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Abstract— We present a novel stereo vision algorithm that
is capable of obstacle detection on a mobile ARM processor
at 120 frames per second. Our system performs a subset of
standard block-matching stereo processing, searching only for
obstacles at a single depth. By using an onboard IMU and state-
estimator, we can recover the position of obstacles at all other
depths, building and updating a local depth-map at framerate.

Here, we describe both the algorithm and our implemen-
tation on a high-speed, small UAV, flying at over 20 MPH (9
m/s) close to obstacles. The system requires no external sensing
or computation and is, to the best of our knowledge, the first
high-framerate stereo detection system running onboard a small
UAV.

I. INTRODUCTION

Recently we have seen an explosion of exciting results
on small, unmanned aerial vehicles (UAVs) such as obstacle
avoidance and trajectory tracking [24], formation flight [20],
[25], and cooperative interactions with the environment [6],
[23], [29]. All these systems, however, rely on an external
motion-capture apparatus that gives the vehicles almost per-
fect state information at high rates. As we move these tasks
out of the lab and into the field, we need new techniques to
provide this sensing information.

A major challenge in gathering sensing data necessary
for flight is the limited payload, computation, and battery
life of the vehicles. These small aircraft, weighing under
1-2 kg, struggle to carry enough sensing payload for high-
speed navigation in complex 3D environments. Lightweight
cameras are a good solution, but require computationally
efficient machine vision algorithms that can run within the
limits of these vehicles. For these reasons, camera based
systems have so far been limited to relatively slow, stable
flight regimes [10], [31]. We aim to fly at speeds of 7-15
m/s through cluttered environments like a forest, well outside
the typical speed regime. While we need fast framerates with
short exposures to avoid motion blur and to have enough time
to avoid oncoming obstacles, the short wingspan required to
fit through gaps in the clutter limits our payload capacity.

To this end, we propose a novel method for stereo vision
computation that is dramatically faster than the state of the
art. Our key observation is that vehicles moving quickly
through the environment can build a sufficient map using
a small subset of the normal stereo computation. Using this
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Fig. 1: In-flight snapshot of single-disparity stereo detections on
a goalpost (blue boxes) and past detections integrated through the
state estimate and reprojected back on the image (red dots). Overlay
includes relevant flight data such as airspeed in MPH (left) and
altitude in feet (right).

technique, we can detect obstacles in real time at 120 frames-
per-second (fps) without specialized hardware. Our system
is lightweight and accurate enough to run in real time on our
aircraft, allowing for true, self-contained obstacle detection.

II. RELATED WORK

A. Obstacle Detection on UAVs

Obstacle detection on small outdoor UAVs continues to
be a challenging problem. Laser rangefinders usually only
support 2D detections and are generally too heavy for flight,
although some systems with large wingspans [7] or limited
flight time [28] exist. Other active rangefinders such as the
Microsoft Kinect1 and PrimeSense2 systems rely on less
focused infrared light and do not work in bright outdoor
environments. Here we detail some of the related vision and
other lightweight sensors for this class of vehicles.

B. Optical Flow

Embedded optical flow techniques rely on hardware (such
as commonly found in optical mice) to compute the inter-
frame changes between images to extract depth information.
These techniques have worked well on UAVs, demonstrating
autonomous takeoff, landing [2], [3] and obstacle avoid-
ance [4], [36]. This technology has been successful for
aircraft flight control and is now available commercially3.

1Microsoft, Inc. http://www.microsoft.com/en-us/
kinectforwindows/

2PrimeSense, LTD. http://www.primesense.com/
3senseFly LTD. http://www.sensefly.com/



Embedded optical flow, however, is limited in its resolution,
providing only general guidence about obstacles. For more
sophisticated flight, such as flying in a cluttered environment
like a forest, we must look beyond embedded optical flow
techniques for solutions that provide greater resolution.

C. Monocular Vision

Monocular vision techniques are attractive because they
require only a single, lightweight camera, are readily avail-
able, and easy to deploy. State of the art monocular depth
estimation, however, is generally not fast and reliable enough
for obstacle avoidance on fast-flying UAVs. Using expert
demonstrations and learning, Ross et al. demonstrate a UAV
flying at 1.5m/s through a forest [30]. Recently PTAM
(parallel tracking and mapping) [19] has allowed systems
with a downward facing camera to perform stable, drift-free
hover and slow flight [31]. When integrating inertial mea-
surement sensors and a barometric altimeter, stable flights in
indoor and outdoor environments are possible [1]. With a full
vison-aided inertial navigation system (VINS), Li et al. have
shown remarkable tracking with commodity phone hardware,
demonstrating tracking within 0.5-0.8% of distance traveled
for significant distances [21], [22].

D. Stereo Vision

While we have seen substantial improvements in monoc-
ular vision systems recently, they are not yet fast or accurate
enough for high-speed obstacle avoidance on small UAVs.
Stereo systems suffer from a similar speed issue, with most
modern systems running at or below 50 Hz [8], [35]. Recent
work on an ultra lightweight flapping UAV demonstrated
a 4.0 gram line-based stereo algorithm running at various
rates from 11 Hz at 128x96 to 40 Hz at 128x32 on a 168
Mhz embedded processor [9]. Their algorithm also aims to
significantly reduce computational requirements, but does so
by matching along lines of images instead of reducing the
number of disparities searched. In [12], Goldberg demon-
strates significant low-level optimization and the use of a
DSP to obtain stereo frame rates up to 46 Hz on a Gumstix
processor with the same cameras we use below.

Plane-sweep stereo sweeps planes through images at dif-
ferent disparities, projecting the different camera views into
the same space, allowing for photoconsistency checks at
different disparities [33]. Our pushbroom stereo algorithm
takes a similar approach, but focuses on computational
efficiency through reduction of the number of disparities, or
swept planes.

Multi-resolution approaches can reduce computation load
by searching first in low-resolution versions of the input
images and progressing to higher resolutions in local areas
of interest [11]. While fast, these approaches can suffer from
small obstacles that were missed in the low-resolution pass.

Honegger et al. recently demonstrated an FPGA (Field
Programmable Gate Array) based system that can compute
optical flow and depth from stereo on a 376x240 image pair
at 127 fps or 752x480 at 60 fps [15], [16]. Unlike many
other dedicated processors such as [26], [34], and [32], their

Fig. 2: By detecting at a single depth (dark blue) and integrating
the aircraft’s odometry and past detections (lighter blue), we can
quickly build a full map of obstacles in front of our vehicle.

system is compact and lightweight enough for use on a small
UAV, but requires specialized hardware. By comparison, our
approach performs less computation and can work easily on
conventional hardware, but relies on the hypothesis that it
is sufficient for high-speed flight to compute a subset of the
stereo matches.

III. PROPOSED METHOD

A. Block-Matching Stereo

A standard block-matching stereo system produces depth
estimates by finding pixel-block matches between two im-
ages. Given a pixel block in the left image, for example, the
system will search through the epipolar line4 to find the best
match. The position of the match relative to its coordinate on
the left image, or the disparity, allows the user to compute
the 3D position of the object in that pixel block.

B. Pushbroom Stereo

One can think of a standard block-matching stereo vision
system as a search through depth. As we search along the
epipolar line for a pixel group that matches our candidate
block, we are exploring the space of distance away from the
cameras. For example, given a pixel block in a left image,
we might start searching through the right image with a large
disparity, corresponding to an object close to the cameras. As
we decrease disparity (changing where in the right image we
are searching), we examine pixel blocks that correspond to
objects further and further away, until reaching zero disparity,
where the stereo base distance is insignificant compared
to the distance away and we can no longer determine the
obstacle’s location.

Given that framework, it is easy to see that if we limit our
search through distance to a single value, d meters away,
we can substantially speed up our processing, at the cost
of neglecting obstacles at distances other than d. While this
might seem limiting, our cameras are on a moving platform
(in this case, an aircraft), so we can quickly recover the

4Standard calibration and rectification techniques provide a line, called
the epipolar line, on which the matching block is guaranteed to appear.
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Fig. 3: Pushbroom stereo overview.

missing depth information by integrating our odometry and
previous single-disparity results (Figure 2). The main thing
we sacrifice is the ability to take the best-matching block as
our stereo match; instead we must threshold for a possible
match.

During flight, this algorithm does not increase obstacle
detection latency over a full stereo system if d is set to
the maximum resolvable distance for the stereo baseline.
Once the platform has covered d meters, any new obstacles
will be immediately identified at the maximum possible
distance (excluding moving obstacles). We do sacrifice full
information if the platform turns sharply or in place. In
practice, on our aircraft with wide angle lenses, this is not a
large concern.

We give this algorithm the name “pushbroom stereo”
because we are “pushing” the detection region forward,
sweeping up obstacles like a broom on a floor (and similar
to pushbroom LIDAR systems [27]). We note that this
is distinct from a “pushbroom camera,” which is a one-
dimensional array of pixels arranged perpendicular to the
camera’s motion [13]. These cameras are often found on
satellites and can be used for stereo vision [14].

C. Odometry

Our system requires relatively accurate odometry over
short time horizons. This requirement is not particularly
onerous because we do not require long-term accuracy like
many map-making algorithms. In our case, the odometry is
only used until the aircraft catches up to its detection horizon,
which on many platforms is 5-10 meters away. We discard
obstacles that are behind the platform, since we are building
only a local 3D map. We demonstrate that on aircraft, a
wind-corrected airspeed measurement (from a pitot tube) is
sufficient. On a ground robot, we expect that wheel odometry
would be adequate.

IV. IMPLEMENTATION

A. Pushbroom Algorithm

Like other block-matching algorithms, we use sum of
absolute differences (SAD) to detect pixel block similarity.
In addition to detecting matching regions, we score blocks
based on their abundance of edges. This allows us to dis-
ambiguate the situation where two pixel blocks might both
be completely black, giving a good similarity score, but still
not providing a valid stereo match. To generate an edge map,

Detections on horizon

(a) Without horizontal invariance
filter.

(b) Horizontal invariance filter
enabled.

Fig. 4: All stereo systems suffer from repeating textures which can-
not be disambiguated with only two cameras. Here, we demonstrate
our filter for removing self-similarity. In this case, the horizon is
not uniformly flat, so horizontal invariance causes false positives
even when the aircraft is at an angle to the horizon. Detected pixel
groups are marked with squares.

we use a Laplacian with an aperture size (ksize) of 3. We
then take the summation of the 5x5 block in the edge map
and reject any blocks below a threshold for edge-abundance.

After rejecting blocks for lack of edges, we score the
remaining blocks based on SAD match divided by the
summation of edge-values in the pixel block:

S =

Sum of absolute differences (SAD)︷ ︸︸ ︷
5x5∑
i=0

|p(i)left − p(i)right|

5x5∑
i=0

L (p(i)left) + L (p(i)right)

where p(i) denotes a pixel value in the 5x5 block and L is the
Laplacian. We then threshold on the score, S, to determine
if there is a match.

We have deliberately chosen a design and parameters
to cause sparse detections with few false positives. For
obstacle avoidance, we do not need to see every point on
an obstacle but a false positive might cause the aircraft to
take unnecessary risks to avoid a phantom obstacle.

All two-camera stereo systems suffer from some ambigui-
ties. With horizontal cameras, we cannot disambiguate scenes
with horizontal self-similarity, such as buildings with grid-
like windows or an uninterrupted horizon. These horizontal
repeating patterns can fool stereo into thinking that it has
found an obstacle when it has not.

While we cannot correct these blocks without more so-
phisticated processing or additional cameras, we can detect
and eliminate them. To do this, we perform additional block-
matching searches in the right image near our candidate
obstacle. If we find that one block in the left image matches
blocks in the right image at different disparities, we conclude
that the pixel block exhibits local self-similarity and reject it.
While this search may seem expensive, in practice the block-
matching above reduces the search size so dramatically that
we can run this filter online. Figure 4 demonstrates this filter
running on flight data.

B. Hardware Platform
We implemented the pushbroom stereo algorithm on

a quad-core 1.7Ghz ARM, commercially available in the



Fig. 5: Aircraft hardware in the field. We use a small catapult for
consistent launches near obstacles.

ODROID-U2 package, weighing under 50 grams5. Our cam-
eras’ resolution and stereo baseline (34 cm / 14 in) can
support reliable detections out to approximately 5 meters,
so we use 4.8 meters as our single-disparity distance. We
detect over 5x5 pixel blocks, iterating through the images
with 8 parallel threads.

We use two Point Grey Firefly MV6 cameras, config-
ured for 8-bit grayscale with 2x2 pixel binning, running at
376x240 at 120 frames per second. A second ODROID-U2,
communicating over LCM [18], runs our state-estimatator (a
12-state Kalman filter from [7]) and connects to our low-level
interface, a firmware-modified APM 2.57, which provides
access to our servo motors, barometric altimeter, pitot tube
airspeed sensor, and 3-axis accelerometer, gyroscope, and
magnetometer suite. The second computer also uses the state-
estimate to transform the pushbroom stereo data into a global
map frame and accumulate it using OctoMap [17], allowing
us to build a local 3D pointcloud in realtime.

This platform sits aboard a modified Team Black Sheep
Caipirinha8, a 34 inch (86 cm) wingspan delta wing with a
2000kV brushless DC motor and 8-inch propeller9 (Figure
5). The with the computational and sensor payload, the plane

5Hardkernel co., Ltd. http://hardkernel.com
6Point Grey Research, Inc. http://www.ptgrey.com
73D Robotics, Inc. http://3drobotics.com/
8Team Black Sheep, http://team-blacksheep.com/

products/prod:tbscaipirinha
9Graupner 8x5 propeller.

OpenCV StereoPushbroom StereoObstacleComputed Distance

false-positive

Fig. 6: Sketch of our evaluation strategy for single-disparity stereo.
We detect false-positives by computing the distance from single-
disparity stereo’s output (red) to the nearest point from OpenCV’s
StereoBM (white). False positives stand out with large distances
(labeled box).

weighs 664 grams and has a stall speed of approximately
15 MPH (7 m/s). The aircraft’s maximum speed is 55-65
MPH (24-29 m/s) and it has a roll-rate exceeding 300 degrees
per second, allowing for fast obstacle avoidance. All outdoor
flights are conducted with the aircraft under control of a
passively-spooling non-conductive 250 meter safety tether.

V. RESULTS

A. Single-Disparity Stereo

To determine the cost of thresholding stereo points in-
stead of using the best-matching block from a search
through depth, we walked with our aircraft near obsta-
cles and recorded the output of the onboard stereo sys-
tem with the state-estimator disabled10. We then, offline,
used OpenCV’s [5] block-matching stereo implementation
(StereoBM) to compute a full depth map at each frame.
We then removed any 3D point that did not correspond to
a match within 0.5 meters of our single-disparity depth to
produce a comparison metric for the two systems.

With these data, we detected false-positives by computing
the Euclidean distance from each single-disparity stereo
coordinate to the nearest point produced by the depth-
cropped StereoBM (Figure 6). Single-disparity stereo points
that are far away from any StereoBM points may be false-
positives introduced by our more limited computation tech-
nique. StereoBM produces a large number of false negatives,
so we do not perform a false-negative comparison on this
dataset (see Section V-B below.)

Our ground dataset includes over 23,000 frames in four
different locations with varying lighting conditions, types of

10Our state-estimator relies on the pitot-tube airspeed sensor for speed
estimation, which does not perform well below flight speeds.



Fig. 7: Selected images from the ground dataset. Single-disparity
detections at 4.8 meters are highlighted in blue.
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Fig. 8: Results of the false-positive benchmark described in Figure
6 on 23,000+ frames. No Match indicates single-disparity points
where there was no matching StereoBM point on the frame. We
find that only 8.2% of detected pixels fall into this category.

obstacles, and obstacle density. Over the entire dataset, we
find that single-disparity stereo produces points within 0.5
meters of StereoBM 60.9% and within 1.0 meters 71.2%
of the time (Figures 7 and 8). For context, the aircraft’s
wingspan is 0.86 meters and it covers 0.5 meters in 0.03
to 0.07 seconds.

B. Flight Experiments

To test the full system with an integrated state-estimator,
we flew our platform close to obstacles (Figure 1) on three
different flights, recorded control inputs, sensor data, camera
images, and on-board stereo processing results. Figure 9
shows on-board stereo detections as the aircraft approaches
an obstacle.

During each flight, we detected points on every obstacle
in real time. Our state estimate was robust enough to provide
online estimation of how the location of the obstacles evolved
relative to the aircraft. While these flights were manually
piloted, we are confident that the system could autonomously
avoid the obstacles with these data. The integration of the
planning and control system will be reported in future work.

To benchmark our system, we again used OpenCV’s
block-matching stereo as a coarse, offline, approximation
of ground truth. At each frame, we ran full block-matching
stereo, recorded all 3D points detected, and then hand-labeled
regions in which there were obstacles to further increase
StereoBM’s accuracy.

We compared those data to pushbroom stereo’s 3D data
in two ways. First, we performed the same false-positive

Fig. 9: Sequence of stills from an obstacle detection. Each image
is 0.02 seconds (20ms) after the previous. The entire set captures
0.16 seconds. Here, the fieldgoal is detected in the first frames (blue
boxes). Afterwards, the position of those detections is estimated via
the state estimator and reprojected back onto the image (red dots).

Fig. 10: Obstacle detection from Figure 9 rendered in a 3D
visualizer. While we do not endeavor to build maps, our system
outputs pointclouds providing compatibility with many existing
planning, visualization, and control tools.

detection as in Section V-A, except we included all 3D
points seen and remembered as we flew forward. Second, we
searched for false-negatives, or obstacles pushbroom stereo
missed, by computing the distance from each StereoBM
coordinate to the nearest 3D coordinate seen and remembered
by pushbroom stereo (Figure 12a).

Figures 11 and 12b show the results of the false-positive
and false-negative benchmarks on all three flights respec-
tively. Our system does not produce many false-positives,
with 74.8% points falling within 0.5 meters and 92.6%
falling less than one meter from OpenCV’s StereoBM im-
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Fig. 11: Results of the comparison as described in Figure 6 on flight
data. Our system produces few outliers (74.8% and 92.6% within
0.5 and 1.0 meters respectively), even as we integrate our state
estimate, and the obstacle positions, forward. No Match indicates
points that pushbroom stereo detected but there were no block-
matching stereo detections on that frame.

plementation.
For comparison, a system producing random detections at

random times resulted in 1.2% and 3.2% of the points falling
within 0.5 meters and 1.0 meters of StereoBM respectively.
We set this benchmark system to produce, on expectation, the
same number of points per run as our pushbroom data and to
generate those points at random in-image locations. It uses
the same state-estimate and projections as our pushbroom
stereo system.

As Figure 12 shows, pushbroom stereo detects most of
the points on obstacles that StereoBM sees, missing by 1.0
meters or more 32.4% of the time. The random system
misses approximately 86% of the time by the same metric.
For context, the closest our skilled pilot ever flew to an
obstacle was about two meters.

These metrics demonstrate that the pushbroom stereo
system scarifies a limited amount of performance for a
substantial reduction in computational cost, and thus a gain
in speed. All thresholds were set experimentally by hand
and could be optimized in the future. We note that all data
in this paper used identical threshold, scoring, and camera
calibration parameters.

VI. CONCLUSION

Here we describe a system that performs stereo detection
with a single disparity. A natural extension would be to
search at multiple disparities, perhaps enabling tracking of
obstacles through two or more depths. As computational
power increases, we can increase the number of depths we
search, continuously improving our detection. Furthermore,
given a faster CPU, pushbroom stereo can process higher
resolution images than traditional methods, allowing us to
scale to newer, higher resolution cameras.

false-nega
tives
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technique.
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(b) False-negative comparison.

Fig. 12: Results of the false-negative benchmark on flight data. In
this comparison, we compute distance from each StereoBM point
(white) to the nearest pushbroom stereo coordinate (red). False-
negatives stand out with large distances. Pushbroom stereo performs
well, detecting an obstacle within 2.0 meters of StereoBM 91.3%
of the time.

We have demonstrated a novel stereo vision algorithm
for high-framerate detections of obstacles. Our system is
capable of quickly and accurately detecting obstacles at a
single disparity and using a state-estimator to update the
position of obstacles seen in the past, building a full, local,
3D map. It is capable of running at 120fps on a standard
mobile-CPU and is lightweight and robust enough for flight
experiments on small UAVs. This system will allow a new
class of autonomous UAVs to fly in clutter with all perception
and computation onboard.

Source Code Availability

Videos of flight experiments and our implementation of
the algorithms described above are available: https://
github.com/andybarry/flight.
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