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Abstract— We present a method for synthesizing dynamic,
reduced-order output-feedback polynomial control policies for
control-affine nonlinear systems which guarantees runtime
stability to a goal state, when using visual observations and
a learned perception module in the feedback control loop.
We leverage Lyapunov analysis to formulate the problem of
synthesizing such policies. This problem is nonconvex in the
policy parameters and the Lyapunov function that is used
to prove the stability of the policy. To solve this problem
approximately, we propose two approaches: the first solves a
sequence of sum-of-squares optimization problems to iteratively
improve a policy which is provably-stable by construction, while
the second directly performs gradient-based optimization on
the parameters of the polynomial policy, and its closed-loop
stability is verified a posteriori. We extend our approach to
provide stability guarantees in the presence of observation noise,
which realistically arises due to errors in the learned perception
module. We evaluate our approach on several underactuated
nonlinear systems, including pendula and quadrotors, showing
that our guarantees translate to empirical stability when con-
trolling these systems from images, while baseline approaches
can fail to reliably stabilize the system.

I. INTRODUCTION

For autonomous robots to be effective in the real world,
we need provable assurances on their safety and reliability.
In these unstructured settings, robots typically lack full state
information, and must complete tasks while controlling using
only sensor measurements (i.e., outputs); this perception-
based control problem is known as output-feedback. For
robots of interest with nonlinear dynamics, synthesizing
output-feedback controllers is known to be difficult. Partial
observability and sensor noise require that output-feedback
controllers extract information from a history of observations
to stabilize the system. Moreover, in many domains of inter-
est, these observations are non-smooth and high-dimensional
(e.g., images), which can increase the amount of data needed
to learn a good visuomotor control policy, i.e., a policy
which takes (a history of) images as input and returns a
control action. Finally, underactuation due to input limits
and nonlinearities in the dynamics can lead to numerous
local minima when attempting to optimize output-feedback
control policies. To address these difficulties, recent work
(e.g., [1], [2]) leverages the power of neural networks (NNs)
and deep reinforcement learning (RL) to tackle the output-
feedback problem. However, the resulting control policies
are complex, rendering the learning process data-hungry and
the closed-loop stability of the system difficult to certify.
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Fig. 1. (A-B): We synthesize a dynamic-output-feedback controller that
stabilizes the planar quadrotor to the origin from pixels, using a learned
perception map ĥe in the control loop, from initial conditions (ICs) a =
[px, py , ϕ, vx, vy , ϕ̇, z]⊤. Here, z ∈ R is the controller latent variable. Left:
Grayscale 128x96 images input to the controller. Right: Time-lapse of the
stabilized trajectories. (C): Slices (all other states set to zero) of a certified
inner approximation of the closed-loop region of attraction (ROA) in red.
While the system may not converge exactly to the origin due to errors in the
learned perception map, all states in the ROA are guaranteed to converge
to an invariant set (shown in white) around the origin. To empirically show
the invariance of this set, we plot (in blue) the states reached after 10s have
elapsed, for 500 ICs sampled from the ROA.

In this paper, we challenge the notion that complex
controllers are required to stabilize nonlinear robotic sys-
tems from high-dimensional sensor inputs like images. In
particular, we show that given a useful reduction of the
high-dimensional observations which can be learned from
data (such as keypoints rigidly attached to the robot), sim-
ple dynamic (i.e., stateful) policies, which are linear or
a low-degree polynomial in the reduced observations, can
effectively stabilize a variety of nonlinear, underactuated
systems. The latent states of dynamic policies enable non-
trivial information-gathering, which cannot be achieved by
a naı̈ve interconnection of independently-designed state es-
timators and state-feedback controllers. Moreover, due to
the simplicity of these controllers, our method can leverage
powerful tools like sums-of-squares (SOS) programming to
synthesize provably-stable output-feedback policies. Inspired
by the scalability of gradient-based policy learning in RL [3],



we also provide a method that directly learns the parameters
of the polynomial controller through gradient descent (GD)
(Sec. V-B). Due to this parameterization, an ROA for the
learned controller can be readily verified in a post-hoc fash-
ion by solving a set of smaller SOS optimizations. Finally, a
key strength of our controllers is that they do not explicitly
reconstruct the full state. This is critical as it 1) reduces the
problem dimension, keeping the SOS problems tractable for
high-dimensional systems, and 2) sidesteps the need for an
accurate initial state estimate. Our specific contributions are:

• Two approaches for synthesizing dynamic reduced-
order output-feedback controllers (via SOS program-
ming and via gradient-based optimization)

• An extension for verifying robust closed-loop stability
under observation error, enabling end-to-end stability
guarantees when using images as input and an imperfect
learned perception module in the control loop

• Validation on a variety of nonlinear systems, showing
that our simple polynomial controllers match or outper-
form baselines in optimizing visuomotor policies

II. RELATED WORK

Many learning-based approaches for designing control
policies for nonlinear robotic systems from rich sensor inputs
like images have been recently proposed [1], [2], [4]. These
approaches typically rely on model-based or model-free
reinforcement learning, which leverage data to learn complex
NN controllers which take images as input. However, these
controllers are complex, difficult to analyze, and may not
reliably stabilize the system. On the other hand, many model-
based methods exist for synthesizing stable state-feedback
controllers for nonlinear systems, and we know that simple,
low-degree polynomial controllers can stabilize many robots.
Using tools like SOS optimization [5], Lyapunov analysis
[6], barriers [7], and occupation measures [8] can be used to
algorithmically synthesize stable polynomial controllers.

For the specific case of linear systems, techniques like
linear-quadratic-Gaussian (LQG) control [9] and its reduced-
order counterpart [10] can efficiently synthesize dynamic-
output-feedback controllers. While there is extensive theo-
retical study on sufficient conditions for nonlinear output-
feedback stabilization [11], [12], there are far fewer methods
for algorithmic synthesis of such controllers. Most existing
work leverages SOS optimization, and focuses on finding
static output-feedback controllers [13], [14] (i.e., output-
feedback controllers which only take in the current observa-
tion as input) or decouples the state-feedback and full-order
observer design problems [15], [16], [17]. While in principle,
dynamic controllers can be written as static controllers
by augmenting the observations with the latent variables,
directly applying these methods when the latent dynamics are
also being optimized, as in our method, leads to additional
nonconvexities. Moreover, these methods are evaluated on
low-dimensional systems, and are driven by low-dimensional
observations. In contrast, we solve a reduced-order dynamic-
output-feedback policy synthesis problem, and apply it on
high-dimensional robotic systems for image-based control.

Finally, there is recent work in Lyapunov-based control
from high-dimensional observations. Learned approximate
Lyapunov functions are used in [18] to stabilize from LiDAR;
however, the Lyapunov conditions are not actually certified.
Other work uses images with barriers [7]; however, the full
state must be directly invertible from a single observation,
which is not possible for most robotic systems. More recent
work [19] leverages contraction theory to control safely from
images, but does so by decoupling the state-feedback and
estimation problems and requires estimation of the full state.

III. PRELIMINARIES

We consider control-affine, partially-observed nonlinear
systems, with state space X ⊆ Rnx , control space U ⊆ Rnu ,
and observation space Y ⊆ Rny ,

ẋ(t) = f(x(t), u(t)) = f1(x(t)) + f2(x(t))u(t) (1a)
y(t) = h(x(t)), (1b)

where f : X × U → ⋃
x∈X TxX and h : X → Y , and

where TxX is the tangent space of X at x. In this paper,
we assume f1 : X → ⋃

x∈X TxX and f2 : X → Rnx×nu

are polynomial functions of x, and that Y contains high-
dimensional image observations. We do not assume h is
polynomial. Since designing controllers directly as a function
of the pixels, which may be a non-smooth function of the
state (due to aliasing from finite resolution images), can be
difficult, we assume knowledge of an approximate smooth
reduced-dimensional representation of the information in the
images. Popular visual representations can be used here (e.g.,
dense descriptors [20]) if they are learned such that they are
a simple (roughly polynomial) function of x. In this paper,
we use keypoints, denoted as y∗k ∈ Yk ⊆ Rnk , which are
points in the workspace that are rigidly attached to the robot
(see Fig. 2 for examples). Keypoints are a common feature
representation used in computer vision [21] and robotics [22]
for pose estimation. For robots modeled as rigid bodies,
y∗k can be written as a polynomial function of the state,
with a change of variables (see Sec. VI for examples). An
approximate map from images to keypoints ĥe : Y → Yk,
i.e., a keypoint extractor, can be learned in a supervised
fashion from a labeled dataset of images and keypoints. Here,
ĥe need not be polynomial; in this paper, we represent ĥe as
a convolutional neural network (CNN), and train it to directly
output keypoints yk. The resulting keypoints are

yk(t) = ĥe(h(x(t))) = hk(x(t)) + w(t)
.
= y∗k(t) + w(t)

(2)

where hk : X → Yk is polynomial in x and w ∈ W ⊆
Rnk is a bounded disturbance which models the error in
the keypoints predicted by the learned keypoint extractor yk,
relative to the perfect keypoints y∗k.

A. Lyapunov analysis and SOS optimization
For a system ẋ = f(x) with equilibrium point x0, if we

can find a C1 Lyapunov function V : X → R≥0 satisfying

V (x0) = 0, V̇ (x0) = 0, (3a)

x ∈ Ωx
ρ ∧ x ̸= x0 ⇒ V (x) > 0 ∧ V̇ (x) < 0, (3b)
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Fig. 2. Keypoints (blue) used for (A): pendulum, (y∗k ∈ R2) (B): cart-pole
(y∗k ∈ R4), (C): 2D quadrotor (y∗k ∈ R4), (D): 3D quadrotor (y∗k ∈ R9).

where Ωx
ρ

.
= {x | V (x) ≤ ρ} is the ρ-sublevel set of V , then

Ωx
ρ is contained in the system’s region of attraction (ROA).

Finding a V satisfying (3) requires enforcing non-negativity
of polynomials (V and −V̇ ) over a basic semialgebraic
set (i.e., a set defined by a finite number of polynomial
(in)equalities). While this is NP-hard, we can efficiently
enforce that a polynomial is a sum of squares (SOS),
which implies non-negativity. A polynomial p of degree d in
indeterminate variables x1, . . . , xn, p(x1, . . . , xn), is SOS if
it can be written as

∑m
i=1 q

2
i (x), where qi(·) are polynomials.

This is equivalent to the existence of a Q ⪰ 0 such that
p(x) = m̃(x)⊤Qm̃(x), where m̃(x) is a polynomial basis;
Q can be found with semidefinite programming.

IV. PROBLEM FORMULATION

We wish to design a dynamic-output-feedback controller
u : Yk × Z → U , with latent dynamics z : Yk × Z →⋃

z∈Z TzZ , where Z ⊆ Rnz :

u = k(z, yk), (4a) ż = l(z, yk), (4b)

which when applied to system (1), maximizes the volume
of the closed-loop ROA around a desired equilibrium point
x0. To make the synthesis and verification of this controller
compatible with SOS programming, we search over a subset
of polynomial controllers by parameterizing k and l as a
polynomial of z and yk, i.e., u = θ⊤k mk(z, yk) and l =
θ⊤l ml(z, yk), for monomial bases mk/l(z, yk) of degree dk
and dl, respectively. Note that while (4b) is not a explicitly
a function of u (to avoid bilinearities between θc and θm),
(4b) can still recover u since (4a) is also a polynomial of yk
and z. To find an inner approximation of the ROA, we first
define the augmented state a = [x⊤, z⊤]⊤ ∈ X×Z .

= A and
dynamics ȧ = [f(x, u)⊤, l(z, yk)⊤]⊤. Then, ideally, we wish
to jointly search for a Lyapunov function V : X×Z → R≥0,
controller k, and latent dynamics l that solves

maximize
V,k,l

Vol(Ωρ)

subject to V (x, z) > 0, ∀(x, z) ̸= (x0, 0)
.
= a0

V (x0, 0) = 0

V̇ (x, z) < 0, ∀x ∈ Ωρ,

(5)

where the ρ-sublevel set of V is denoted Ωρ
.
= {x, z |

V (x, z) ≤ ρ}, and ρ is fixed (to set the scaling of V ). The
controller returned by (5) is guaranteed to stabilize any initial
conditions (ICs) (x, z) ∈ Ωρ to the augmented goal a0. While
the pointwise (non)-negativity constraints can be handled via
SOS, (5) is still nonconvex, due to bilinearities between V
and k, l in the final constraint of (5); moreover, additional
nonconvexities arise with the constraints needed to model
input constraints. Given the challenge of solving (5) exactly,
we propose methods to approximately solve (5) in Sec. V.

Dynamic controller 
design via SOS (Eq. 9)

ROA certification via SOS
(Eq. 10)

Controller design via 
GD (Sec. V.B)

Post-hoc ROA 
certification (Sec. V.B)

Initial 
controller

Method 1

Method 2
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ż = l(z, yk)

Converged?

Offline synthesis and verification

Online control

<latexit sha1_base64="Yv0Y6AZQAqE65kBA1K55nHB6Ax8=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0Wom5KIr2XRjcsK9gFNCJPJpBk6eTBzI9TQL3HjQhG3foo7/8Zpm4W2HrhwOOde7r3HzwRXYFnfxsrq2vrGZmWrur2zu1cz9w+6Ks0lZR2ailT2faKY4AnrAAfB+plkJPYF6/mj26nfe2RS8TR5gHHG3JgMEx5ySkBLnllzIgI48ljDoUEKp55Zt5rWDHiZ2CWpoxJtz/xygpTmMUuACqLUwLYycAsigVPBJlUnVywjdESGbKBpQmKm3GJ2+ASfaCXAYSp1JYBn6u+JgsRKjWNfd8YEIrXoTcX/vEEO4bVb8CTLgSV0vijMBYYUT1PAAZeMghhrQqjk+lZMIyIJBZ1VVYdgL768TLpnTfuyeXF/Xm/dlHFU0BE6Rg1koyvUQneojTqIohw9o1f0ZjwZL8a78TFvXTHKmUP0B8bnD8VDkoc=</latexit>

ĥe(·)

Fig. 3. Method overview. Offline: we synthesize a dynamic-output-
feedback control policy, either through SOS or through direct gradient-based
optimization. Online: we compose the learned perception system with the
output-feedback policy to obtain a control action from an input image.

V. CONTROL SYNTHESIS AND VERIFICATION

We propose two methods for approximately solving (5)
(see Fig. 3 for an overview). We first apply bilinear alterna-
tions (Sec. V-A), i.e., we perform coordinate ascent on the
ROA volume by fixing alternating subsets of the variables
in (5) and solving the resulting convex subproblems. Our
second method directly learns θc and θm through GD (Sec.
V-B) and certifies an ROA a posteriori. We compare the two
methods in Sec. VI, and discuss their tradeoffs in Sec. VII.
A. Method 1: SOS alternations

Our alternation scheme is summarized in Alg. 1. We break
down each individual optimization below.
Algorithm 1: Bilinear alternations for solving (5)

Input: θinit
k , θinit

l // initial controller parameters

1 V,L← solve (6) using (θinit
k , θinit

l )
2 ρ, Lb ← solve (7) using (V )

3 Ê ← I
4 for j = 1, . . . ,MAX ITER do
5 ρ, θk, θl, E, L, Lell ← solve (9) using (V, ρ, Ê)

6 E, V ← solve (10) using (θk, θl, L, Lell, ρ, Ê)

7 Ê ← E
8 return V, ρ, θk, θl

First, given a set of initial controller parameters θinit
k and

θinit
l (see Sec. V-A.1 on how we initialize), we search for a

Lyapunov function valid in a ball around a0 (Alg. 1, line 1):

find V,L
subject to V is SOS, L is SOS

−∂V
∂a

⊤
ȧ+ L(∥a− a0∥22 − r) is SOS.

(6)

This enforces V̇ < 0 over a ball of radius r centered at a0.
To find an initial ROA, we find the largest sublevel set of V ,
Ωρ, contained in this ball, by solving for a fixed r (line 2):

maximize
ρ,Lb

ρ

subject to V − ρ+ Lb(r − ∥a− a0∥22) is SOS
Lb is SOS.

(7)

Then, in line 5, given the fixed Lyapunov function V and
sublevel set Ωρ, we search for θk, θl and SOS Lagrange
multipliers L for enforcing the Lyapunov conditions over
Ωρ. As a surrogate for maximizing the volume of Ωρ, we
maximize the volume of an ellipsoid E inscribed within Ωρ:
E .

= {a | (a − a0)
⊤E(a − a0) ≤ 1}. This containment

condition can be enforced by the following SOS constraints:



(a− a0)
⊤E(a− a0)− 1 + Lell(ρ− V ) is SOS, (8a)

Lell is SOS, (8b)

while maximizing the volume of E can be done by mini-
mizing the log determinant of E. As log det(E) is concave
in E, its minimization is non-convex; thus, we minimize
a linearization of log det(·) around the ellipsoid from the
previous iteration Ê, which can be written as log det(E) ≈
log det(Ê) + tr(Ê−1(E − Ê)) [23]. Removing constants in
the linearization and putting everything together gives

minimize
θk,θl,E,L,Lell

tr(Ê−1E)

subject to −∂V
∂a

⊤
ȧ(θk, θl) + L(V − ρ) is SOS

L is SOS, Eq. (8a), Eq. (8b)

(9)

However, note that V and ρ are fixed in (9), and the objective
is just meant to provide a Lagrange multiplier Lell for the
tightest inscribed ellipsoid in Ωρ, which is to be used in
the next alternation step (10). To explicitly increase the
ROA in (9), we can maximize ρ in an outer maximization
via bisection search, which aims to find a controller that
increases the ROA with respect to the current candidate V .

Finally, for fixed controller parameters and Lagrange mul-
tipliers, we aim to find an improved Lyapunov function V
that can certify a larger ROA for the current controller by
maximizing the volume of an ellipsoid inscribed in Ωρ:

minimize
E,V

tr(Ê−1E)

subject to −∂V
∂a

⊤
ȧ+ L(V − ρ) is SOS

L is SOS, Eq. (8a)

(10)

1) Initializing the alternations: Alg. 1 requires an initial
guess for the controller. In the full-state reconstruction case,
i.e., nz = nx, we can solve LQG for the linearization of
(1a)-(2) around a0 to obtain a locally-stable initialization.
However, for the reduced-order case, i.e., nz < nx, the
separation principle does not hold and solving the reduced-
order LQG problem involves nonlinear solvers [10] which
may not converge. As an alternative, we use GD to optimize
sampled closed-loop trajectories to initialize the controller.

In particular, we initialize θk and θl to random values,
sample ICs {xi}Nsamp

i=1 from a region around the equilibrium
a0, roll out the policy for a fixed time horizon T on a
∆T -time discretized version of the dynamics (1a) to obtain
Nsamp trajectories ξi

.
= {xt

i, u
t
i}Tt=1. We define a cost on

trajectories c(ξ) = cT (xT )+
∑T−1

t=1 αa∥at−a0∥22+αu∥ut∥22
for weighting parameters αa, αu ≥ 0, and evaluate the cost
of each trajectory c(ξi). Finally, we define our policy loss as
an averaged cost over trajectories,

L .
= 1

Nsamp

∑Nsamp
i=1 c(ξi), (11)

and minimize (11) to improve θk and θl. Minimizing (11)
has the effect of drawing the trajectories toward a0, thereby
indirectly increasing the size of the ROA. We now discuss
extensions to our basic alternations algorithm (Alg. 1).

2) Control input constraints: We can ensure that the
synthesized controller can stabilize the system even in the
presence of control constraints through adding additional
constraints. For example, for the scalar-valued input case, to
ensure stabilization given an upper control limit u ≤ ū, we
can enforce ∂V

∂x f(x, ū)+
∂V
∂z l < 0 for all states in Ωρ \{a0}

where u(x) ≥ ū. This involves additional SOS multipliers
Lk (see Sec. IV of [6] for details) and bilinearities between
Lk and k. To avoid these bilinearities, we search for these
multipliers Lk in (10) (Alg. 1, line 6).

3) Trigonometric terms: To handle trigonometric terms
which arise in rigid body dynamics, e.g., sin(ϕ) for the angle
ϕ of an inverted pendulum, we can perform a change of
variables to render the dynamics polynomial. Specifically, we
replace any instances of sin(ϕ) and cos(ϕ) in (1) with auxil-
iary state variables s and c, and add an additional constraint
s2+ c2 = 1. As the dynamics are constrained, we only need
to enforce the Lyapunov conditions over {x | s2 + c2 = 1},
which can be enforced with additional multipliers in each
SOS program in Alg. 1, i.e., Lt(s

2 + c2 − 1), where Lt is
a polynomial. As Lt does not multiply with any decision
variables, it does not complicate the alternation scheme.

4) Observation error: To model the impact of observation
error in (2) on closed-loop stability, we can add additional
indeterminates w in the SOS program. For instance, given
a uniformly bounded disturbance W = ∥w∥2 ≤ w̄, we can
enforce the Lyapunov conditions to hold robustly for all w ∈
W , e.g., the first constraint of (9) becomes

−∂V
∂a

⊤
ȧ(θk, θl)+L(V −ρ)+Lw(∥w∥22− w̄) is SOS. (12)

for SOS multipliers Lw. In general, our formulation can
handle an observation error description written as a set of
polynomial (in)-equalities in x, i.e., W is a basic semial-
gebraic set. In this paper, when controlling from images,
we bound our keypoint extractor error using a uniform error
bound ∥w∥2 ≤ w̄ valid over a set Aw ⊆ A. To over-estimate
w̄ with high probability, we can leverage extreme value
theory, which estimates w̄ from i.i.d. samples of the error
∥ĥe(h(x)) − hk(x)∥ for x sampled from Aw by following
the approach laid out in [24].

5) Implicit formulation: For systems that can be modeled
with rational polynomial dynamics (e.g., the cart-pole), it
can be easier to determine the system’s ROA by writing
its dynamics in implicit form, i.e., as a set of polynomial
equalities g(a, u, ȧ) = 0, which can eliminate rational terms
that appear when the dynamics are written explicitly as in
(1a). To adapt the Lyapunov conditions (3) to systems in
implicit form, we can ensure that V̇ < 0 via additional
indeterminates b and enforcing −∂V

∂a b+Lgg(a, u, b) is SOS,
where the Lagrange multipliers Lg are polynomials.

Specifically, the alternation scheme in Alg. 1 is modified
as follows. In line 1, we modify (6) to also search for Lg:

find V,L, Lg

subject to V is SOS, L is SOS
− ∂V

∂a

⊤
ȧ+ Lgg + L(∥a− a0∥22 − r) is SOS.

(13)

Lines 2-4 of Alg. 1 remain the same. We replace line 5 of
Alg. 1 with the following optimization which finds Lagrange



multipliers and the inscribed ellipsoid E
minimize
E,L,Lell,Lg

tr(Ê−1E)

subject to −∂V
∂a

⊤
b+ Lgg + L(V − ρ) is SOS

L is SOS, Eq. (8).

(14)

Finally, we replace line 6 of Alg. 1 with a simultaneous
search for V, θk, θl, E, Lell.

minimize
E,V,θk,θl,Lell

tr(Ê−1E)

subject to − ∂V
∂a

⊤
b+ Lgg(θk, θl) + L(V − ρ) is SOS

Eq. (8a)

(15)

B. Method 2: Gradient-based synthesis

As an alternative to running control design alternations
as in Sec. V-A, we can opt to directly learn the dynamic
controller parameters θk and θl through minimizing (11).
That is, instead of using the gradient-based approach of Sec.
V-A.1 just to obtain an initialization for Alg. 1, we can select
a larger set As over which we want the closed-loop system
to be stable, sample ICs from As, and exactly follow the
procedure in Sec. V-A.1. Given a set of learned parameters
θk and θl, we can find an inner approximation of the ROA of
the closed-loop system by following the alternation scheme
of Alg. 1, but with the simplification that θk and θl are fixed.
This is an advantage over learning an NN policy, which are
more difficult to verify than our simple policies. Overall,
compared to alternations (Alg. 1), this method requires more
parameter tuning, i.e., of the horizon T and time-step ∆T , in
order for the policy learning to reliably converge. However,
for some systems, the policies obtained using GD can have a
larger ROA than what is obtained with alternations (see Sec.
VI for comparisons with Alg. 1 and Sec. VII for discussion).

VI. RESULTS
We evaluate our method on an inverted pendulum, cart-

pole, and planar/3D quadrotors. Our goal is to show that our
method can provide controllers with large ROAs that out-
perform 1) popular RL-based methods for output-feedback
policy synthesis, while remaining simpler and easily verifi-
able, and 2) the more common approach of separately syn-
thesizing a controller and estimator and composing the two
to obtain an output-feedback policy. Thus, we compare with
1) PPO [25] using a recurrent neural network (RNN) policy
(to handle partial observability) and given perfect keypoint
observations, and 2) full-order LQG for the linearization
around the goal, which uses the separation principle [9] to
independently synthesize a locally-stable full-state-feedback
controller and state estimator, returning state estimate x̂. Our
SOS programs are implemented with SumOfSquares.jl [26],
and the SOS constraints are interpreted with the Chebyshev
basis to improve the numerical stability [5] of Alg. 1. Images
for the quadrotor examples were rendered with PyBullet.
Inverted pendulum: We consider the swing-up problem for
a torque-limited inverted pendulum [27, Ch. 2]. This system
has state x = [s, c, ϕ̇]⊤, where s and c are the sine and cosine
of the angular deviation ϕ from the upright equilibrium
x0 = [0, 1, 0]⊤, which we wish to stabilize to. We set the
pendulum mass and length as m = 1kg and ℓ = 5m, leading

O
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Fig. 4. Stabilizing the inverted pendulum from images, using learned
keypoints yk and a controller from Method 2. (A): Images received when
stabilizing from a = [ϕ, ϕ̇, z]⊤ = [π, 0, 0]⊤; y∗k are marked in green. (B):
left to right, Projections of invariant set (Ω4e−5) (gray) onto the ϕϕ̇, ϕz,
ϕż axes, and the full 3D invariant set. Here, Ω4e−5 is a sublevel set of
a V which certifies global convergence to Ω4e−5 under observation error
caused by ĥe; for 150 randomly sampled ICs, we plot the closed-loop states
reached after 25s (blue). (C): Closed-loop rollouts when controlling from
images (left, center), color is V value; V along trajectories (right).
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Fig. 5. ROA slices for the inverted pendulum, using perfect keypoints y∗k .
(A): ROA of controller from Method 1 (red). (B) ROA of LQG (gray).

to a gravity torque mgℓ of 49.05 N·m, while our torque limits
are 25 N·m. Thus, we cannot directly overcome gravity to
swing the pendulum to x0, and must iteratively pump energy
into the system to reach x0. For outputs, we are given a
single keypoint at the tip of the pendulum, i.e., we have the
observation function y∗k = [−ℓs, ℓc]⊤ ∈ R2. We train ĥe,
represented as a CNN, from a dataset of 4000 labeled pairs
of 64x64 grayscale images and corresponding keypoints. We
synthesize a degree 2 dynamic-output-feedback controller,
i.e., dk = dl = 2, with a single latent state nz = 1, using
the GD strategy (Method 2) in Sec. V-B. When controlling
using the perfect keypoints y∗k, we prove that the synthesized
policy has a global ROA to a0 using a degree 6 Lyapunov
function V . When using the learned keypoints yk = ĥe(y),
we bound the perception error as ∥w∥2 ≤ 0.003, and certify
global convergence to the 4 · 10−5-sublevel set of V , Ω4e−5,
which we show in Fig. 4(B) in gray. This set is invariant,
since it is compact and satisfies V̇ < 0 on its boundary.
To empirically show the invariance of Ω4e−5, we sample
150 ICs from Ωc

4e−5 and plot in Fig. 4(B) (blue) the states
reached by the closed-loop system after 25s, which are all
in Ω4e−5. We also show snapshots of the images used to
stabilize from the downward-facing equilibrium in Fig. 4(A),
and example closed-loop trajectories (Fig. 4(C)). We also
synthesize a controller (dk = dl = 3, nz = 1) using
alternations (Method 1). While this policy stabilizes near a0
(see Fig. 5, red), it cannot swing up from the downward
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Fig. 6. Stabilizing the cart-pole using learned keypoints yk (A-B) and
perfect keypoints y∗k (C). (A): Snapshots of images used by our alternations-
based controller to stabilize from a0 = [5.2,−0.3, 0.6, 0.6, 1.3,−0.3]⊤;
y∗k marked in green. (B): ROA slice of our alternations-based controller
when using yk . (C): ROA slices when using y∗k . In red: Method 1
(alternations); black outline: Method 2 (gradient-based); in green: LQG.

equilibrium, as the alternations reach a local minimum in
ROA volume. This is likely because the inscribed ellipsoid
is a loose approximation of Ωρ for this system.

For the baselines, we evaluate PPO by sampling 50 ICs
from [ϕ, ϕ̇] ∈ [−10, 10]2 and computing the closed-loop
2-norm from x0 after 60s have elapsed. PPO swings up
the pendulum to a neighborhood of x0 for all 50 samples,
achieving a goal error of 0.07±0.03 (mean + stdev). Despite
this, we note that the PPO policy does not render x0 an
equilibrium point (i.e., u(x0, z = 0) ̸= 0, where z is the
RNN hidden state), causing persistent chattering around x0;
thus, the goal error is nonzero. For the LQG baseline, we
plot its certified ROA (obtained via SOS) in Fig. 5 (gray),
which is smaller than the ROA achieved by both variants of
our method. We note that for LQG to stabilize, the initial
state estimate must be quite accurate; in contrast, our latent
state z is far less sensitive to initialization. Overall, these
results suggest our method can effectively stabilize despite
underactuation, that both variants of our method outperform
LQG, and that our method is competitive with PPO.
Cart-pole: To show our approach can control systems with
rational nonlinear dynamics, we synthesize a stabilizing
policy for a cart-pole [27, Ch. 3] This system has state
x = [px, s, c, ṗx, ϕ̇]

⊤ ∈ R5. We wish to stabilize the system
around the upright equilibrium, i.e., x0 = [0, 0, 1, 0, 0]⊤.
Using our alternations-based approach (Method 1), we syn-
thesize a controller, where dk = 4, dl = 1, and nz = 1.
To avoid rational terms in the explicit dynamics, we use the
implicit SOS variant of Alg. 1 discussed in Sec. V-A.5. For
outputs, we are given two keypoints, one at the base and one
at the tip of the pole, i.e., y∗k = [px, 0, px − ℓs, ℓc]⊤ ∈ R4

(see Fig. 2). We train ĥ, represented as a CNN, using 20000
pairs of labeled 56x96 grayscale images and keypoints, and
bound their error as ∥w∥ ≤ 0.05, for all a ∈ Ω2.75. Under
this error, we can certify using a degree 4 Lyapunov function
that Ω2.75 \ Ω0.01 converges to Ω0.01 (shown in Fig. 6(B),
white), and Ω0.01 is an invariant set. To show this invariance
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Fig. 7. Stabilizing the planar quadrotor with perfect keypoints y∗k .
(A): ROA slices for a controller obtained via alternations (red), via GD
(black), and sampled ICs in the ROA for LQG (green). (B): Time-lapse of
example trajectories of our closed-loop system, when controlling using the
alternations-based policy driven by perfect keypoints.

empirically, we plot the states reached after 40s have elapsed
in blue (Fig. 6(B)) and images seen when stabilizing from
a state in Ω2.75 \ Ω0.01 in Fig. 6(A). When using perfect
keypoint observations y∗k, we can certify that the entirety of
Ω2.75 is contained in the ROA (Fig. 6(C)). We also evaluate
our GD variant (Method 2) with dk = 4, dl = 1, and nz = 1;
however, we cannot effectively descend on (11), yielding a
controller with a small ROA (Fig. 6(C), black).

In terms of baselines, for PPO, we attempt to learn a
stabilizing policy over [px, ϕ, ṗx, ϕ̇] ∈ [−0.5, 0.5]4. While
the PPO policy can reliably maintain the pole’s orientation
near ϕ = 0, the closed-loop cart position px continuously
oscillates around zero and fails to stabilize to x0 for all
ICs, leading to large goal errors 6.1 ± 0.8 after 40s have
elapsed (averaged over 50 rollouts). For LQG, we plot states
which empirically converge in closed-loop to x0 (Fig. 6(C),
green), since computing the ROA using SOS is prohibitive
(due to there being 20 indeterminates: 5 original states x,
5 implicit variables b, and 10 for the estimates of those
variables x̂, b̂). While the ROA of LQG is larger in the
ϕ dimension, it overall has smaller volume compared to
our alternations-based controller, which can overcome much
larger perturbations to the cart position px and velocity
ṗx. Overall, this experiment suggests that our model-based
alternations approach can synthesize stronger controllers than
the baselines for rational systems, and that alternations may
more robustly improve the controller compared to gradient-
based methods when the landscape of (11) is poorly-shaped.
Planar quadrotor: We demonstrate that our approach can
stabilize a planar quadrotor from images. This system has
state x = [px, py, s, c, ṗx, ṗy, ϕ̇]

⊤, with dynamics as in [27,
Ch. 3]. We wish to stabilize to x0 = [0, 0, 0, 1, 0, 0, 0]⊤ with
input limits u ∈ [0, 2mg]2 ⊆ R2, where m = 1kg. We
synthesize a linear dynamic controller, i.e., dk = dl = 1,
with a single latent state nz = 1, using alternations (Sec.
V-A). For outputs, we have two keypoints, one at the center
of the quadrotor, and one on the right propeller (see Fig.
2), i.e., y∗k = [px, py, px + ℓc, py + ℓs]⊤ ∈ R4. We train
ĥe, represented as a CNN, from 40000 labeled pairs of
128x96 grayscale images and keypoints. When controlling
with the ideal keypoints y∗k, we can certify using a degree-2
Lyapunov function V that Ω1.3 is an inner approximation
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Fig. 8. Stabilizing the 3D quadrotor from perfect keypoints y∗k . (A): ROA
slices for controller from alternations (red), from GD (black), and sampled
ICs in the ROA for LQG (green). (B): Time-lapse of closed-loop trajectories,
when controlling using the alternations-based policy driven by y∗k .

of the controller’s ROA (shown in Fig. 7). We note that
Ω1.3 contains states as distant as 15m from the origin and
orientations beyond π/2 (Fig. 7, B). We also evaluate our GD
approach (Method 2) with dk = dl = nz = 1, which also
achieves a large ROA (Fig. 7(A), black), though smaller than
that which is achieved by alternations. This is because we run
into difficulties in descending on (11) when expanding the
ROA to distant states, due to the degradation of the landscape
of (11) for long-horizon trajectories (see Sec. VII).

When controlling from images using ĥe, we reuse the
same V and controller obtained from alternations, and aim
to certify a smaller sublevel set of V , Ω0.4, due to the
challenge of training an accurate, high-resolution keypoint
extractor over a large range of states from a low-resolution
image. We bound the error in the learned keypoints ĥe(y) as
∥w∥ ≤ 0.003 for all a ∈ Ω0.4, and certify global convergence
of ICs in Ω0.4 \ Ω0.0035 to Ω0.0035, which is an invariant
set, and is plotted in Fig. 1(C), white). To empirically show
the invariance of Ω0.0035, we plot in Fig. 1(C) (blue) the
states reached after rolling out the policy for 10s, showing
that states indeed reach and remain in Ω0.0035. We also plot
example rollouts in Fig. 1(A-B) and snapshots of the images
used to stabilize the system in Fig. 1(A-B) (left).

In contrast, PPO is unable to learn a stabilizing policy to
x0 over Ω1.3, leading to a goal error of 9.9 ± 2.9 over 25
sampled ICs. We believe this is because the controls taken by
PPO rapidly destabilize the quadrotor, providing poor signal
in improving the controller; reward or observation clipping
could possibly improve performance. The LQG controller
also has poor performance (see Fig. 7, green), for ICs where
the closed-loop system is stable), and is particularly sensitive
to incorrect position estimates. Like before, the ROA of LQG
is prohibitive to compute using SOS due to the doubling of
the number of states required by full-order state estimation.
Overall, this experiment suggests that both variants of our
method can yield stronger controllers than the baselines.
3D quadrotor: Finally, to demonstrate our scalability to
higher-dimensional systems, we synthesize a stabilizing vi-
suomotor policy for a full 3D quadrotor. This system has
state x = [qw, qx, qy, qz, px, py, pz, ṗx, ṗy, ṗz, α̇, β̇, γ̇]

⊤ ∈
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Fig. 9. Stabilizing the 3D quadrotor from learned keypoints yk , using our
alternations-based controller. (A): snapshots of the three-view 128x128x3
images provided to the controller. (B): verified ROA under keypoint error
(red), which is guaranteed to converge to the white invariant set. We also
plot (blue) the states reached in closed-loop, to show empirical invariance.

R13, where the quaternion q(·)-represented dynamics are
given in [28] (we enforce the unit quaternion constraint via
the S-procedure). We wish to stabilize to the origin x0 =
[1,012]

⊤, with input limits u ∈ [0, 2.5mg/4]4 ⊆ R4. We
synthesize a linear dynamic controller, i.e., dk = dl = 1, with
a single latent state nz = 1, using alternations (Method 1).
For outputs, we have three keypoints, one on three of the four
propellers (see Fig. 2), i.e., yk ∈ R9. We train ĥe, represented
as a CNN, from 150000 labeled pairs of 128x128x3 depth
images and keypoints. Here, we stack three depth images,
each recorded at different angles, offering views of the pxpz ,
pxpy , and pypz planes. When controlling with the ideal
keypoints y∗k, we certify using a degree-2 Lyapunov function
V that Ω0.3 is contained in the controller’s ROA (shown
in Fig. 8). We note that Ω0.3 contains states as distant as
15m from the origin and yaw/pitch/roll angles well beyond
π/2 (Fig. 7, B). We also evaluate GD (Method 2) with
dk = dl = nz = 1, which also achieves a large ROA (Fig.
8(A), black), which while overall smaller in volume than the
alternations ROA, has a larger ROA in the orientation states.

When controlling from images using ĥe, we reuse the
same V and controller from Method 1, and aim to certify
a smaller sublevel set of V , Ω0.01 (shown in Fig. 9(B)),
for the same reasons as for the planar quadrotor. We bound
the error in the learned keypoints ĥe(y) as ∥w∥ ≤ 0.003
for all a ∈ Ω0.01, and certify global convergence of ICs
in Ω0.01 \ Ω0.003 to Ω0.003, which is an invariant set, and
is plotted in Fig. 9(B), white). To empirically show the
invariance of Ω0.003, we plot in Fig. 9(B) (blue) the states
reached after rolling out the policy for 30s, showing that
states indeed reach and remain in Ω0.003. We plot some
images received along an example stabilization in Fig. 9(A).

In contrast, PPO is unable to learn a stabilizing policy
to x0 for ICs sampled from Ω0.01, leading to a goal error



of 8.6 ± 1.3 over 25 ICs; we believe it fails for similar
reasons as the planar quadrotor. The LQG controller also has
poor performance (see Fig. 8, green, where we plot sampled
ICs where the closed-loop system is stable), and is highly
sensitive to incorrect estimates in several state dimensions.
Like before, the ROA of LQG is prohibitive to compute
using SOS due to the doubling of states caused by full-order
state estimation. Overall, this experiment suggests that both
variants of our method can provide controllers with large
ROA, even for high-dimensional systems, and provides huge
computational savings compared to synthesizing/certifying a
full-dimensional state estimator together with the controller.

VII. DISCUSSION AND CONCLUSION

We present two methods for synthesizing provably-stable
reduced-order dynamic-output-feedback controllers from im-
ages: the first synthesizes stable-by-construction policies via
bilinear alternations, and the second optimizes the controller
via GD and certifies an ROA a posteriori. Our method
stabilizes several systems more effectively than baselines.
Pros/cons of Method 1: Alternation provides several bene-
fits. For the full-order case (i.e., nz = nx), if the linearization
around the goal is stabilizable and detectable, we can reliably
initialize Alg. 1 with the controller/observer from LQG.
Moreover, for both the full- and reduced-order cases, Alg.
1 monotonically increases the (ellipsoidal approximation of
the) ROA volume. This systematic controller improvement
makes Method 1 well-suited for expanding the ROA to
distant regions of A. The scalability of Method 1 is also
similar to that of state-feedback synthesis for the systems in
Sec. VI, since a scalar z is sufficient for stabilization. The
biggest drawback of Method 1 is the numerical instability
of Alg. 1, though we find that orthogonal polynomial bases
(like Chebyshev) greatly improve the numerics. Method 1 is
also prone to local minima, especially when there is a large
gap between the volume of Ωρ and its inscribed ellipsoid,
i.e., for the inverted pendulum, which has a “spiral”-shaped
ROA (Fig. 4(C)) that is poorly approximated by an ellipsoid.
Pros/cons of Method 2: GD is more scalable than SOS
in high dimensions, though we may still need to solve
a large SOS program to verify the controller. Method 2
also sidesteps local minima caused by the ellipsoid volume
objective in Alg. 1. Overall, GD is quite reliable for obtaining
an initial controller with a small ROA around the goal.
For drawbacks, Method 2 may not find a controller with
certifiable ROA (as verification is done post-hoc), though
we find empirically that closed-loop stability on sampled
ICs generalizes well to stability on nearby ICs, due to the
simplicity of our controller. There are also many parameters
which must be tuned for success. Moreover, the landscape
of (11) often has high Lipschitz constant, especially when
T is large [3], leading to myopic gradients that do not
effectively descend (11). This makes it difficult to expand
the ROA to distant parts of A (as in the cart-pole and
quadrotor examples). We believe these issues are not tied
to the polynomial policy parameterization, as we also tried
GD on an NN policy and observed the same issues. These

issues can be mitigated by damping the system or using a
critic to reduce the effective horizon required [3].
Future work: We require labeled images and keypoints
to train ĥe; to remove this limitation, we will explore
unsupervised learning of polynomial latent dynamics from
images, which would be amenable to SOS-based synthesis
and verification tools.
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