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Abstract— We present an efficient method for certifying non-
collision for piecewise-polynomial motion plans in algebraic
reparametrizations of configuration space. Such motion plans
include those generated by popular randomized methods in-
cluding RRTs and PRMs, as well as those generated by many
methods in trajectory optimization. Based on Sums-of-Squares
optimization, our method provides exact, rigorous certificates
of non-collision; it can never falsely claim that a motion plan
containing collisions is collision-free. We demonstrate that our
formulation is practical for real world deployment, certifying
the safety of a twelve degree of freedom motion plan in just over
a second. Moreover, the method is capable of discriminating the
safety or lack thereof of two motion plans which differ by only
millimeters.

I. INTRODUCTION

Collision-free motion planning is a fundamental problem
in the safe and efficient operation of any robotic system. One
of the most important subroutines in collision-free motion
planning is collision detection, which has been studied ex-
tensively in robotics [1], [2], computer graphics [3], [4], and
computational geometry more broadly [5], [6]. Algorithms
for checking whether a single configuration is collision free
are quite mature and can be performed in microseconds on
modern hardware [7].

By contrast, algorithms which are capable of certifying
non-collision for the infinite family of configurations along
a motion plan are less common. Known as dynamic collision
checking, this subroutine is performed hundreds to thousands
of times in randomized motion planning methods, and so the
speed as well as the correctness of these algorithms is central
to their adoption. Due to the speed requirement, it is common
practice to heuristically perform dynamic collision checking
by sampling a finite number of static configurations along
the motion plan. Nevertheless, it is widely recognized that
this is insufficient for safety critical robots.

This has motivated a number of more sophisticated algo-
rithms for certifying the safety along a motion plan. These
broadly fall into three major families: feature tracking, swept
volumes, and trajectory parametrization methods [8].

Both the feature tracking and swept volume methods
have effectively scaled to applications in both graphics and
robotics. The most successful methods rely on pre-computing
a hierarchy of bounding volumes at various resolutions and
certifying non-intersection at a finite number of points along
the motion plan [9]. The choice of samples is done in an
adaptive manner which guarantees non-collision and some
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Fig. 1: A 7-DOF Kuka iiwa reaching into a pair of shelves.
Despite being visually indistinguishable, the blue motion
plan is collision-free, while the red motion plan contains
minor collision when reaching into each shelf. The proposed
certification method is capable of discriminating the safety
of these two motion plans.

algorithms are fast enough for use as dynamic collision
checkers during randomized motion planning [10].

These methods have two primary drawbacks. The first is
that they frequently only consider piecewise linear configura-
tion space motion plans and so cannot generalize to smoother
plans. The second drawback can be their conservativeness.
Typically, these methods require difficult-to-compute param-
eters such as an upper bound on the maximum length of a
curve along the swept volume [10] or bounding the rate of
change of the distance between two objects over the course of
the trajectory [11]. If these bounds are too loose, collision-
free motion plans in tight configuration spaces cannot be
certified, which is arguably the most important regime.

On the other hand, trajectory parametrizaton methods can
certify any collision-free motion plan to arbitrary preci-
sion. This is because these methods make relatively mini-
mal assumptions to obtain exact guarantees, requiring only
knowledge of the forward kinematics of the robot and a
concrete, description of the collision geometries [12], [13].
Both are often necessary information for the simulation of
any robotic system and so are readily available. However,
most of these methods rely on exact, algebraic computations
such as polynomial root finding, and so are typically too slow
for practical deployment.

A. Contribution

This paper presents a certification method in the family
of trajectory parametrization algorithms which is efficient



enough for practical deployment on robotic systems. In
particular, we employ sums-of-squares (SOS) optimization
to provide a rigorous method for certifying motion plans
parametrized by polynomials of arbitrary degree.

Our method specializes a technique for certifying non-
collision in full-dimensional volumes of configuration space
presented in [14]. By restricting ourselves to planned motion
case, we are able to leverage stronger results in optimization
and dramatically reduce computation times.

We deploy our method to certify a piecewise-cubic motion
plan for a 7-DOF arm, and a rapidly-exploring random tree
(RRT) for a 12-DOF, bimanual manipulation example. As
seen in Figure 1, we demonstrate that our method is capable
of discriminating between safe and unsafe motion plans
which are arbitrarily close together and can be used to certify
that a pair of geometries do not collide along a motion plan
in at most hundreds of milliseconds. The result is a certifier
which can verify the safety of arbitrarily complicated poly-
nomial motion plans in a handful of seconds, or piecewise-
linear plans from an RRT in a second.

B. Notation

Throughout, we use calligraphic letters (X ) to denote sets,
Roman capitals (X) to denote matrices, and Roman lower
case (x) to denote vectors or scalars. We use X ⪰ 0 to denote
that a symmetric matrix X belongs to the cone of positive
semidefinite (PSD) matrices which are denoted as S+ .

For a vector x of m variables, we denote by [x]d :=[
1, x1, . . . , xm, x2

1, x1x2, . . . , x
d
m

]T
the vector of all

(
m+d
d

)
monomials in x1, . . . , xm of degree less than or equal to d.
The vector space of real polynomials in x of degree d is
written as R[x]d while n× k matrices with entries in R[x]d
is are written as R[x]n×k

d . If d is omitted, then R[x] and
R[x]n×k are the set of all polynomials of arbitrary degree.

Finally, for p(x) ∈ R[x] we denote by degxi
(p) the

degree of the polynomial p in the variable xi and similarly
degxi

(P ) = max
i,j

deg(Pi,j(x)) for P (x) ∈ R[x]n×k
d . When

the variable is clear, the subscript is suppressed.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce the essential mathematical
ingredients which we will leverage to provide efficient cer-
tification of non-collision along our robot motion plans. Our
method relies on well-known results from convex optimiza-
tion [15], methods from sums-of-squares programming [16,
Chapter 3], and an algebraic reparametrization of the forward
kinematics [17].

A. Separating Convex Bodies

A well-known result from convex optimization is the
Separating Hyperplane Theorem [15], which states that two
closed, convex bodies A and B do not intersect if and only
there exists a hyperplane aTx+ b = 0 separating the bodies
such as in Figure 2. The search for such a hyperplane can
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Fig. 2: The closed, convex bodies A and B are collision-
free if and only if there exists a hyperplane aTx + b = 0
separating the two. As the bodies move in space, a different
hyperplane may be needed to certify their non-collision.

be posed as the optimization program:

Find a, b subject to (1a)

aTx+ b > 0, ∀x ∈ A (1b)

aTx+ b < 0, ∀x ∈ B (1c)

which is convex since A and B are convex sets. The
hyperplane H = {x | aTx + b = 0} serves as a rigorous,
mathematical proof that A and B do not intersect, and so we
refer to H as a separation certificate.

Example 1 If A is a polytope with vertices {v1, . . . , vN},
we can express (1b) using N linear constraints:

aT vi + b ≥ 1 ∀i ∈ {1, . . . , N}.

Example 2 If A is a sphere with center c and radius r, we
can express (1b) using the PSD constraint:[

(aT c+ b)I ra
raT aT c+ b

]
⪰ 0

Further explicit examples of expressing (1b) are available
in [14].

B. Polynomial Positivity on Intervals

Our method in Section IV will rely on a generalization
of (1) that was first introduced in [14], [18]. This gener-
alization relies heavily on the ability to certify that certain
polynomials (resp. matrices) are non-negative (resp. positive
semidefinite). Unlike in [14], [18], our polynomials will be
univariate and so we will be able to leverage much stronger
theory than this prior work.

We begin by recalling the definition of a Sums-of-Squares
(SOS) polynomial and a SOS matrix [16].

Definition 1 A polynomial p(x) ∈ R[x]2d is sums-of-squares
if it can be expressed as p(x) =

∑N
i=1 q

2
i (x) for qi ∈ R[x]d.

Equivalently, p(x) is SOS if it can be expressed as [x]Td Q[x]d
for Q ⪰ 0. The set of all SOS polynomials of degree 2d is
denoted Σ[x]2d.

A similar notion exists for SOS matrices.

Definition 2 A symmetric matrix P (x) ∈ R[x]n×n
2d is a SOS

matrix if there exists a polynomial matrix Θ(x) ∈ R[x]k×n
d

such that P (x) = Θ(x)TΘ(x). The set of all n × n SOS
matrices of degree 2d is denoted Σ[x]n×n

2d .



A useful characterization relating SOS matrices to SOS
polynomials is given by the following theorem.

Theorem 1 ( [16], Lemma 3.78) Let P (x) ∈ R[x]n×n
2d be a

symmetric polynomial matrix and let y =
[
y1 . . . yn

]
be a vector of monomials. Define the scalar polynomial
p(x, y) = yTP (x)y. Then P (x) is a SOS matrix if and only
if p(x, y) is SOS.

The characterization of SOS polynomials and matrices in
terms of the existence of a semidefinite matrix Q is attractive
as it allows one to search for certificates of non-negativity
using convex optimization, specifically semidefinite pro-
gramming (SDP) [19]. This is known as SOS programming.

Finally, we recall two very strong theorems about the non-
negativity of univariate polynomials and polynomial matrices
on intervals.

Theorem 2 (Markov-Lucasz [20]) A univariate polynomial
p(x) is non-negative on the non-empty interval x ∈ [a, b] if
and only if it can be expressed as

p(x) =

{
λ(x) + (x− a)(b− x)ν(x), deg(p) = 2d

(x− a)λ(x) + (b− x)ν(x), deg(p) = 2d+ 1

(2)

where λ, ν ∈ Σ[x]. Moreover, if d =
⌊
deg(p)

2

⌋
then

deg(λ) ≤ 2d, deg(ν) ≤

{
2d− 2 if deg(p) = 2d

2d if deg(p) = 2d+ 1
.

(3)

An analogous theorem holds in the univariate matrix case.

Theorem 3 Let P (x) ∈ R[x]m×m be a symmetric matrix of
univariate polynomials. Then P (x) ⪰ 0 on the non-empty
interval x ∈ [a, b] if and only if p(x, y) = yTP (x)y can be
expressed as:

p(x, y) =

{
λ(x, y) + (x− a)(b− x)ν(x, y), deg(P ) = 2d

(x− a)λ(x, y) + (b− x)ν(x, y), deg(P ) = 2d+ 1

(4)

where λ, ν ∈ Σ[x, y]. Moreover, if d =
⌊

deg(P )
2

⌋
then

degyi(λ) = 2, degyi(ν) = 2, degx(λ) ≤ 2d

degx(ν) ≤

{
2d− 2 if deg(P ) = 2d

2d if deg(P ) = 2d+ 1

. (5)

Proof. This follows by applying a similar argument as used
in [20] to prove Theorem 2 to the matrix P (x) and leveraging
the result of [21] that univariate PSD matrices are always
SOS matrices.

The polynomials λ and ν in Theorems 2 and 3 are
traditionally referred to as multiplier polynomial and serve
as a certificate of non-negativity on the interval [a, b].

Remark 1 Analogs of Theorems 2 and 3 exist when the
polynomials are allowed to be multivariate and are leveraged
in [14], [18]. The main advantage to restricting to the
univariate case is the explicit degree bounds on the multiplier
polynomials which are not available in the multivariate case.

C. Algebraic Forward Kinematics

Our approach in Section IV will rely critically on a
polynomial parametrization of the forward kinematics of a
robot.

Definition 3 A rigid-body robot is called algebraic if all
links are connected by a composition of the following two
joints:

• Revolute (R): a 1-DOF joint permitting revolution about
an axis. An example is a door hinge.

• Prismatic (P): a 1-DOF joint permitting translation
along an axis. An example is a linear rail.

In addition to (R) and (P) joints, many common joints such
as cylindrical, planar, and spherical joints can be represented
as a composition of R and P joints [17].

In general, the forward kinematics of an algebraic robot
can be expressed as multilinear trigonometric polynomi-
als [17]. Concretely, using the monogram notation from [22],
the wth component (for w ∈ {x, y, z}) of the position of a
point A relative to a frame F and expressed in F is can be
written as:

F pAw(q) =
∑
j

cjw
∏
i

ξij,w(qi), (6)

where cjw are constant coefficients and ξij,w(qi) ∈
{cos(θi), sin(θi)} if the ith joint is associated to an (R) joint
or ξij,w(qi) = zi if the ith joint is associated to a (P) joint.
The collection of variables q = ∪i{θi, zi} are referred to as
the configuration-space (C-space) variables.

While (6) is not a polynomial due to the presence of
the trigonometric functions sin(qi) and cos(qi), it admits a
rational reparametrization.

Definition 4 Define the substitution τi := tan
(
θi
2

)
. This

substitution implies that

cos(θi) =
1− τ2i
1 + τ2i

, sin(θi) =
2τ2i

1 + τ2i
.

The collection of variables s = ∪i{τi, zi} are referred to as
the tangential-configuration space (TC-space) variables.

This substitution is known as the stereographic projec-
tion [23] and is bijective for θi ∈ (−π, π). Under this
substitution, (6) can be expressed as an rational function
with a positive, polynomial denominator:

F pAw(s) =
∑
j

cjw
∏

i∈IF,A

F fA
ij,w(si)

F gAij,w(si)
=

F fA
w (s)

F gAw(s)
(7)

where
F fA

ij,w(si)
F gAij,w(si)

∈
{
1− τ2i
1 + τ2i

,
2τi

1 + τ2i
,
zi
1

}
.

Example 3 We consider the forward kinematics of a pendu-
lum mounted on a moving rail shown in Figure 3. Letting z
denote the commanded position from the left wall, and θ the
angle from the vertical, the position (px, py) of the tip of the
pendulum in C-space and TC-space coordinates is:



C-space TC-space

px l1 sin(θ) + z l1

(
2τ

1 + τ2

)
+ z

py l1 cos(θ) l1

(
1− τ2

1 + τ2

)

x

y

z

θ

l1

Fig. 3: The pendulum on rail system.

Notice that the stereographic projection does induce some
warping of distances in configuration space. However, in the
limited joint range of many standard industrial manipulators,
this warping is minor and straight lines in TC-space are
approximately straight lines in C-space.

Remark 2 An alternative reparametrization of (6) intro-
duces the substitutions σi := sin(θi) and ci := cos(θi) with
the constraint that σ2

i +c2i = 1 and is known as the algebraic-
configuration space (AC-space). All results in this paper are
easily extended to AC-space with no change in the underlying
mathematics. We prefer to use TC-space throughout as it is
easier to generate feasible motion plans.

III. PROBLEM FORMULATION

We consider an algebraic, rigid-body robot operating in
a known environment. The geometry of the robot and all
obstacles in the environment are assumed to have a known
decomposition as a union of compact, convex bodies such
as spheres, capsules, cylinders, or polytopes. Such collision
geometries of our task space are readily available through
standard tools such as V-HACD [24] and are often a required
step for simulating any given environment. We refer to the
pairs of bodies which can collide as the collision pairs. Under
these assumption, we introduce the following problem.

Problem: PLANCERT

Given an arbitrary polynomial motion plan in TC-
space ρ(t) : [0, 1] 7→ s, certify that the plan contains
no collisions. Formally, we seek an algorithm with
no false optimism; The algorithm answers SAFE only
if ρ contains no collisions.

Notice that solving PLANCERT also covers the case when
the plan ρ is a piecewise polynomial, as we can simply certify
each piecewise segment individually.

Remark 3 Finitely sampling for collisions along the plan is
an algorithm with false optimism. It can return SAFE when
the plan does in fact contain collisions. Our preference is
for an algorithm which may sometimes declare a segment

is NOTSAFE when it is in fact SAFE , but only declares
SAFE when the plan is in fact safe.

IV. PROVING NON-COLLISION ALONG A PLAN

In this section, we provide an efficient solution to
PLANCERT based on convex optimization, specifically SOS
programming. Our method is based on generalizing (1) to
handle a motion plan ρ(t) of configurations.

Let A(s) denote the position of the convex body A at the
TC-space configuration s. Recall from Section II-C that we
can express any point x(s) ∈ A(s) as a rational function with
a positive denominator and so x(ρ(t)) for t ∈ [0, 1] is again
a rational function with a positive denominator (rational
functions are closed under composition with polynomials).

Now, as the position of two bodies A(t) := A(ρ(t))
and B(t) := B(ρ(t)) vary over the motion plan, a single,
static hyperplane may be insufficient to certify that A(t) and
B(t) do not collide as in Figure 2. Therefore, we allow the
hyperplane parameters a and b to also vary as a polynomial
function of t.

For every pair of bodies (A(t),B(t)) which can collide in
the environment, we search for a polynomially parametrized
family of hyperplanes (aA,B(t), bA,B(t)) which certify that
(A(t),B(t)) do not collide for t ∈ [0, 1]. Concretely:

∀ pairs A,B
Find aA,B(t), bA,B(t) subject to (8a)

aTA,B(t)x(t) + bA,B(t) > 0, ∀x ∈ A(t)

aTA,B(t)x(t) + bA,B(t) < 0, ∀x ∈ B(t)

}
∀t ∈ [0, 1]. (8b)

This is an optimization program over polynomials which can
be solved using SDP by transforming (8b) into equivalent
linear and semidefinite constraints using Theorems 2 and 3.
A feasible solution to (8) is a collection of polynomials

C =
⋃
A,B

{aA,B, bA,B, λA, νA, λB, νB, }

and is a certificate of non-collision. At every time point
t ∈ [0, 1], the polynomials (aA,B(t), bA,B(t)) serve
as a separation certificate for (A(t),B(t)). Meanwhile
{λA, νA, λB, νB} serve as a certificate of positivity that
(aA,B(t), bA,B(t)) are a separation certificate for every
t ∈ [0, 1].

Example 4 If A(t) is a polytope with vertices vi at positions
F pvi(t) =

F fvi (ρ(t))
F gvi (ρ(t))

for i ∈ {1, . . . , N}, then we can
enforce (8b) using N polynomial constraints:

aT (t)F fvi(ρ(t)) + (b(t)− 1)F gvi(ρ(t)) ≥ 0.

This constraint can be enforced using Theorem 2.

Example 5 If A is a sphere with center c at position
F pc(t) =

F fc(ρ(t))
F gc(ρ(t))

and radius r, we can express (8b) using
the SOS matrix constraint:[

h(t)I r
(
F gc(ρ(t))

)
a(t)

r
(
F gc(ρ(t))

)
aT (t) h(t)

]
⪰ 0



Fig. 4: A pair of Kuka iiwa reaching from the straight up
start configuration (translucent arms) into the shelf (opaque
arms). The close confines of this motion plan make checking
safety via finite sampling challenging. An animation of the
motion plan is available here.

where h(t) = aT (t)F f c(ρ(t)) + b(t)F gc(ρ(t)). Such a
positivity constraint can be enforced using Theorem 3.

Remark 4 Solving (8) requires choosing a finite degree
basis for all polynomials. As Theorems 2 and 3 specify the
necessary and sufficient degree for the univariate multiplier
polynomials, the only hyperparameter in (8) is the degree
of the hyperplanes. This is in contrast to [14], [18] where
both the degree of the hyperplane and the degree of the
multipliers are difficult to choose hyperparameters due to
the multivariate nature of the problem.

V. RESULTS

In this section, we evaluate the effectiveness of the
proposed trajectory certification program (8) for solving
PLANCERT . An open source implementation of our method
is publicly available1 and undergoing code review in
Drake [25]. All computations are performed on a laptop
computer with an 11th Generation Intel I9 CPU and 64GB
of RAM.

A. Certifying an RRT for A Bimanual Manipulator

We consider the task of certifying a motion plan for a 12
degree of freedom (DOF) bimanual KUKA iiwa consisting
of reaching into the shelf. The start and end configurations
are shown in Figure 4. The environment contains 246 total
collision pairs.

An RRT is grown in TC-space, with edges extended
by sampling one hundred intermediate points between tree
nodes. We grow the RRT until the task and goal are con-
nected and the motion plan between them is certified as
SAFE by (8). This requires 105 edges. Finally, we solve one

1https://github.com/AlexandreAmice/drake/tree/
CspaceFreePathFeature

instance of (8) for each collision pair and each edge for a
total of 25830 programs with the hyperplane parameterized
by a linear polynomial. All programs are solved in parallel.

In Figure 5a, we plot the entire distribution of solve times
for the 25830 programs. We group the collision geometry
pairs by the highest degree condition given by (8). The most
expensive program takes 297 ms to solve with Mosek [26],
while the least expensive program takes 0.66 ms to solve.
We note that Figure 5a is plotted on a log scale and
demonstrates approximately quadratic growth as the degree
of the polynomials increase to the right. On the other hand,
almost no pattern is observed in the length of time taken to
certify an individual edge for a given pair.

In Table 5b, we provide some aggregated statistics on the
certification procedure. We recall that an edge of the RRT is
considered safe if (8) is feasible for all 246 collision pairs.
Due to the very close proximity of the collision geometries,
we do not expect every edge to be collision-free. Indeed, we
see that just under 30% of the edges in our tree are certified
as collision free.

We observe that many of the uncertified edges correspond
to motions in the tight confines of the shelf and so may
in fact contain collisions. Therefore, if (8) for a given edge
is not feasible for every collision pair, then we resample
1e5, uniformly spaced configurations along that edge. If a
collision is found, we confirm that the edge is NOTSAFE .
Otherwise, we cannot confirm or deny the safety of the edge.
We see that in 96% of cases, more dense sampling recovers
a collision, which verifies that the infeasibility of (8) for
these edges is not due to choosing too low a degree for
the hyperplane. On the other hand, exactly two edges are
neither declared SAFE , nor confirmed NOTSAFE . These
two examples correspond to motions which undergo very
large task space displacement of all links, but do not appear
to contain collisions. It is likely the case that a higher degree
polynomial could certify these edges.

B. Certifying Cubic Polynomial Plans for a 7-DOF iiwa

We demonstrate our method’s ability to certify higher-
order motion plans. We consider a 7-DOF Kuka iiwa in-
teracting with a pair of shelves shown in Figure 1 moving
along a piecewise polynomial plan with thirty pieces. Each
piece is parametrized as a cubic, Hermite spline

We consider two such motion plans. The blue plan in
Figure 1 is collision free, while exactly two of the thirty
pieces of the red plan contain minor collisions with the shelf.
We solve (8) with a linearly parametrized hyperplane for
each segment of the plan.

In the case of the blue curve, all thirty pieces of motion
plan are certified as SAFE in 8.99 seconds. Additionally,
the twenty-eight pieces of the red plan which are safe are
marked as SAFE . Meanwhile, the optimizer reported that (8)
is infeasible for the two unsafe segments. The total time to
solve the programs for unsafe plan was 9.21 seconds, which
can be reduced to 6.91 seconds if the two unsafe segments
are allowed to terminate as soon as one collision pair fails
to certify its safety.

https://alexandreamice.github.io/project/c-iris-path/
https://github.com/AlexandreAmice/drake/tree/CspaceFreePathFeature
https://github.com/AlexandreAmice/drake/tree/CspaceFreePathFeature
https://github.com/AlexandreAmice/drake/tree/CspaceFreePathFeature


(a) The time required to certify each edge and each collision
pair in an RRT for the bimanual iiwa system. The y-axis is the
index of the edge, and the x-axis is the index of the collision
pair, grouped by the degree of the separating hyperplane con-
dition (8b). The time taken to solve the certification program
for a collision pair scales quadratically in the degree of the
separating condition (8b)

Aggregate Statistics For Certifying the Entire RRT

# Instances of (8) Solved 25830

# Of Collision Pairs 246

# Of Edges 105

# Edges SAFE 31

# Edges Confirmed NOTSAFE 72

# Edges Unconfirmed NOTSAFE 2

Average Solver Time to Certify an Edge 299.9 msec.

Total Solver Time to Certify Goal Plan 1.211 sec.

Total Solver Time to Certify RRT 31.5 sec.

(b) Aggregated statistics for certifying an RRT for the bimanual iiwa
system. An edge is SAFE if all 246 instances of (8) are feasible.
If (8) is infeasible, the corresponding edge is densely sampled with
1e5 to find a collision. If a collision is found, the edge is confirmed
NOTSAFE . We see that in two cases, neither (8) is feasible for all
pairs, nor is a collision found. The final RRT plan is certified as safe
in just over 1 second, and the whole tree is certified in about 30
seconds.

Fig. 5: Timing statistics and aggregated statistics for certifying an RRT for the bimanual iiwa system from Figure 4. An
instance of (8) is solved for all 246 collision pairs and all 105 edges in just over 30 seconds.

This demonstrates the precision of our method, which is
capable of discriminating the safety of two visually indistin-
guishable motion plans.

VI. DISCUSSION AND CONCLUSION

We present a method based on SOS programming for
certifying non-collision along piecewise polynomial motion
plans of arbitrary degree for kinematic systems composed of
algebraic joints. These systems include the majority of open
kinematic chain robots currently available. The proposed
method provides fully rigorous certificates of non-colllision
for individual linear motion plans in milliseconds even for
high DOF systems and can certify more complicated plans
in a handful of seconds.

Though currently not fast enough to fully replace a more
rapid, sampling-based collision checker as a subroutine in
a sampling-based motion planner, we anticipate that further
efficiency improvements are possible. First, the number of
instances of (8) can be dramatically reduced by pruning
collision pairs which cannot possible collide on the motion
plan using, for example, broad-phase collision checking [27].
Secondly, all problems are solved using the general-purpose
SDP solver Mosek. The formulation (8) has substantial
structure for which accelerated solution methods exist [28].

The primary drawback to the adoption of our method is
the requirement that the motion plans be algebraic, i.e. they
must be given in a polynomial reparameterization of the

configuration space such as the TC-space or the AC-space
forcing the practioner to change their choice of configuration-
space variable. In the case of standard randomized motion
plans such as PRMs and RRTs, this can be as easy as simply
changing the notion of distance and linear interpolation in the
extend step of these methods.

While this may be a low barrier for purely kinematic
motion plans, it may be more challenging for dynamic plans.
The TC-space reparametrization greatly distorts configura-
tion space near the joint angle θi = π. Meanwhile the AC-
space requires generating plans which conform to a strict
constraint manifold.

Nevertheless, the proposed method is suitable for real
world application, providing fully rigorous certificates of
non-collision with provable correctness.
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