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Motivation
How capable can an underactuated, dynamic 
walking approach be on rough terrain?

• Dynamic walking:
▪Natural dynamics
▪Likely to be efficient

• But unfortunately…
▪Notoriously sensitive

Long-range goals:
• Implement on real robot
• On-line learning
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Motivation
Process toward obtaining underactuated, 
dynamic walking on rough terrain:

1. Use minimal actuation and control strategies
▪underactuation at toe

2. Quantify performance in stochastic environments

3. Iterate to optimize performance
▪ long-living, metastable dynamics
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Overview
Essential model for dynamic walking on rough terrain:
• Hip-actuated compass gait (CG) with leg inertia
• Passive toe pivot

Outline:

• Passive walker example

• Actuated walkers:
▪Stochastic terrain
▪Known, wrapping terrain
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Overview
Essential model for dynamic walking on rough terrain:
• Hip-actuated compass gait (CG) with leg inertia
• Passive toe pivot

Outline:

• Passive walker example

• Actuated walkers:
▪Stochastic terrain
▪Known, wrapping terrain

acrobot
dynamics
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Passive Walker

Unactuated, with stochastic downhill terrain
kg5=m

kg5.1=hm
m7.0=a
m3.0=b
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Passive Walker

Constant 4º downhill slope (no noise)
Good passive stability

Poor maneuverability

Poor passive stability

Good maneuverability

Slices of the deterministic Basins of Attractions for the walkers 
analyzed for passive (left) and controlled (right) examples throughout.
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Passive Walker

Constant 4º downhill slope (no noise)
Good passive stability

Poor maneuverability

Slice of the deterministic Basins of Attraction for the walker 
analyzed for passive examples throughout.

Next, we will add noise  
and look at a different 2D 

slice in the 3D state space, 
orthogonal to this one . . .

13 θ&=X

2θπα −=
24 θ&=X

rad/s33.24 =X
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Passive Walker

Stochastic downhill terrain, mean slope = 4º

o5.0=σ o0.1=σ
000,200mfpt ≈ 300mfpt ≈

(mfpt : mean first-passage time)
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Passive Walker

Stochastic downhill terrain, mean slope = 4º

o5.0=σ o0.1=σ
000,200mfpt ≈ 300mfpt ≈

MFPT contours

(mfpt : mean first-passage time)
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Passive Walker

Stochastic downhill terrain, mean slope = 4º

o5.0=σ o0.1=σ
000,200mfpt ≈ 300mfpt ≈

MFPT contours

metastable
neighborhood 

(PDF)

(mfpt : mean first-passage time)
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Compass gait (CG)
• Point masses at hip (mh) and on each leg (m)
▪ ;

• Passive pivot model for “toe” of stance leg
• 5 States: ,      ,      ,      ,
• Instantaneous, inelastic collisions

Actuations
• Torque at hip:
▪+/- 15 N-m limit

• Pre-collision impulse: 
▪Constant value of 2 kg-m/s

2

Actuated Walker Models

θ1θ zΔ2θ&1θ&

kg2== hmm m5.0== ba
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Solve iteratively to find optimal policy
• Mesh state space, using post-collision states
• Define cost function to reward continuous walking
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Methodology
Solve iteratively to find optimal policy
• Mesh state space, using post-collision states
• Define cost function to reward continuous walking

Hierarchical control
• Low-level PD control: 
• High-level, once-per-step selection of αdes

Additional Details
• Stochastic terrain, Δz from a Gaussian
• Swing toe retracts until α is within 10º of αdes

• PD controller is always active during step

ααατ &ddesp KK −−= )(
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Low-level PD Control at Hip
PD state trajectories versus passive downhill walking

PD control only, with 
no impulsive toe-off: 

αdes = 35º

Constant 4º downhill, 
to compare active 

with passive

Note: While positive 
and negative work is 
done for active case, 
overall gait speed is 
only about 10% faster
than passive walker.
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Post-collision meshing using 4 state variables

• Action, αdes : 15 - 40 deg (11 values)

Interpolation (barycentric)

Meshing: stochastic terrain

state # elem’s min max units
Xm1 19 -.01 .01 (m)
Xm2 10 -0.7 -0.16 (m)
Xm3 10 -2.1 -1.1 (rad/s)
Xm4 10 -1 1.5 (rad/s)

Including one extra 
“fallen” state, there are 

19,001 mesh states

swstm zzzX −=Δ=1

stswm xxxX −=Δ−=2

13 θ&=mX
24 θ&=mX
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Pre-compute one-step dynamics  
Each new state in N-dim space represented by 
N+1 weighted mesh nodes, each with weight Wk

Dynamic Programming (Value Iteration)
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Pre-compute one-step dynamics  
Each new state in N-dim space represented by 
N+1 weighted mesh nodes, each with weight Wk

Define one-step cost; initialize Clast=Conestep

Dynamic Programming (Value Iteration)
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Pre-compute one-step dynamics  
Each new state in N-dim space represented by 
N+1 weighted mesh nodes, each with weight Wk

Define one-step cost; initialize Clast=Conestep

Dynamic Programming (Value Iteration)

One-step cost of -1 maximizes 
steps taken before falling. 

To maximize distance traveled, 
instead use:  Conestep(i) = Xm2
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Pre-compute one-step dynamics  
Each new state in N-dim space represented by 
N+1 weighted mesh nodes, each with weight Wk

Define one-step cost; initialize Clast=Conestep

Iterate to minimize cost:

Iterative updates:
iiCiC newlast

Dynamic Programming (Value Iteration)

∀= ),()( )|(minarg)( aiCi newa
=π

One-step cost of -1 maximizes 
steps taken before falling. 

To maximize distance traveled, 
instead use:  Conestep(i) = Xm2
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Pre-compute one-step dynamics  
Each new state in N-dim space represented by 
N+1 weighted mesh nodes, each with weight Wk

Define one-step cost; initialize Clast=Conestep

Iterate to minimize cost:

Iterative updates:
iiCiC newlast

Dynamic Programming (Value Iteration)

∀= ),()( )|(minarg)( aiCi newa
=π

One-step cost of -1 maximizes 
steps taken before falling. 

To maximize distance traveled, 
instead use:  Conestep(i) = Xm2
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Control on Stochastic Terrain

Mean first-passage 
time, MFPT, used 
to quantify stability

One-step look-ahead
improves policy 
significantly
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Control on Stochastic Terrain

Mean first-passage 
time, MFPT, used 
to quantify stability

One-step look-ahead
improves policy 
significantly

12,000 steps
(one-step look)

76 steps
(no look-ahead)
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Control on Wrapping Terrain

For stochastic terrain: 
• N-step look-ahead requires 4+N total mesh dimensions 

Advantages of known, wrapping terrain:
• Allows N-step look-ahead using only 4 mesh dimensions (4D)
• N steps occur in iteration algorithm, not state representation
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Meshing: known, wrapping terrain

Post-collision meshing using 4 state variables

• Action, αdes : 10 - 40 deg (13 values)

Interpolation (barycentric)

state # elem’s min max units
Xm1 140 0 7 (m)
Xm2 15 -0.85 -0.15 (m)
Xm3 14 -3.0 -0.4 (rad/s)
Xm4 14 -0.1 5.1 (rad/s)

Including one extra “fallen” state, 
there are 411,601 mesh states

stm xX =1

swstm xxxX −=Δ=2

13 θ&=mX
24 θ&=mX
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Meshing: known, wrapping terrain

Post-collision meshing using 4 state variables

• Action, αdes : 10 - 40 deg (13 values)

Interpolation (barycentric)

state # elem’s min max units
Xm1 140 0 7 (m)
Xm2 15 -0.85 -0.15 (m)
Xm3 14 -3.0 -0.4 (rad/s)
Xm4 14 -0.1 5.1 (rad/s)

Including one extra “fallen” state, 
there are 411,601 mesh states

stm xX =1

swstm xxxX −=Δ=2

13 θ&=mX
24 θ&=mX

only 1st state variable is different 
from stochastic modeling case
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Results on Wrapping Terrain
PD with impulsive toe-off
• α is desired interleg angle

α min = 22º , αmax = 40º

α min = 15º , αmax = 40º

First 10 seconds of data
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Results on Wrapping Terrain
PD with impulsive toe-off
• Gaps yield more pattern in 

footholds

α min = 22º , αmax = 40º

α min = 15º , αmax = 40º

First 3 seconds of data
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Discussion: One-step policy
Using heuristic cost functions on the wrapping mesh 
state also yields impressive results
• Implies lengthy value iteration computation and/or exact 

description of terrain are not essential
Although surprisingly good, one-step policy is inferior
• Performance sensitive to one-step heuristic used

Animations below use only slightly different one-step heuristics…
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Future Work

Use off-line policy from simulation as basis for
on-line policy learning on real robot
• Direct-drive hip torque
• Retracting toe
• Motor encoder
• Boom-mounted 
▪Repeating terrain

• Motion capture:
▪Leg markers
▪Terrain markers

Maximize expected number of steps taken
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qualitatively rough terrain
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What is possible if better low-level control is used?!?
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Summary

Compass gait model with hip torque and toe impulse can negotiate
qualitatively rough terrain

Apply analytical tools toward creating metastable locomotion

One-step look-ahead greatly improves performance

What is possible if better low-level control is used?!?

Same approach already shown to work on known, wrapping terrain:
Byl and Tedrake, ICRA 2008      ICRA 2008

Metastable walking described further in upcoming work:
Byl and Tedrake, RSS 2008    RSS 2008

link to                    paper

link to                  paper

http://people.csail.mit.edu/katiebyl/kb/apfiles/papers/icra2008_ID_1397.pdf
http://people.csail.mit.edu/katiebyl/kb/apfiles/papers/icra2008_ID_1397.pdf
http://people.csail.mit.edu/katiebyl/kb/apfiles/papers/rss2008_ID_155.pdf
http://people.csail.mit.edu/katiebyl/kb/apfiles/papers/rss2008_ID_155.pdf
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Questions?
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Additional slides

Details on eigenanalysis of discrete system

More results on known, wrapping terrain

Important details on interpolation method

Fragility of impulse-only strategy

Dynamic motion planning for a stiff robot
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Eigenanalysis

Discretized system is a Markov chain
• Analyze corresponding transition matrix

∑ +=
j

jiji mfm 1 ( ) 1mfI ' =− ( ) 1fIm ' 1−
−=
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Eigenanalysis

Discretized system is a Markov chain
• Analyze corresponding transition matrix

∑ +=
j

jiji mfm 1 ( ) 1mfI ' =− ( ) 1fIm ' 1−
−=

mean first-passage time (MFPT)≡m

f’ ≡ submatrix of f that excludes 
the row and column of the 

absorbing failure (fallen) state.
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Results and Discussion
Selecting only impulse magnitude (no PD) gives fragile results
PD-only (used in examples below) works for mild or downhill terrain

Dots (wrapping) show previous footholds
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Method of interpolating optimal action is essential
• Interpolating between actions oftens fails

▪ Small or large may be ok, while medium step fails:

• Our solution: simulate actual dynamics one step, then
select action resulting in new state with lowest cost

Discussion: Interpolation

Small step OK Large step OK

Interpolated step NOT OK

!

Watch for occasional 
steps into no-go zones
in the animation below!
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Control on Stochastic Terrain
One-step heuristic (below) on random (no-wrap) terrain

Same optimization methodology can be applied using a
stochastic (e.g. Gaussian) description of terrain
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One-step on wrapping terrain

Results in continuous walking here
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Motivation
Passive-based walking is appealing for bipeds
• Captures fundamental, pendular dynamics
• Seems likely to be efficient

Unfortunately, passive walkers are fragile!
• Notoriously sensitive to initial conditions and perturbations

Leg length = 1m

0.005m drop in .34m step, or about 1º
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Underactuated stiff robots

Interested in applying same stochastic modeling to 
other, higher DOF robots
• 18 DOF (12 actuated, plus 6 DOF of body) LittleDog quadruped 

in dynamic, underactuated gaits and motions
• Goal to learn policies which result in better stability

See movies here:
http://people.csail.mit.edu/katiebyl/ld/go_nogo_video/LittleDog_at_MIT_2008.mov
http://people.csail.mit.edu/katiebyl/ld/jersey_barrier/jersey_with_pacing.mov
people.csail.mit.edu/katiebyl/ld/newdog_terrainG/terrainG_newdog_withshove.mov

Underactuated, 
double-support 
climbing motion

http://people.csail.mit.edu/katiebyl/ld/go_nogo_video/LittleDog_at_MIT_2008.mov
http://people.csail.mit.edu/katiebyl/ld/jersey_barrier/jersey_with_pacing.mov
http://people.csail.mit.edu/katiebyl/ld/newdog_terrainG/terrainG_newdog_withshove.mov
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