of interest [37, 36]. In ad-
dition, there is little existing literature studying mixed-integer
Riemannian convex optimization, and techniques commonly
used in the Euclidean case (e.g., cutting planes [38]) may not
generalize to Riemannian manifolds.

IV. PROBLEM STATEMENT

We may now precisely state our kinematic planning problem
in the language of Riemannian geometry developed thus far.
Let (Q, g) be the configuration space of a robot, realized
as a connected Riemannian manifold1. Suppose that the set
of collision-free configurations is a bounded open subset
M ⊆ Q, and without loss of generality, assume that M is
path-connected. (If M is not path-connected, then we restrict
ourselves to planning within a single connected component.)

Suppose we want to find the shortest path between two
points p and q in M, the closure of M (i.e., the smallest closed
set containing M). This can be written as the optimization
problem

argmin L(γ)
s.t. γ ∈ C1

pw([0, 1],M)
γ(0) = p
γ(1) = q

(5)

where L is the Riemannian arc length, given in Eq. (2).
In the following sections, we develop machinery to solve
optimization problems of this form.

V. GRAPHS OF GEODESICALLY-CONVEX SETS

We now introduce a graph of geodesically convex sets
(GGCS), a Riemannian optimization framework that, in Sec-
tion VI, we show is general enough to encompass Prob-
lem (5). A GGCS is a directed graph G = (V,E) with
certain properties, designed as a generalization of ordinary
(Euclidean) GCS from Marcucci et al. [1, §2] to Riemannian
manifolds. Each vertex v ∈ V has a corresponding a g-
convex subset Yv of some Riemannian manifold (Mv, gv).
With each edge e = (u, v) ∈ E, we associate a cost function
ℓYe : Yu × Yv → R≥0 ∪ {∞}, which must be g-convex with
respect to the product metric on Mu×Mv . For all problems
considered in this paper, every g-convex set will be a subset
of a single Riemannian manifold.

Given distinct source and target vertices p, q ∈ V , a path
π from p to q is a sequence of distinct vertices (vk)

K
k=0 such

that v0 = p, vK = q, and (vk−1, vk) ∈ E for all k ∈ [K].
Associate to this path a sequence of points yπ = (y0, . . . , yK)
such that each yv ∈ Yv; then the length of this path is

ℓYπ (yπ) =
K∑
k=1

ℓY(vk−1,vk)
(yk−1, yk) (6)

1We also require Q to be complete [30, p. 598] w.r.t. the metric induced
by g.

Xu
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Xv

Yv

ℓe
xu xv

ℓYe

yu yv

ψu ψv

Fig. 3: Moving edges and sets from Riemannian manifolds
to Euclidean spaces with coordinate charts. In this diagram,
Yu and Yv are visualized as part of the same Riemannian
manifold, although this need not be true in general.

Let Π denote the set of all paths from p to q, and for any
π ∈ Π, define its feasible vertices as Yπ = Yv0 × · · · × YvK .
The problem of finding the shortest path from p to q can be
written as

min
π∈Π

min
yπ∈Yπ

ℓYπ (yπ) (7)

Solving Problem (7) to optimality is intractable in complete
generality, so we propose to transform it into an ordinary GCS
problem. To each v ∈ V , associate a chart ψv , and define
Xv = ψv(Yv). For each edge e = (u, v) ∈ E, we define the
edge cost on (xu, xv) ∈ Xu ×Xv:

ℓe(xu, xv) = ℓYe (ψ
−1
u (xu), ψ

−1
v (xv)). (8)

This construction is shown in Fig. 3. To apply the GCS
machinery, we require that the sets Xv and edge costs
ℓe(xu, xv) are convex. As we show in Subsection VI-D, this
is hopeless for manifolds with positive curvature. Luckily, for
flat manifolds, convexity can be ensured, as will be shown in
Subsection VI-A.

Importantly, many robot configuration spaces can be re-
alized as flat manifolds. SE(2) is flat, all 1-dimensional
manifolds are flat [31, p. 47] (this encompasses continuous
revolute joints), and products of flat manifolds are flat. Thus,
any robotic system whose configuration can be described using
a series of single-degree-of-freedom joints (and potentially a
mobile base) will have a flat configuration space, and thus can
be handled by our methodology. 2-DoF universal joints can
also be handled, as they can be perfectly represented as two
juxtaposed 1-DoF joints. 3-DoF ball joints cannot be handled,
because decomposing a ball joint into 1-DoF joints distorts
the underlying geometry.

VI. MOTION PLANNING WITH GGCS

We want to use GGCS to make motion plans on Riemannian
manifolds by solving Problem (5). Thus, we must prove
that the optimal value is achieved by some trajectory that is
feasible for a GGCS problem. We use the initialism ROSC
(Riemannian Open Subset Closure) to describe closures of



open subsets of Riemannian manifolds, notably M. ROSCs
are topological manifolds-with-boundary, but the boundary
may not be smooth; for example, polytopic obstacles lead to
corners on the boundary of M. The theory of manifolds-with-
corners is not well developed in full generality, so for the sake
of completeness, we confirm some expected properties of paths
through ROSCs.

Theorem 1. (Existence of Optimal Trajectories) For any
p, q ∈ M, there exists a continuous curve γ connecting them
such that L(γ) = d(p, q).

Proof: The proof follows by verifying that M satisfies the
preconditions of Theorem 2.5.23 of Burago et al. [39, p. 50].
We defer the details to Appendix A.1.

Assumption 1. We are given a finite atlas A =
{(Yv, ψv)}v∈V of M. For each v, the closure Yv is g-convex
as a subset of Q. Furthermore, the union of the closures Yv
covers M.

These requirements will not hold in general, but we will
discuss how to construct such an atlas in Subsection VI-B.
We can also extend each ψv to be defined on Y . With this
information, we can prove a strong result about the shortest
paths in M.

Theorem 2. (Piecewise Geodesic Optimal Paths) Let p, q ∈
M, and suppose the sets Yv satisfy Assumption 1. Then there
is a curve γ∗ ∈ C1

pw([a, b],M) connecting them, such that the
following are true:

• L(γ∗) = d(p, q)

• γ∗ is a piecewise geodesic of Q
• Each geodesic segment is contained in some Yv
• γ∗ passes through each Yv at most once.

Proof: Let γ0 be a continuous minimizing path connect-
ing p to q (guaranteed to exist by Theorem 1); we will use
this to construct an appropriate γ∗. Select an arbitrary order
v1, . . . , v|V | to iterate over all of the vertices in V . We will
construct a sequence of curves γ1, . . . , γ|V |, such that γ|V | has
the desired properties.

For each i, if γi−1 does not pass through Yvi , let γi = γi−1.
Otherwise, let Ti =

{
t
∣∣ γi−1(t) ∈ Yvi

}
, let a′i = min(Ti),

and let b′i = max(Ti). Then by the g-convexity of Yvi , there is
a unique minimizing geodesic αi : [a′i, b

′
i] → Yvi connecting

γi−1(a
′
i) and γi−1(b

′
i). Let γ̃ be a new curve, defined by

γ̃(t) =

®
γi−1(t) t ̸∈ [a′i, b

′
i]

αi(t) t ∈ [a′i, b
′
i]

(9)

Because L(αi) ≤ L(γi−1|[a′,b′]), we have L(γ̃) ≤ L(γi−1),
and since γi−1 is of minimum length, we must have L(γ̃) =
L(γi−1). Define γi to be γ̃, and continue until we have iterated
over all of the v ∈ V . Then by construction, L(γ|V |) = d(p, q),
γ|V | is piecewise geodesic in Q, each geodesic segment is
contained in some Yv , and γ|V | passes through each Yv at
most once.

A. Formulation as a GCS Problem

To transform the GGCS problem into a GCS problem, we
require that the sets and edge costs are convex in Euclidean
space. The following is sufficient (and still encompasses robots
with mobile bases and continuous revolute joints):

Assumption 2. Q is flat. Also, each ψv is a local isometry
into Euclidean space, viewed as a Riemannian manifold with
the canonical Euclidean metric.

Assumptions 1 and 2 together yield three important results:
• Xv = ψv(Yv) is convex.
• ∀y0, y1 ∈ Yv , d(y0, y1) = ||ψv(y0)− ψv(y1)||2
• τu,v is a Euclidean isometry (see Lemma 2 in Ap-

pendix A.2), and hence affine [40].
The first two results are true because Yv is g-convex, ψv

maps geodesics to geodesics [31, p. 125], and geodesics are
unique in Euclidean space. For most robotic configuration
spaces we consider, Q can be decomposed as the product
of one-dimensional manifolds. In this case, the coordinate
systems can be globally aligned, so that every transition map
is a translation.

To formulate the problem with GCS, we follow an approach
similar to [2], where decision variables describe line segments
contained within each convex set. In particular, ∀v ∈ V , we
have xv = (xv,0, xv,1) ∈ X 2

v , where xv,0 is the start point
of the line segment, and xv,1 is the end point. For each edge
e = (u, v) ∈ E, the length of the segment associated with the
starting vertex is used as the edge cost:

ℓe(xu, xv) = d(ψ−1
u (xu,0), ψ

−1
u (xu,1)) = ||xu,0 − xu,1||2

(10)
We also encode equality constraints to ensure the endpoints
of adjacent segments are in agreement:

ψ−1
u (xu,1) = ψ−1

v (xv,0) ⇔ τu,v(xu,1) = xv,0 (11)

This constraint is convex because τu,v is affine. Thus, we
have a valid GCS formulation, which can be solved as a
mixed-integer convex program. Alternatively, it can be solved
approximately by solving the convex relaxation and using a
randomized rounding strategy [2]. If we have p ∈ X0 and
q ∈ XK , then after solving the GCS problem, we obtain a
path

xπ = (x0,0, x0,1, x1,0, x1,1, . . . , xK,0, xK,1) (12)

with x0,0 = ψ0(p), xK,1 = ψK(q), and ψi(xi,1) =
ψi+1(xi+1,0), ∀i ∈ {1, . . . ,K − 1}. Such a path naturally lifts
to a path on M:

yπ = (y0 = p, y1, y2, . . . , yK , yK+1 = q) (13)

= (ψ−1
0 (x0,0), ψ

−1
1 (x1,0), . . . , ψ

−1
K (xK,0), ψ

−1
K (xK,1))

where we have removed duplicate points from the trajectory.
This process is visualized for a simple cylinder manifold in
Fig. 4.

For each i ∈ {0, . . . ,K}, yi and yi+1 are contained in a
g-convex set Yi, so there is a unique minimizing geodesic γi
connecting them and completely contained in Yi. Thus, a path



Fig. 4: The process of transforming a GGCS problem into
a GCS problem for a simple cylinder manifold. Each of the
three charts maps to a Euclidean space, with transition maps
encoding the equality constraints across chart domains. The
line segments then lift to a piecewise geodesic on the manifold.

yπ uniquely defines a piecewise geodesic γπ connecting p to
q that is completely contained in M. With this fact, we can
formally prove the equivalence of the GGCS problem and the
GCS problem.

Theorem 3. (Proof of Problem Equivalence) If the path xπ
given in Eq. (12) is optimal for the GCS problem defined by
Eqs. (10) and (11), then the piecewise geodesic γπ defined by
Eq. (13) is optimal for Problem (5).

Proof: Any feasible path xπ for the GCS problem yields
a piecewise continuously differentiable curve γπ whose image
is contained in M and connecting p to q. Then the length of
this curve satisfies

L(γπ) =

K∑
i=0

d(yi, yi+1) =

K∑
i=0

||xi,0 − xi,1||2 = ℓπ(xπ)

Thus, the optimal value of Problem (5) is no worse than the
optimal value of the GCS problem.

Now, consider an optimal γ∗ for Problem (5), with the prop-

erties of Theorem 2. Then γ∗ is the concatenation of geodesics
γ1, . . . , γK , where γi : [0, 1] → Yvi for i = 1, . . . ,K, and
each vi is distinct. Define xπ by

(xi,0, xi,1) = (ψi(γi(0)), ψi(γi(1)))

∀i ∈ [K]. By construction, ℓπ(xπ) = L(γ∗). γi(1) = γi+1(0),
and the vi are distinct, so xπ is feasible for the GCS prob-
lem. Thus, the GCS problem achieves the optimal value of
Problem (5).

B. Construction of the Atlas

A key part of motion planning with GGCS is the construc-
tion of an appropriate atlas A = {(Yv, ψv)}v∈V of M. Recall
that A must be finite, each Yv must be g-convex, and each
ψv must be a local isometry.

As was done in [2], we construct an inner approximation
of C-Free using the extension of IRIS [41, Alg. 2] to handle
nonconvex obstacles. Given a seed point in Q, we grow a
region about that point with respect to a local coordinate
system. In this way, we grow the region in Euclidean space,
but we have an implicit mapping to the manifold, allowing us
to construct the transition maps needed for Eq. (11).

To ensure the set is g-convex when lifted to Q, we bound
the region by the convexity radius on a per-joint basis. If ri
is the convexity radius of the ith joint’s configuration space,
we constrain that joint to take values within an open ball of
radius ri, centered at the seed point. (Computationally, we use
a closed ball of radius ri− ϵ, with a small ϵ > 0.) For a 1DoF
joint, this is just the interval [x− ri + ϵ, x+ ri − ϵ] for seed
point x. If the manifold is flat, this guarantees g-convexity (see
proof in Appendix A.2).

Theorem 4. Suppose Q = Q1 × · · · × Qm, where each Qi

has a convexity radius ri. Let (Y, ψ) be a coordinate chart,
with ψ a local isometry and ψ(Y) convex in Euclidean space.
If Q is flat and the diameter of projQi

(Y) is less than 2ri,
then Y is g-convex.

We also assumed full coverage of M by the union of the
Yv . In scenarios where we only have an inner approximation
of C-Free, we treat all points outside of that approximation as
obstacles. Thus, our planner finds the globally optimal path
within “certified” C-Free, which is a subset of the whole C-
Free.

C. More General Motion Planning

Marcucci et al. [2] extended GCS-Planner to parametrize
trajectories as piecewise Bézier curves, in order to handle a
greater variety of costs and constraints. This includes penaliz-
ing the duration and energy of a trajectory, adding velocity
bounds, and requiring the trajectory to be differentiable a
certain number of times. Bézier curves generalize naturally to
Riemannian manifolds by interpolating along the minimizing
geodesics between control points [42, 43]. Because we restrict
ourselves to flat manifolds, the local geometry is unchanged
from Euclidean space. Thus, all costs and constraints that



operate on individual segments of the piecewise Bézier curve
trajectory can be used with no changes.

To enforce the differentiability of the overall trajectory
where two segments connect, we must compare tangent vec-
tors across different coordinate systems. In particular, suppose
we need differentiability η times for an edge (i, j), with
transition map τi,j . Let γi and γj be adjoining Bézier curve
segments in Yi and Yj , and let their kth derivatives be ν(k)i

and ν(k)j at the point where they connect, called w. Using the
pushforward of the transition map at w, this constraint can be
written as

(τi,j)∗,ψ−1
i (w)

Ä
ν
(k)
i

ä
= ν

(k)
j ∀l ∈ [η] (14)

Because the transition map is a Euclidean isometry, its push-
forward is a linear transformation described by an orthogonal
matrix, and if the coordinate systems are globally aligned (as
described in Subsection VI-A), then the pushforward is the
identity map. When Q is flat, the derivative of a Bézier curve
is a linear expression of its control points, so Eq. (14) is a
convex constraint.

D. Positive Curvature Induces Nonconvexity

At this point, we have shown that the flatness of Q is
sufficient for our formulation’s validity. It is natural to ask
how essential this is, especially since SO(3), a manifold of
great interest in robotics, has positive curvature. For example,
the configuration space of a ball joint is a subset of SO(3),
and the configuration space of a free moving object in R3 is
SE(3) ∼= SO(3) × R3. Unfortunately, even a single point of
positive curvature implies that the Riemannian distance func-
tion is not g-convex, even on arbitrarily small neighborhoods
of that point (see proof in Appendix A.3).

Theorem 5. Let M be a Riemannian manifold, let A1 ∈
M and u, v ∈ TA1

M such that K(u, v) > 0. Then for any
neighborhood U containing A1, d : M2 → R is nonconvex
on U2.

VII. EXPERIMENTS

We demonstrate our GGCS planner on various robotic
platforms. We present illustrative toy examples of planning
for a point robot on a toroidal world and an arm in the plane
with multiple continuous revolute joints. We also build plans
for a KUKA iiwa arm (with the base joint modified to be
continuous revolute) and a PR2 bimanual mobile manipulator,
implemented in Drake [44]. We make interactive recordings of
these trajectories available online at our results website. For
each experiment, we explicitly state the configuration space,
using I to refer to a general bounded interval in R.

A. Point Robot

Consider a point robot moving about a toroidal world
(configuration space T2, modeled as a unit square with the
edges identified), with convex planar obstacles. It is easy to
visualize the obstacles, g-convex sets, and graph edges, as
shown in Fig. 5. We also show an example of an optimal

Fig. 5: Results for a point robot in a toroidal world, realized
as a unit square with opposite edges identified. Obstacles are
shown in red, and each IRIS region is given a distinct pastel
color. Note that one of the regions “wraps around” along the
horizontal dimension, connecting opposite sides of the world.
Grey dashed lines indicate which regions overlap. The optimal
path between the start and end points is shown in black.

trajectory produced by GGCS-Planner, which “wraps around”
the toroidal world. This plan was computed in 0.79 seconds.

B. Planar Arm

Consider a robot arm with a fixed base, composed of five
continuous revolute joints (configuration space T5), moving
through a planar workspace with convex obstacles. (We as-
sume the arm does not suffer from self-collisions.) We present
sample plans produced by GGCS-Planner in Fig. 6, together
with the swept collision volumes. These two plans were found
in 5.36 and 4.63 seconds, respectively. A video of these
trajectories is available at our results website.

C. Modified KUKA iiwa Arm

We also demonstrate that GGCS-Planner can be used to plan
a series of motions using a KUKA iiwa robot arm. The KUKA
iiwa is a 7-DoF robot arm where each joint is a revolute joint
with limits; in simulation, we remove the limits on the first
joint, so the configuration space is T1 × I6. We consider a
scenario where the arm is mounted on a table, surrounded by
three sets of shelves, with mugs arranged on the shelves. The
goal of the task is to sort the mugs onto different shelves,
organized by color. We specify the order of motions that are
needed to achieve this goal and use GGCS-Planner to find the
path from start to goal for each motion.

For this experiment, we used a set of 18 convex regions
to achieve approximate coverage of the collision-free space.
These regions were adjusted as the mugs were moved about
the environment and were used to plan the complete motion of
the arm – no heuristic motion or “pre-grasp pose” was needed
to reach the grasp configuration. Several configurations used
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Fig. 6: Two plans produced by GGCS-Planner for a planar
arm around task-space obstacles (shown in red). We display
both the swept collision volume and individual poses in the
trajectory (colored by time, as indicated by the colorbar).

to seed the region generation are shown in Fig. 7, and the
initial and final states are shown in Fig. 8. A video and an
interactive recording of the plan are available at our results
website.

The experiment consisted of 14 motions, which were each
planned individually, and we use the region refinement method
from [45] to account for the current placement of the mugs.
This ensured that both the arm and the grasped mug were
collision-free for the entirety of each trajectory segment. The
robot takes full advantage of the base joint’s lack of limits –
always choosing the shortest path and never needing to unwind
any rotations. For each segment, planning a trajectory took
an average of 25.75 seconds (with a range of 4.63 to 50.30
seconds).

Fig. 7: Key configurations (overlaid) used for a mug reorga-
nization demo.

Fig. 8: Initial (left) and final (right) states for the mug
reorganization demo.

D. PR2 Bimanual Mobile Manipulator

In addition to its mobile base, the PR2 has two contin-
uous revolute joints in each arm. We have fixed the wrist
rotation and gripper joints, so the configuration space is
SE(2) × T2 × I10 ∼= T3 × I12. We consider a scenario
where the robot is driving around a square table that has
an outward-pointing stack of three shelves on each side. The
robot must reach into the different shelves with both arms.
This represents a challenging motion planning scenario for all
existing approaches due to the obstacle-rich environment and
high dimensionality of the configuration space.

The performance of GGCS-Planner is largely driven by the
choice of g-convex sets. For each set of shelves, we generate
IRIS regions for the robot to reach into the top, middle,
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and bottom shelves with both arms simultaneously. We also
generate two additional regions where the robot reaches into
the middle shelf with one arm and the bottom shelf with
the other while crossing its arms. Finally, we manually add
various intermediate regions to promote graph connectivity
and cover more of C-Free. In Fig. 9, we show several robot
configurations along a trajectory produced by GGCS-Planner.

For the planning scenarios considered with the PR2, we
compare GGCS-Planner to existing approaches. Trajectory
lengths are listed in Table I, plan times are listed in Table II,
and interactive recordings of all trajectories are available
online at our results website. We compare our algorithm to
kinematic trajectory optimization [5, §7.2] (abbreviated as
Drake-Trajopt), utilizing the general nonlinear program solver
SNOPT [46, 47]. Drake-Trajopt struggles to figure out how
to move the arms into or out of the shelf; we often have to
add waypoints to force the robot to back out of the shelf by
moving its base.

We also compare it to a sampling-based PRM planner. To
mitigate the curse of dimensionality and ensure connectivity
between seed points, we initialize the PRM with the skeleton
of the GGCS graph: for each pair of overlapping regions,
we place a node in the Chebyshev center [48, p. 148] of
their intersection. We then add 100,000 additional samples,
drawn uniformly across C-Free (with rejection sampling). This
process takes 124.39 seconds. In comparison, it takes an
average of 30.20 seconds to generate an IRIS region (with
a range of 8.56 to 75.42 seconds). With parallelization, all of
the IRIS regions were generated in only 156.63 seconds.

The plans produced by the PRM are significantly longer
than those from the GGCS-Planner, so we also examine using
the output of the PRM planner as the initial guess for the
trajectory optimization. (In principle, this should help prevent
Drake-Trajopt from getting stuck in local minima.) When
post-processing PRM plans with Drake-Trajopt, it sometimes
produces shorter final trajectories than GGCS-Planner, at the
expense of colliding slightly with the environment (an example
is shown in Fig. 10). This is likely due to the challenge
of balancing the collision-free constraint with the minimum
distance objective (and because collision-free constraints can
only be applied at discrete points).

Finally, we compare our GGCS-Planner to two workarounds
for applying ordinary GCS to non-Euclidean motion planning.
One could add artificial joint limits to prevent the wraparound,
but placing the joint limits incorrectly could make the optimal
path infeasible. The planar arm experiment clearly demon-
strates this problem; during the second trajectory in Fig. 6,
the middle joint traverses more than 360° in the course of
the plan. Thus, the optimal trajectory is infeasible for every
possible choice of joint limits.

Another option is treating the angles as real numbers with
no bound (and ignoring the fact that 0° ≡ 360°). But in this
case, the correct joint angle modulo 360° must be chosen to
get the optimal path. Furthermore, many copies of each convex
set must be made to account for each possible choice of angle
modulo 360°, increasing the size of the optimization problem.

(1)

(2)
(3)

(4)

(5)

Fig. 9: Individual poses along a trajectory produced by GGCS-
Planner for the PR2 robot, labeled with their order in the plan.

Fig. 10: An example of the slight collisions typical of the
trajectories produced by Drake-Trajopt. (The blue circle high-
lights the point of collision.)

With both workarounds, a priori knowledge about the so-
lution is required to guarantee that it is found, so in each
comparison, we separately consider the best and worst cases.
We use the same seed points across GGCS and both GCS
workarounds.

An interesting result is that the best case for the GCS
workarounds is sometimes slightly better than GGCS. This is
because the sets are not bounded by the convexity radius, so
they can grow larger (and cover more of C-Free) with the same
seed points. If the workarounds are restricted to using the same
regions as GGCS, then, in the best case, their performance is
indistinguishable.

VIII. DISCUSSION

In this paper, we have formulated the general problem of
motion planning around obstacles on Riemannian manifolds
as a shortest path problem in a graph of geodesically convex
sets, and we have proved this formulation inherits the same
guarantees as in the ordinary Euclidean case. We describe
how these theoretical developments inform simple and elegant
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Experiment GGCS-Planner Drake-Trajopt PRM PRM + Drake-Trajopt GCS-Planner (Joint Limits) GCS-Planner (No Joint Limits)
1T to 1B 1.829 1.803 4.359 1.808 1.826 1.839

1CL to 1CR 2.255 2.204 9.219 2.182 2.239 2.247

1M to 4M 3.875 ���6.938
t = 0.275, 5.272

14.554 ���5.874
t = 0.714, 4.381

6.482 / 10.478 3.990 / 12.589

1CL to 2CR 4.473 ���5.409
t = 2.155

12.110 ���4.108
t = 0.49

4.441 / 13.815 4.640 / 13.233

1CL to 3CR 8.182 10.263 15.250 �
��7.166

t = 0.7, 1.87, 2.02, 2.77
7.820 / 12.125 8.501 / 12.125

1CL to 4CR 4.382 7.583 17.459 ���6.088
t = 0.27, 0.555, 4.39

4.728 / 9.961 4.559 / 12.418

1T to 4B 4.538 8.781 12.351 ���5.949
t = 0.34, 0.68

5.320 / 14.928 5.473 / 14.160

TABLE I: A comparison of trajectory lengths (in configuration space) for each PR2 experiment across different methods.
Experiments are titled by the start and goal configurations. The configuration names indicate the shelf positions on the table
(1 through 4), followed by the position of the grippers. T, M, B, CL, and CR stand for top, middle, bottom, cross left over
right, and cross right over left (respectively). Table cells that are struck through indicate that the trajectory is not collision-free,
and the time stamps below the trajectory length indicate when the collisions occurred. For both GCS-Planner workarounds,
we include the best- and worst-case results (in general, achieving the best-case results requires a priori knowledge of the
optimal plan). Interactive recordings of each trajectory are available online at our results website. Each cell is linked to its
corresponding recording.

Experiment GGCS-Planner Drake-Trajopt PRM PRM + Drake-Trajopt
1T to 1B 25.51 12.69 0.49 11.61

1CL to 1CR 39.42 15.23 0.49 16.11
1M to 4M 46.61 2.26 0.53 25.51

1CL to 2CR 62.87 9.74 0.54 21.48
1CL to 3CR 58.60 7.82 0.52 27.30
1CL to 4CR 66.15 4.32 0.54 40.10

1T to 4B 29.89 10.92 0.54 15.36

TABLE II: A comparison of online planning times (in sec-
onds) for each PR2 experiment across different methods. (We
omit the GCS workaround comparisons, as they are indistin-
guishable from the corresponding GGCS-Planner runtimes.)
Experiment names match Table I.

modifications to the original GCS-Planner, in order to handle
robots with mobile bases and continuous revolute joints. This
enables us to solve motion planning problems on such robotic
platforms to global optimality and guarantee that the trajectory
is collision-free at every point in time. Approximate solving
techniques still guarantee that trajectories are collision-free,
and empirically, such trajectories are very close to optimal.

We have demonstrated that GGCS-Planner is a powerful tool
for robot motion planning. It is capable of producing plans
for high degree-of-freedom systems operating in obstacle-
dense configuration spaces, such as a PR2 bimanual mobile
manipulator reaching into and out of shelves. In future work,
we intend to generalize the techniques outlined in this paper
for use in bimanual manipulation (with implicit kinematic
constraints) and planning through contact. Although the plan-
ning and optimization frameworks used in GGCS-Planner are
still in their infancy, they are already capable of producing
high-quality results that are competitive with existing methods.
As further research and technical improvements are made, its
performance will continue to improve.
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APPENDIX A
PROOFS

A.1 Proof of Theorem 1

Lemma 1. For any p, q ∈ M, there is a piecewise-smooth
path connecting p and q.

Proof: Because M is path connected, there is a
continuous curve γ : [a, b] → M joining them. Let
(U1, ψ1), . . . , (Un, ψn) be a series of charts of Q that cover
the image of γ, with p ∈ U1, q ∈ Un, and Ui∩Ui+1∩M ≠ ∅
for each i. (Such a finite covering exists because the image of
γ is compact.) Let t0, . . . , tn ∈ [a, b] such that t0 = a, tn = b,
and for each i = 1, . . . , n − 1, γ(ti) ∈ Ui ∩ Ui+1. For each
i = 1, . . . , n−1, let γ̃i be a smooth curve joining ψi(γ(ti)) to
ψi+1(γ(ti+1)) that is contained within ψi(Ui∩M). Let γ̃0 join
ψ1(γ(t0)) to ψ1(γ(t1)) and be contained within ψ1(U1∩M),
and let γ̃n join ψn(γ(tn−1)) to ψn(q) and be contained within
ψn(Un ∩ M). Then by lifting each of these curves to M,
and concatenating them, we obtain a piecewise-smooth curve
connecting p and q.

Proof of Theorem 1: The proof follows by verifying that
M is a complete, locally compact length space, so that we can
apply Theorem 2.5.23 of Burago et al. [39, p. 50]. A length
space is a metric space in which the distance between any two
points is given by the infimum of the arc lengths of all paths
connecting those two points. A length space is complete if the
distance between any two points is finite. Thus, M inherits
a length structure from Q (with the restriction to curves that
are entirely contained in M). All topological manifolds are
locally compact. To check that M is complete, let p, q ∈ M.
By Lemma 1, there is a piecewise-smooth curve connecting p
and q, so the set of arc lengths of curves connecting p and q
is nonempty. It is also bounded below, so its infimum is finite,
and thus d(p, q) exists. We conclude that M is a complete,
locally compact length space.

A.2 Proof of Theorem 4

Lemma 2. Let (Y1, ψ1) and (Y2, ψ2) be coordinate charts of
M, with ψ1 and ψ2 local isometries, and Y1 and Y2 g-convex.
Then there is a Euclidean isometry ξ such that ∀p ∈ Y1 ∩Y2,
ψ1(p) = (ξ ◦ ψ2)(p).

Proof: Y1∩Y2 is g-convex, and hence connected. ψ1◦ψ−1
2

is a local isometry between two connected open subsets of
Euclidean space (with appropriate restriction of domain and
range), so (ψ1 ◦ ψ−1

2 )∗,p is an orthogonal matrix for any p.
Thus, we can apply Theorem 1.8-1 of Ciarlet [49, p. 44].

Lemma 3. Consider Y ⊆ Z ⊆ M, where Z is g-convex,
and we have a coordinate chart (Z, ψ) such that ψ is a local
isometry. If ψ(Y) is convex, then Y is g-convex.

Proof: Fix p, q ∈ Y . Then there is a unique minimizing
geodesic γ connecting p to q, and γ is contained in Z .
Because ψ is a local isometry, it maps γ to a line segment
in ψ(Z). ψ(p), ψ(q) ∈ ψ(Y), so by convexity of ψ(Y), ψ ◦ γ

γA
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α

M
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A2
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B1

B2

u

v

u′

Fig. 11: The construction of two Levi-Civita parallelogramoids
used in the proof of Theorem 5. d(A0, B0) < d(A1, B1) and
d(A2, B2) < d(A1, B1), which demonstrates the nonconvexity
of d around A1. ∠A0B0B1 and ∠A2B2B1 are obtuse.

is contained in ψ(Y). Thus, γ is contained in Y , so Y is g-
convex.

Proof of Theorem 4: For each i ∈ [m], we can
construct a ball Bsi(ci) ⊇ projQi

(Y), with si < ri. Define
Z =

∏
i∈[m]Bsi(ci), a g-convex set. Consider the Riemannian

normal coordinates of Q at (c1, . . . , cm). This coordinate
system, restricted to Z , induces a coordinate chart φ. Because
Q is flat, φ is a local isometry, so by Lemma 2 there is a
Euclidean isometry ξ such that φ(Y) = ξ(ψ(Y)), so φ(Y) is
convex. Thus, by Lemma 3, Y is g-convex.

A.3 Proof of Theorem 5

Proof of Theorem 5: Fix a neighborhood U of A1. Since
the sectional curvature is invariant with respect to a change of
basis, suppose without loss of generality that ||u|| = ||v|| =
1 and ⟨u, v⟩ = 0. To prove this result, we will construct a
geodesic γ on U2 such that d ◦ γ achieves smaller values on
its endpoints than at its center. This relies on the properties of
specially constructed Levi-Civita parallelogramoids on U .

Let ϵ > 0 be small, such that expp(B2ϵ(0)) ⊆ U . Let α :
t 7→ expp(tv), let B1 = α(ϵ), and let u′ = Γ(α)ϵ0(u) be u
parallel transported from A1 to B1. Let γA : t 7→ expA1

(tu)
and γB : t 7→ expB1

(tu′), with domain [−ϵ, ϵ]. Then γ =
(γA, γB) is a geodesic of U2. Define A0 = γA(−ϵ), B0 =
γB(−ϵ), A2 = γA(ϵ), and B2 = γB(ϵ). This construction
is visualized in Fig. 11. We want to show that d(A0, B0) <
d(A1, B1) and d(A2, B2) < d(A1, B1).

The points A1, B1, A2, and B2 describe a Levi-Civita
parallelogramoid, with base A1B1 and suprabase A2B2. Thus,
we can relate the length of the base and suprabase via the
formula of [50, p. 244]

d(A2, B2)
2 = d(A1, B1)

2 + 8
3 ⟨R(ϵu, ϵv)ϵu, ϵv⟩+O(ϵ5)

Because ||u|| = ||v|| = 1 and ⟨u, v⟩ = 0,

⟨R(ϵu, ϵv)ϵu, ϵv⟩ = −ϵ4 ⟨R(u, v)v, u⟩ = −ϵ4K(u, v) < 0

So for ϵ is decreased towards 0, the fifth and higher order terms
vanish, and d(A2, B2) < d(A1, B1). A similar calculation
shows that d(A0, B0) < d(A1, B1). Thus, d ◦ γ has a local
minimum, so we conclude that d is nonconvex on U .



APPENDIX B
EXPERIMENT IMPLEMENTATION DETAILS

In this appendix, we present further details about the setup
of our experiments and demonstrations.

B.1 Planar Arm

The trajectories shown in Subsection VII-B were generated
with a GGCS that had 19 sets. We generated IRIS regions for
the start and goal configurations, and hand-picked several seed
points along the narrow gap between the two lower obstacles
to help ensure connectivity between the start and goal. We then
generated the remaining IRIS regions with random seed points
(chosen uniformly from C-Free with rejection sampling).

The GGCS-Planner results shown used the sum of the path
length and path duration as the objective. We used the relax-
and-round approximation strategy to produce the trajectories
shown in the paper. The first trajectory had a path length
of 7.749, and the second had a path length of 8.448. When
solving the integer program with branch-and-bound, the first
trajectory had a path length of 7.274, and the second had a
path length of 8.008. (Note that the optimal solution for the
latter trajectory still had the middle joint of the arm traverse
more than 360°.)

B.2 KUKA iiwa Arm

The motions shown in Subsection VII-C used regions gen-
erated from 18 seed points. The seeds consisted of one seed
for each middle and top shelf (the bottom shelves are excluded
because they are kinematically unreachable), one seed above
each shelf, one seed directly between each shelf, and two seeds
per shelf to aid moving between the top and middle shelves.
Regions were generated for each seed with both an empty hand
and a mug in the hand to aid both types of trajectory planning.
Regions were post-processed to remove redundant hyperplanes
with the ReduceInequalities algorithm from Drake.

The GGCS-Planner minimized both time and path length of
the trajectory while ensuring continuity of the path, velocity,
and acceleration. For velocity limits, the real velocity limits
of the KUKA iiwa hardware were used. Trajectories were
computed using the relax-and-round approximation strategy.

B.3 PR2 Bimanual Mobile Manipulator

To model the PR2 robot, we use the URDF file and object
meshes included with Drake. For each link, we take the convex
hull of the mesh and use that as the collision geometry.
(Collisions annotated in Table I are determined based on the
true collision geometry, not the convex hulls.) The plans we
produce take into account the robot’s base joint, torso lift joint,
and all arm joints (up to the final wrist rotation joint and
gripper joints). All other joints are fixed.

For the experiments demonstrated in Subsection VII-D, we
first constructed IRIS regions for each of the possible goals:
reaching into each of the three shelves in a set with both arms,
crossing right-over-left on the middle and bottom shelves, and
crossing left-over-right. (See Fig. 1 for a visualization of these
cross-over poses.) We then hand select a few intermediate seed

points; the regions around these points are used to promote
connectivity among the various shelf-reaching regions. We
construct these regions for each set of shelves, except for the
experiments where the start and goal are within the same set
of shelves.

We take several actions to improve the efficiency of
GGCS-Planner. To reduce the number of constraints needed,
we simplify the IRIS regions by removing redundant
halfspaces from their polyhedral representation, using the
ReduceInequalities algorithm in Drake. We also only
include shelf-reaching regions if they are the start or goal of
the plan. This greatly reduces the size of the optimization
problem, promoting faster solve times. Empirically, it also
leads to a shorter trajectory, likely due to a tightening of
the convex relaxation. For GGCS-Planner, we use the same
objective as the planar arm experiments (the sum of the
trajectory length and duration), and we use the relax-and-round
strategy.

For the comparison to kinematic trajectory optimiza-
tion (Drake-Trajopt), we use the same objective as
GGCS-Planner: the sum of the trajectory duration and
length. However, the trajectories are parametrized as B-
splines instead of linear segments (or Bézier curves if
the extensions in Subsection VI-C are utilized). The
KinematicTrajectoryOptimization can automati-
cally construct the nonlinear optimization problem for a
given scenario, which we then solve with SNOPT. We
first solve the problem without collision-free constraints.
The output of this initial problem is used as the initial
guess for the full problem (i.e., including collision-free con-
straints). The collision-free constraint is encoded with the
MinimumDistanceConstraint class. We set a minimum
distance of 1mm and begin applying a penalty at 1cm. This
constraint is applied to 50 points along the trajectory. (Such
a constraint can only be evaluated pointwise.) For motion
planning tasks where the robot had to move between shelves,
Drake-Trajopt was unable to produce a collision-free trajec-
tory. Thus, we added waypoints near the beginning and end of
the trajectory, in which the robot was in the same configuration
as the start and goal (respectively), but the base was moved
away from the shelf. This was only sometimes effective at
finding collision-free trajectories.

As in [2], we use the PRM planner from the Common
Robotics Utilities library [51], with the modifications de-
scribed in Subsection VII-D. Given a piecewise-linear tra-
jectory from the PRM, we construct a B-spline that passes
through the nodes on this trajectory for use as an initial guess
for Drake-Trajopt. In this case, when solving the optimization
problem, we begin applying a distance penalty at 1m and
perform collision checking at 100 points along the trajectory.

https://drake.mit.edu/doxygen_cxx/classdrake_1_1geometry_1_1optimization_1_1_h_polyhedron.html
https://drake.mit.edu/doxygen_cxx/classdrake_1_1geometry_1_1optimization_1_1_h_polyhedron.html
https://drake.mit.edu/doxygen_cxx/classdrake_1_1systems_1_1trajectory__optimization_1_1_kinematic_trajectory_optimization.html
https://drake.mit.edu/doxygen_cxx/classdrake_1_1multibody_1_1_minimum_distance_constraint.html
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