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I. INTRODUCTION

In the last decade researchers have built incredible new
capabilities for small aircraft, with quadrotors moving from
labs to toy stores and with autonomy reaching smaller and
smaller vehicles. As the systems, and their payload capacities
shrink, we can no longer use typical aircraft sensors such as
RADAR, scanning LIDAR, and other active sensing methods
for obstacle detection and avoidance. Smaller vehicles must
move to lighter weight sensors.

Cameras are lightweight, fast, and information dense but
can require sophisticated, often slow, processing to be useful
for robotic applications. Here, we demonstrate that high-
speed embedded stereo vision offers a way forward for fast-
flying aerial vehicles. The presented solutions are lighter,
provide more information, and use less power than laser
ranging systems. They work in outdoor environments that
overwhelm active IR depth cameras, and do not suffer from
scale observability like monocular camera systems. The new
algorithms and processing techniques presented here enable
us to detect obstacles faster, with less payload, and less
computational hardware than ever before.

We present the only two embedded stereo (two-camera)
vision systems running at high frame rate with low enough
power and weight requirements for small flying platforms.
These systems provide full 3D positions of points seen
by the cameras, which is essential for obstacle avoidance
and safe, robust flight. These two systems were developed
independently by ETH Zürich and MIT for solving the
problem of providing accurate, rich sensing in a package
small enough to fit in the payload constraints of mico-aerial
vehicles (MAVs).

The two systems differ in their processing, with one
using an onboard FPGA (field programmable gate array)
to perform dense semi-global matching (SGM) [4], [6] and
the second using conventional ARM processors to perform
pushbroom stereo [1]. Both systems run at 120 frames per
second (fps) at 320x240 pixel resolution, on duplicate fixed-
wing platforms flying over 30 MPH (13.4 m/s).
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Fig. 1: Our experimental aircraft platforms holding the
FGPA stereo system (front) and the pushbroom stereo system
(back). Cameras are mounted on the front of the wings at
the same baseline (34 cm) on both airframes. Covers over
the electronics were removed for this photograph.

II. BACKGROUND

In the last few years, micro air vehicles (MAVs) have
demonstrated amazing agility and aggressive flight in motion
capture environments. As we move toward using MAVs for
field applications, sensing needs to be moved on-board.

Optical flow sensors, essentially an optical computer
mouse with a different lens, are useful for guidance in
relatively uncluttered environments [5], have been shown to
work for autonomous takeoff, landing, and obstacle avoid-
ance [10], and are now available in commercial products1. In
highly complex environments, like urban or forest settings,
optical flow may not be precise enough to dodge small
obstacles along careful paths.

Lightweight and fast cameras have driven a substantial
body of work on real-time stereo vision (see [7]). To fit these
systems on continuously-smaller UAVs, the field is pushing
weight and framerate requirements more than ever. At 30
frames per second (fps), an aircraft moving at 10 m/s will
move one-third of a meter between frames, whereas at 120
fps, one acquires new data every 8.3 cm. With a detection
horizon of only 5 meters in some cases, fast detection is
essential to successful flight.

High speed FPGA-based stereo systems have seen com-
mercial successes like the MultiSense line from Carnegie
Robotics, but for the most part are too heavy for MAVs. In
[2], the authors demonstrate a low power implementation of
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SGM matching with 680x400 pixels at 25 fps on an FPGA
used for pedestrian detection. Their test system performs
the stereo matching in hardware but leaves image capture,
distortion correction, and rectification for the CPU. Another
example, [3], processes 1920x1080 images at 60fps with 256
disparity values using sum-of-absolute-differences, resulting
in larger more information rich images than we present.
Miniaturization of that system is required before it is ready
for flight testing on an MAV that cannot carry a substantial
payload weight.

A. Stereo Vision

It is well known that given several 2D images of the same
scene taken from different viewpoints, one can establish
correspondences between parts of the image to extract 3D
depth information from the scene. In stereo, we use two
cameras rigidly fixed to each other with a known horizontal
displacement between then. If we find a match between
points in the image planes, we can use triangulation to
calculate the true 3D position that generated the projected
image points.

The difficulty is searching for correct point correspon-
dences. Geometric relations can be used to reduce the search
range for a corresponding point, from the whole image to a
single line. Figure 2 shows a setup with two image planes.
Given point X in the 3D space and its projection XL on
the image plane of the left camera, the corresponding point
XR in the right camera plane is located somewhere on the
epipolar line (red). This constraint substantially reduces the
effort of searching corresponding points. After a point pair
is found, the 3D coordinate is calculated using triangulation.

To produce more robust results, the search for correspon-
dences can be based on blocks of pixels instead of single
pixels. The search can also be extended to global meth-
ods, where cost paths over the entire image are computed.
The popular SGM algorithm uses these global consistency
constraints to penalize changes and discontinuities in the
disparity image.

III. VISION SYSTEMS

In this section, we describe the two stereo vision systems,
an FPGA implementation of semi-global matching, and a
conventaional CPU implementation of pushbroom stereo. We
detail how each system works and their key differences for
use in obstacle detection on small, lightweight UAVs.

A. Fast Stereo on FPGA

Using an FPGA, we perform semi-global matching stereo
(SGM) at high speed [6]. The FPGA allows us to implement
the algorithm in hardware, making it vastly more efficient
than a CPU or GPU implementation. We run it on a small,
lightweight FPGA and companion CPU board that is 76 mm
x 46 mm and weighs 50 grams.

Slight modifications to the SGM algorithm allow us to
reduce latency to 2 ms. The companion CPU allows the
user to send new configuration parameters, recalibrate the
system, and easily access the depth map output. The FPGA
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Fig. 2: A point XL and candidates Xi for the corresponding
point XR. All of the candidates are located on the epipolar
line (red) defined by the intersection of the plane XL, OL,
and OR with the right image plane.

acts as a layer between cameras and CPU, allowing the CPU
to perform normal image-capture and receive a depth map,
giving the user substantial flexibility for further processing.

B. Fast Stereo on ARM

Our second approach uses conventional ARM processors
to perform a subset of standard stereo vision computation
at high framerate [1]. Conventional block-matching stereo
vision estimates depth by matching blocks of pixels in the
left image to their counterparts in the right image. The search
checks pixels at different disparities, from zero disparity
where the camera’s separation is insignificant compared to
the object’s distance, to a large disparity where the corre-
sponding pixels appear far apart in the two images.

We think of this search as a search through depth. As
disparity decreases, we are searching for matches further and
further from the cameras. Given that model, if we constrain
ourselves to search only at one depth, d meters away,
we substantially reduce our computational load. Instead of
searching through depth for a match, we ask, “does this pixel
block appear to be an object d meters away?” In practice,
this results in about a 20x reduction in computational load.

Once we can identify when obstacles are d meters away,
we can use a state estimator to remember where they are and
update their relative position as we continuing flying. Thus,
like a broom sweeping a floor, we sweep through depth and
can recover a full, local 3D pointcloud (Figure 3).

C. Comparison

1) Latency: The FPGA stereo system directly interfaces
the image sensors and reads out the pixel data stream. All
hardware blocks are pipelined and run at pixel clock speed
of the image sensors. The overall latency of the disparity
estimation pipeline is a constant 2 milliseconds, and is
primarily caused by a buffer required to align the images
to fulfill epipolar geometry.



Fig. 3: Pushbroom stereo detects at only one depth (darkest
blue), but can recover full depth information by remembering
the obstacles it has seen (lighter blues).

Latency in the pushbroom stereo system is constrained to
framerate, or 8.3 milliseconds. In the results shown here, we
use a simple “detect twice” filter to remove false-positives,
requiring two frames of data before deciding something is
an obstacle, increasing latency to 16.6 ms. Future work
will implement more sophisticated filtering to remove this
additional latency.

2) Power Consumption: The total power consumption of
the FPGA system is less than 5 Watts for the disparity
estimation including cameras, FPGA, mobile CPU and power
converters. The clock speed of the FPGA processing pipeline
is selected as low as possible while maintaining full frame
rate. The fully loaded pipeline leads to a uniform power
consumption.

The pushbroom system requires 20 watts, running on two
ODROID-U3 computers requiring 10 watts each. When idle
(not capturing images) power consumption is reduced via
traditional automatic scaling of CPU speed.

3) Synchronization: The FPGA system generates a global
clock domain for the camera sensors. A reset trigger is set
simultaneously on both sensors what results in a synchro-
nization on a per pixel base. Therefore no buffer is needed
to synchronize the image streams and the synchronization
latency is minimized. This synchronization by hardware con-
figuration allows for simultaneous exposure of both image
sensors.

The pushbroom stereo system synchronizes images by
initiating capture as close as possible in software via USB
communication to the cameras. Interestingly, the high fram-
erate and short exposure time limits the mismatch between
frames, allowing the system to operate at high speeds.

4) Reusability/Flexibility: Given the FPGA and camera
interface, the onboard configuration is interchangeable. Pre-
compiled hardware blocks can replace the stereo core to
accelerate any other algorithm, allowing even inexperienced
users to modify the configuration to suit their application.

By using commercial, off-the-shelf parts and open source

code, the pushbroom stereo system is easy to adapt to new
platforms and hardware. Unlike the FPGA system, most
choices of cameras, CPUs, and mountings will work. Any
existing stereo rig with a state estimator can be reconfigured
in software for pushbroom stereo.

Though the FPGA system presented is currently develop-
ment hardware, it is planned to be commercially available
as part of the visual-inertial navigation package called the
VI Sensor from SkyBotix AG2, which also features an IMU
tightly-synchronized to the image input [8].

IV. SYSTEM AND PARAMETER DESIGN

Stereo suffers with varying inter-camera roll, pitch, and
yaw. Increased depth map density and increased detection
distance forces stiffer and stiffer mounts. On MAVs, weight
considerations constrain the options primarily to lightweight
carbon fiber and plastic. For sufficient range on our systems
with wide angle lenses, we used 34 cm baselines. It was un-
known at the beginning whether this baseline could be made
robust on a fast-moving airframe with vibrating propellers
without adding significant weight. Our experiments confirm
that our mount designs prevent both high-frequency vibration
and one-time impact from misaligning the cameras.

A. Baseline and Physical Mounting

Stereo baseline, or the distance between cameras, roughly
defines how far a stereo system can detect obstacles and
the mounting hardware required to maintain calibration. To
detect obstacles at z meters away, we note:

z =
fb

d
(1)

Where z is the metric distance of the object from the camera
image plane, f is the focal length in pixels, b is the baseline
in meters, and d is the disparity (i.e., difference in pixel
location between the left and right image) in pixels.

In the FPGA system, we search over a disparity range
from 1 to 31 pixels. Since disparity is the inverse of depth,
our error scales inversely with the disparity: at d = 2 pixels,
an error of 1 pixel in the disparity estimation can result in an
error of tens of meters in depth estimation. At d = 31 pixels,
each pixel of disparity error, leads to an error of centimeters
or less.

The FPGA system, with a dense depth map and long
range required a stiff carbon fiber rod that rigidly attached
the two cameras together (Figure 4a). The sparser, shorter
range pushbroom stereo system is much more robust to small
disturbances in camera calibration, which allowed us embed
the cameras in the aircraft’s foam body without adding
additional members (Figure 4b).

Both mounts maintained calibration throughout a variety
of flight conditions and ground impacts. Surprisingly, we
did not find that the aircrafts’ high speed motors (14,800
RPM) caused particular issues. We note that we balanced
our propellers3, which can make a substantial difference.

2skybotix.com
3Propeller balancing is an easy process and only requires about $20 USD

for a balancer plus some sandpaper.



Rotation Axis lower upper Effectbound (deg) bound (deg)
Optical Axis 0.15 2.13 no matching
Horizontal Axis 0.11 1.6 no matching
Vertical Axis 0.11 - wrong matching

TABLE I: Effects of single-camera rotations on the stereo
system. These values are computed with the camera param-
eters of our FPGA system.

B. Mount Tolerance Analysis

Since no camera mount is perfectly rigid, vibrations will
degrade calibration and disparity estimation. Here we com-
pute bounds for these effects on stereo vision. We assume
the matching algorithm is using the camera parameters from
our FPGA system. The following equations are for rotations
of one camera with respect to the other.

Misalignment from rotation around the vertical or hori-
zontal axis is computed as follows:

α =
∆pixel

f
(2)

where α is the rotation in radians, f is the focal length in
pixels and ∆pixel is the shift in pixels. Rotation around the
optical axis caused by a shift of the outermost pixels of a
matching line is:

β = arctan
∆pixel

sx/2
(3)

where β is the rotation in radians, ∆pixel is the vertical shift
in pixels and sx is the horizontal resolution of the image.

A rotation around the optical or horizontal axis results in
an offset of the epipolar line, causing valid candidates for
a corresponding point to move outside the search space. A
rotation around the vertical axis shifts the candidates on the
same epipolar line, resulting in an incorrect disparity estimate
but valid matches by the stereo algorithm.

We provide upper and lower bounds for these rotations in
Table I. The lower bounds indicate rotations where there is
no effect on the matching, while the upper bounds indicate
rotations large enough for the system to fail to estimate
depth.

C. Focal Length

On aircraft, focal length (and thus field of view) deter-
mines how fast the aircraft can safely turn. Wide angle
lenses make obstacles visible earlier in the turn, but force
lower pixel density throughout the image. In practice, a wide-
angle lens will reduce the distance the system can accurately
perceive obstacles. The pushbroom stereo system uses a focal
length of 2.1 mm, allowing for approximately 150 degrees
field of view, but limiting it’s effective range to about 5
meters. The FPGA system uses focal length 3.6 mm lenses,
allowing it to see further with similar accuracy. We note
that focal length also affects radial distortion, complicating
camera calibration. In practice, most careful calibration is
possible, although increasingly time-consuming with wide-
angle lenses.

Carbon fiber spar

3D printed mount

(a) Rigid FPGA camera mount with carbon fiber spar connecting
the cameras.

(b) More flexible pushbroom stereo mount.

Fig. 4: Comparison of stereo camera mounts.

V. TEST SYSTEM

In order to directly compare the two vision systems, we
mounted them on duplicate platforms. We chose a high-
speed, maneuverable fixed-wing airplane to demonstrate the
capabilities of the two systems, and see how they behave in
real outdoor environments at speed.

A. Fixed-Wing Airplane

We used a modified Team Black Sheep Caipirinha air-
frame with an onboard IMU, GPS, and pitot tube airspeed
sensor from 3D Robotics in the APM 2.5 package (Figure 1).
The deltawing aircraft has a 86 cm (34 inch) wingspan, a stall
speed of approximately 7 m/s (15 MPH), and a maximum
speed around 22 m/s (50 MPH). With the pushbroom stereo
system, the aircraft weighs 664 grams. The aircraft holding
the FPGA system weighs approximately 710 grams. Both
airframes have a roll rate in excess of 300 degrees per
second and are powered by an 8-inch propeller spinning
at approximately 14,800 RPM. We note that the airframes
support a passively spooling non-conductive safety tether
which we used for all experiments.

VI. RESULTS

A. Test Scenario

We flew both systems in the same location, near the
same obstacles at different times (Figure 5a). Each test flight
consisted of a launch from a catapult, manual flight near an
American football goalpost, and landing. During each flight,
we logged all sensor and perception data.



(a)
(b)

Fig. 5: (a) Sketch of the flight experiment near an obstacle.
(b) The FPGA produced grayscale depthmap (top) compared
with raw image (bottom) of the obstacle.

This scenario allowed us to test the capabilities and
robustness of our vision systems in real flight conditions,
with vibration, lighting variations, and high G-forces from
launch and landing present. Autonomous flights with the
fixed-wing aircrafts will be explored in future work.

B. Obstacle Detection

In every flight, both systems correctly identified points
on the fieldgoal obstacle. The dense FPGA system correctly
identified almost the entire obstacle, whereas the pushbroom
system identified sections of it (Figures 6a and 6b). Each sys-
tem demonstrated robustness to vibration, lighting variation,
and G-forces (Figure 7).

In the case of the FPGA stereo system, the image matching
stayed dense through 8+ Gs and 75 degree rolls. It also man-
aged to remain in good calibration through approximately 10
rough landings, but needed to be recalibrated after that. Note
that the failure case for the calibration is that the matches
become more sparse, i.e., more similar to the ARM system.

Figure 8 demonstrates the primary difference between
the two systems. The FPGA system (blue dots) produces
many matches, increasing in number as the distance to the
obstacle decreases. The pushbroom system detects nothing
until the threshold distance (4.8 meters), around which it
find matches (green stars). Past that distance, there are no
additional detections, but past detections remain in memory
(red crosses).

C. Disparity Data

The FPGA system produces dense stereo data, giving
depth on almost the entire fieldgoal (Figure 5). The push-
broom stereo system is tuned to reject almost all outliers,
so all detections can be treated as obstacles without further
processing. The dense data delivers more information about
nearby obstacles, but also requires more intelligent filtering

(a) Depth output from the FPGA system overlaid on the right
camera image. Depth ranges from red (close) to blue (far).

(b) Obstacle detections with the pushbroom stereo system. De-
tections generated by this frame are in blue and past detections
reprojected onto the frame via the state estimate are in red.

Fig. 6: Comparison of outputs detecting the same obstacle
on different flights with the FPGA and pushbroom systems.
Note that the pushbroom system produces substantially more
sparse data than the FPGA’s dense depth map.

for autonomous operation (Figures 6 and 9). We have im-
plemented such a system in real-time in prior work using U-
and V- disparity maps, as described in [9].

The pushbroom system, by its nature, provides meaningful
data only when the vehicle is moving. This is a concern for
a quadrotor in hover, but we note that hovering vehicles can
often tolerate lower framerates while they are stationary.

D. Limitations

All stereo systems face limitations in untextured scenes.
Two camera systems fail in the face of symmetry about the
camera baseline axis, in this case, the horizontal axis, when
pixels on an object look similar at many disparities. The
pushbroom system is also susceptible to moving obstacles,
although in this work flight speed limits that to objects
moving far faster than any we encountered. Finally, high-
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(a) Airspeed data from two similar flights with the FPGA system
(blue) and the pushbroom system (red). Note our aircraft flies at
speeds up to 17 m/s (38 MPH or 61 km/hr). Wind during both tests
flights was minimal, so here we can use airspeed as a reasonable
approximation of ground-speed.
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(b) Total acceleration over time for a flight of the FPGA configu-
ration (blue) and the pushbroom configuration (red). Both systems
withstand approximately 8 Gs at launch, operate between ±3 Gs,
and withstand larger accelerations during landing.

Fig. 7: Data from two selected flights demonstrating the
systems’ robustness to high speeds and accelerations.
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Fig. 8: Number of pixels detected while flying towards the
fieldgoal obstacle. The FPGA system produces an increasing
number of detections as the obstacle nears (blue dots), while
the pushbroom system only detects the obstacle around the
set distance of 4.8 meters (green stars). Past that, pushbroom
detections (red crosses) remain in memory for avoidance.
Note that the X-axis is reversed allowing time to flow left-
to-right.
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Fig. 9: 3D pointcloud generated from the depth map in Figure
6a. False colored by height ranging from blue (low) to red
(high).

speed vision is forced to use short exposure times, limiting
both systems to relatively bright environments.

VII. CONCLUSIONS AND FUTURE WORK

Future work includes improvements to the sensor plat-
forms and integration with autonomous control systems.
With faster hardware, the pushbroom stereo system can
detect obstacles at multiple discrete depths, allowing for tem-
poral consistency checks as the vehicles moves forward. We
believe that both of these systems are sufficient for obstacle
avoidance in natural scenes on fast-moving vehicles. Current
[6] and future work will focus on high-speed autonomous
flight.

We have described the first-ever comparison of any two
high-framerate stereo vision systems flying on such small
platforms in real outdoor environments. The systems handle
varying lighting conditions, sensor noise, blur, vibration, and
high-G impact successfully. The FPGA system generates
dense data, useful for a variety of tasks but requires cus-
tom hardware and software, while the pushbroom system
generates highly sparse data, but is more accessible. Going
forward, we see a bright future for high-speed vision sys-
tems on UAVs. As computation and sensors improve, these
algorithms will scale to higher resolutions, framerates, and
accuracy.
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