

### **Control of the Compass Gait on Rough Terrain**

Katie Byl and Russ Tedrake







- How capable can an underactuated, dynamic walking approach be on rough terrain?
  - Dynamic walking:
    - Natural dynamics
    - Likely to be efficient
  - But unfortunately...
    - Notoriously sensitive
- Long-range goals:
  - Implement on real robot
  - On-line learning







- Process toward obtaining underactuated, dynamic walking on rough terrain:
  - 1. Use minimal actuation and control strategies
    - underactuation at toe



- Process toward obtaining underactuated, dynamic walking on rough terrain:
  - Use minimal actuation and control strategies
     underactuation at toe
  - 2. Quantify performance in stochastic environments



- Process toward obtaining underactuated, dynamic walking on rough terrain:
  - Use minimal actuation and control strategies
    underactuation at toe
  - 2. Quantify performance in stochastic environments
  - 3. Iterate to optimize performance
    - long-living, <u>metastable</u> dynamics

# **Overview**



#### Essential model for dynamic walking on rough terrain:

- Hip-actuated compass gait (CG) with leg inertia
- Passive toe pivot

#### Outline:

- Passive walker example
- Actuated walkers:
  - Stochastic terrain
  - Known, wrapping terrain



# **Overview**



- Essential model for dynamic walking on rough terrain:
  - Hip-actuated compass gait (CG) with leg inertia



# **Passive Walker**



#### • Unactuated, with stochastic downhill terrain





Walker animation:  $\gamma_{av}$ :

(Only first 5 sec will be animated...)

# **Passive Walker**



#### Constant 4º downhill slope (no noise)



Slices of the deterministic **Basins of Attractions** for the walkers analyzed for **passive** (left) and **controlled** (right) examples throughout.

# **Passive Walker**



Constant 4° downhill slope (no noise)



Slice of the deterministic **Basins of Attraction** for the walker analyzed for **passive** examples throughout.





#### Stochastic downhill terrain, mean slope = 4°



(mfpt : mean first-passage time)





#### Stochastic downhill terrain, mean slope = 4°



(**mfpt :** mean first-passage time)





#### Stochastic downhill terrain, mean slope = 4°



(mfpt : mean first-passage time)

# **Actuated Walker Models**

- Compass gait (CG)
  - Point masses at hip (m<sub>h</sub>) and on each leg (m)

• 
$$m = m_h = 2$$
 kg ;  $a = b = 0.5$  m

- Passive pivot model for "toe" of stance leg
- **5 States:**  $\theta_1$ ,  $\theta_2$ ,  $\dot{\theta}_1$ ,  $\dot{\theta}_2$ ,  $\Delta z$
- Instantaneous, inelastic collisions
- Actuations
  - Torque at hip:
    - +/- 15 N-m limit
  - Pre-collision impulse:
    - Constant value of 2 kg-m/s





# Methodology



#### Solve iteratively to find optimal policy

- Mesh state space, using post-collision states
- Define cost function to reward continuous walking

# Methodology



- Solve iteratively to find optimal policy
  - Mesh state space, using post-collision states
  - Define cost function to reward continuous walking
- Hierarchical control
  - Low-level PD control:  $\tau = K_p (\alpha_{des} \alpha) K_d \dot{\alpha}$
  - High-level, once-per-step selection of  $\alpha_{des}$

# Methodology



- Solve iteratively to find optimal policy
  - Mesh state space, using post-collision states
  - Define cost function to reward continuous walking

#### Hierarchical control

- Low-level PD control:  $\tau = K_p (\alpha_{des} \alpha) K_d \dot{\alpha}$
- High-level, once-per-step selection of  $\alpha_{des}$

#### Additional Details

- Stochastic terrain, Δz from a Gaussian
- Swing toe **retracts** until  $\alpha$  is within 10° of  $\alpha_{des}$
- PD controller is always active during step

# Low-level PD Control at Hip



#### PD state trajectories versus passive downhill walking



**Note:** While positive and negative work is done for active case, overall gait speed is only about 10% faster than passive walker.



# Meshing: stochastic terrain



#### Post-collision meshing using 4 state variables

$$X_{m1} = \Delta z = z_{st} - z_{sw}$$
$$X_{m2} = -\Delta x = x_{sw} - x_{st}$$
$$X_{m3} = \dot{\theta}_1$$
$$X_{m4} = \dot{\theta}_2$$

Including one extra "fallen" state, there are 19,001 mesh states

|                        | •        |      |       |         |
|------------------------|----------|------|-------|---------|
| state                  | # elem's | min  | max   | units   |
| <b>X</b> <sub>m1</sub> | 19       | 01   | .01   | (m)     |
| <b>X</b> <sub>m2</sub> | 10       | -0.7 | -0.16 | (m)     |
| <b>X</b> <sub>m3</sub> | 10       | -2.1 | -1.1  | (rad/s) |
| <b>X</b> <sub>m4</sub> | 10       | -1   | 1.5   | (rad/s) |

Action, α<sub>des</sub> : 15 - 40 deg (11 values)
 Interpolation (barycentric)





#### Pre-compute one-step dynamics

Each new state in N-dim space represented by N+1 weighted mesh nodes, each with weight W<sub>k</sub>





#### Pre-compute one-step dynamics

Each new state in N-dim space represented by N+1 weighted mesh nodes, each with weight  $W_k$ 



#### Define one-step cost; initialize C<sub>last</sub>=C<sub>onestep</sub>

$$C_{onestep}(i) = \begin{cases} -1, & i \notin fallen \\ 0, & i \in fallen \end{cases}$$

#### Pre-compute one-step dynamics

Each new state in N-dim space represented by N+1 weighted mesh nodes, each with weight W<sub>k</sub>



Define one-step cost; initialize C<sub>last</sub>=C<sub>onestep</sub>

$$C_{onestep}(i) = \begin{cases} -1, & i \notin fallen \\ 0, & i \in fallen \end{cases}$$

One-step cost of -1 maximizes steps taken before falling.

To maximize distance traveled, instead use:  $C_{onestep}(i) = X_{m2}$ 



#### Pre-compute one-step dynamics

Each new state in N-dim space represented by N+1 weighted mesh nodes, each with weight W<sub>k</sub>

Define one-step cost; initialize C<sub>last</sub>=C<sub>onestep</sub>

$$C_{onestep}(i) = \begin{cases} -1, & i \notin fallen \\ 0, & i \in fallen \end{cases}$$

Iterate to minimize cost:

One-step cost of -1 maximizes steps taken before falling.

To maximize distance traveled, instead use:  $C_{onestep}(i) = X_{m2}$ 

#### Iterative updates:

$$C_{last}(i) = C_{new}(i), \quad \forall i \qquad \pi(i) = \arg\min_{a} C_{new}(i \mid a)$$

Katie Byl and Russ Tedrake – Control of the Compass Gait on Rough Terrain



W2

W.

#### Pre-compute one-step dynamics

Each new state in N-dim space represented by N+1 weighted mesh nodes, each with weight W<sub>k</sub>

W<sub>3</sub> W<sub>1</sub> W<sub>2</sub>

#### Define one-step cost; initialize C<sub>last</sub>=C<sub>onestep</sub>

$$C_{onestep}(i) = \begin{cases} -1, & i \notin fallen \\ 0, & i \in fallen \end{cases}$$

Iterate to minimize cost:

One-step cost of -1 maximizes steps taken before falling.

To maximize distance traveled, instead use:  $C_{onestep}(i) = X_{m2}$ 

Iterative updates:

$$C_{last}(i) = C_{new}(i), \quad \forall i \qquad \pi(i) = \arg\min_{a} C_{new}(i \mid a)$$



# Control on Stochastic Terrain



# Control on Stochastic Terrain



# **Control on Wrapping Terrain**



- For stochastic terrain:
  - N-step look-ahead requires 4+N total mesh dimensions
- Advantages of known, wrapping terrain:
  - Allows N-step look-ahead using only 4 mesh dimensions (4D)
  - N steps occur in iteration algorithm, not state representation



# Meshing: known, wrapping terrain



states

 $X_{m3} = \theta_1$ 

#### Post-collision meshing using 4 state variables

$$X_{m1} = x_{st}$$

$$X_{m2} = \Delta x = x_{st} - x_{sw}$$

$$X_{m3} = \dot{\theta}_{1}$$

$$X_{m4} = \dot{\theta}_{2}$$
Including one extra "fallen" state, there are 411,601 mesh states
$$X_{m4} = \dot{\theta}_{2}$$

Action, α<sub>des</sub> : 10 - 40 deg (13 values)

Interpolation (barycentric)

# Meshing: known, wrapping terrain



 $X_{m3} = \dot{\theta}_1$ 

 $X_{m1} = X_{st}$ 

#### Post-collision meshing using 4 state variables

only 1<sup>st</sup> state variable is different from stochastic modeling case

Including one extra "fallen" state, there are **411,601 mesh states** 

 $X_{m4} = \dot{\theta}_2$ 

 $X_{m2} = \dot{X}_{suv} - X_{st}$ 

|                        | •        |       |       |         |
|------------------------|----------|-------|-------|---------|
| state                  | # elem's | min   | max   | units   |
| <b>X</b> <sub>m1</sub> | 140      | 0     | 7     | (m)     |
| <b>X</b> <sub>m2</sub> | 15       | -0.85 | -0.15 | (m)     |
| X <sub>m3</sub>        | 14       | -3.0  | -0.4  | (rad/s) |
| <b>X</b> <sub>m4</sub> | 14       | -0.1  | 5.1   | (rad/s) |

 $X_{m1} = x_{st}$ 

 $X_{m3} = \theta_1$ 

 $X_{m4} = \dot{\theta}_2$ 

 $X_{m2} = \Delta x = x_{st} - x_{sw}$ 

Action, α<sub>des</sub> : 10 - 40 deg (13 values)

Interpolation (barycentric)





# **Discussion: One-step policy**



- Using heuristic cost functions on the <u>wrapping</u> mesh state also yields impressive results
  - Implies lengthy value iteration computation and/or exact description of terrain are not essential
- Although surprisingly good, one-step policy is inferior
  - Performance sensitive to one-step heuristic used Animations below use only <u>slightly</u> different one-step heuristics...



# **Future Work**



- Use off-line policy from simulation as basis for on-line policy learning on real robot
  - **Direct-drive** hip torque
  - Retracting toe
  - Motor encoder
  - Boom-mounted
    - Repeating terrain
  - Motion capture:
    - Leg markers
    - Terrain markers



#### Maximize expected number of steps taken

# **Summary**



 Compass gait model with hip torque and toe impulse can negotiate qualitatively rough terrain





- Compass gait model with hip torque and toe impulse can negotiate qualitatively rough terrain
- Apply analytical tools toward creating metastable locomotion





- Compass gait model with hip torque and toe impulse can negotiate qualitatively rough terrain
- Apply analytical tools toward creating metastable locomotion
- One-step look-ahead greatly improves performance





- Compass gait model with hip torque and toe impulse can negotiate qualitatively rough terrain
- Apply analytical tools toward creating metastable locomotion
- One-step look-ahead greatly improves performance
- What is possible if better low-level control is used?!?





- Compass gait model with hip torque and toe impulse can negotiate qualitatively rough terrain
- Apply analytical tools toward creating metastable locomotion
- One-step look-ahead greatly improves performance
- What is possible if better low-level control is used?!?
- Same approach already shown to work on <u>known, wrapping terrain</u>: Byl and Tedrake, ICRA 2008 <u>link to ICRA 2008 paper</u>
- <u>Metastable walking</u> described further in upcoming work: Byl and Tedrake, RSS 2008 <u>link to RSS 2008 paper</u>









- Details on eigenanalysis of discrete system
- More results on known, wrapping terrain
- Important details on interpolation method
- Fragility of impulse-only strategy

#### Dynamic motion planning for a stiff robot

### **Eigenanalysis**



- Discretized system is a Markov chain
  - Analyze corresponding transition matrix



$$m_i = \sum_j f_{ij} m_j + 1 \longrightarrow (\mathbf{I} - \mathbf{f}') \mathbf{m} = \mathbf{1} \longrightarrow \mathbf{m} = (\mathbf{I} - \mathbf{f}')^{-1} \mathbf{1}$$

Katie Byl and Russ Tedrake – Control of the Compass Gait on Rough Terrain

## **Eigenanalysis**



- Discretized system is a Markov chain
  - Analyze corresponding transition matrix



### **Results and Discussion**



- Selecting only impulse magnitude (no PD) gives fragile results
- PD-only (used in examples below) works for mild or downhill terrain



### **Discussion: Interpolation**



#### Method of interpolating optimal action is essential

- Interpolating between actions oftens fails
  - Small or large may be ok, while medium step fails:



#### Interpolated step NOT OK

• Our solution: simulate actual dynamics one step, then select action resulting in new state with lowest cost

# **Control on Stochastic Terrain**



One-step heuristic (below) on random (no-wrap) terrain



# Same optimization methodology can be applied using a stochastic (e.g. Gaussian) description of terrain





#### Results in continuous walking here



#### **Motivation**



#### Passive-based walking is appealing for bipeds

- Captures fundamental, pendular dynamics
- Seems likely to be efficient
- Unfortunately, passive walkers are fragile!
  - Notoriously sensitive to initial conditions and perturbations





### **Underactuated stiff robots**



- Interested in applying same stochastic modeling to other, higher DOF robots
  - 18 DOF (12 actuated, plus 6 DOF of body) LittleDog quadruped in dynamic, underactuated gaits and motions
  - Goal to learn policies which result in better stability

Underactuated, double-support – climbing motion



#### See movies here:

http://people.csail.mit.edu/katiebyl/ld/go nogo video/LittleDog at MIT 2008.mov http://people.csail.mit.edu/katiebyl/ld/jersey barrier/jersey with pacing.mov people.csail.mit.edu/katiebyl/ld/newdog terrainG/terrainG newdog withshove.mov