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INTRODUCTION 
We present a stability analysis for passive compass gait 
walkers on uneven (rough) downhill terrain. Although 
deterministic definitions of stability do not apply, for 
sufficiently low levels of noise the resulting dynamics are 
governed by a stochastic convergence to a "metastable" 
(long-living) limit cycle. For unbounded noise models 
(e.g. Gaussian), the walker will eventually exit (or 
“escape”) from this metastable cycle with a probability of 
one as time goes to infinity, entering an absorbing state 
(falling or standing still). Experimental walking machines 
are subject to similar random disturbances; statistics of the 
associated stochastic process, such as the mean first 
passage time (MFPT) to a fallen state, may be the correct 
way to quantify walking stability. 
 
METHODS 
The data presented here come from Monte Carlo 
simulations of the equations of motion for a 2D compass 
gait (CG) as it walked down an uneven slope. Each 
simulation run began with a particular double-stance 
initial condition, and histograms of the number of 
successful steps taken were recorded and used to estimate 
the MFPT as a function of the initial state. The CG has a 
mass, mh, at its hip and a mass, m, at distance a measured 
from the toe along each unit-length leg (L=1); ground 
collisions were modeled as inelastic. The ground slope 
between the stance and swing leg at each collision had a 
Gaussian distribution, with a mean slope of 4 degrees. We 
compare two walkers, listed in Table 1.  
 
RESULTS AND DISCUSSION 
Figure 1 shows a slice of the deterministic basin of 
attraction (top) and a plot showing MFPT as a function of 
initial conditions (the “stochastic basin of attraction”) on 
terrain with a std of 0.5° for walker #1. Along the ridge of 
the stochastic basin, the MFPT is about 20 steps. 
Qualitatively, the stochastic basin resembles a low-pass 
filtered version of the deterministic basin; it identifies how 
"safe" states are relative to each other. The deterministic 
basin for walker #2 (not shown) is wider than that of #1, 
and this walker is also not as sensitive to noise in ground 
slope. For a std of 1°, the MFPT for walker #2 is about 
150 steps, compared to about 6 steps for walker #1. 
 
For a std of 0.5 deg, the failure or “leakage” rate (the 
inverse of the MFPT) from the metastable basin for walker 
#2 is empirically so slow that Monte Carlo estimation 
seems impractical.  We are developing algorithms to 
efficiently estimate the entire FPT distribution for these 
systems by discretizing the state-space and writing the 

stochastic step-to-step return map as a Markov chain.  
Iterating the transition matrix of the Markov chain can 
produce the entire first passage time distribution, and the 
mean FPT can be calculated directly (no iterations) from 
the transition matrix.   

Table 1: CG geometry and MFPTs on uneven terrain. 
 

mh/m a (m) 
MFPT: 
std .5° 

MFPT: 
std 1.0° 

walker #1 2.0 .6 20 6 
walker #2 0.3 .7 >>100,000 150 

 
CONCLUSIONS 

 
Figure 1:  Deterministic basin of attraction (top) and a 
plot of MFPT (bottom) for walker #1. x-y axes  are the 
stance-leg and inter-leg angular velocities (rad/s), X3 
and X4, for a post-collision initial condition on a 4° 
slope with an inter-leg angle of approximately 33.4°. 

The concept of metastability can be used in modeling a 
variety of stochastic noise sources (uneven terrain, 
elasticity of ground collision, disturbance forces and 
torques, etc.). The MFPT provides a way of comparing the 
relative stability of different mechanical passive designs, 
and it can also be used in optimizing actively-controlled 
walkers based on passive dynamic principles. In our own 
research group, for instance, this metric has particular 
significance as a goal for optimization in reinforcement 
learning.
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