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Metastable Walking Machines
Katie Byl, Member, IEEE and Russ Tedrake, Member, IEEE

Abstract— Legged robots that operate in the real world are
inherently subject to stochasticity in their dynamics and uncer-
tainty about the terrain. Due to limited energy budgets and
limited control authority, these “disturbances” cannot always
be canceled out with high-gain feedback. Minimally-actuated
walking machines subject to stochastic disturbances no longer
satisfy strict conditions for limit-cycle stability; however, they can
still demonstrate impressively long-living periods of continuous
walking. Here, we employ tools from stochastic processes to
examine the “stochastic stability” of idealized rimless-wheel and
compass-gait walking on randomly generated uneven terrain.
Furthermore, we employ tools from numerical stochastic optimal
control to design a controller for an actuated compass gait
model which maximizes a measure of stochastic stability - the
mean first-passage-time - and compare its performance to a
deterministic counterpart. Our results demonstrate that walking
is well-characterized as a metastable process, and that the
stochastic dynamics of walking should be accounted for during
control design in order to improve the stability of our machines.

I. INTRODUCTION

The dynamics of legged locomotion are plagued with com-
plexity: intermittent ground interactions, variations in terrain
and external perturbations all have a significant (and stochas-
tic) impact on the evolution of dynamics and ultimate stability
of both animals and machines which walk. Detailed analytical
and computational investigations of simplified models have
captured much that is fundamental in the dynamics of walking
(Coleman, Chatterjee, & Ruina, 1997; Garcia, Chatterjee,
Ruina, & Coleman, 1998; Goswami, Thuilot, & Espiau, 1996;
Koditschek & Buehler, 1991; McGeer, 1990). These analyses
reveal the limit cycle nature of ideal walking systems and
often employ Poincaré map analysis to assess the stability of
these limit cycles. However, the very simplifications which
have made these models tractable for analysis can limit their
utility.

Experimental analyses of real machines based on these
simple models (Collins, Ruina, Tedrake, & Wisse, 2005) reveal
that the real devices differ from their idealized dynamics in a
number of important ways. Certainly the dynamics of impact
and contact with the ground are more subtle than what is cap-
tured by the idealized models. But perhaps more fundamental
is the inevitable stochasticity in the real systems. More than
just measurement noise, robots that walk are inherently prone
to the stochastic influences of their environment by interacting
with terrain which varies at each footstep. Even in a carefully
designed laboratory setting, and especially for passive and
minimally-actuated walking machines, this stochasticity can
have a major effect on the long-term system dynamics. In
practice, it is very difficult (and technically incorrect) to apply
deterministic limit cycle stability analyses to our experimental
walking machines - the real machines do not have true limit
cycle dynamics.

In this paper, we extend the analysis of simplified walking
models toward real machines by adding stochasticity into
our models and applying mathematical tools from stochastic
analysis to quantify and optimize stability. We examine two
classic models of walking: the rimless wheel (RW) and the
compass gait (CG) biped. Although we have considered a
number of sources of uncertainty, we will focus here on a
compact and demonstrative model - where the geometry of
the ground is drawn from a random distribution. Even with
mild deviations in terrain from a nominal slope angle, the
resulting trajectories of the machine are different on every
step, and for many noise distributions (e.g., Gaussian) the
robot is guaranteed to eventually fall down (with probability
one as t →∞). However, one can still meaningfully quantify
stochastic stability in terms of expected time to failure, and
maximization of this metric in turn provides a principled
approach to controller design for walking on moderately
rough, unmodeled terrain.

Stochastic optimization of a controlled compass gait model
on rough terrain reveals some important results. Modeling
walking as a metastable limit cycle changes the optimal
control policy; upcoming terrain knowledge, or knowledge
of the terrain distribution, can be exploited by the controller
to enhance long-term “stochastic” stability. Using our newly
defined stability metrics, we demonstrate that these risk-
adjusted modifications to the control policy can dramatically
improve the overall stability of our machines.

The paper proceeds as follows, Section II provides a quick
background on metastable stochastic processes. Section III
applies metastability analysis to limit cycle dynamics on
the Poincaré map. Section IV numerically investigates the
stochastic stability of simple passive walking models. The
concepts and methodologies presented in Sections II through
IV were originally introduced in (Byl & Tedrake, 2008c).
Section V extends this stochastic analysis of walking devices
by employing the same tools demonstrated for the evaluation
of the MFPT of purely passive walkers toward (approximately)
optimal stochastic control of an actuated compass gait model;
stochastic stability of the resulting systems is then investigated.
Finally, Section VI discusses some important implications of
viewing our robots as “metastable walking machines”.

II. BACKGROUND

Many stochastic dynamic systems exhibit behaviors which
are impressively long-living, but which are also guaranteed
to exit these locally-attractive behaviors (i.e., to fail) with
probability one, given enough time. Such systems cannot be
classified as “stable”, but it is also misleading and incomplete
to classify them as “unstable”. Physicists have long used
the term metastable to capture this interesting phenomenon
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Fig. 1. Cartoon of a particle subject to Brownian motion in a potential U(x)
with two metastable states, A and B.

and have developed a number of tools for quantifying this
behavior (Hanggi, Talkner, & Borkovec, 1990; Kampen, 2007;
Muller, Talkner, & Reimann, 1997; Talkner, Hanggi, Freidkin,
& Trautmann, 1987). Many other branches of science and en-
gineering have also borrowed this terminology to describe dy-
namic systems in a wide variety of fields. Familiar metastable
systems include crystalline structures (e.g. diamonds), flip-
flop circuits, radioactive elements, oscillatory wave patterns
in the brain, and ferromagnetic materials, such as spin glass
or magnetic tape film (which explains why a taped recording
sitting in storage still inevitably fades over time).

The canonical example of metastability is a particle in a
potential well subject to Brownian motion, as cartooned in
Figure 1. These systems have local attractors which tend to
keep the dynamics within a particular neighborhood in state
space. In the limit as such systems become deterministic
(no noise), these local attractors are fixed points, and the
system is truly stable whenever the dynamics begin with an
initial condition somewhere inside the basin of attraction of
the fixed point. In contrast, stochasticity constantly pushes
the dynamics about within this neighborhood, and for some
systems and noise types, this turns a stable system into a
metastable one. Occasionally but repeatedly, such systems will
deviate particularly far from a metastable attractor in state
space (making “escape attempts”), and eventually, they will
successfully exit (by which we mean entering a region where
a different attractor is now a far more dominating influence).

The study of metastable phenomena is reasonably well-
developed. For readers searching for additional references on
metastability, we suggest the following small, representative
set of the literature on metastable system dynamics (Hanggi
et al., 1990; Huisinga, Meyn, & Schutte, 2004; Muller et
al., 1997; Gaveau & Schulman, 1998), tools for estimating
stochastic stability in discrete cases (Markov chains) (Talkner
et al., 1987; Bovier, Eckhoff, Gayrard, & Klein, 2000; Bovier,
2004; Boyd, Diaconis, & Xiao, 2004; Jain & Jain, 1994;
Larralde & Leyvraz, 2005; Weber, Kube, Walter, & Deuflhard,
2006), and issues of model order reduction (Horenko, Dittmer,
Fischer, & Schutte, 2006; Vijayakumar, D’Souza, & Schaal,
2005; Au, 2004). Additionally, two recommended texts on
stochastic processes are (Gardiner, 2004; Kampen, 2007).

III. METASTABLE LIMIT CYCLE ANALYSIS

The dynamics of walking systems are continuous, but they
are punctuated by discrete impact events when a foot comes
into contact with the ground. These impacts provide a natural
time-discretization of a gait onto a Poincaré map. Therefore,
we will consider walking systems governed by the discrete,
closed-loop return-map dynamics:

x[n + 1] = f(x[n], γ[n]), (1)

where x[n] denotes the state of the robot at step n and γ[n]
represents the slope of the ground, which is a random variable
drawn independently from a distribution Pγ at each n. This
model for stochastically rough terrain dramatically simplifies
our presentation in this paper, but it also restricts our analysis
to strictly forward walking1. These state evolution equations
naturally represent a discrete-time, continuous-state Markov
process (or infinite Markov chain). For computational pur-
poses, we will also discretize the continuous-state dynamics,
approximating the continuous state space with a finite set of
states, xi. Defining the state distribution vector, p[n], as

pi[n] = Pr(X[n] = xi), (2)

we can describe the state distribution (master) equation in the
matrix form:

p[n + 1] = p[n]T, Tij = Pr(X[n + 1] = xj | X[n] = xi).
(3)

T is the (stochastic) state-transition matrix; each row must sum
to one. The n-step dynamics are revealed by the Chapman-
Kolmogorov equation,

p[n] = p[0]Tn.

We obtain the transition matrix numerically by integrating
the governing differential equations forward from each mesh
point, using barycentric interpolation (Munos & Moore, 1998)
to represent the transition probabilities; details of that dis-
cretization are in the Appendix.

For walking, we will designate one special state, x1, as an
absorbing state representing all configurations in which the
robot has fallen down. Transitions to this state can come from
many regions of the state space, but there are no transitions
away from this absorbing, failure state. Assuming that it is
possible to get to this failure state (possibly in multiple steps)
from any state, then this absorbing Markov chain will have a
unique stationary distribution, with its entire probability mass
in the absorbing state.

The dynamics of convergence to the absorbing state can
be investigated using an eigenmode analysis (Byl & Tedrake,
2006, 2008b). Without loss of generality, let us order the
eigenvalues, λi, in order of decreasing magnitude, and label
the corresponding (left) eigenvectors, vi, and characteristic
times, τi = −1

log(λi)
. The transition matrix for an absorbing

Markov chain will have λ1 = 1, while v1 represents the
stationary distribution, with all probability mass in the ab-
sorbing state. The magnitudes of the remaining eigenvalues

1Including backward steps is straightforward, but it requires the model to
include spatio-temporal correlations in the slope angle.
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(0 ≤ |λi| < 1, ∀i > 1) describe the transient dynamics and
convergence rate (or mixing time) to this stationary distribu-
tion. Transient analysis on the walking models we investigate
here will reveal a general phenomenon: λ2 is very close to
1, and τ2 À τ3. This is characteristic of metastability: initial
conditions (in eigenmodes 3 and higher) are forgotten quickly,
and v2 describes the long-living (metastable) neighborhood
of the dynamics in state space. In metastable systems, it is
useful to define the metastable distribution, φ, as the stationary
distribution conditioned on having not entered the absorbing
state:

φi = lim
n→∞

Pr(X[n] = xi | X[n] 6= x1).

This is easily computed by zeroing the first element of v2 and
normalizing the resulting vector to sum to one.

Individual trajectories in the metastable basin are character-
ized by random fluctuations around the attractor, with occa-
sional “exits”, in which the system enters a region dominated
by a different attractor. For walking systems this is equivalent
to noisy, random fluctuations around the nominal limit cycle,
with occasional transitions to the absorbing (fallen) state. The
existence of successful escape attempts suggests a natural
quantification of the relative stability of metastable attractors
in terms of first-passage times. The mean first-passage time
(MFPT) to the fallen absorbing state describes the time we
should expect our robot to walk before falling down, measured
in units of discrete footsteps taken.

Let us define the mean first-passage time vector, m, where
mi is the expected time to transition from the state xi into
the absorbing state. Fortunately, the mean first-passage time is
particularly easy to compute, as it obeys the relation:

mi =

{
0 i = 1
1 +

∑
j>1 Tijmj otherwise

(the expected first-passage time must be one more than the
expected first-passage time after a single transition into a
non-absorbing state). In matrix form, this yields the one-shot
calculation:

m =
[

0
(I− T̂)−11

]
, (4)

where T̂ is T with the first row and first column removed.
The vector of state-dependent mean first-passage times, m,
quantifies the relative stability of each point in state space.

One interesting characteristic of metastable systems is that
the mean first-passage time around an attractor tends be very
flat; most system trajectories rapidly converge to the same
metastable distribution (forgetting initial conditions) before
escaping to the absorbing state. Therefore, it is also meaningful
to define a system mean first-passage time, M , by computing
the expected first-passage time over the entire metastable
distribution,

M =
∑

i

miφi. (5)

When τ2 À τ3, we have M ≈ τ2, and when λ2 ≈ 1, we have

M ≈ τ2 =
−1

log(λ2)
≈ 1

1− λ2
.

IV. NUMERICAL MODELING RESULTS

This section uses two simple, classic walking models to
demonstrate use of the methodology presented in Section III
and to illustrate some of the important characteristics typical
for metastable walking systems more generally. The two
systems presented here are the rimless wheel and the passive
compass gait walker, each of which is illustrated in Figure 2.
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Fig. 2. The Rimless Wheel (left) and Compass Gait Walker (right) models.

A. Rimless Wheel Model

The rimless wheel (RW) model consists of a set of N
massless, equally-spaced spokes about a point mass. Kinetic
energy is added as it rolls downhill and is lost at each
impulsive impact with the ground. For the right combination
of constant slope and initial conditions, a particular RW will
converge to a steady limit cycle behavior, rolling forever and
approaching a particular velocity at any (Poincaré) “snapshot”
in its motion (e.g., when the mass is at a local apex, with
the stance leg oriented at θ = 0 in Fig. 2). The motions of
the rimless wheel on a constant slope have been studied in
depth (Coleman et al., 1997; Tedrake, 2004).

In this section, we will examine the dynamics of the RW
when the slope varies stochastically at each new impact. To do
this, we discretize the continuous set of velocities, using a set
of 250 values of ω, from 0.01 to 2.5 (rad/s). We also include
an additional absorbing failure state, which is defined here
to include all cases where the wheel did not have sufficient
velocity to complete an additional, downhill step. Our wheel
model has N = 8 spokes (α = π

4 ). At each ground collision,
we assume that the slope between ground contact points of the
previous and new stance leg is drawn from an approximately2

Gaussian distribution with a mean of γ̄ = 8◦.
For clarity, we will study only wheels which begin at

θ = 0 with some initial, downhill velocity, ωo, and we
consider a wheel to have failed on a particular step if the
mass does not reach an apex in travel (θ = 0) with ω > 0.
(Clockwise rotations go downhill, as depicted in Fig. 2, and
have positive values of ω.) Note that the dynamic evolution
of angular velocity over time does not depend on the choice
of a particular magnitude of the point mass, and we will use
spokes of unit length, l = 1 meter, throughout.

On a constant slope of γ = 8◦, any wheel which starts
with ωo > 0 has a deterministic evolution over time and is

2To avoid simulating pathological cases, the distribution is always truncated
to remain within ±10◦, or roughly 6σ, of the mean.
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guaranteed to converge to a fixed point of ω = 1.2097 (rad/s).
The return map defining the step-to-step transitions from ωn

to ωn+1 for the Poincaré section taken when the stance leg is
precisely vertical is given as:

ωn+1 =

√
cos2 α

(
ω2

n +
2g

L
(1− cosβ1)

)
− 2g

L
(1− cosβ2)

where β1 = α
2 +γ and β2 = α

2 −γ, with γ > 0 as the downhill
slope. A plot of this return function is shown in Figure 3.
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Fig. 3. Return map and fixed point for an 8-spoke rimless wheel on constant,
downhill slope of 8◦. Here, ωn, is defined as the angular velocity when the
support spoke is exactly vertical.

Fig. 4. Return distribution and metastable “neighborhood” for an 8-spoke
rimless wheel on downhill terrain with a mean step-to-step slope of 8 degrees
and σ = 1.5◦. There is now a probability density function describing the
transition from ωn to ωn+1.

When the slope between successive ground contacts is
drawn from a stochastic distribution, the function given in
Figure 3 is now replaced by a probabilistic description of the
transitions, as illustrated in Figure 4. Given the current state
is some particular ωn, there is a corresponding probability

mass function (PMF) to describe what the next state, ωn+1,
will be. Because the actual state space of the true system
dynamics are continuous, we have chosen here to illustrate
these probabilities using the more intuitive probability density
function (PDF), instead of using the discrete PMF.

Figure 5 shows the set of PDF’s describing the stochastic
dynamics more clearly; it is a 3D plot of the same probabilistic
return map shown from overhead in Figure 4. Each height
value in Figure 5 is proportional to element Tij of the
transition matrix, where i is the state we are coming from (ωn,
on the x-axis) and j is the state we are going to (ωn+1, on
the y-axis); Figures 4 and 5 provide a graphical representation
of the transition matrix describing this metastable dynamic
system.

Fig. 5. 3D view of the return distribution for the stochastic rimless wheel
system. This is a smoothed rendering of the step-to-step transition matrix,
T , with the probability density functions for some particular values of ωn

overlaid as lines for greater clarity.

To generate the discrete transition matrix, we calculate
ωn+1 = f(ωn, γ) for each of a discrete set of 601 possible
γ values, in the range of ±10 degrees from the mean. Each
new state is then represented in the mesh using barycentric
weighting interpolation (Munos & Moore, 1998), which (we
note) inherently adds a small level of additional (unintended)
noise to the modeled dynamics.

In Figures 4 and 5, the terrain slope variation has a standard
deviation of σ = 1.5◦. Using MATLAB to take the 3 largest
eigenvalues of the transpose of the transition matrix for this
case, we find that the largest eigenvalue, λ1, is within 10−14 of
being exactly unity, which is within the mathematical accuracy
expected. This eigenvalue corresponds to the absorbing failure
state, and the corresponding eigenvector sums to 1, with all
values except the failure state having essentially zero weight3

in this vector (since all rimless wheels will eventually be at
this state, as t → ∞). All other eigenvectors sum to zero
(within numerical limits), since they must die away as t →∞.
The second-largest eigenvalue is λ2 = 0.999998446. Using the

3All states except the failure state had a magnitude less than 10−10,
numerically.
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methods presented in Section III, this corresponds to a system-
wide MFPT of about 1/0.000001554 = 643, 600 steps.

Each initial condition also has a particular state-dependent
MFPT, m(ω), which is obtained from Eq. 4 and plotted in
Figure 6. Note that the value of the mean first-passage time
is nearly flat throughout a large portion of state space. This is
characteristic for metastable systems, which justifies the notion
of a “system-wide” MFPT, M ≈ 1/(1 − λ2), quantifying
the overall stochastic stability of a particular dynamic system.
For this particular case, there are no regions in state space
(except the failure state) with MFPT significantly lower than
the system-wide value, which is not typical more generally;
the passive compass gait walker in Section IV-B is highly
sensitive to initial conditions, for example, although it too has
regions of state space which share a nearly uniform MFPT
value.
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Fig. 6. Mean first-passage time as a function of the initial condition, ωo. Data
are for a rimless wheel on stochastic terrain with mean slope of 8 deg and
σ = 1.5◦. Points show the approximation obtained through eigen-analysis of
the discretized system, and a smoothed line is overlaid. Note that MFPT is
largely constant over a large portion of state space.

The eigenvector associated with λ2 yields the PDF of the
metastable dynamic process – the relative probability of being
in any particular location in continuous state space, given
initial conditions have been forgotten and the walker has not
yet failed. Figure 7 shows the resulting probability distribution
functions for the metastable rimless wheel for each of several
levels of terrain noise. Pictorially, each system-wide PDF for a
metastable system is analogous to the fixed point for a stable,
deterministic system. In the deterministic case, the probability
of being exactly at the fixed point approaches unity as t →∞.

The third-largest eigenvalue of the transition matrix, λ3,
quantifies the characteristic time scale in which initial con-
ditions are forgotten, as the dynamics evolve toward the
metastable distribution (or toward failure). For the case illus-
trated in Figures 4, 5 and 6 (i.e., σ = 1.5◦), λ3 ≈ 0.50009,
which means almost half of the contribution to the probability
function at the initial condition which is due to this eigenvector
is lost (“forgotten”) with each, successive step; an even larger
fraction-per-step is lost for all remaining eigenvectors (as they
will have even smaller values of λ). Within a few steps,
initial conditions for any wheel beginning in our range of
analysis, 0 < ωo ≤ 2.5, have therefore predominantly evolved
into the metastable PMF (or have failed). If we multiply the
(discretized) metastable PMF, φ(ω), by the transition matrix,
we obtain the joint probability, Pr(ωn, ωn+1), of having just
transitioned from ωn to ωn+1, given the wheel has not failed
by step n+1. This joint probability is illustrated as a smoothed
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Fig. 7. Quasi-stationary probability density functions for the stochastic
rimless wheel for each of several values of terrain noise, σ. Each distribution
is estimated by renormalizing the eigenvector associated with the second-
largest eigenvalue of the transpose of the transition matrix. Note that meshing
inherently adds noise to the dynamic system; smoothed lines are drawn on
top of the raw data (shown as points) from the scaled eigenvectors.

PDF in a 3D plot over continuous state space in Figure 8 and
as a set of overlaid contour lines in Figure 4.

Fig. 8. 3D view of the metastable “neighborhood” of state-to-state transitions,
(ωn, ωn+1). If a rimless wheel starts from some arbitrary initial condition
and has not fallen after several steps, this contour map represents the joint
probability density function of being in state ωn now and transitioning to
ωn+1. The contour lines drawn are identical to those overlaid in Figure 4.
They correspond to the neighborhood of likely (ωn, ωn+1) pairings, analo-
gous to the unique fixed point of the deterministic case.

This particular system has a beautiful simplicity which al-
lows us to extract some additional insight from the conditional
probability in Figure 8. Because of the definition of ωn as
being the velocity when the mass is at its apex in a given
step, the value of ωn+1 = 0 represents the boundary to the
absorbing failure state in this example. If we visualize the
contours of the conditional probability as they extend toward
ωn+1 = 0 in Figure 4, we see that most failures do not occur
because we transition from a very slow state (ωn close to zero)
to failure but are more typically due to sudden transitions from
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more dominant states in the metastable distribution to failure.
Finally, when this methodology is used to analyze the

rimless wheel for each of a variety of noise levels (σ), the
dependence of system-wide MFPT on σ goes as shown in
Figure 9. For very low levels of noise, MATLAB does not
find a meaningful solution (due to numerical limits). As the
level of noise increases, the MFPT decreases smoothly but
precipitously. (Note that the y-axis is plotted on a logarithmic
scale.) The stochastic stability of each particular system can be
quantified and compared by calculating this estimate of MFPT
which comes from λ2 of the transition matrix.
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Fig. 9. Mean first-passage time (MFPT) for the rimless wheel, as a function
of terrain variation, σ. Estimates above 1014 correspond to eigenvalues on the
order of 1− 10−14 and are beyond the calculation capabilities of MATLAB.

B. Passive Compass Gait Walker

The second metastable dynamic system we analyze in this
paper is a passive compass gait (CG) walker. This system
consists of two, rigid legs with distributed mass. In our model,
there are three point masses: at the intersection of the legs
(“the hip”) and partway along each leg. The dynamics of the
compass gait have been studied in detail by several authors,
e.g., (Garcia et al., 1998; Goswami, Thuilot, & Espiau, 1996;
Spong & Bhatia, 2003). Referring to Figure 2, the parameters
used for our metastable passive walker4 are m = 5, mh = 1.5,
a = .7, and b = .3. Given an appropriate combination of initial
conditions, physical parameters and constant terrain slope, this
ideal model will walk downhill forever.

When each step-to-step terrain slope is instead selected from
a stochastic distribution (near-Gaussian, as in Section IV-A),
evolution of the dynamics becomes stochastic, too, and we
can analyze the stochastic stability by creating a step-to-step
transition matrix, as described in detail for the rimless wheel.
The resulting system-wide MFPT as a function of terrain
noise, M(σ), is shown in Figure 10. Note that it is similar
in shape to the dependence shown in Figure 9.

4This particular mass distribution was chosen based on empirical results so
that it provides good passive stability on rough terrain.
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Fig. 10. Mean first-passage time as a function of terrain variation. Results for
analysis of a compass gait walker using a discretized (meshed) approximation
of the transitions. Average slope is 4 degrees, with the standard deviation in
slope shown on the x-axis. Noise is a truncated Gaussian distribution, limited
to between 0 and 8 degrees for all cases.

To analyze this system, our discretized mesh is defined using
the state immediately after each leg-ground collision. The state
of the walker is defined completely by the two leg angles
and their velocities. On a constant slope, these four states
are reduced to three states, since a particular combination of
slope and inter-leg angle will exactly define the orientation of
both the stance and swing leg during impact. Although the
slope is varying (rather than constant) on stochastic terrain,
we still use only three states to define our mesh. To do so,
we simulate the deterministic dynamics (including impacts)
a short distance forward or backward in time to find the
robot state at the Poincaré section where the slope of the line
connecting the “feet” of the legs is equivalent to our desired,
nominal slope. Because the dynamics between collisions are
entirely deterministic, these two states are mathematically
equivalent for the stochastic analysis. If such a state does not
exist for a particular collision (which occurs only very rarely),
we treat this as a member of the absorbing failure state. This
approximation allows us to reduce the dimensionality from 4
states to 3, which improves numerical accuracy significantly.
Specifically, it has allowed us to mesh finely enough to
capture near-infinite MFPT for low-noise systems, while using
four states did not. The three states we use in meshing are:
(1) absolute angular velocity of the stance leg, X3, (2) relative
velocity of the swing leg, X4, and (3) the inter-leg angle, α.

Figure 11 shows a slice of the basin of attraction (BoA) for
this compass gait on a constant slope (top), along with regions
in state space with nearly-constant MFPT (bottom two) for two
different magnitudes of noise (σ) in terrain. Each slice is taken
at the same inter-leg angle, α ≈ 25.2◦. In the deterministic
case, the basin of attraction defines the set of all states with
infinite first-passage time: all walkers beginning with an initial
condition in this set will converge toward the fixed point with
probability 1. For stochastic systems which result in metastable
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dynamics, there is an analogous region which defines initial
conditions having MFPT very close to the system-wide value,
M . Interestingly, the deterministic and stochastic basin shapes
are quite similar here; we expect this may often be the case
for systems such as this with discrete jumps in state space.

Fig. 11. Basin of attraction (top) for deterministic CG walker and map
of MFPT for lower-noise (σ = 0.5◦, lower left) and higher-noise (σ =
1.0◦, lower right) examples. To aid in visual comparison, all 3 plots use the
same mesh. The “near-constant MFPT basin” for each stochastic system is
essentially a low-pass filtered version of the deterministic basin of attraction,
and its shape does not change significantly, even when the magnitude of the
MFPT itself varies greatly (e.g., 180,000 steps [left] vs 390 [right]). This
region represents a boundary in the volume in state space within which a
walker is likely to be pulled into the metastable distribution.

The image at the top of Figure 12 shows the deterministic
BoA for this CG walker more clearly. This plot was generated
by sampling carefully over the state space and simulating
the dynamics. By contrast, the plot at the top of Figure 11
intentionally uses the same mesh discretization used for the
stochastic system, to provide a better head-to-head comparison
of the change in shape due to the addition of terrain noise
(as opposed to the noise of the discretization itself). The
second image in Figure 12 shows the deterministic basin of
attraction for a different set of physical parameters (m = mh;
a = b = .5) on the same, constant slope of 4◦. This basin
looks qualitatively more delicate and the resulting performance
of this walker on stochastic terrain is in fact much worse
(e.g., MFPT of about 20 steps when σ = 0.5◦, where we
find M = 180, 000 for the other walker).

Just as in the case of the rimless wheel, the fixed point (for
our deterministic compass gait system) is now replaced (in
the stochastic case) by a probability density function, defining
the likelihood of being in any particular state (conditioned on
not having fallen) as t → ∞. Figure 13 shows 2D contour
plot sections of the approximate PDF, obtained from an
eigen-analysis of the stochastic compass gait. The outermost
contour defines a boundary containing 0.999 of the probability
distribution in state space. The distribution spreads over more
of state space as the level of noise increases, in a manner
analogous to the widening of the probability distribution with
noise seen in Figure 7.

Finally, we note that the relationship in state space between
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Fig. 12. Basins of attraction (blue regions) and fixed point for two compass
gait walkers, each on a constant slope of 4◦. Walker with basin at top is more
stable and uses the parameters defined for the stochastic system described
throughout Section IV-B; for the other walker, m = mh and a = b = .5.
MFPT is infinite inside the shaded region and is small (1-4 steps) outside
of it. This image shows only a slice of the 3D basin, taken at the inter-leg
angle of the fixed point for each respective walker. The fixed point is at
X3 = −.89 (rad/s), X4 = 2.89 (rad/s), α = 25.2◦ for the first walker, and
it is at X3 = −1.14 (rad/s), X4 = 1.26 (rad/s), α = 33.4◦ for the lower
one. The deterministic basin of attraction for the second walker is narrower
in shape, and this walker is significantly less stable on stochastic terrain.

the PDF of the metastable dynamics, shown in Figure 13,
and the region of nearly-uniform mean first-passage time, M ,
shown at the bottom of Figure 11, hints at where successful
“escape attempts” (i.e., failures) are most likely to occur over
time. Figure 14 overlays these two regions across a different
dimensional slice of the 3D space for both σ = .5◦ and
for σ = 1.0◦. As the tails of the metastable PDF (shown
in yellow) approach the boundary of the near-uniform MFPT
basin (shown in blue), there is a higher probability of failing
on any given step during the metastable process, resulting in
turn in a less stochastically stable system (i.e., one with a
lower system-wide value of M ).
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Fig. 13. On stochastic terrain, there is no fixed point for the compass gait
walker. Instead, there are metastable “neighborhoods” of state space which
are visited most often. As time goes to infinity, if a walker has not fallen, it
will most likely be in this region. The contours shown here are analogous to
the PDF magnitude contours in Figure 7; they are drawn to enclose regions
capturing 90%, 99%, and 99.9% of walkers at any snapshot during metastable
walking. Top picture corresponds to σ = 0.5◦. Larger noise (σ = 1.0◦,
bottom) results in larger excursions in state space, as expected.

C. Mean-first Passage Time as Policy Evaluation

The numerical analysis performed on these simple (low-
dimensional) models, based on a fine discretization of the state
space, will not scale to more complicated systems. The analy-
sis, however, can be generalized to higher dimensional systems
by observing that the mean-first passage time calculation can
be recast into a “policy evaluation”(Sutton & Barto, 1998) -
estimating the expected cost-to-go of executing a fixed policy
- using the one-step cost function:

g(x) =

{
0 x ∈ fallen
−1 otherwise.

(6)

If this cost function is evaluated on every visit to the Poincare
map, then evaluating the infinite horizon cost-to-go,

V (x0) =
∞∑

n=1

g(x[n]), x[0] = x0 (7)
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Fig. 14. Metastable system: Contours of the stochastic “basin of attraction”
are shown where MFPT is 0.5M , 0.9M and 0.99M (blue) versus contours
where the integral of the PDF accounts for .9, .99, and .999 of the total
metastable distribution (yellow). The metastable dynamics tend to keep the
system well inside the “yellow” neighborhood. As the tails of this region
extend out of the blue region, the system dynamics become less stochastically
stable (lower M ). The axis into the page represents the swing leg relative
velocity, X4, and a slice is taken at X4 = 2.33 (rad/s). Terrain variability for
the top plot is σ = 0.5 degrees (with M ≈ 180, 000 steps). For the noisier
system at bottom (σ = 1.0 degrees), M is only 20 steps or so.

is equivalent to evaluating the (negative of the) mean-first
passage time of the system (in units of number of steps). If we
wished to evaluate the MFPT in seconds, we could replace the
−1 on each step with the time taken for the step. The same
idea works to evaluate distance traveled. Although the cost
function is deceptively simple, the resulting policy evaluation
computation is quite rich due to the stochasticity in the plant
model.

Recasting the MFPT calculation in terms of optimal con-
trol has a number of important implications. First, in the
case of a Markov chain with known transition probabilities,
computing V (x0) exactly reduces to equation 4. But in the
case where the state space is too large to be effectively
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discretized, this policy evaluation can also be accomplished
very efficiently with function approximation, using methods
from reinforcement learning such as least-squares temporal-
difference learning (LSTD)(Boyan, 2002). Although reinfor-
cment learning, in general, struggles with high-dimensional
systems, it is important to remember that policy evaluation is
considerably easier and more efficient than policy optimization
and can be implemented effectively in medium-scale problems.
Furthermore, these tools can potentially allow the MFPT to be
evaluated on a real robot, even without a model of the plant.

The connection between mean first passage times and op-
timal control cost functions also makes it natural to consider
the problem of designing a controller which maximizes the
MFPT. This optimization, in general, will require the tools for
policy optimization from optimal control and reinforcement
learning. In this paper, with a focus on simple models, we
have the luxury of examining the implications of the optimal
control formulation using brute-force dynamic programming
methods operating on the discretized dynamics - which in the
control case are a Markov Decision Process (MDP).

V. APPROXIMATE OPTIMAL CONTROL ON ROUGH TERRAIN

In this section, we study a minimally-actuated version of
the compass gait walker introduced in Section IV-B on rough
terrain. Two types of rough terrain are explored: wrapping
terrain (allowing the walker to travel an arbitrary distance
while using a finite representation of a particular terrain) and
stochastic terrain (where the change in terrain height at each
footstep is drawn from a random distribution). While our goal
is to maximize the MFPT of the walker, we limit our control
policy here to a hierarchical approach, so that we can employ
the tools introduced in Section III directly to further illustrate
the characteristics of metastable walking, now for the case of
an actively-controlled system. Correspondingly, this section
presents results for the approximate optimal control of an
actuated compass gait walker on rough terrain.

In Section V-A, we begin our presentation on optimization
of the mean first-passage time metric for the actuated compass
gait walker by examining the performance of a baseline
case, where we have access to perfect terrain knowledge.
In Sections V-B and V-C, we then quantify and discuss the
performance that is achieved when only limited or statistical
information about upcoming rough terrain is available in
solving for the optimal control policy.

A full description of the actuated model, the general con-
trol strategy over which we perform optimization, and the
optimization algorithm itself are presented in detail in the
Appendix.

A. Controlled CG on Wrapping Rough Terrain

Figure 15 illustrates both example terrain (at a somewhat
exaggerated scale) and the four meshing states used in dis-
cretizing the system dynamics. The actuation strategy used
throughout our presentation of the controlled compass gait
is described in Section IX-A. Briefly, it employs 1) a torque
source at the hip joint where the legs meet one another and
2) an impulsive toe-off, delivered axially at each step. The

τ

pre−collision

impulse

x
stance

Xm3 = θ̇1

Xm4 = θ̇2

Xm1 = XstXm2 = Xsw − Xst

Fig. 15. Compass gait on wrapping terrain. At left, the actuation for this
model includes a torque at the hip and a constant magnitude impulse which
occurs at each step. At right, the model is labeled with the four states which
define each post-collision element in the discrete mesh.

torque is set by a low-level PD controller, which attempts to
drive the interleg angle to a particular set-point angle, selected
once per step. It is this choice of a desired interleg angle
which constitutes the control policy for our model. Section IX-
B presents our implementation of the value iteration algorithm
for deriving the approximate optimal stochastic control solu-
tion for this actuated walking model; the same actuated model
and value iteration algorithms are used throughout all work
presented in Section V.

7 meters

Fig. 16. Intermittent-foothold terrain. Terrain profile repeats every 7 meters,
allowing the numerical mesh to “wrap”.

Results on wrapping terrain: Below are simulation results
for the control strategy of a constant magnitude toe-off and
PD regulation of desired interleg angle, described in detail
in Section IX-B. We attempted to solve the optimal control
problem on a variety of both continuous and discontinuous5

wrapping terrains. Examples are shown in Figures 16, 17, 18
and 20.

Summarized briefly, the PD control contribution can be
effective in regulating foot placement on terrain, although it
also contributes importantly to the coupled dynamic motions
of both legs. Interestingly, use of PD control alone, (i.e.,
without the impulsive toe-off at each step) allows for only very
limited variations in step width or height. Use of an impulse
control action alone (without PD control) cannot regulate the
upcoming step length effectively in our simulations, even if
we allow for the selection of a different magnitude of impulse
at each step. Combining a constant magnitude toe-off with
the PD controller provides significantly better performance
than either actuation component demonstrates alone, allowing
for significantly greater variations in both step length and
step height during continuous walking, through the combined

5Our tests of the hip-actuated compass gait walker on discontinuous terrain
were inspired by the results from (Hodgins & Raibert, 1991) in using a simple,
intuitive strategy to control the Raibert hopper on intermittent terrain.
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actions of energy addition (from the toe-off) and step length
regulation (via hip torque).

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

Flat, intermittent terrain (m)

H
t 
(m
)

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

Piecewise−sloped terrain (m)

H
t 
(m
)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

Downhill, sloped terrain (m)

H
t 
(m
)

Fig. 17. Examples of terrain which were successfully negotiated using PD
control alone. Without the added energy contribution of an impulsive toe-off,
the actuated walker is limited to either mild variations in height or to terrain
with an average gradient downhill. Terrain at top is flat except for a set of
bottomless no-go gaps. The middle and bottom examples consist of piecewise
slopes. Each was successfully solved both as a continuous terrain, shown as
a solid black line, and as an intermittent terrain, represented by the solid
regions. Figure 18 shows detail from the bottom plot.

5 5.5 6 6.5 7
−0.2

0

0.2

Piecewise−sloped terrain (m)

H
t 
(m
)

Fig. 18. A close-up of the bottommost terrain in Figure 17.

For our combined actuation strategy of toe-off and PD
regulation of the interleg angle at each step, the terrain shown
in Figure 20 was iteratively scaled (vertically) to find the most
extreme variations that could still be negotiated. The most
extreme scaling for which the optimal control policy yields
continuous walking had a standard deviation in terrain height
of 4.7 cm and a max-to-min difference in height of 19.1 cm.
The deviations in the width and height of the actual footsteps
taken using the optimal policy vary in height with a standard
deviation of 3.3 cm, and the SD of the inter-leg angle at each
step is about 5.9◦.

B. Controlled CG on Stochastically Rough Terrain
In addition to the wrapping terrain models described in

Section V-A, we also solved for the approximate optimal
policy for the same, actuated walker on stochastically rough
terrain. In the stochastic case, the height difference between
successive footholds is drawn from a Gaussian distribution.
Figure 21 illustrates the nature of the resulting terrain. This
model for the terrain is somewhat artificial, since height would
typically be a function of step length on real terrain. By
contrast, the next upcoming step in our simulation occurs at a
particular pre-selected height, regardless of step length. How-
ever, this compact terrain model can still produce arbitrarily

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

Terrain position (m)

T
e
rr
a
in
 h
t 
(m
) Initial Footholds

First Pass

Remaining Passes

36 37 38 39 40 41 42 43 44
−0.5

0

0.5

1

1.5

Terrain position (m)

T
e
rr
a
in
 h
t 
(m
)

17 18 19 20 21 22 23 24 25
−0.5

0

0.5

1

1.5

Terrain position (m)

T
e
rr
a
in
 h
t 
(m
)

Fig. 19. Foothold patterns from optimal control. The optimal footholds on
extreme terrain quickly converge to fixed pattern (top). On easier terrain, no
fixed pattern emerges (bottom). In intermediate terrain, we see an intermediate
level of organization in the pattern of footholds (middle). Footholds taken are
plotted as dots in the lower two figures, with the earliest steps plotted lowest
and with dots repeating as the terrain repeats, every 7 meters.
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Fig. 20. Dots represent the horizontal locations of footsteps taken during a
60-second trial using the optimal control policy from value iteration.
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Fig. 21. Compass gait on stochastic terrain. At left, the actuation for this
model again includes a torque at the hip and a constant magnitude impulse
which occurs at each step. At right, the four states which define each post-
collision elements in the discrete mesh are given.
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extreme terrain (by increasing the standard deviation of the
step heights, as desired). Based on the results obtained on
wrapping terrain, we included both the low-level PD controller
and the constant-magnitude impulsive toe-off in all simulations
on stochastic terrain. As in the wrapping terrain case, details
on the discretization of meshing are given in the Appendix.

Optimizing the MFPT cost function over the post-collision
state (which again used four state variables, as for the wrap-
ping terrain) on stochastic terrain results in a policy that
requires no information about specifics of the terrain but does
(through the transition model used in the optimization) know
the statistics of what may happen. Not surprisingly, the optimal
control solutions for this “blind” walker were quite poor when
compared with the performance obtained on wrapping terrain
with statistically similar variations in terrain height.

Intuitively, including some information about the
immediately-upcoming terrain should improve the
performance of our underactuated biped significantly.
For example, it would allow the biped walker to execute a
shorter step (which loses less energy) if going uphill or a
longer step going downhill. We tested this hypothesis by
implementing a one-step lookahead. This required enhancing
the four-variable representation of the post-collision state of
the walker with an additional, fifth state variable: the ∆z
value giving the height of the next, immediate step.

This one-step lookahead improved the mean first-passage on
stochastic terrain dramatically. Figure 22 compares the MFPT
for the one-step and no lookahead cases. For example, on
terrain where the value of ∆z is known to be drawn from
a Gaussian with zero mean and a standard deviation of 1 cm,
the MFPT is about 76 with no lookahead, versus 12,000 with
the additional knowledge of the particular height of the next,
immediate step.

Comparisons between the passive walker and the same,
two control policies are even more dramatic, as one would
expect. We note first that the passive walker can only locomote
continually on downhill terrain, so that our comparisons only
have any meaning at all if we allow the passive walker to use
gravity to compensate for energy lost at each ground collision.
Given this limitation, a passive walker with the same physical
parameters (i.e., masses and lengths) walking down an average
4◦ slope with a standard deviation of 0.5 cm in terrain per
step has a mean first-passage time (MFPT) of only about 9.3
steps. When the active walker is tested on terrain with the
same variability (but on terrain that is flat on average - not
downhill), no lookahead and one-step policies yield MFPT’s
on the order of 104 and > 109 steps, respectively. Although
the controlled system is still significantly underactuated, its
performance is dramatically improved over that of the purely
passive dynamics when we optimize for rough-terrain walking.

Given these results, it is natural to enquire how a two-step
or (more generally) an n-step lookahead would compare on
a similar plot. Unfortunately, obtaining such results would
require multiplying the size of the total mesh by a factor of
19 for each additional lookahead, because our representation
of the upcoming terrain is discretized to be drawn from one
of 19 particular values. To compare the one-step lookahead
with a longer lookahead, we will instead return (in Section V-

C, ahead) to the case of wrapping terrain, where arbitrary
lookahead can be obtained without adjusting the size of our
state space (nor our mesh).
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Fig. 22. MFPT for one-step vs. no lookahead on stochastic terrain

C. Efficacy of a Limited Lookahead on Wrapping Terrain

For our passive walking examples, we noted that initial
conditions are forgotten very quickly when walking on rough
terrain. Correspondingly, we posit that an actively-controlled
walker may often require only a short lookahead to negotiate
rough terrain with near-optimal results. Intuitively, if we
assume that a particular walker has not yet fallen down, a
quick mixing time (to forget initial conditions rapidly) implies
that the consequences of decisions made now should not have
a significant impact on long-term stability, given that at least
a few steps will in fact be successfully taken.

To explore this hypothesis, we began with an estimate
of the value function for a model of stochastic terrain that
had approximately the same standard deviation in step-to-
step terrain height as our known, wrapping terrain. Using
this initialization of the value function, we then ran the value
iteration algorithm for one additional pass, now using the
known, wrapping terrain in our dynamic model (instead of the
stochastic approximation). This strategy provides the optimal
policy with one-step lookahead knowledge of the particular
terrain. Similarly, running a second pass results in the optimal
policy for a two-step lookahead, and so on.

This approach results in surprisingly effective walking,
but it has important limitations. We found that even the
one-step lookahead solution was able to walk continuously
on terrain which was intentionally scaled until the optimal
solution (with an essentially infinite lookahead) was only
barely able to achieve continuous walking. As one would
expect, any n-step policy (where n > 1) resulted in the same
performance. Essentially, because the terrain was wrapping, it
was impossible to distinguish between two different policies
which both had very large MFPTs. This became clear when we
observed that simulations of the one-step lookahead policy on
wrapping terrain resulted in a repeating pattern of footholds,
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automatically selected over time. If the walker successfully
completed its first pass around the wrapping terrain, it would
often converge to a particular, repeating pattern of twenty of
so steps that resulted in continuous walking, forever. Figure 23
shows such a convergence of states over time. As observed in
Section V-A, we notice that selected footsteps are more apt to
repeat themselves on wrapping terrain which is more extreme;
the foothold selection appears more haphazard on “easier”
terrain. We suspect this occurs because particular regions of
the terrain have a locally-optimal “goal” foothold, which acts
to regulate an entire, emergent pattern on wrapping terrain.

Finally, we should emphasize, briefly, that resetting the
value function with the optimal values found for control on
stochastic terrain is a critical step: if the value function is
initiated as zero everywhere (for example), then a single pass
of value iteration only results in a value of either 0 or -1 at
every mesh state, for each possible action. This means the
only information we have is whether or not a single step will
be successful. Not surprisingly, the resulting policy does not
work well in our simulations. The walker has no notion of the
stability of its internal dynamic state when the value function
is initiated with such a “blank slate”; using the solution from
stochastic terrain to preset the value function intrinsically
provides some information about the dynamic capability to
take future steps.
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Fig. 23. One-step policy shows convergence on wrapping terrain. Even when
only a one-step lookahead is used to fix a policy on wrapping terrain, the
states converge over time to a particular, repeating pattern. This logarithmic
plot shows the deviation in the value in each state, comparing step n to step
n+18, i.e., after one complete 18-step “lap” about the wrapping terrain. The
plot illustrates an exponential convergence of the controlled system to a fixed
trajectory through state space.

The fact that the one-step control policy is nearly as effec-
tive as the optimal policy on our wrapping terrain simulations
provides some evidence that use of a limited lookahead (e.g.,
1 to 3 steps) results in near-optimal performance. We find
this particularly compelling, as it correspondingly implies
that near-optimal results should also be possible on real-
world legged robots having only a short-sighted knowledge
of upcoming terrain. We anticipated this result after analyzing
our results on passive CG walkers, where we noted a sur-

prisingly fast mixing dynamics of the metastable limit cycle
generated by a passive compass gait walker on statistically
rough terrain (Byl & Tedrake, 2006, 2008c), and further work
is currently planned to test this hypothesis on a real compass-
gait robot, as discussed in Section VI-C.

VI. DISCUSSION

This section briefly discusses our use of the stochastic meth-
ods presented in designing controllers for walking systems.
Additionally, we provide further observations on the properties
of metastable systems which result in multiple attractors (e.g.,
period-n gaits). Finally, we note work is currently underway
to apply our methods and results to real walking machines.

A. Impacts on Control Design

One of the primary goals of a controller is to enhance
the dynamic stability of a system. For walking systems, we
propose throughout this paper that this should be defined
as increasing the stochastic stability of a walking machine.
We would like time-to-failure to be long, and we would
like a system to converge toward its long-term, metastable
distribution quickly from a large set of initial conditions. The
methods described here can be used in optimizing controllers
with either or both of these two aims in mind.

One key point to observe is that the perspective that walking
is (by its nature) a metastable process results in optimal control
policies which automatically adapt to exploit knowledge about
the upcoming terrain characteristics; as the statistics and par-
ticular local features of the environment change, the optimal
strategy for walking changes as well. Ideally, our performance
metrics for a robot should not be dictated by nominal distances
from particular reference trajectories (e.g., in state space) but
should instead fully reflect the ultimate goal of the device:
maximizing the longevity of successful locomotion. Correct
formulation of our optimization problem can achieve this.

As a motivating example, we have presented results for an
active compass gait model, with a torque source at the hip but
with the ankles still unactuated at the ground contact during
mid-step. By designing a low-level PD controller to regulate
inter-leg angle, we simplify the control problem to a create a
tractable model which can be solved using standard numerical
methods from machine learning. Our results for such a control
methodology allow this underactuated compass gait model
to walk continuously over impressively rough terrain. Some
of our initial results for control on wrapping terrain have
previously appeared in (Byl & Tedrake, 2008a).

B. Periodicity of Stable Limit Cycles

Metastable dynamic systems sometimes have an inherent
periodicity. We expect this may be the case on a slightly
steeper slope, for instance, where compass gait models ex-
perience period-doubling bifurcations (Goswami, Thuilot, &
Espiau, 1996). Another case where periodicity arises is for
wrapping terrain, such as the terrain for the controlled walker
in Figure 24. Wrapping is a realistic model for many in-
laboratory walking robots, as they are often confined to walk
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Fig. 24. Controlled compass gait walker, with torque at the hip. To solve for
an optimal policy using value iteration, the terrain wraps every 7 meters. The
optimization maximizes the MFPT from any given state. An eigen-analysis
reveals a complex set of eigenvalues (top), spaced evenly about (but strictly
inside of) the unit circle. Corresponding eigenvectors are also complex.

on a boom – repeatedly covering the same terrain again and
again. In our simulation of a hip-actuated CG walker on
wrapping terrain, we observe that a repeating, n-step cycle
results in multiple eigenvalues, λ2 through λn+1, all with
magnitude just under unity. They are complex eigenvalues,
as are the corresponding eigenvectors. The top left image
in Figure 24 shows such a set of eigenvalues, all lying just
within the unit circle. The next-smallest set of eigenvalues are
all significantly smaller in this example. The complex eigen-
values and eigenvectors mathematically capture an inherent
periodicity, in which the probability density function changes
over time in a cyclical manner.

C. Verification of Compass Gait Results on a Real Robot

Given the success of our simulations, we plan to implement
a similar control strategy on a real compass-gait robot. This
robot is shown in Figure 25 and was designed and built by
labmates at the Robot Locomotion Group at MIT. The design
is intentionally similar to the idealized model studied in our
investigations here of active control. Specifically, it has a
direct-drive motor at the hip and a constant-magnitude (post-
collision) toe-off at each sensed ground collision. It is mounted
on a boom, providing lateral stability but also introducing
some additional, unmodeled dynamics. We operate this robot
in a motion capture environment on well-characterized terrain,
allowing us to know both the state of the robot and the
upcoming, rough terrain profile with good accuracy, and have
completed a number of initial control experiments(Iida &
Tedrake, 2009; Manchester, Mettin, Iida, & Tedrake, 2009).

D. Implications for Development of Highly Dynamic Robots

We conclude by highlighting the implications our results
have toward the development of dynamic, autonomous robots
in the coming years. First, we reiterate that global stability
will not typically exist for our walking machines, and that our
goal should be to optimize stochastic stability.

The success of short-sighted strategies, discussed in Sec-
tion V-C, has important implications in kinodynamic planning

Fig. 25. Compass gait robot posed on rough terrain.

for legged robots. It means that near-optimal strategies may
simply require good low-level control, and that selecting a
“greedy” short-term action may often be a good policy for
long-term stability.

Finally, we note that much of this work applies more
generally to a broader class of highly dynamic robots (flying,
swimming, etc.) in realworld environments, and that we have
presented powerful tools which can be adapted quite naturally
for machine learning.

VII. CONCLUSIONS

The goal of this paper has been to motivate the use of
stochastic analysis in studying and (ultimately) enhancing the
stability of walking systems. Robots that walk are inherently
more prone to the stochastic influences of their environment
than traditional (e.g., factory) robots. Locomotory systems
capable of interacting with the real world must deal with sig-
nificant uncertainty and must perform well with both limited
energy budgets and limited control authority.

The stochastic dynamics of walking on rough terrain fit
nicely into the well-developed study of metastability. The
simplified models studied here elucidate the essential picture
of metastable limit cycle dynamics which make occasional
escape attempts to the fallen-down state. We anticipate that
metrics for stochastic stability, such as the mean first-passage
time, will provide potent metrics for quantifying both the
relative stability across state-space and the overall system
stability for real walking systems.
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IX. APPENDIX:COMPASS GAIT IMPLEMENTATION
DETAILS

This appendix provides details on the compass gait model
simulations on both stochastic and (known) wrapping terrain.
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Included are a description of the control strategy implementa-
tion for the actuated model and of the value iteration algorithm
used to obtain an approximate optimal control solution for a
given terrain type. This is followed by the equations of motion
that describe the dynamic system and details on meshing and
on implementation of interpolation for post-collision states in
state space.

A. Actuated Compass Gait Model

θ 1

θ 2

-γ

τ

-α

a

b

m h

m

Fig. 26. Actuated compass gait model with torque source at hip. Simulations
for the actuated compass gait use the following parameters: m = mh = 2kg,
a = b = 0.5m

The basic compass gait model, introduced by (Goswami,
Espiau, & Keramane, 1996), is used in all simulations and
is depicted in Figure 26. In addition to the modeling details
previously given for the passive compass gait (in Section IV-
B), the actuated model now also includes a pure torque source
at the “hip” linkage where the legs meet. The stance leg is
oriented at an absolute angle θ1 and contacts the ground at
a zero-torque, frictionless joint, called the “toe”. The swing
leg position is measured relative to the stance leg at angle
θ2. Parameters of the model used for the controlled walker
are given in the caption of Figure 26, and the direction of
walking for all simulations is (once again) strictly from the
left to the right.

In addition to the hip torque actuation, we also include an
ideal impulse actuation at each toe which we assume can be
delivered at a prescribed magnitude, axially at the stance leg
contact at the moment that the swing leg collides with the
ground, when support is instantaneously transferred from one
leg to the other. Inclusion of an impulse source is inspired by
the work of (Kuo, Donelan, & Ruina, 2005), who illustrate
that this can be an efficient method for imparting energy to
the system to make up for energy lost in ground collisions6.

B. Approximate Stochastic Optimal Control
To solve for the approximate optimal control solution for

the compass gait walker given a particular definition of rough

6Note that (Kuo et al., 2005) use the simplified version of the compass
gait, with all mass concentrated at the hip and infinitesimal mass at each toe.
However, the effect is similar in the model with distributed mass.

terrain, we use the same methods as before both to discretize
and to interpolate the dynamics. Now, however, instead of
the discretization resulting in a Markov Chain, the result is
a Markov Decision Process, where the transition matrix, T,
is parameterized by one or both of the following possible
control actions: (1) an instantaneous impulse at the toe and
(2) the hip torque. To avoid using an enormous action space
of possible torque profiles for a given step for this illustrative
control example, we apply hip torques based on a proportional-
derivative (PD) controller which regulates the inter-leg angle,
α. The choice of control action is the desired inter-leg angle,
αdes, which can be selected from a discretized set of values.
We employ the value iteration algorithm (Sutton & Barto,
1998) to find an optimal step-to-step feedback policy for the
discretized system. We present results for the system with hip-
torque alone, with the impulsive toe-off alone, and with both
sources of actuation together.

To address the practical concerns of defining and detecting
ground collisions as the swing leg moves across variable-
height terrain, we assume the swing leg shortens in length
immediately after a ground collision occurs and remains so
until an interleg angle within 10◦ of the desired value is
achieved. At this point, the swing leg extends to full length,
instantaneously. Note that this retraction does not affect the
continuous dynamics of the walker, since the lower portion
of the leg is massless. If, after simulating the extension of
the swing leg to its full length, we discover its tip (“foot”)
would be below the ground height, we consider the walker to
have failed to have taken a successful step: it then enters the
absorbing failure state. For successful steps, the identities of
the stance and swing legs are swapped when the (extended)
swing leg toe finally collides with the ground.

1) Value iteration algorithm: Our goal is to find a policy
which will maximize the number of steps taken before falling.
To determine the full capabilities of the walker, one would
wish to discretize with greater resolution over time and to
select a torque magnitude at each dt. We chose instead to
discretize on a step-to-step basis, to reduce the size of the
state space (by one dimension) in order to keep the problem
computationally tractable. We were pleased to find that such
a strategy still produces continuous walking on significantly
rough terrain in our simulations.

The post-collision state of the walker is represented in most
plots using four meshing state variables: Xm1: x location of
the stance leg; Xm2: the distance ∆x from the stance leg
ground contact to the swing leg contact; Xm3: the angular
velocity of the stance leg, θ̇st; and Xm4: the angular rate of
change of the inter-leg angle, α̇. Details on the discretization
used are given in the Appendix (IX). Note that the inter-
leg angle is increasing when the swing leg rotates “forward”.
Counter-clockwise is positive for all angle measurements, as
illustrated by Figure 26.

In solving for the optimal policy, we begin by assigning
a value Vo(s) = 0 for each state (s) in the mesh. Through
iteration, we update these values to reflect which states can
achieve the greatest estimated number of steps before falling.
Equation 8 shows the update for the estimated cost of starting
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in state i and performing control action option a.

Qn (i, a) =
∑

j

T a
ij [g(j) + γVn−1(j)] , (8)

where g(j) is the cost function from equation 6, now defined
as a function of discrete state j.

After this update is done for every possible control action,
we can then update Vn(s) for each state, so that it is the lowest
of all Qn(s, a) values (corresponding to the best action found
so far):

Vn(s) = min
a

Qn(s, a) (9)

and our optimal n-step policy is the set of actions at each step
(after n iteration steps) which gives this lowest cost:

πn(s) = arg min
a

Qn(s, a) (10)

We include a discount factor, γ = 0.9, in Equation 8 to
ensure that the value function converges to a finite value
everywhere as the number of iterations goes to infinity. As
previously discussed, our choice of one-step cost function
in this work results in a policy that maximizes MFPT, as
measured in expected number of steps taken.

2) Hierarchical controller design: Our simulations use a
two-part actuation strategy: PD control of a desired inter-leg
angle and a constant magnitude impulsive stance-foot toe-off,
applied just before the ground collision occurs for each new
step. At each step, the control policy dictates a high-level
control action, which is the set-point for the inter-leg angle,
αdes, to be used by the PD controller for this step. Below,
we describe the qualitative contribution of each of the two
actuations toward negotiating rough terrain.

The primary purpose of the PD controller is to regulate the
step length of the walker, which in turn selects upcoming foot
placement on the terrain. However, the dynamics are coupled,
so that the controller also affects the entire dynamic state of the
walker. There is currently no closed-form description for the
step-to-step transitions resulting from this coupling, which is
precisely why simulation of the dynamics provides a practical
methodology for investigating the system.

The main goal in employing the impulsive toe-off action
is to compensate for the energy that is lost at each ground
collision. This in turn allows the walker to take larger steps
than would otherwise be possible, since more energy is of
course lost for larger step angles (Coleman, 1998).

3) PD control of inter-leg angle: A low-level PD controller
regulates the inter-leg angle, α, which is defined as:

α = θsw − θst = θ2 − π (11)

Our PD controller was designed by hand, to obtain swing
leg motions which do not overpower the stance leg dynamics
entirely but which are still effective in regulating the desired
step length approximately. The PD controller is active through-
out the course of any particular step. Equation 12 gives the
commanded controller torque at the hip:

τ = Kp(αdes − α) + Kd(0− α̇) (12)

where Kp = 100 and Kd = 10.

4) Impulsive toe-off at impact: In this control strategy, a
particular magnitude impulse is applied axially from the stance
leg downward, primarily to add energy at each step. Toward
eventual implementation on a real robot, we note here that it
is well-known that applying the impulse immediately before
collision is more efficient in imparting energy to the compass
gait walker (Kuo et al., 2005). We assume the impulse is im-
parted instantaneously in our simulations. As a result, a given
toe-off simply results in a particular, prescribed, instantaneous
change in the angular velocity of each leg, which is a function
of the interleg angle. Correspondingly, no additional dynamic
simulations are necessary to implement value iteration with
this when this control actuation is included.

We note briefly that the velocity of the upcoming stance leg
must be tested after the impulse is applied to ensure that this
velocity is still directed toward the ground. A large enough
impulse could theoretically send the entire walker airborne!
However, this has not been a practical concern for the impulse
magnitudes we have tested in our simulations, which are never
large enough to overcome the acceleration of gravity.

Our initial tests using value iteration allowed for the selec-
tion of one of 21 values of impulse, ranging from 0 to 2 (kg-
m/s). In practice, however, the largest allowable magnitude
of impulse was almost always selected. The resulting optimal
control policy performs almost identically to one in which the
impulse value is set to a constant magnitude of 2 at every step.

5) Scaling of wrapping terrain: To test the performance
limits of each control strategy analyzed, each terrain was
scaled to make its features more dramatic until value iteration
failed to converge on a stable walking solution. Each terrain
consisted of a particular profile which repeats every 7 meters,
as shown in Figure 16. This allows value iteration to converge
on a fixed policy using a finite representation for the terrain. A
repeating terrain may also be thought to represent the terrain
of a compass gait walker circling endlessly on a fixed boom,
such as the boom-mounted robot described in Section VI-C.

C. Details of Dynamics and Meshing

θ1

θ2

τ

-α

a

b

mh

m

pre−collision

impulse stance leg

Fig. 27. Four states of the CG walker during continuous dynamics. The
biped model is depicted here immediately after an impact. A pre-collision
impulse occurs at each step, and only the torque source at the hip actuates
the walker until the next step occurs.
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Xm3 = θ̇1

Xm4 = θ̇2

Xm1 = ∆z

Xm2 = −∆x

Fig. 28. Compass gait meshing parameters for stochastic terrain.

Xm3 = θ̇1

Xm4 = θ̇2

Xm1 = XstXm2 = Xsw − Xst

Fig. 29. Compass gait meshing parameters for wrapping terrain.

If one considers only the continuous dynamics between two
steps, the dynamics of the compass gait walker are identical to
those of the underactuated acrobot. Figure 27 depicts the state
variables and model parameters which define the continuous
phase of the dynamics. With the stance leg of the compass gait
modeled as a passive pivot joint, the entire state of the biped
is defined by the two angles and two angular velocities of the
legs. We use the absolute angle of the stance leg, θ1, and the
relative angle of the swing leg (with respect to the stance leg),
θ2, along with their time derivatives, θ3 = θ̇1, θ4 = θ̇2. The
model includes a point mass mh at the “hip” and a point mass
of magnitude m along each of the (otherwise massless) legs,
all at the geometric locations shown.

Noise effects induced by meshing

W
1

W
2

W
3

X
new

Fig. 30. Illustration of meshing approximation.

The value function and feedback policy between the dis-
cretized points of our mesh must be approximated, since
values are only stored at the particular mesh nodes. Figure 30
illustrates the effect of meshing; each new post-collision state,
Xnew, which we observe after a simulated step, must be
approximated by a weighted sum of some subset of nodes
which exist in our pre-determined mesh. The minimal number
of nodes to create a meshed volume in an N-dimensional mesh
is N + 1; for our 4-dimensional mesh of post-collision states,
this means each exact new state is modeled as if transitions
occurs to 5 neighboring mesh nodes (each with corresponding
weight, Wk). The individual transition probabilities are set
through barycentric interpolation (Munos & Moore, 2002)
(and must of course sum to unity). Any post-collision states
falling outside the defined mesh range were automatically
binned into the absorbing failure (fallen) state.

We note briefly that the optimal policy for walking on rough
terrain often involves discontinuities. In these same regions,
however, the cost function describing the value of being at
a particular location in state space generally varies rather
smoothly. As a specific example, there are situations where
either a small or large step is acceptable, while a middle-
sized step would result in stumbling (e.g., into a pothole). In
the corresponding regions of our mesh, the best choice of step
length may change suddenly from one of taking a “big” step to
the choice of a “small” step. However, although the transition
between selecting a large or small step may be sudden, the
difference in value between one (rather extreme) action and the
other may be relatively small and will tend to vary smoothly.

Fig. 31. Typical smoothness of the cost function over state space.

Implications of meshing on numerical accuracy

The meshing noise discussed above acts to increase the
overall level of noise above that of the intended stochasticity
(if any) of the terrain. Toward ensuring reasonable numerical
accuracy in our estimates of MFPT, our meshing imple-
mentation was first tested in a worst-case situation, where
these discretization effects would be expected to have the
most significant impact: a passive compass gait walker on
a constant, downhill terrain (no noise). We consider this an
extreme case because (1) the effects of meshing noise are
more significant for the passive compass gait walker than for
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TABLE I
MESHING FOR COMPASS GAIT MODEL ON STOCHASTIC TERRAIN

num. of
Parameter elements min max [units]

Xm1 19 -.1 .1 [m]
Xm2 10 -.7 -.16 [m]
Xm3 10 -2.1 -1.1 [rad/s]
Xm4 10 -1 1.5 [rad/s]
αdes 11 15 40 [deg]

the controlled models, since active control increases the rate
of convergence toward a metastable neighborhood and (2) the
relative contribution of unwanted meshing noise toward the
overall model noise goes down as the level of terrain noise
increases.

For this test case of a passive walker on flat terrain, the
numerically calculated value of λ2 was within the numerical
limits7 of its expected value of exactly one (i.e., correspond-
ing to an infinite MFPT). We believe the overall effects of
meshing noise on numerical accuracy are correspondingly not
quantitatively significant and that the effect of meshing noise
is to provide a lower bound on the actual MFPT.

Meshing details for stochastic terrain modeling

Figure 28 illustrates the states used in meshing for optimal
control on stochastic terrain. Only post-collision states are
used in meshing, meaning both legs are in contact with the
ground. For our stochastic terrain model, each upcoming step
height is drawn from a Gaussian distribution. The figure
illustrates the somewhat artificial nature of the terrain. The
entire post-collision state on stochastic terrain is defined by
the four meshing parameters shown. As compared with the
state definitions in Figure 27, the first two states are now
the horizontal and vertical distances between the two feet
(rather than the two angles of the legs). The meshing states
for stochastic terrain are also defined in the equations below:

Xm1 = ∆z = zst − zsw

Xm2 = −∆x = xsw − xst

Xm3 = θ̇1

Xm4 = θ̇2

Table I gives the meshing discretization used for the stochas-
tic terrain case. The spacing in the mesh for Table I is not
linear. The exact values are listed below:

Xm1 = [−.1,−.075,−.04,−.03 : .005 : .03, .04, .06, .1]
Xm2 = [−.7 : .06 : −.16]
Xm3 = [−2.1 : .1 : −1.4,−1.25,−1.1]
Xm4 = [−1,−.7,−.5 : .25 : .75, 1.1, 1.5]

Meshing details for wrapping terrain modeling

Figure 29 illustrates the states used in meshing for optimal
control on wrapping terrain. On wrapping terrain, the terrain

7in MATLAB, approximately 10−15

TABLE II
MESHING FOR COMPASS GAIT MODEL ON WRAPPING TERRAIN

num. of
Parameter elements min max [units]

Xm1 140 0 7 [m]
Xm2 15 -.85 -.15 [m]
Xm3 14 -3.0 -.4 [rad/s]
Xm4 14 -.1 5.1 [rad/s]
αdes 13 10 40 [deg]

profile over a repeating, 7-meter long stretch of terrain is
known exactly and is included in the simulation of step-to-
step dynamics. Therefore, the entire post-collision state of the
walker can be defined using the absolute x position of the
(upcoming) stance foot on terrain, the relative x distance to
the swing foot (which also touches the terrain instantaneously
at collision), and the two angular velocities (given in both
Figures 27 and 28). Meshing states for wrapping terrain are
given below:

Xm1 = xst

Xm2 = −∆x = xsw − xst

Xm3 = θ̇1

Xm4 = θ̇2

Table II gives the meshing discretization used for the
stochastic terrain case. Unlike the stochastic case, the spacing
in the mesh for the wrapping case (given in Table II) is
linear. These simulations were done before the simulations on
stochastic terrain, and the stochastic mesh was refined based
on the results on wrapping terrain (to refine more-frequently
visited regions in state space).

The rest of the modeling details given in this appendix apply
to both the stochastic and wrapping terrain cases.

Swing phase dynamics

During the swing phase of the leg, the dynamics of the
system are the so-called “acrobot” dynamics; this is a classic
underactuated model which has been studied in depth (Spong,
1997; Boone, 1997; Brown & Passino, 1997; Spong, 1994).
We intentionally choose to present the two equations of motion
below using a familiar definition of the parameters and states:

d11θ̈1 + d21θ̈2 + h1 + p1 = 0 (13)

d12θ̈1 + d22θ̈2 + h2 + p2 = τ (14)

where

d11 = m1l
2
c1 + m2

(
l21 + l2c2 + 2l1lc2 cos θ2

)
+ I1 + I2

d12 = d21 = m2

(
l2c2 + l1lc2 cos θ2

)
+ I2

d22 = m2l
2
c2 + I2

h1 = −m2l1lc2 sin θ2θ̇
2
2 − 2m2l1lc2 sin θ2θ̇2θ̇1

h2 = m2l1lc2 sin θ2θ̇
2
1

p1 = (m1lc1 + m2l1) g cos θ1 + m2lc2g cos (θ1 + θ2)
p2 = m2lc2g cos (θ1 + θ2)



18

and

m1 = m2 = m +
1
2
mh

l1 = l2 = a + b

lc1 = L− bm

m1

lc2 = L− lc1

I1 = I2 = m (b− lc2)
2 +

1
2
mhl2c2

Solving explicitly for the time derivatives of the state variables,
we obtain:

θ̈1 =
d22η1 − d12η2

d11 ∗ d22 − d2
12

(15)

θ̈2 =
−d12η1 + d11η2

d11 ∗ d22 − d2
12

(16)

where

η1 = m2l1lc2 sin θ2θ̇
2
2 + 2m2l1lc2 sin θ2θ̇2θ̇1 + ...

m2lc2g cos (θ1 + θ2) + (m1lc1 + m2l1) g cos θ1

η2 = −m2l1lc2 sin θ2θ̇
2
1 −m2lc2g cos (θ1 + θ2) + τ

Collision dynamics

We assume collisions are instantaneous and inelastic. For
convenience and for the reader to compare with typical nota-
tion, e.g. (Goswami, Thuilot, & Espiau, 1996), we will define
absolute angular velocities of the legs:

θ̇ns = θ̇3 + θ̇4 (17)
θ̇s = θ̇3 (18)

Geometry and conservation of angular momentum yield the
following relationships between the pre-collision and post-
collision states, which are given the superscripts − and +,
respectively.

θ+
1 = θ−1 + θ−2 − π (19)

θ+
2 = 2π − θ−2 (20)

Q−11θ̇
−
ns + Q−12θ̇

−
s = Q+

11θ̇
−
ns + Q+

12θ̇
−
s (21)

Q−21θ̇
−
ns + Q−22θ̇

−
s = Q+

21θ̇
−
ns + Q+

22θ̇
−
s (22)

where the last two equations can be expanded immediately, as
given below. We also present an expanded form below, which
has been useful for (vectorized) MATLAB implementation;
many collision relationships can be calculated at once by
using expanded forms of the matrix inverse and other algebraic
expressions. Eqn. 21, which represents the angular momentum
balance about the swing toe immediately before collision, will
be modified later to account for pre-collision impulse later in
the appendix.

Q−11
(
θ̇−1 + θ̇−2

)
+ Q−12θ̇

−
1 = Q+

11

(
θ̇+
1 + θ̇+

2

)
+ Q+

12θ̇
+
1

(23)

Q−21
(
θ̇−1 + θ̇−2

)
+ Q−22θ̇

−
1 = Q+

21

(
θ̇+
1 + θ̇+

2

)
+ Q+

22θ̇
+
1

(24)

where

Q−11 = −mab

Q−12 = −mab +
(
mhL2 + 2maL

)
cos (2α)

Q−21 = 0
Q−22 = −mab

Q+
11 = mb (b− L cos (2α))

Q+
12 = mL (L− b cos (2α)) + ma2 + mhL2

Q+
21 = mb2

Q+
22 = −mbL cos (2α)

where 2α = π − θ−2 is the interleg angle. We can solve for
the two new angular velocities by using the matrix inverse of
Q+, R+ = (Q+)−1, which is simply:

R+
11 =

Q+
22

Q+
11Q

+
22 −Q+

12Q
+
21

R+
12 =

−Q+
12

Q+
11Q

+
22 −Q+

12Q
+
21

R+
21 =

−Q+
21

Q+
11Q

+
22 −Q+

12Q
+
21

R+
22 =

Q+
11

Q+
11Q

+
22 −Q+

12Q
+
21

Now let A = R+Q−:

A11 = R+
11Q

−
11 + R+

12Q
−
21

A12 = R+
11Q

−
12 + R+

12Q
−
22

A21 = R+
21Q

−
11 + R+

22Q
−
21

A22 = R+
21Q

−
12 + R+

22Q
−
22

The matrix A now relates the absolute angular velocities of
the two legs. That is, the matrix A defines the following two
relationships:

A11

(
θ̇−s θ̇−ns

)
+ A12

(
θ̇−s

)
= θ̇+

s + θ̇+
ns

A21

(
θ̇−s θ̇−ns

)
+ A22

(
θ̇−s

)
= θ̇+

s

We can simply rearrange these relationships to find a direct
transformation, given θ̇2 = θ̇ns − θ̇s is actually a relative
velocity. Note that these equations have also accounted for
the fact that the two legs “swap roles” during impact (with
stance becoming swing leg, and vice versa). We will call this
final transformation matrix B:

B11 = A21 + A22

B12 = A21

B21 = A11 + A12 −A21 −A22

B22 = A11 −A21

These final relationships relating pre- and post-collision ve-
locities are then:

θ̇+
1 = B11θ̇

−
1 + B12θ̇

−
2 (25)

θ̇+
2 = B21θ̇

−
1 + B22θ̇

−
2 (26)
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PD controller

During a step, the interleg angle is regulated with respect
to a desired set-point, which is selected as a high-level control
action, once per step.

α = θsw − θst (27)

τ = Kp(αdes − α) + Kd(0− α̇), θst < 0 (28)

where Kp = 100 and Kd = 10. These two equations appear
as Equations 11 and 12.

Pre-collision Impulse

Our control was much more successful if we used a pre-
collision impulse in addition to a PD-controlled torque at the
hip, as described in Section V-A (p. 9). We assume the impulse
occurs instantaneously and happens exactly before the step-to-
step collision takes place.

If the imparted impulse is very large, the entire compass
gait walker will become airborne. Calculation of a new state
in this “ballistic” case simply involves solving two equations
for conservation of angular momentum and another two to
conserve linear momentum. For the magnitudes of impulse we
use in simulation, there is typically not enough momentum
added for the upcoming stance leg to lose contact with the
ground. In this “non-ballistic” case, we simply assume that
momentum directed toward the ground is perfectly absorbed
in an instantaneous collision.

For the case where the upcoming stance foot does not
become ballistic, we simply add the effect of the impulse as
an additional term in the equations of conservation of angular
momentum for the pre-to-post collision dynamics. Specifically,
we rewrite Equation 23 to include a term which scales the
impulse to give its contribution to the angular momentum
about the pre-collision swing toe. Defining our impulse as
having magnitude p, directed axially from the toe to the hip
of the pre-collision stance leg, Equation 23 then becomes:

Q−11θ̇
−
ns+Q−12θ̇

−
s −2p (sinα) (cos α) = Q+

11θ̇
−
ns+Q+

12θ̇
−
s (29)

Propagating these terms and solving algebraically, Equa-
tions 25 and 26 are now replaced by the following:

θ̇+
1 = B11θ̇

−
1 + B12θ̇

−
2 −R21 (2 cos α sin α) p (30)

θ̇+
2 = B21θ̇

−
1 + B22θ̇

−
2 − (R11 −R21) (2 cos α sinα) p

(31)
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