

Stability of passive dynamic walking on uneven terrain

Katie Byl and Russ Tedrake

Robot Locomotion Group, MIT

Passive compass gait on uneven terrain

- Is your walker stable? vs How stable is your walker?

9 total steps this run. $\mathrm{t}=0.0 \mathrm{~s}$
$\mathrm{EV}(y)=0.0698\left[4.00^{\circ}\right] ;$ std $(y)=0.0175\left[1.00^{\circ}\right]$

\leftarrow Left: walker \#1
Right: walker \#2 \rightarrow
\leftarrow Constant slope \rightarrow (upper movies) Periodic gaits

Does not fall in $10+$ total steps this run. $t=0.0 \mathrm{~s}$ $\mathrm{EV}(y)=0.0698\left[4.00^{\circ}\right] ; \operatorname{std}(y)=0.0000\left[0.00^{\circ}\right]$

\leftarrow Changing slope \rightarrow (lower movies) Aperiodic gaits

Stability metrics for dynamic walking

- For deterministic systems:

- Global stability : size and shape of deterministic (no noise) basin of attraction
- Local stability : recovery from a single perturbation about the fixed point
- For stochastic systems: statistics of noise map to statistics of failure
- "mean first passage time" (MFPT) For walking, this is the expected number of steps taken before falling down. [aka "mean time between failures"]

Slice of deterministic basin (left) and stochastic basin (right) for a CG

Methods: Monte Carlo simulations

- Example: passive compass gait on rough terrain
- Mean value (4 deg) for downhill slope
- Gaussian distribution; testing std's of 0.5-2.0 deg
- Set init. cond. and simulate dynamics over many trials
- Calculate "mean first passage time" (MFPT) for each particular initial condition of interest
- Below are MFPTs for init. cond. at the fixed point for each respective walker

	$\left(.5 m_{h}\right) / \mathrm{m}$	$\mathrm{a} /(\mathrm{a}+\mathrm{b})$	MFPT .5 deg std	MFPT 1.0 deg std
Walker \#1	1	.6	20	6
Walker \#2	.15	.7	$\gg 100,000$	150

Methods: Monte Carlo simulations

- Example: passive compass gait on rough terrain
- Mean value (4 deg) for downhill slope
- Gaussian distribution; testing std's of 0.5-2.0 deg
- Set init. cond. and simulate dynamics over many trials
- Calculate "mean first passage time" (MFPT) for each particular initial condition of interest
- Below are MFPTs for init. cond. at the fixed point for each respective walker

	$\left(.5 m_{h}\right) / \mathrm{m}$	$\mathrm{a} /(\mathrm{a}+\mathrm{b})$	MFPT .5 deg std	MFPT 1.0 deg std
Walker\#1	1	.6	20	6
Walker \#2	.15	.7	$\gg 100,000$	150

$$
\begin{aligned}
& 25,000 \text { pts for this } 2 D \\
& \text { slice in state space }
\end{aligned}
$$

Monte Carlo method is computationally intense

- Estimating MFPT over the entire state space takes many, many trials
- We present a more direct method to calculate this distribution...

Modeling the system as a Markov chain: step-to-step transition matrix, f

$\boldsymbol{f}=\left[\begin{array}{cccc}0.25 & 0.35 & 0.4 & 0 \\ 0 & 0.39 & 0.6 & 0.01 \\ 0.28 & 0.5 & 0.2 & 0.02 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\boldsymbol{f}^{10}=\left[\begin{array}{cccc}0.13915 & 0.38823 & 0.3665 & 0.10611 \\ 0.13714 & 0.38261 & 0.36118 & 0.11907 \\ 0.13655 & 0.38098 & 0.35966 & 0.12281 \\ 0 & 0 & 0 & 1\end{array}\right]$

- Non-iterative calculation of state-dependent MFPT, \boldsymbol{m} (a vector)
- $m_{i}=\Sigma f_{i j} m_{j}+1$, summed over all j s.t. $s_{j} \neq$ failed state
- [l-f'] $]=1$ (eqn above in matrix form)
$\rightarrow m=\left[I-f^{3}\right]^{-1} 1$ direct calculation of MFPT!
- \boldsymbol{m} is a vector giving the MFPT at each discrete state (mesh node)
- I is the identity matrix
- \boldsymbol{f}^{\prime} contains the non-absorbing rows and cols of \boldsymbol{f}
- 1 is the ones vector
- Gradient in \boldsymbol{m} can be used as a metric for remeshing
- Note: for a deterministic system (no noise), $\boldsymbol{m}=\infty$ in the basin of attraction

System-wide stochastic stability

- Eigenvalue analysis of the transition matrix, f
- Any initial condition is a weighted sum of the eigenvectors
- Each corresponding eigenvalue shows how rapidly that part fades away
- Look for eigenvector(s) that persist; i.e. describe long-term distribution

Calculate first 3 eigenvalues and eigenvectors of (sparse matrix) \boldsymbol{f}^{T}

- $\lambda_{1}=1$ failure is an absorbing state; it persists for all time 1 st eigenvector: $[0, \ldots, 0,1]^{\top}$ shows to inevitability of a "failure" as $t \rightarrow \infty$
" λ_{3} provides an estimate of "mixing time" to forget initial conditions. "Fast" mixing implies: $1 / \tau_{2}=\log \left(1 /\left|\lambda_{2}\right|\right) \ll \log \left(1 /\left|\lambda_{3}\right|\right)=1 / \tau_{3}$, so $\left(1-\left|\lambda_{2}\right|\right) \ll\left(1-\left|\lambda_{3}\right|\right)$ implies separation of time scales.
- $1-\left|\lambda_{2}\right|=r ; r=1 / m$ ("leakage rate" is the inverse of the MFPT) 2nd eigenvector renormalized (to exclude failure state) represents the quasi-stationary distribution of the stochastic basin of attraction.

System-wide stochastic stability

CSAIL

- An elegant simplification emerges!

- For our simulations, the magnitude of λ_{3} is about 0.5 (fast mixing), so walkers which have not failed will converge rapidly to a quasi-stationary distribution of states, which is given by the eigenvector associated with λ_{2}.
- Failures (falling) occur at a slow, calculable leakage rate, $r \approx 1-\left|\lambda_{2}\right|$
- $\lambda_{1}=1$ implies the robot will eventually fall, but a small leakage rate means we still expect aperiodic walking to persist for a long time before falling.

- "Metastable" (i.e. long-living) states

- We should think of dynamic walking as convergence to a metastable limit cycle, with a slow leak rate, r, to an absorbing failure state (falling down).
- mfpt=1/r gives a system-wide mean first passage time. It is a scalar quantity that characterizes the stability of the system and answers the question:
"How stable is your walker?"

The End

- Additional slides follow... (more video, et al)

"for a deterministic system (no noise), $m=\infty$ in the basin of attraction"

- In other words, if you set the noise to "zero", you are calculating the basin of attraction for the DETERMINISTIC system using the step-to-step transition matrix, \boldsymbol{f}; this basin is the region where MFPT (\boldsymbol{m}) is "infinite".
- If you have a description of the equations of motion (to calculate the step-to-step state transition), you can identify whether or not stable limit cycles exist w/out tweaking (trial and error) by hand to search for appropriate initial conditions.
- You need to take care to do appropriate (iterative) remeshing (and de-meshing) of the state space to get good resolution!! (i.e. try some mesh; calculate MFPT; then put in more mesh elements where MFPT changes drastically... , calc MFPT,...

Review:

How to answer, "how stable is your walker?"

- Monte Carlo approximation of MFPT from initial conditions
- computationally intense
- Direct (non-iterative) calculation of vector MFPT, m, using the transition matrix, f
- Vector \boldsymbol{m} and its gradient can be used in refining mesh
- System-wide stability analysis, by finding the largest eigenvalues and eigenvectors of $\boldsymbol{f}^{\boldsymbol{T}}$.
- scalar MFPT describes system
- quasi-stationary distribution can be found
- aperiodic walking can be modeled as a metastable limit cycle with a slow leakage rate.

Statistical metrics for stochastic stability

- Goal: Quantify stability for a system with definable noise
- New stability metrics:
- Describe statistics of failure events
- MFPT : "mean first passage time"
* Also called "mean time between failures" (MTBF)
* Longevity can also be measured in number of steps (rather than "time")
- MFPT = 1/r (inverse of leakage rate)
$-P_{x}(t)$: probability of falling by time t
- ML (maximum likelihood) time to fall
- time at which probability of having fallen exceeds some critical limit

Direct (Matrix) Calculation of MFPT

1) Discretize (mesh) the state space
2) Create the step-to-step (Poincare) transition matrix, \boldsymbol{f}

- $f_{i j}=\operatorname{Pr}\left(s_{n+1}=j \mid s_{n}=i\right)$, given our dynamics and noise.
- New states, s_{n+1}, modeled by probabilistic arrival at nearby mesh nodes.
- "Failure" (falling) is a self-absorbing state in f.

3) Calculate the 3 largest eigenvalues $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ of \boldsymbol{f}^{T}

- $\lambda_{1}=1 ; 1$ st eigenvector: $[0, \ldots, 0,1]^{\top}$ shows inevitability of a "failure" as $t \rightarrow \infty$
- $1-\lambda_{2}=r ; r=1 / \mathrm{mfpt}$ (metastable "leakage rate") ; 2nd eigenvector gives the quasi-stationary distribution of the metastable basin of attraction.
- λ_{3} provides an estimate of "mixing time" to forget initial conditions. "Fast" mixing implies: $1 / \tau_{2}=\log \left(1 / \lambda_{2}\right) \ll \log \left(1 / \lambda_{3}\right)=1 / \tau_{3}$, so $\left(1-\lambda_{2}\right) \ll\left(1-\lambda_{3}\right)$

4) Calculate the MFPT for each discrete node in the mesh

- $\boldsymbol{m}=\left[I-f^{\prime}\right]^{-1} 1$, where f^{\prime} contains the non-absorbing rows and cols of f, and 1 is the ones vector

5) Refine mesh where the gradient in MFPT is most significant

Monte Carlo = computationally intense

- Estimating the MFPT over the state space takes many, many trials
- Motivation for efficient mathematical tools
- We present a more direct method to calculate this distribution...

MFPT over a 2D slice of (3D) state space

Case Study: Passive Compass Gait on Rough Terrain

- Once walker begins a step, it follows a deterministic trajectory until it "hits the ground"
- Thus, we can pre-calculate and save trajectories; then interpolate to look up next step's initial condition (if any!) as a function of ground slope. Examples below...

Case Study: Passive Compass Gait on Rough Terrain

- Using "acrobot" (Spong) definition for states
- Continuous equations of motion are identical to the acrobot between the discrete impacts
- 4 states variable: Angles X_{1} and X_{2}, and their derivatives $\left(X_{3}\right.$ and $\left.X_{4}\right)$

Case Study:
 Passive Compass Gait on Rough Terrain

- Absolute mass not import: it's how the mass is distributed!
- Dimensionless inertia: $\mathrm{I}\left(\mathrm{mL}^{2}\right)$
- Intuitively, want low inertia swing leg. (Mass toward upper part of leg.)
- Three walkers analyzed:

	$(.5 \mathrm{mh}) /$ m	$\mathrm{a} /(\mathrm{a}+\mathrm{b})$	$\mathrm{I} /\left(\mathrm{mL}^{2}\right)$	$\mathrm{Lco} / \mathrm{L}$
Mid-size	1	.6	.0400	.8
Low-inertia	.15	.7	.0102	.74
Beam-leg	$1 / 3$	$1 / 3$.0833	.5

Initial walker design（＂mid－size＂）

－Mean＝ 4 deg slope
－STD＝ 1 deg
－MFPT ≈ 6 steps

7 total steps this run． $\mathrm{t}=0.0 \mathrm{~s}$ $\mathrm{EV}(y)=0.0698\left[4.00^{\circ}\right] ;$ std $(y)=0.0175\left[1.00^{\circ}\right]$

Initial walker design（＂mid－size＂）

－Mean＝ 4 deg slope
－STD＝ 0.5 deg deg
－MFPT ≈ 12 steps

8 total steps this run． $\mathrm{t}=0.0 \mathrm{~s}$ $\mathrm{EV}(y)=0.0698\left[4.00^{\circ}\right] ;$ std $(y)=0.0087\left[0.50^{\circ}\right]$

Low-inertia walker (more stable)

- Mean = 4 deg slope
- STD = 1 deg
- MFPT >= 110 steps

Does not fall in $20+$ total steps this run. $t=0.0 \mathrm{~s}$ $\mathrm{EV}(y)=0.0698\left[4.00^{\circ}\right] ;$ std $(y)=0.0175\left[1.00^{\circ}\right]$

Low-inertia walker (more stable)

- Mean = 4 deg slope
- STD = 2 deg
- MFPT ≈ 8 steps

Beam-legged walker

- Mean = 4 deg slope
- STD = 1 deg
- MFPT ≈ 2 steps

3 total steps this run. $\mathrm{t}=0.0 \mathrm{~s}$ $\mathrm{EV}(y)=0.0698\left[4.00^{\circ}\right] ; \operatorname{std}(y)=0.0087\left[0.50^{\circ}\right]$

Above: $S D=1 \mathrm{deg}$
Below: $S D=0$ deg (even)

What (metastable) "neighborhood" in phase space is visited most often?

- Most stable walker (low-inertia version) shown here
- MFPT of about 110 steps (STD of terrain = 1 deg)
- Black points indicate post-hit states (X3,X4 and alpha)

What (metastable) "neighborhood" in phase space is visited most often?

- Same (low-inertia) walker with STD = 2 deg (double)
- MFPT of about 8 steps
- 3 trials plotted (as points) on same axes here

MFPT relates to probability of a catastrophic (n-sigma) event (?)

- As the level of noise decreases, a "failure" may essentially correspond to the probability of a single large-gamma step on the terrain...

At right:
-MFPT recorded
-For a given std, what value "jump" in gamma corresponds to the leakage rate, 1/MFPT?
-Flat lines would indicate the walker is essentially waiting for a particularly bad one-time event
-Requires more run-time to make a conclusion here

Hip-Actuated Compass Gait Robot

- Robot under construction:
- CPU: PC/104, with MATLAB (Simulink)
- Single actuator (motor w/ gearbox) at "hip"
- Brake used as clutch to (dis)engage motor coupling between the legs.
- 3 rate gyros; 2 encoders; 2 accelerometers
- Reinforcement learning

- Future modifications:
- Retractable (telescoping) "point" feet
- Rugged terrain
- Replace power-hungry PC/104?
- Direct drive motor!

- Thanks to Arlis Reynolds (UROP) and Stephen Proulx (staff)!

Simple Biped Models

- Rimless Wheel
- Simplest "walker"
- Hybrid dynamics:
* continuous inverted pendulum
* discrete state change at impact
- Analogous to dynamics of a biped with all mass at hips

- Compass Gait

- Resembles a compass
- Stable limit cycles exist for particular downhill slopes
- Idealized CG model ignores:
* lateral stability
* ignores foot scuffing (no knees)

CSAIL

32 total steps this run. $\mathrm{t}=0.0: \mathrm{EV}(\mathrm{r})=0.0698\left[4.00^{\circ}\right] ; \operatorname{std}(\gamma)=0.0087\left[0.50^{\circ}\right]$

$\gamma=2.83^{\circ}$
$\gamma=3.32^{\circ}$
/=4.55

Traditional Stability Margin for Walkers

- Standard stability margins :
- Zero-moment point (ZMP)
- ...but a stable compass gait is always "falling forward"!

Stable compass gait on even terrain

Asimo

Robot Locomotion Group CSAIL, MIT

- Lab focus:

- Robot locomotion
- Control of underactuated systems
- Reinforcement learning
- Examples:
- "Toddler" (ankles actuated)
- Hip-actuated CG walkers
- Kneed walkers
- RC airplanes
- Ornithopter
- Soap film flow between filaments
- Acrobot
- DARPA "Little Dog" project

Outline

- Introduce the concept of stochastic stability
- Given a particular noise input, how often (statistically) will a walker fall?
- Long-living, aperiodic gaits can be modeled as "metastable" states
- Use statistics of failure such as the "mean first passage time" (MFPT) to define the relative degree of stability for a walker that will rarely, but inevitably, fall
- Discuss methods for determining failure statistics

1. Monte Carlo simulations
2. Calculations on the (probabilistic) step-to-step transition matrix, \mathbf{f}, to obtain failure statistics from any particular initial condition
3. Characterize stochastic stability using system-wide stability measures:

* quasi-stationary distribution of states visited in the metastable basin
* mixing time (to converge to basin) and system-wide failure rate
- Examples using a purely passive compass gait (CG) walker
- Gaussian variation in slope of terrain at each step

Modeling the system as a Markov chain: step-to-step transition matrix, f

- Iterative calculation of MFPT
- \boldsymbol{f}^{n} is the n-step transition matrix
- Calculate $\Sigma n\left(f^{n}\right)_{i j}$ to get MFPT from state, i, to the failure state, j.
- Infinite sum (as n goes to ∞) can be calculated non-iteratively (below)
- Non-iterative calculation of MFPT, m
- $m_{i}=\Sigma f_{i j} m_{j}+1$, summed over all j s.t. $s_{j} \neq$ failed state
- [l-f'] $\boldsymbol{m}=\mathbf{1}$ (eqn above in matrix form)
$\rightarrow m=\left[I-f^{\prime}\right]^{-1} 1$ direct calculation of MFPT!
- m is a vector giving the MFPT at each discrete state (mesh node)
- I is the identity matrix
- \boldsymbol{f}^{\prime} contains the non-absorbing rows and cols of \boldsymbol{f}
- 1 is the ones vector
- Gradient in \boldsymbol{m} can be used as a metric for remeshing

Analysis: System-wide stochastic stability

- Eigenvalue analysis of the transition matrix, f
- Calculate first 3 eigenvalues and eigenvectors of (sparse matrix) f^{T}

1) $\lambda_{1}=1$ (failure is an absorbing state; it persists for all time) 1st eigenvector: $[0, \ldots, 0,1]^{\top}$ shows to inevitability of a "failure" as $t \rightarrow \infty$
2) $1-\left|\lambda_{2}\right|=r ; r=1 / m$ ("leakage rate" is the inverse of the MFPT) 2nd eigenvector renormalized (to exclude failure state) represents the quasi-stationary distribution of the stochastic basin of attraction.
3) λ_{3} provides an estimate of "mixing time" to forget initial conditions.
"Fast" mixing implies: $1 / \tau_{2}=\log \left(1 /\left|\lambda_{2}\right|\right) \ll \log \left(1 /\left|\lambda_{3}\right|\right)=1 / \tau_{3}$,
so (1-| $\left.\lambda_{2} \mid\right) \ll\left(1-\left|\lambda_{3}\right|\right)$ implies separation of time scales.

Creating the step-to-step transition matrix

- Discretize (mesh) the state space
- For each mesh node, simulate continuous dynamics
- Solve for post-impact state for each of many (finite) slopes
- Use interpolation to approximate each new state
- Remesh to improve estimates

Above: barycentric interpolation. (Using $N+1$ out of the 2^{N} nodes in an N-dimensional box-type element.)

