
Theory-infected
Or How I Learned to Stop Worrying and Love Universal Quantification

David Saff
MIT CSAIL
saff@mit.edu

Abstract
Writing developer tests as software is built can provide peace
of mind. As the software grows, running the tests can prove
that everything still works as the developer envisioned it.
But what about the behavior the developer failed to envi-
sion? Although verifying a few well-picked scenarios is of-
ten enough, experienced developers know bugs can often
lurk even in well-tested code, when correct but untested
inputs provoke obviously wrong responses. This leads to
worry.

We suggest writing Theories alongside developer tests,
to specify desired universal behaviors. We will demonstrate
how writing theories affects test-driven development, how
new features in JUnit can verify theories against hand-picked
inputs, and how a new tool, Theory Explorer, can search for
new inputs, leading to a new, less worrysome approach to
development.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—tools

General Terms Verification, Human Factors

Keywords Theories, JUnit, testing, partial specification

1. Introduction
Many developers write and frequently run automated tests to
confirm that their code’s behavior matches their intentions,
reducing worry that they have misunderstood how their code
works. Most popular developer testing frameworks support
tests based on example scenarios. Thinking through exam-
ples can be a useful step toward clarifying a vague specifica-
tion in the developers’ head:

@Test sqrRootExamples() {
assertEquals(2.0, sqrRoot(4));
assertEquals(3.0, sqrRoot(9));

}

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-786-5/07/0010.

However, the developer’s understanding of the unit’s cor-
rect behavior will eventually grow beyond what can be ex-
pressed by individual examples. This leads back to worry:
some unexpected future input might cause some future un-
expected future implementation to produce behavior the de-
veloper knows right now is a bug, but the current tests won’t
catch it. The behavior of the unit is only defined in a few rep-
resentative scenarios. Even future human maintainers may
not be able to assume the correct generalizations: what is
the right behavior when sqrRoot receieves a negative in-
put? Zero? Inputs without integer square roots? Is a negative
square root ever allowed?

To allow developers to eliminate this worry, we propose
that developer testing frameworks should support, as first-
order constructs alongside traditional tests, partial specifica-
tions over large or infinite sets of values, called Theories.
Theories look like test methods, but are universally quanti-
fied: all assertions must hold for any possible parameter val-
ues that pass the assumptions. For example, the 4.4 release
of JUnit allows the following statement:

@Theory defnOfSquareRoot(double n) {
assumeTrue(n >= 0);
assertEquals(n, sqrRoot(n) * sqrRoot(n), 0.01);
assertTrue(sqrRoot(n) >= 0);

}

The assumeTrue clause states the assumption of the
theory: sqrRoot is intended to work on any non-negative
double. If sqrRoot should also have defined behavior on
negative inputs, this may be expressed in a separate theory.

2. Uses
Not everything to be said about a codebase should be said
in a Theory. The concrete example executions found in tests
are a valuable source of feedback and future reference for the
implementation and design of the code. However, Theories
are effective at capturing several different kinds of ideas:

• Identities and data conversion. For example:

@Theory xmlConservesData(DataSet d) {
assertEquals(d, readFromXml(d.toXml()));

}

• Globally disallowed behavior. For example:

@Theory parseIsNeverNull(String textLine) {
assertNotNull(parser.parse(textLine));

}

• Preserved data, that is data whose content is inconsequen-
tial to the test, but whose preserved identity is crucial. For
example:

@Theory pointConstruction(int x, int y) {
assertEquals(x, new Point(x, y).getX());

}

3. Related work
Developers who wish to make general statements about the
correct operation of their code can add assertions to their
implementation, sometimes using a built-in language con-
struct like Java’s assert or Eiffel’s design-by-contract [2]
preconditions and postconditions. These can be useful for
representation invariants, which refer only to internal pri-
vate state. However, Theories are more effective than as-
sertions for expressing and exploring general statements of
externally-visible behavior:

• Theories can safely mutate the state of the objects under
test, which is of course too dangerous in in-line asser-
tions.

• Theories are in a separate class, where they can be added,
removed, executed, hypothesized, read, and explored
without changing or cluttering the implementation code.

• Theories exert positive design pressures, similar to unit
tests. If it is difficult to write a Theory about a class’s
correct external behavior, clients of the class will be more
difficult to write and understand.

Our work depends on Tillman and Schulte, who were the
first to investigate the use of Parameterized Unit Tests [5]
as a tool for test generation. Our Theory code constructs are
only superficially different from PUTs, but our tool support
and suggested use are different:

1. Theories are written at the same time as tests.

2. Theories can be evaluated in a fast feedback cycle by
standard test frameworks using developer-supplied input
values.

3. Theories can be explored in a slower cycle, using auto-
mated tools to look for violating inputs.

Theories provide a simple way to use sophisticated tools
to explore for complicated failure conditions. Tools for ran-
dom testing [3] and model checking [6] can be given sim-
ple interfaces suitable for quick use by novice developers, if
they are only used to look for obviously faulty conditions:

deadlocks, in-line assertion violations, or uncaught excep-
tions. However, only a subset of all bugs in a program will
manifest in one of these conditions–for the others, develop-
ers must often learn specialized logic languages or extension
API’s. Theories provice a much simpler route, by adapting
faulty behavior in the unit under test (sqrRoot(16) returns
-4) to a simpler error condition (an assertion violation).

4. Tools
To support Java developers using Theories, we have devel-
oped two different tools. For Theory evaluation, we have
provided a test runner that (now included in JUnit 4.4 [1]),
which uses all possible annotated DataPoints from the
test class as inputs to the Theory:

@RunWith(Theories) public class SquareRoot {
@DataPoint public double FOUR = 4.0;
@DataPoint public double NINE = 9.0;

@Theory defnOfSquareRoot(double n) { ... }
}

For Theory exploration, we have developed a separate
tool, Theory Explorer. When invoked on a Theory, Theory
Explorer analyzes the Theory code and the code under test,
attempting to find inputs that will cause the Theory to fail.
If a failing input is found, the developer indicates if it rep-
resents a bug (in which case Explorer adds the input as a
data point) or a missing assumption (in which case Explorer
prompts for the new assumption). By iterating through the
developer’s theories until no violating inputs are found, the
Theories are made more precise, bugs are found, and the de-
velopers’ confidence increases.

The input generator for Theory Explorer uses the free
JUnit Factory web service [4]. JUnit Factory uses random
testing, heuristics, and symbolic execution to find inputs that
cover new code path, but a license is needed to operate on
proprietary code.

We encourage all Java developers to download these new
tools, provide feedback, and stop worrying.

References
[1] Junit. http://junit.sourceforge.net.

[2] B. Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1992.

[3] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-
directed random test generation. In ICSE ’07, pages 75–84,
Washington, DC, USA, 2007. IEEE Computer Society.

[4] A. Software. Junit factory. http://www.junitfactory.

org.

[5] N. Tillmann and W. Schulte. Parameterized unit tests.
SIGSOFT Softw. Eng. Notes, 30(5):253–262, 2005.

[6] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input
generation with java pathfinder. In ISSTA ’04, pages 97–107,
New York, NY, USA, 2004. ACM Press.

