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Abstract— Motivated by the extraordinary control capabil-
ities of birds flying through clutter, we seek to address the
open question of whether autonomous fixed-wing aircraft can
exhibit similar performance in obstacle-rich environments. We
address this question by developing a small autonomous aircraft
that is capable of a high speed (10 body-lengths per second)
“knife-edge” maneuver through a gap that is smaller than
its wingspan. The maneuver consists of flying towards a gap
between two obstacles, rolling to a significant angle, accurately
navigating between the obstacles, and rolling back to horizontal.
We address the necessary hardware, estimation, planning and
feedback control for this challenging maneuver. Results from
hardware experiments validate the reliability and repeatability
of the control and flight systems.

I. INTRODUCTION

Avian flight far exceeds our best aircraft control systems.
Common birds routinely execute maneuvers well outside the
bounds of our flight controllers, such as rapidly navigating
through a forest, darting through extremely tight spaces, and
recovering from large disturbances (Figure 1). Our goal is
to understand how to make small fixed-wing aircraft achieve
similar feats in equally challenging environments.

In this work, we focus on the hardware, planning, and
feedback control problem. We assume that our system is
given full sensing information about its location and the
environment. The specific task we execute is a “knife-edge”
maneuver, in which a 28-inch wingspan aircraft is launched
at 7 meters per second (16 MPH) and must execute a
dramatic roll to navigate through a gap that is smaller than its
wingspan (Figure 2). This task forces our system to roll 70
degrees in under two body-lengths while maintaining precise
tracking following a 9-G launch that accelerates the aircraft
to 10 body-lengths per second.

II. RELATED WORK

There has been substantial progress in control for au-
tonomous flying robots in recent years. Mellinger and Kumar
developed an impressive array of maneuvers for quadrotor
vehicles, from flying through small gaps [13] to cooperative
grasping, transport, and formation flight [12]. Muller, Lu-
pashin, and Andrea presented a system for quadrotor vehicles
to juggle between themselves in flight [14]. Tomlin’s group
has demonstrated successful quadrotor blackflips without the
use of external motion capture as well as systems to avoid
collision between multiple quadrotors [5].
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Fig. 1: Pigeon flying through an obstacle course. Image cour-
tesy of Andrew Biewener, Concord Field Station / Harvard
University [8].
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Fig. 2: Sketch of the knife-edge task. The aircraft and
obstacles’ position and orientation are taken from flight data.

Aerobatic maneuvers on fixed-wing aircraft are generally
considered more difficult than on rotorcraft. The quadro-
tor platforms that have become common in robotics, for
example, are able to almost instantaneously apply force
along more directions than a traditional fixed-wing, with
their ability to hover, turn in place, and accelerate along an
almost arbitrary path in three dimensions. In contrast, fixed-
wing aircraft must coordinate their control actions, often by
changing their orientation to generate lift and/or thrust along
the desired vector.

One proposed approach to agile flight control design is
via imitation learning. Abbeel used this to great effect to
reproduce an acrobatic airshow on his autonomous helicopter
[1]. In this work, we are interested in maneuvers with tight



Fig. 3: Experimental platform.

kinematic constraints: our aircraft must perform a perform a
70-degree roll in 0.22 seconds immediately followed by a 60
degree roll in the reverse direction in 0.16 seconds. Further-
more, we are interested in algorithms that will allow planning
through previously unknown obstacle fields. Although one
cannot be sure, we felt that this class of maneuvers would
be difficult for even an extremely skilled pilot.

The work we present here builds more closely on the
previous work in fixed wing acrobatics. Cory used a similar
approach on a fixed-wing glider to perch on a wire [2].
Sobolic’s system uses a similar aircraft model to transition
from the hover regime to forward flight [16].

One other key difference in the work we present here
is the use of a “wingeron” design that has not previously
been explored on agile autonomous aircraft. The design calls
for the use of entire wings as control surfaces and offers
extremely high roll-rates at the cost of slightly more complex
dynamics.

III. AIRCRAFT HARDWARE

We have built an unmanned aerial vehicle (UAV) research
platform to serve as the testbed for algorithms and as the
final metric of performance (Figure 3). We use a “wingeron”
design that does away with the traditional wing and aileron
seen on most aircraft in favor of a wing that is completely
actuated; in other words, the entire wing rotates to act as a
control surface. This greatly expands the aircraft’s roll ability,
only saturating the roll rate when the wingeron approaches
90o to the oncoming flow. The wingerons, however, compli-
cate the flight dynamics due to the additional possibility of a
single wing stall during a turn. For example, if the aircraft is
executing a right roll, the left wingeron will be deflected up
to generate additional lift. Should that wingeron deflect too
much, it will stall, causing a loss of lift and the possibility
of the aircraft rolling in the opposite direction.

We use an asymmetric wing optimized using XFOIL
[4] for flight at 5-15 meters per second (Figure 4). We
cut the wing out of expanded polypropylene (EPP) foam,
chosen for its ability to absorb kinetic impacts without

Fig. 4: Airfoil profile, designed to optimize lift at speeds of
5-15 m/s.

permanent deformation. The wings are cut with a computer-
controlled hot wire to produce the appropriate airfoil and
then strengthened with light-weave fiberglass on the trailing
three quarters to ensure that the wing does not significantly
deform when subjected to torsional stress.

For propulsion, we use small outrunner brushless DC
motors and APC propellers commonly found on aircraft of
this scale. We use a two-motor, counter-rotating propeller
design that reduces the torque on the airframe produced by
changing the throttle. For only a minor efficiency cost, we
are able to effectively eliminate this effect, rendering the roll
dynamics invariant to the time derivative of the throttle.

Our on-board electronics package is based around a ARM
Cortex-A8 running Linux connected to an Atmel micro-
controller that is in turn connected to the motor speed
controllers, actuator servo motors, 3 axis gyroscope, 3-axis
accelerometer, and 3-axis magnetometer.

Due to the limited space in our motion-capture environ-
ment, we require a system to accelerate the plane to full
speed very rapidly. We use stretched elastic to accelerate
a carriage down an approximately meter-long (3.2 ft) rail,
with a 9-G peak force. A bar in front of the aircraft holds
the plane in place, even at full throttle, allowing us to release
the aircraft while the motors are running. The carriage is tall
enough to give clearance for the propellers.

IV. CONTROL

We denote the aircraft’s body-centric position in 3-
dimensional space and characterize the aircraft dynamics,
ẋ = f(x, u), using a 12-dimensional state as follows:

x =
[
xp yp zp ψ θ φ U V W R Q P

]T
xp, yp, and zp denote the aircraft position in the world
coordinate frame. ψ, θ, and φ denote yaw, pitch, and roll
respectively. U , V , and W are the derivatives of the positions
expressed in body-frame coordinates and R, Q, and P
are the aircraft angle derivatives expressed in body-frame
coordinates.

We control five inputs on the aircraft: throttle and the
deflections of the elevator, rudder, left wingeron, and right
wingeron. We approximate these inputs as instantaneous to
avoid adding additional states to our system.

u =


throttle
elevator
rudder

wingeron left
wingeron right


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Fig. 5: Scaled and annotated drawing of our research platform. All dimensions are in inches.

A. Aircraft Model

We use a model-based formulation for both planning and
control, so we require a high-fidelity model of our aircraft.
Stevens and Lewis [17] and Sobolic [16] provide proven
aircraft models that we use as a basis. To build our model, we
modified the standard aircraft model in [17] to account for
our wingeron design and split wings. Since the wings are
independently actuated, we compute their angles of attack
separately. Each wing’s deflection is added to the body’s
angle of attack and then a piecewise polynomial function
maps that angle to the appropriate lift and drag coefficients.
We compute these coefficients using an XFOIL analysis of
the wing inside the laminar flow regime and flat plate theory
outside that realm.

Ideally, one could fit the parameters of the aerodynamic
model using only the airfoil shape, the CAD model, and
measurements on the airframe, but it is difficult to obtain a
good estimate of the drag forces on the body. To identify
these parameters, we fly the aircraft repeatedly over a range
of conditions and fit the following: prop-wash velocity,
thrust, body component of drag, and body component of
drag in the vertical axis (Z). We use the prediction error
minimization method implemented in the MATLAB System
Identification Toolbox [9] for these estimates.

B. Open-Loop Planning

To create a feasible plan for an aircraft, we must ensure
that the desired trajectory generates enough lift, does not
saturate the control surfaces, and is aware of the changing
system models during stall. The state space of a 3D aircraft is

large (at least 12-dimensional), so exhaustive search or even
dynamic programming methods are prohibitively expensive
[3]. To mitigate this issue, we resort to locally optimal
methods that can optimize a given trajectory to satisfy
dynamical constraints and minimize cost but cannot provide
guarantees of global optimality. We use a direct collocation
method that optimizes trajectories by solving a nonlinear
programming problem with the system’s dynamics added
as constraints to the optimization. This method requires the
optimizer to minimize both the cost function and to find a
trajectory that satisfies the dynamics [18].

We utilize a standard direct collocation method as given
by Hargraves and Paris [6] for trajectory generation and
optimization. The method uses cubic polynomials to rep-
resent the system’s trajectory and collocation to satisfy the
dynamics.

To generate trajectories, we begin with a tape that starts at
x0 and flies straight to the goal, xf . We then minimize the
cost over control actions while ensuring that the dynamics
are satisfied and that we do not impact an obstacle:

min
u,x

h(tf ) +

∫ tf

0

g(x(t), u(t))dt,

s.t. x(0) = x0,

x(tf ) = xf ,

ẋ = f (x(t), u(t)) ,

φi(x(t)) < 0,∀i

where f is the dynamics and φi is the constraint on obstacles



as defined below.
Our cost function focuses on the control actions of the

aircraft. The one-step cost is g = uTRu, where u is the
control vector introduced earlier. We let the system’s final
cost simply equal to the final time, promoting solutions
requiring less time in the air: h = tf .

To ensure that our trajectory does not collide with ob-
stacles, we add constraints based on the distance to each
obstacle. With the cost function and constraints, we simul-
taneously balance avoiding obstacles and limiting control
actions. For the purposes of this trajectory, we use cylindrical
obstacles that are infinitely tall and defined to be along the
Z-axis.

We compute the distance from the vehicle to the obstacle
by projecting both the aircraft and obstacle’s image onto the
XY-plane. In this projection, we approximate the aircraft’s
shape as a rectangle, taking the yaw, pitch, and roll angles
into account. This projection results in our aircraft becoming
“thinner” on the XY-plane as it rolls, promoting a high roll
angle when maneuvering through the obstacles.

If we let d be the minimum distance from the projected
rectangle to the center of the obstacle’s projected circle, we
can use the following function for the constraint:

φi = tanh(r − d)

where r is the radius of the obstacle. Figure 6 visualizes the
constraint function at different roll angles.

C. Feedback Control with a Time-Varying Linear Quadratic
Regulator

Inspired by the recent success with time-varying linear
quadratic regulators (TVLQR) such as [1] and [2], we use
this method to perform feedback around our desired trajec-
tory. In this formulation, we use a standard linear quadratic
regulator (LQR) controller, but move the goal point at each
instant in time, linearizing around the reference trajectory
[15]. The algorithm is closely related to differential dynamic
programming [11] with similar formulations for costs and
results for linear systems.

Given a nominal trajectory, x0(t), and a nominal control
input, u0(t), we can define new coordinates centered around
x0(t) as follows:

x̄(t) = x(t)− x0(t), ū(t) = u(t)− u0(t)

Linearizing the time-varying dynamics of x̄(t), we obtain:

˙̄x(t) ≈ A(t)x̄(t) +B(t)ū(t).

The control law is obtained by solving a Riccati differential
equation:

−Ṡ(t) = Q−S(t)B(t)R−1BTS(t)+S(t)A(t)+A(t)TS(t)

with final value conditions S(t) = Sf . Here, Q and R are
positive-definite cost-matrices. The feedback control law is
then given by:

ū(x, t) = −R−1BT (t)S(t)x̄(t) = −K(t)x̄(t).
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Fig. 6: Constraint functions for two obstacles and different
roll configurations as a 2D slice of space (all states other
than x, y, and φ are set to zero). Obstacles are shown as
blue cylinders. The optimization is constrained to allow the
aircraft only to pass through locations where the values are
less than zero. A tanh() function is used to give the optimizer
a gradient that is easy to follow.

The TVLQR controller requires some hand-tuning
of the cost matrix before it will track the open-
loop trajectory adequately. We performed this hand-
tuning based on repeated flights and comparisons
between the system’s actual and desired paths. The
costs used in the knife-edge task are as follows: Q =
diag([100, 100, 100, 1000, 100, 100, 10, 10, 10, 42, 10, 10]),
R = diag([0.2, 2, 2, 0.6, 0.6]).

D. State Estimator

Our motion capture system reports the pose of the plane
at 70 Hz. We use finite differences combined with a Lu-
enberger observer [10] to obtain estimates of the derivatives
of the positions and angles expressed in the body frame.
Denoting our dynamics model by ẋ = f(x, u), we can write
the dynamics of the estimated state, x̂, as:

˙̂x = f(x̂, u) + L(y − x̂)

where, y denotes the observation and L is the hand-tuned
Luenberger gain. y consists of pose estimates reported by the
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Fig. 7: Diagram of the experimental setup (to scale). All
dimensions are in inches.

motion capture system and derivatives estimated from finite
differencing. At each time-step, an Euler update is used to
obtain the current estimated state:

x̂[t] = x̂[t− dt] + ˙̂x[t]dt.

Since the pose estimates reported by the motion capture
system are reliable, we ignore the pose variables in the
estimated state and keep only the derivative variables. During
the short periods of time when the motion capture markers
are occluded by obstacles, we estimate the state by forward
simulating the aircraft model.

V. RESULTS

Our experiment consists of two poles 0.7 meters (27.5
inches) apart and 2.75 meters (9 feet) in front of our
launching system. Figure 7 gives an scaled drawing of the
setup.

The hardware system has proven to have impressive per-
formance and to be robust to multiple failures. We have
flown hundreds of test flights, each ending with an impact
into a net, with only minor, repairable hardware failures.
The airframe is robust to conditions created from sensing,
control, and computational failure, as well as loss of power
and unintended impact with the launching system. None of
these minor repairs required changing model parameters.

We note that the launching mechanism produced consis-
tent initial conditions, simplifying the modeling and tuning
problems. This allowed us to rely on the launcher to place the
aircraft in flight in states near where the open-loop trajectory
started.

We find that the system’s tracking is sufficient for repeated
flights through the obstacle field without collision. We have
flown 9 flights through the vertical obstacles using two
different locally optimal trajectories. On every flight the
aircraft successfully navigated the gap without collision.

Figure 8 shows the results of six repeated flights with this
system, the desired trajectory, and the result of running the
system without feedback. Figure 10 gives snapshots of the
aircraft performing this trajectory in our test environment.

It is interesting to note that the feedback system primarily
corrects for errors in the models. Figure 9 shows action-tapes
for six closed-loop executions and the open-loop reference
for the control surfaces. The closed-loop tapes are consistent,
but they differ from the open-loop tape, indicating that the
feedback system is working to correct errors in modeling.
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(a) Aircraft flight data for roll vs. forward flight. Red shows flights
with the closed-loop controller running and black shows flights
running only the open-loop tape.
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(b) Comparison of forward flight (X-axis) vs. height (Z-axis). Note
that the Z axis is plotted in reverse to give a more intuitive view of
the aircraft’s height (in our coordinate system increasing Z moves
towards the ground).

Fig. 8: Motion capture data from the aircraft in flight
compared with the planned knife-edge maneuver. We show
both open-loop (black) and closed-loop (red) flights. The
gaps in the data occur when the plane’s markers pass by the
obstacles, causing the motion capture system to lose sight of
the plane for a small period of time.

A. Extension to Horizontal Obstacles

The knife-edge maneuver demonstrates good tracking and
system performance but does not require the system to
perform more than one maneuver during a flight. The same
system should be able to perform multiple maneuvers. To
test this, we added two horizontal obstacles after the two
vertical obstacles. This configuration requires the aircraft to
quickly roll back to level flight and maintain altitude tracking
to succeed in avoiding both obstacles.

We used our existing model to plan a new trajectory with
horizontal obstacles, adding constraints similar to those used
for the vertical barriers. We then tuned the LQR costs for that
trajectory to improve tracking. Figure 12 shows snapshots
of the flight and Figure 13 show images from the on-board
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Fig. 9: Comparison between open-loop control tapes (blue)
and closed-loop tapes (red) for the knife-edge trajectory.
Note the similarity between six successful runs of the knife-
edge trajectory and the dissimilarity between those and the
open-loop tape. This indicates that our feedback system is
primarily correcting for model inaccuracies.

camera during flight.

VI. FUTURE WORK AND CONCLUSION

A. FPGA Vision and Outdoor Navigation

Recent work on FPGA vision systems has provided en-
couraging results that our platform may be able to collect and
process information about its surroundings at 120 frames per
second [7]. We are considering moving our platform out of
a motion capture environment, adding an FPGA processor,
and determining where obstacles are in real time.

Moving out of a motion capture environment will require
a substantial sensing and estimation effort, which will extend
our sensors to airspeed, barometric altitude, GPS, and others.
Our aircraft is capable of carrying these sensors and we look
forward to UAVs that can fly at high speed, identifying and
avoiding obstacles faster than any human pilot.

B. Conclusion

We have demonstrated a system that is capable of per-
forming a knife-edge maneuver, rolling 70 degrees in under
two body-lengths, while moving at over 10 body-lengths per
second. Our system, using an aerodynamic model, direct
collocation based trajectory optimization, and TVLQR is
capable of performing the maneuver robustly. Finally, we
extend the work to a more challenging obstacle field and
show that the techniques are sufficient for that task as well.

Fig. 10: Sequence of stills from a knife-edge maneuver. Each
image is 0.0417 seconds (41.7ms) after the previous. The
entire set captures a total of 0.292 seconds. The full flight,
including onboard video, is shown in the video attachment.

Fig. 11: Sequence of stills from an onboard camera during
the knife-edge maneuver. Each image is 0.083 seconds
(83ms) after the previous. The entire set captures a total of
0.583 seconds.



Fig. 12: Sequence of stills from a four-obstacle maneuver.
As before, each image is 0.0417 seconds (41.7ms) after the
previous. The entire set captures a total of 0.292 seconds.

Fig. 13: Sequence of stills from an onboard camera during
the four-obstacle knife-edge maneuver. Each image is 0.083
seconds (83ms) after the previous. The entire set captures a
total of 0.583 seconds.
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