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Abstract— Robots in your home and other environments are
required to operate safely and manipulate robustly in unknown,
uncertain and frequently cluttered environments. Tactile sens-
ing is necessary when manipulating hard-to-see or occluded
objects where vision falls short, and critical to maintaining
awareness of grasp quality. We discuss the motivation and
hardware design for a highly compliant, dense geometry tactile
sensor; an inflated latex membrane with a depth sensor inside.
This low cost, light weight and easy to build tactile sensor pro-
vides capabilities applicable to robust manipulation, which we
demonstrate in multiple initial experiments, including successful
tactile-based object classification, pose estimation and non-
prehensile object manipulation. Through these experiments, we
show the importance of high resolution geometry sensing for
tactile tasks.

I. INTRODUCTION

As we work towards deploying robotic systems to assist
with everyday tasks, we must ensure that these robots are
able to safely make contact with people, other robots, and our
environment. Unlike industrial robots that can operate with
certainty about their tasks and surroundings, robots designed
for our homes and other unstructured environments must be
able to cope with large imprecision in their knowledge of
the surrounding environment. In particular, for manipulation
tasks, the ability to compensate for large uncertainty through
touching and feeling is increasingly perceived as the solution
to coping with the perceptual challenges posed by domestic
environments. These challenges include clutter, occlusions,
variable lighting conditions, and never before seen objects,
to name a few [1]. Due to their ability to directly capture
interactions at the contacting surface, tactile sensors have
the potential to be predominant when vision and other
exteroceptive modalities are occluded [2] or incapable of
sensing due to lack of sufficiently salient visual features [3].
Tactile sensing, coupled with the compliance needed to safely
and robustly bump into and grasp objects in the environment
could prove hugely beneficial in hastening the deployment
of robots at home. Beyond these design requirements, for
commercially viable home robots, it is also necessary to
consider component cost, weight, and manufacturability.

It is well recognized that mechanical compliance is a
critical element in enabling robots to cope with unforeseen
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Fig. 1: (a) The soft-bubble, a high resolution tactile sensor, is
attached to a Kuka IIWA and pressed against a robot-shaped
block (a). The resulting depth image (b) and point cloud (c)
are shown as well.

contacts [4] and offers greater intrinsic robustness to uncer-
tainty [5]. One successful strategy for endowing robots with
the requisite compliance is the use of elastomers and fluids
as building materials [6]. For slow speeds and low masses,
the passive compliance offered by these materials reduces
the impulse of a collision while a deformable contact patch
spreads force out over a larger area [7]. Elastomers have
made their way into and onto traditionally rigid robots, in-
cluding fully compliant air-powered sensorless grippers [8],
[9] where precision is not required and compliance alone
provides a stable grasp. However, constrained home manip-
ulation tasks generally require more precision and care.

In addressing the need to sense and manage physical
interactions, there are several themes that have been tackled



so far: the need to sense accidental contacts and react
suitably [10], tracking and controlling contact forces during
intentional contact [11], tactile exploration for objects that
are hard-to-see or occluded by clutter [3], classification
of object type and shape inference [12] and sensing the
quality of induced grasps [13]. For tactile sensing of object
class (shape, material, etc.) and object state (pose, velocity,
etc.), contact geometry sensing enables an understanding of
surface and other physical properties [14] as well as pose
refinement in order to manipulate it accurately [15]. Despite
these advancements, the fundamental difficulties and open
questions in modelling compliant contact mechanics [16]
have limited the adoption and deployment of soft tactile
sensors. Although data-driven methods have been employed
as attempts to overcome the modeling difficulties [13], [17],
there remains a lack of highly compliant mechanisms which
also incorporate high resolution contact sensing.

In this paper, we present our Soft-Bubble, pictured in
Fig. 1, a new kind of tactile sensor that combines the
advantages of highly compliant air-filled elastomeric struc-
tures with the ability to sense detailed geometric features
of contacting objects. The proposed sensor captures defor-
mation of a thin, flexible air-filled membrane using an off
the shelf depth sensor. This sensor is built using accessible
fabrication methods and is composed primarily of off the
shelf components and materials. The resulting sensor is
highly compliant, lightweight, robust to continued contact,
and outputs a high resolution depth image that is ideal for
manipulation applications. We demonstrate the efficacy of
these features through three case studies: (a) object shape
and texture classification using a deep neural network, (b)
an object sorting task using the soft-bubble end-effector for
non-prehensile manipulation, and (c) object pose estimation
using the geometry sensed at contact. For the latter two
demonstrations, a version of the proposed sensor is mounted
on a Kuka IIWA arm and used to classify, explore and
manipulate blocks of various shapes and sizes.

This paper is organized as follows: Section II presents a
background of dense geometry and compliant tactile sensing,
section III illustrates the system design and IV presents the
results of experimental evaluation. Finally we discuss our
findings and outlook for future work in section V.

II. RELATED WORK

In this section, we will briefly review some of the tech-
nologies and algorithms most relevant to the soft-bubble.
The field of tactile sensing has seen dramatic growth in
the last 25 years [18]. A wide variety of technologies have
been proposed to sense shape, texture, hardness, temperature,
vibration or contact forces [19], but several open questions
still remain as to how tactile sensing can be employed
with the explicit goal of improving a robot’s ability to
manipulate the world around it. How high a spatial resolution
is necessary for tactile sensing? Is either geometry or force
sensing more important than the other?

High resolution tactile sensors, such as GelSight [14], Gel-
Slim [20] and FingerVision [21], use cameras to gather large

amounts of data over relatively small contact areas. GelSight
in particular uses precise internal lighting and photometric
stereo algorithms to generate height maps of contacting
geometry. This 3D information can be used in a model-
based framework [15] wherein it can be fused with external
sensors, or run through particle filters [22] that capture the
complicated contact mechanics, or used to directly sample
the contact manifold as dictated by the manipuland and
gripper geometries [23]. Alternative data-driven approaches
also exist [13], although these methods have been largely
employed in the domains of slip detection, grasp stability
identification [17] and material property discrimination.

The soft-bubble draws influence from these camera-based
tactile sensors, particularly on its use of an off-the-shelf
depth camera and an opaque membrane which drapes sensed
object surfaces in consistent color and reflectance properties.
Mechanically, the soft-bubble is able to deform around a
contacting object more freely and drastically than the gel-
based sensors above, potentially making a larger slice of the
object’s geometric form available to the sensor. As a result
of the internal depth sensor, precisely placed illumination
and 3D reconstruction algorithms are not needed to capture
deformation, allowing a large range of free-form membrane
shapes. This lack of internal hardware requirements leads to a
cheap, simple and repeatable fabrication process. The use of
air over gel also simplifies fabrication, reduces cost and keeps
the sensor lightweight regardless of size, making it a suitable
sensor for low cost, low payload robots. Employing the
resilience of latex, the sensor membrane can withstand tough
treatment and worn components are easily replaced. Finally,
the high friction of the membrane surface, large contact
patch and ability to provide form closure via deformation
around an object make this sensor well-suited for contact-
heavy manipulation tasks.

III. HARDWARE DESIGN

The soft-bubble dense geometry sensor design consists
of three main functional components: an elastic membrane
sensing surface, an airtight hull that allows pressurization
of the membrane, and an internal depth sensor, as shown
in the dimensioned cross-sectional view and exploded view
shown in Fig. 2. The depth sensor is located inside of the
airtight hull pointed at the interior surface of the membrane
to measure contact induced deformation. Before inflation,
the circular membrane’s diameter is 150mm. Inflated, the
sensing membrane forms a compliant spherical cap. The
membrane is inflated to a height of 20-75mm, depending
on the application. The membrane material is hand- or laser-
cut 0.4mm thick latex sheet. Thinner or thicker sheet can
be used with trade-offs between sensitivity and durability.
For the experiments presented in Section IV, the sensing
membrane is inflated to a height of 50mm with an internal
air pressure of roughly 0.25psi.

A. Time of flight camera

The time of flight camera in the embodiment presented
here is the PMD CamBoard pico flexx [24]. The pico flexx is
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Fig. 2: Dimensioned orthographic and isometric views of the
sensor assembly. All dimensions in mm.

a development board with a depth imager intended for mobile
devices, but has found its way into robotics. This depth cam-
era was chosen for its small size (68×17×7.35mm), USB
connectivity and short specified minimum sensing range
(100mm). The sensor has a resolution of 224×171 pixels and
can provide depth images at up to 45 fps. At close range, the
depth resolution of this sensor is ≤ 2% of the actual distance.
The sensor weighs 8 grams and has a field of view (FOV)
of 62°×45°. When inflated to 50mm, the spacial sensing
resolution on the membrane is roughly 2 pixels/mm2

The pico flexx depth camera is designed to sense within
the range of 0.1-4 m. The optics are focused and the sensor
is calibrated to work best in the middle of that range. When
operating near the minimum range in a confined space,
two issues become evident: The IR emitter is too bright
and the effect of the IR emitter-imager offset, negligible
at further distances, becomes non-negligible. The emitter
intensity, which can not be altered in software, produces
bright spots on regions of the inner membrane surface and
causes sensor saturation seen in Fig. 3. It is possible to adjust
exposure, but not enough to avoid saturation. Also, at this
range, the offset of the emitter FOV and the imager FOV
leaves a poorly illuminated region where the two FOVs fail
to overlap. This asymmetric dark region in the infrared image
reveals itself in depth as further away than it actually is, seen
in Fig. 4. This internal nonuniform lighting can be partially
mitigated by placing a diffuser (a piece of gift wrapping
tape) on the IR emitter. This light diffusion enables a slightly
wider view and a more symmetric depth image, but causes
an increase in depth measurement noise and a significant
reduction in depth accuracy.

(a) IR image (b) Point cloud

Fig. 3: Glare due to excess emitter intensity

(a) IR image (b) Point cloud

Fig. 4: The dimly illuminated area to the right of the IR
image forms during close range imaging as a result of the
uncompensated emitter and imager FOV offset.

B. Airtight hull

The hull structure provides mounting points for the depth
sensor, elastic membrane, a sealed USB 3.0 passthrough and
an air valve. This structure also provides mounting points
for attaching the tactile sensor assembly to a robot. The
dimensions of the hull and membrane are dependent on
the chosen depth sensor’s range and FOV specifications.
At the depth sensor’s minimum sensing distance, 100mm,
the area covered by the FOV is 99.5cm2. The diameter of
the membrane is chosen so that the entire FOV falls onto
the membrane. At 50mm inflation, this provides a sensing
surface area of 175.4cm2. The dome’s total surface area
is 261.4cm2, which leaves about 86cm2 out of the depth
sensor’s FOV. The height of the airtight hull is chosen so
that the uninflated membrane plane is placed 100mm from
the depth sensor. The diameter of the hull is chosen as to be
both out of the FOV of the depth sensor, and to place the
entire depth sensor FOV onto the membrane.

Towards the goals of low overall cost and weight, as
well as accessible fabrication, the airtight hull is 3D printed.
This particular version is printed on a Markforged X7 fused
deposition modeling (FDM) printer [25]. The material used is
Nylon packed with chopped carbon fiber. The material stiff-
ness added by the carbon fiber allows the part to be printed
at 50% infill with thin walls, leaving internal air pockets and
using less material overall. FDM printing generally results
in a porous part that can not hold air, therefore the internal
surfaces of the hull, holes, and the O-ring channel where
the latex membrane meets the hull, are painted with two
or more coats of Rust-Oleum 265495 Leak Seal Flexible
Rubber Sealant. The hull can also be printed on consumer



FDM printers and sealed in the same fashion, but the result
may not be as lightweight. The part can also be printed on
a printer that produces non-porous parts, like a Stratasys
Objet, or it can be machined from plastic or other nonporous
materials.

The hull is designed with a generic mounting pattern at the
base for mounting a depth sensor. A separate sensor cradle is
designed to mate with this pattern and hold the sensor, as well
as diffusers or filters, in place. This generic pattern allows
the sensor or sensor mount to be changed without remanu-
facturing the entire airtight hull. The USB passthrough used
in this assembly is a sealed Molex 84733-series USB 3.0
Type A connector with its female end inside the hull and
its male end extending outside of the hull. A short USB 3.0
male micro to male Type A cable is used to connect the depth
sensor to the USB passthrough. The valve installed into the
hull for pressurization and depressurization of the sensor is a
M5 threaded push-to-connect fitting (Mcmaster part number
1201N11) for 4mm OD tubing that automatically shuts when
the tube is removed.

The complete sensor is assembled by installing the USB
passthrough and air valve, bolting the depth sensor to the
interior floor of the hull, then connecting the sensor to the
USB passthrough. An O-ring is placed into the channel on
top of the hull flange. The circular latex membrane is glued
to a 3D printed frame while flat so that no stretching or
sagging occurs while assembling. This frame and membrane
subassembly is then bolted to the hull flange so that the O-
ring seals between the hull’s rubberize O-ring channel below
and the latex membrane above. The complete assembly can
then be attached to the end effector of a robot using an
adpater plate. The assembled soft-bubble tactile sensor can
be seen in Fig. 1a installed on a Kuka IIWA, which we like
to think of as one large, dexterous finger.

C. Parallel gripper concepts

As depth sensors and their sensing ranges become smaller,
this technology will be incorporated into sensors of a scale
more suitable for standard robot grippers. Figure 5 shows
a sensorless bubble-based parallel gripper prototype able
to execute robust grasps on arbitrary objects due to its
compliant, high friction latex membrane.

IV. EXPERIMENTS

For an initial demonstration of the soft-bubble tactile
sensor capabilities and potential applications, we conducted
multiple experiments: two tactile-based object classification
experiments, an object sorting manipulation experiment, and
a tactile pose estimation experiment. Overall, these experi-
ments show the utility of high resolution contact geometry
sensing and compliant manipulation capabilities.

A. Classification

We use ResNet18 [26], a state-of-the-art deep neural
network, as the object classifier for both of the classification
experiments described in this section. As input, the network
takes a depth image obtained when the soft-bubble sensor

(a) Pre-grasp (b) Grasping

Fig. 5: Sensorless bubble-based parallel gripper prototype
able to robustly grasp due to compliant, high friction mem-
brane surface.

Fig. 6: Six blocks used for soft-bubble-based object classifi-
cation experiment

(a) Cube (b) Robot block (c) Frustum

(d) Triangular prism (e) Bridge (f) Hemisphere

Fig. 7: Depth images captured by the tactile sensor of the
six objects classified.

is pressed up against an object. The network outputs the
probabilities for each object category.

First, we explored whether or not an object classification
task could be performed using the data output by the soft-
bubble. We set up seven classes for this experiment: six
objects (Fig. 6) and an extra class called “no-touch” for when
the soft-bubble was free from contact. The objects chosen for
this first experiment are distinctly shaped blocks.



Fig. 8: Contact geometry depth images for all blocks were
recorded in a wide range of angles, including partial views of
local geometry, as illustrated by the selection of robot block
contact geometry depth images above.

To gather data, we recorded depth image streams from
the soft-bubble while each of the six objects were pressed
into the bubble’s membrane varying contact location, ob-
ject orientations, and contact force (Fig. 7). We aimed to
record contact geometry data for as wide a range of poses
as possible, including partial views of local features, as
illustrated by the selection of robot block depth images
in Fig. 8. Depth image streams were also recorded for
the “no-touch” case. The various data was collected using
two separate soft-bubble assemblies with slight differences
between them. The internal pressures of the bubbles were
varied throughout to further diversify the data collected.
These depth data streams for contacting objects were then
passed to a filtering algorithm which discarded “no-touch”
frames based-on a depth deviation threshold. For the “no-
touch” stream, we simply sampled from all captures frames.
Consequently, we collected 1,000 training images and 200
validation images for each of the seven classes. To train the
network, cross-entropy loss and stochastic gradient descent
were used as the loss function and optimizer, respectively.
We used 0.1 for the learning rate with a 0.1 decay every
30 epochs, 0.9 for momentum, 10−4 for weight decay, and
32 as the mini-batch size. Note that the network was trained
from scratch since publicly available pre-trained weights are
usually trained using RGB images, differing from our choice
of network input. The network was trained up to 80 epochs
and achieved 98.14% average top-1 accuracy as the best
performance throughout the training on our validation data.
This result indicates that the soft-bubble can be successfully
used for practical object classification tasks.

Next, we investigated the importance of input image
resolution. In this experiment, we used two datasets; the
previously detailed six objects dataset, and another one called

Fig. 9: Three cubes with differing surface features including
a standard cube (middle), wavy face (left) and cut-off corners
(right)

Fig. 10: Average Top-1 classification accuracy with varying
image resolution

(a) Cube (b) Cut corners (c) Wave

Fig. 11: Full resolution point clouds of the cubes in Fig. 9.

(a) Cube (b) Cut corners (c) Wave

Fig. 12: Lower resolution (length and width multiplied by
2−2) point clouds of the three cubes. It is at this resolution
that a drop-off in accuracy can be seen in Fig. 10.

the three cubes dataset which consists of four classes: “no-
touch” and three types of cubic objects, congruent in size,
but with unique surface features (Fig. 9). These cubic objects
were chosen so that differences in shape between objects



(a) (b) (c) (d)

Fig. 13: The robot positions itself above an object (a), presses against and classifies the object (b), pushes it along the table
to the appropriate location (c) then retracts to repeat (d).

are subtle, especially as input image resolution is decreased.
The three cubes dataset contains 1,000 training data and 500
validation images per category, gathered via the previously
mentioned procedure. The same network architecture used
before is again used for the six objects and three cubes
datasets. The network is trained from scratch and seperately
on six objects and three cubes datasets. The training is
repeated six times for each dataset, each with varying image
resolutions; the width and height of the input image is first
multiplied by 2−N , where N is a hyperparameter which
varies from 0 to 5 over each training cycle, then is resized
to 224×224 pixels to fit the input size of our network.
We measured average top-1 accuracy as the metric for this
experiment. The results are shown in Fig. 10. This illustrates
that the accuracy is reasonably good at higher resolutions but
drops as input image resolution decreases. This tendency
is especially evident on the three cubes dataset where the
differences between each object are more subtle than those
of the six objects dataset. The accuracy for the three cubes
with varying surface features drops significantly at N = 2.
The point clouds corresponding to the original resolution and
quartered resolution where N = 2 are shown in Figs. 11
and 12, respectively. From these results, we can argue that
the higher the resolution, the better the accuracy will be
for classification tasks. The results also suggest that tactile
resolution must be carefully chosen based on task demands.

B. Robot Object Sorting

We integrated the soft-bubble, the six object classifier from
the first experiment and a robot to demonstrate the ability
to perform a simple but real world task. The soft-bubble
is attached to the end effector of a Kuka IIWA robot arm,
shown in Fig. 1a. We put each of the six blocks from the first
experiment down on the center of a table in front of the robot.
The task for the robot is to reach down, touch the blocks,
and classify each object using the tactile information. Once
identified by the object classifier, the robot pushes the object
toward a preassigned area on the table. All of the robot’s
motions, i.e. pushing down, sliding objects and going back
to the initial pose, are scripted. Classification using tactile
information is performed between the pushing down and

(a) Robot touches object (b) ICP result

Fig. 14: Pose estimation using the soft-bubble. Optimal pose
of the pyramidal-frustum object rendered in blue along with
the point-cloud from the soft-bubble in red.

sliding away motions. Fig. 13 illustrates the robot’s execution
of the sorting task.

C. Pose Estimation

As a third demonstration of the capabilities of the soft-
bubble, we explore pose estimation of known objects using
the depth image captured by the sensor. To estimate the
pose, we used the well known Iterative Closest Point (ICP)
algorithm [27].

The extrinsic of the pico flexx camera with respect to
the end effector was computed from the CAD diagram of
the soft-bubble assembly and was used for transforming the
captured point-cloud into the appropriate world frame (base
of the Kuka robot). For the purposes of this experiment, the
Kuka was commanded to execute various Cartesian trajec-
tories to reach out and touch the object in question. Each
of these trajectories resulted in a penetration of up to 4cm
(Fig. 14a). Over the course of the experiment, configurations
of the robot and point clouds from the sensor were logged.

The ICP implementation of PCL [28] was utilized and
the optimal pose was computed from a set of 12 initial
orientations of the object in question. For each initial ori-
entation, the lower 25% of the model was cropped out



in order to capture only the visible surfaces for the ICP
computation. The image in Fig. 14b shows the converged
result for the pose of the pyramidal frustum depicted as
the object model superimposed onto the measured point-
cloud showing near perfect correspondence. The rate of ICP
computation was approximately 5Hz. It can clearly be seen
that the pose of contacted objects with simple geometries
can be computed using this sensor. More detailed analysis
of the pose accuracy, effect of complicated geometries and
sensor resolution are ongoing.

V. DISCUSSION AND OUTLOOK
As mentioned in Section III, the large form factor of the

tactile sensor presented here is dependent on the specifica-
tions of the chosen depth sensor. While we used one of the
smallest and most short-range-capable depth sensors on the
market, a smaller depth sensor with a shorter sensing range
and a wider field of view is needed in order to widely deploy
the soft-bubble on grippers and space-limited parts of a robot.
Not only would a smaller depth sensor lead to smaller tactile
sensors, it also leads to interesting possibilities for larger
scale bubbles with membranes so large that multiple synced
depth sensors could work together to produce a fused point
cloud. Future versions of this sensor will be located on
various parts of a robot, not only end effectors.

The soft-bubble currently senses geometry only. Future
work includes static and dynamic modeling of the soft
mechanics so that contact pressure on the membrane may
be estimated based on deformation. With the addition of
dots or other trackable features on the inner surface of the
membrane, shear forces and moments can be estimated as
well. Modeling will also allow the sensor contact mechanics
and output to be simulated. Methods will be developed for
calibrating the tactile sensor’s depth output, as well as for
quantifying measurement error and sensor noise.

In Section IV, we show that classification and pose esti-
mation tasks can be performed using depth images from the
bubble and argue that image resolution affects the classifi-
cation accuracy, especially when the differences in objects
shape or surface features are subtle. We believe that this is
true for other tasks involving tactile sensing like object pose
estimation, although more work needs to be done to verify
this. Future experiments include dual arm manipulation,
tactile-based pose refinement and exploratory techniques for
manipulating occluded and hard-to-see objects.
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survey on detection, isolation, and identification,” IEEE Transactions
on Robotics, vol. 33, no. 6, pp. 1292–1312, 2017.

[11] B. Siciliano and L. Villani, Robot force control. Springer Science &
Business Media, 2012, vol. 540.

[12] M. Meier, M. Schopfer, R. Haschke, and H. Ritter, “A probabilis-
tic approach to tactile shape reconstruction,” IEEE Transactions on
Robotics, vol. 27, no. 3, pp. 630–635, 2011.

[13] R. Calandra, A. Owens, M. Upadhyaya, W. Yuan, J. Lin, E. H.
Adelson, and S. Levine, “The feeling of success: Does touch sensing
help predict grasp outcomes?” in Proc. of the 1st Annual Conference
on Robot Learning (CoRL), 2017.

[14] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot
tactile sensors for estimating geometry and force,” Sensors, vol. 17,
no. 12, p. 2762, 2017.

[15] G. Izatt, G. Mirano, E. Adelson, and R. Tedrake, “Tracking objects
with point clouds from vision and touch,” in Robotics and Automation
(ICRA), 2017 IEEE International Conference on. IEEE, 2017, pp.
4000–4007.

[16] J. T. S. Li, S. Lyu and W. Burgard, “A comparative study of contact
models for contact-aware state estimation,” in IEEE International
Conference on Intelligent Robots and Systems, September 2015.

[17] Y. Bekiroglu, J. Laaksonen, J. A. Jorgensen, V. Kyrki, and D. Kragic,
“Assessing grasp stability based on learning and haptic data,” IEEE
Transactions on Robotics, vol. 27, no. 3, pp. 616–629, 2011.

[18] J. Tegin and J. Wikander, “Tactile sensing in intelligent robotic
manipulation–a review,” Industrial Robot: An International Journal,
vol. 32, no. 1, pp. 64–70, 2005.

[19] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensingfrom
humans to humanoids,” IEEE transactions on robotics, vol. 26, no. 1,
pp. 1–20, 2010.

[20] E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez,
“Gelslim: A high-resolution, compact, robust, and calibrated tactile-
sensing finger,” arXiv preprint arXiv:1803.00628, 2018.

[21] A. Yamaguchi and C. G. Atkeson, “Implementing tactile behaviors
using fingervision,” in 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids), Nov 2017, pp. 241–248.

[22] L. Zhang and J. C. Trinkle, “The application of particle filtering to
grasping acquisition with visual occlusion and tactile sensing,” in
Robotics and automation (ICRA), 2012 IEEE international conference
on. IEEE, 2012, pp. 3805–3812.

[23] M. C. Koval, N. S. Pollard, and S. S. Srinivasa, “Pose estimation
for planar contact manipulation with manifold particle filters,” The
International Journal of Robotics Research, vol. 34, no. 7, pp. 922–
945, 2015.

[24] P. Technologies. (2018) Camboard pico flexx. [Online]. Available:
http://pmdtec.com/picofamily/flexx/

[25] M. Inc. (2018) Markforged x7. [Online]. Available:
http://markforged.com/x7/

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[27] G. K. Tam, Z.-Q. Cheng, Y.-K. Lai, F. C. Langbein, Y. Liu, D. Mar-
shall, R. R. Martin, X.-F. Sun, and P. L. Rosin, “Registration of 3d
point clouds and meshes: a survey from rigid to nonrigid.” IEEE
transactions on visualization and computer graphics, vol. 19, no. 7,
pp. 1199–1217, 2013.

[28] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
Robotics and automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 1–4.


