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Recall that our objective is given by (we neglect the Fverb(A) since it is
convex and adding it is straightforward):

F (A) = DKL[pS(c1, c2)|pT (c1, c2;A)]+ min
r(c1,c2)∈S

DKL[r(c1, c2)|pT (c1, c2;A)]+H[A]

(1)
We assume the weights αi and the coefficient λ are one for simplicity. Other
values can easily be plugged in.

Since we are minimizing over A we can recast the problem as minimiza-
tion over both A and r ∈ S of the objective:

F (A, r) = DKL[pS(c1, c2)|pT (c1, c2;A)] +DKL[r(c1, c2)|pT (c1, c2;A)] +H[A]
(2)

We now recall the variational property of entropy, namely:1

H[p] = −
∑
x

p(x) log p(x) = min
q
−
∑
x

p(x) log q(x) (3)

Where optimization is over distributions q. Thus we can again expand F to
contain another variable q(c|f) such that:

F (A, r, q) = DKL[pS(c1, c2)|pT (c1, c2;A)]+DKL[r(c1, c2)|pT (c1, c2;A)]−
∑
f,c

A(c|f) log q(c|f)

(4)
Clearly F (A, r, q) ≥ F (A) for all r, q and minr,q F (A, r, q) = F (A). Thus, we
can proceed in alternating optimization over A, r, q.

We can now see how the algorithm in the paper is obtained. Denote by
Ak, rk−1, qk−1 the values of these variables at iteration k. Then:

rk(c1, c2) = arg min
r(c1,c2)∈S

DKL[r(c1, c2)|pT (c1, c2;A
k)] (5)

This clearly corresponds to steps 1 and 2 in the algorithm.
1This is a direct result of DKL[p|q] ≥ 0 and zero if and only if p = q.
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Next, we optimize over q, which results in:

qk(c|f) = Ak(c|f) (6)

for all c, f . We note turn to optimizing over A. The objective as a function
of A, given the current qk, rk is (up to additive constants)

F k(A) = −
∑
c1,c2

[
pS(c1, c2) + rk(c1, c2)

]
log pT (c1, c2;A)−

∑
f,c

A(c|f) logAk(c|f)

This is non-convex due to the bilinear form of pT (c1, c2;A). To simplify
things further we use the standard EM trick and define an auxiliary function:

F̄ k(A) ≡ −
∑

c1,c2,f1,f2

p(f1, f2|c1, c2;Ak)
[
pS(c1, c2) + rk(c1, c2)

]
log pT (c1, f1, c2, f2;A)

−
∑
f,c

A(c|f) logAk(c|f) + g(Ak)

where p(f1, f2|c1, c2;Ak) is the posterior calculated in step 3 of the algorithm
and g(Ak) is a function of Ak and not A.2 As in standard EM, it can be
shown that F k(A) ≤ F̄ k(A) with equality if A = Ak. Thus we can minimize
F̄ k(A) over A and decrease the objective F (A, r, q).

Using the notation in step 4 of the paper, this simplifies to:

F̄ k(A) = −
∑

c1,c2,f1,f2

Nk(c1, c2, f1, f2) log pT (c1, f1, c2, f2;A)

−
∑
f,c

A(c|f) logAk(c|f) + g(Ak)

We can now use the fact that pT (c1, f1, c2, f2;A) factors according to:

pT (c1, f1, c2, f2;A) = A(c1|f1)A(c2|f2)pT (f1, f2) (7)

to obtain (up to additive constants):

F̄ k(A) ≡ −
∑
c,f

Nk
1 (c, f) logA(c|f)−

∑
c,f

Nk
2 (c, f) logA(c|f)

−
∑
f,c

A(c|f) logAk(c|f)

And using the definition of Mk in step 5 of the paper, we obtain that:

F̄ k(A) ≡ −
∑
c,f

[
Mk(c, f) logA(c|f) +A(c|f) logAk(c|f)

]
2It is given by g(Ak) = −

∑
c1,c2

[
pS(c1, c2) + rk(c1, c2)

]
H[p(f1, f2|c1, c2;Ak)].
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We now just need to minimize it overA, and this indeed corresponds to step
6 in the algorithm (except for the term Fverb(A) which is straightforward to
add).

The above establishes that the F objective decreases monotonically
with each update. Convergence to local optima can be established as in
EM.
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