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by
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Submitted to the Department of Electrical Engineering and Computer Science
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requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

An information-flow security policy constrains a computer system’s end-to-end use of
information, even as it is transformed in computation. For instance, a policy would
not just restrict what secret data could be revealed directly, but restrict any output
that might allow inferences about the secret. Expressing such a policy quantitatively,
in terms of a specific number of bits of information, is often an effective program-
independent way of distinguishing what scenarios should be allowed and disallowed.

This thesis describes a family of new techniques for measuring how much informa-
tion about a program’s secret inputs is revealed by its public outputs on a particular
execution, in order to check a quantitative policy on realistic systems. Our approach
builds on dynamic tainting, tracking at runtime which bits might contain secret in-
formation, and also uses static control-flow regions to soundly account for implicit
flows via branches and pointer operations. We introduce a new graph model that
bounds information flow by the maximum flow between inputs and outputs in a flow
network representation of an execution. The flow bounds obtained with maximum
flow are much more precise than those based on tainting alone (which is equivalent
to graph reachability). The bounds are a conservative estimate of channel capacity:
the amount of information that could be transmitted by an adversary making an
arbitrary choice of secret inputs.

We describe an implementation named Flowcheck, built using the Valgrind frame-
work for x86/Linux binaries, and use it to perform case studies on six real C, C++,
and Objective C programs, three of which have more than 250,000 lines of code. We
used the tool to check the confidentiality of a different kind of information appropriate
to each program. Its results either verified that the information was appropriately
kept secret on the examined executions, or revealed unacceptable leaks, in one case
due to a previously unknown bug.

Thesis Supervisor: Michael D. Ernst
Title: Associate Professor
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Chapter 1

Introduction

Computers should be able to keep secrets. Much of the information that computers

process is private, sensitive, or confidential, so users would like to know that it is

not revealed to others who should not have it. However, it is difficult for computer

systems to provide limits on where information propagates as it is processed, because

digital information can be very easily copied and need bear no trace of its origin, and

because it is difficult to know whether software obeys its (often missing) specification.

Information-flow security refers to enforcing limits on the use of information that cover

not just access to data in the first instance, but how the information contained in the

data might be revealed in subsequent computations.

Our goal in this thesis to automatically check whether real software meets an

information-flow policy, by measuring the amount of information disclosed on a par-

ticular execution. To that end, we present a family of new techniques, which for the

first time make such measurements practical on large, preexisting software systems,

without a need for excessive developer assistance. A developer can use a tool like

ours to measure the amount of secret information that a program actually reveals.

Then, the developer can decide whether that amount is acceptable. If the program

is revealing too much information, the tool’s results indicate the code location where

the excessive flow occurs.

Because our tool’s results apply only to the executions it observes, it is best used

as part of the testing and auditing process; but users would like be sure that a security

11



policy is obeyed on every production execution. The dynamic approach of our tool can

be used to obtain this kind of runtime checking, preventing a program from revealing

too much information, though at a performance cost (for instance, approximately a

factor of two for a technique described in Section 4.2). Static checking, which would

bound the amount of information a program might reveal on any possible execution,

is not yet practical for full-scale applications, but our techniques could be used to help

ease the developer burden of static checking, and they point to a future direction for

static checking research (discussed in Section 8.2.2).

As one example of how a tool like ours could be used, suppose that you are the

developer of a network-based strategy game, and you wish to evaluate how much the

network protocol implementation reveals about strategically important game infor-

mation. Your initial expectation is that the protocol should reveal 1 bit of secret

information per round of the game. You annotate the program to mark the strategic

information as secret on input, and run the program under our tool. The tool reports

a code location that reveals 8 bits of information per round. On examining that code,

you discover that the implementation has a bug that is revealing extra information

to an opponent. After fixing the bug, you rerun our tool; it now measures the pro-

gram as revealing 2 bits of information per round, consisting of the 1 bit you had

originally expected, plus a second one that you also realize is correct. You then use

a streamlined version of our technique to automatically check that future executions

reveal no more than 2 bits per round. In fact, we examine just such a network game

in the case study of Section 7.2, and discover a previously unknown bug.

In the rest of this introduction, we first describe our goals for such a tool in more

detail (Section 1.1), then outline how our approach achieves them (Section 1.2).

1.1 Requirements for an information-flow tool

To be usable for assessing the information-flow security of a program, a tool must

satisfy three general domain requirements. First, it must be able to enforce a policy

that allows certain flows. Our system supports this by quantifying flows and allowing

12



Partial flows Soundness Scalability
Domain
goal

Allow some information
to be revealed, but not
too much

Must not miss flows in
any program construct

Applicable to realistic
programs

Technical
requirement

Measure quantitative
confidentiality policy

Measurement is an
upper bound, accounting
for implicit flows

Works on large
pre-existing C and C++
programs

Figure 1-1: Summary of the requirements for an information-flow measurement tool,
as detailed in Section 1.1.

small ones. Second, it must be sound in the sense of never missing a flow that actually

occurs in a program, even if the information is transformed via computations. Third,

it must be practical to apply to real software, working on large code bases in industrial

languages without running for too long or requiring too much help from developers.

These requirements are summarized in Figure 1-1. The rest of this section explains

in more detail the kinds of information-flow policies (Section 1.1.1), what it means

for a policy to be enforced soundly (Section 1.1.2), and the requirements for a tool to

scale to practically interesting programs (Section 1.1.3).

1.1.1 Information flow policies

Information-flow policies are of two broad varieties. A confidentiality policy requires

that a program that is entrusted with secrets should not “leak” those secrets into pub-

lic outputs. An integrity policy requires that a program that operates on information

that might be untrustworthy does not let that information affect results that must

be correct. There is a duality between these policy varieties, and both can be en-

forced with many of the same techniques. However, we concentrate on confidentiality

problems, because they are addressed less well by existing systems.

An ideal confidentiality property called non-interference is a guarantee that no

information about secret inputs can be obtained by observing a program’s public

outputs, for any choice of its public inputs. Unfortunately, such absolute prohibi-

tions on information flow are rarely satisfied by real programs. (If a program really

does satisfy non-interference, so that there is no connection between its secret and

public computations, it would be better to remove the secret computation entirely.)

13



Rather, the key challenge for information-flow security is to distinguish acceptable

from unacceptable flows.

Systems often deal with private or sensitive information by revealing only a portion

or summary of it. The summary contains fewer bits of secret information, provid-

ing a mathematical limit on the inferences an attacker could draw. For instance,

an e-commerce web site prints only the last four digits of a credit card number, a

photograph is released with a face obscured, an appointment scheduler shows what

times I’m busy but not who is meeting me, a document is released with text replaced

by black rectangles, or a strategy game reveals my moves but not the contents of my

board. However, it is not easy to determine by inspection how much information a

program’s output contains. For instance, if a name is replaced by a black rectangle,

it might appear to contain no information, but if the rectangle has the same width

as the text it replaces, and different letters have different widths, the total width

might determine which letters were replaced. Or a strategy game might reveal extra

information in a network message that is not usually displayed.

The approach of quantitative information-flow security expresses a confidentiality

property as a limit on the number of bits that may be revealed. Quantification is

a general approach that can be used with any confidentiality policy, since any kind

of information can be measured in bits. Of course, for quantification to be useful,

the allowable flows must contain less information than the undesirable ones (perhaps

after distinguishing different classes of secret information). This is not necessarily the

case, but we have found quantification to be useful over a wide variety of examples

(see Chapter 7).

Quantification could potentially apply to very small flows: for instance, an un-

successful login attempt reveals only a small fraction of a bit, if the attacker had no

previous knowledge of the password. But in the examples we consider, the acceptable

flows may be any number of bits.

14



1.1.2 Soundness for information-flow measurement

A program analysis is sound if its results are always correct in their intended in-

terpretation, though they may still not be the most informative results possible. A

confidentiality tool is sound if its measurement is an upper bound: it can overestimate

the amount of information revealed, but can never underestimate it. (Note that for

our technique, this is still a property of the tool’s measurement of a single execution:

the results for one execution need not apply to other executions.)

In some violations of information-flow policies, confidential data is exposed di-

rectly, for instance if the memory containing a password is not cleared before being

reused. However, in many other cases information is transformed among formats, and

may eventually be revealed in a form very different from the original input. This is

what makes soundness a challenge: a tool must account for all of the influence that

the secret input has on the program’s output, even when the influence is indirect.

Specifically, this means a tool must account for implicit flows in which the value of a

variable depends on a previous secret branch condition or pointer value.

1.1.3 Making information-flow measurement practical

A flow measurement technique can only find and prevent real information leakage

bugs if it can be applied to the software systems that are really used with secret

data. It must apply to real programming languages, preferably ones already used in

practice. It must be able to operate correctly on large programs, and without using

too much time or computing resources. And using the tool must not present too

much of a burden to a developer, in terms of specifying a policy, describing how the

program meets that policy, or interpreting a tool’s results.

1.2 Our flow-measurement approach

This thesis presents a family of techniques for building information-flow measurement

tools, and evaluates those techniques by using our Flowcheck tool to measure flows

15



in six different real applications. We found that building a practical tool required

a careful combination of well-known techniques, previous techniques applied in new

ways, and new insights.

Our overall approach is dynamic analysis: our tool measures the execution of a

program on one or more particular inputs. In addition to providing the program

itself (which the technique considers public), a user must tell our tool which program

inputs contain secret information. By default, the tool treats all outputs as potentially

public. The tool only measures flows to the outputs of the program: information that

might be revealed by other observable aspects of its behavior, such as its use of time

or system resources, are outside the tool’s scope. The tool’s output is a flow bound

that applies only to the examined execution: other executions might reveal either

more information or less.

Our techniques build on the general information-flow approach of tainting: a

variable or value in a program is tainted if it might contain secret data. The basic

rule of tainting is that the result of an operation should be tainted if any of the

operands is. However, the tainting analysis we use is unusual in two ways: it operates

at the level of individual bits, and it soundly includes implicit flows (Chapter 3).

Tainting is appropriate for determining whether an illegal flow is present or not, but

it cannot give a precise measurement of secret information because of its conservative

treatment of propagation. A single tainted input can cause many later values to be

tainted, but making copies of secret data does not multiply the amount of secret

information present.

A key new idea in this thesis is to measure information-flow not simply using

tainting but as a kind of network flow capacity. One can model the possible infor-

mation channels in an execution of a program as a network of limited-capacity pipes,

and secret information as an incompressible fluid. The maximum rate at which fluid

can flow through the network corresponds to the amount of secret information the

execution can reveal. With appropriate algorithms, including a kind of graph com-

pression, it is possible to build a flow graph as a program executes and compute the

maximum flow through it on the fly (Chapter 5).
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Alternatively, a graph’s maximum flow capacity also corresponds to the minimum

capacity of a cut. A cut is a set of edges whose removal disconnects the secret input

from the public output, so the intermediate values that occurred on the cut edges are

sufficient (along with public information) to determine the program’s public output.

A minimum cut (a cut with the smallest possible total capacity) is a set of locations

in the program’s execution at which the secret information being processed had the

most compact representation. Any cut, whether provided by a developer or built

automatically from a maximum flow (in which case it is guaranteed to be minimal),

can be used by our tool as a means of checking whether an information-flow policy

is satisfied on future executions. Cut-based checking is possible with much with less

overhead than building a new graph (Chapter 4).

Though our tool’s results describe only the particular executions it was used to

measure, there are several ways it can be used to ensure that all program executions

obey a confidentiality property. One choice is to use the tool to measure the informa-

tion flow in every execution, and abort an execution if it is about to reveal too much

information. This kind of runtime checking incurs a performance overhead, but the

use of cut-based checking can make it small enough (a factor of 2) to be acceptable for

some security-sensitive applications. Second, the tool’s results highlight which parts

of a program operate on secret data and where that data has a compact representa-

tion, which can direct developers to secrecy-relevant code that should be manually

audited.

A static information-flow measurement tool, one which would produce a formula

that describes the information a program reveals on any possible execution, is not

yet practical for the realistic-scale programs we consider. However, our technique

represents significant progress towards that goal in two respects. First, its results

could be used as a hypothesis to be proved or disproved by a static tool, relieving

developers of the task of creating such a specification from scratch. Second, our

dynamic approach suggests an analogous static approach that could take advantage

of a number of previously-known static techniques, clarifying why static quantita-

tive information flow remains difficult and suggesting more specific targets for future
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research (Section 8.2.2).

Our implementation of these ideas in the Flowcheck tool meets the three require-

ments we outlined earlier. Flowcheck produces a quantitative flow measurement, so

a program that allows some inference about the secret information can still be ac-

ceptable, as long as the amount of information revealed is not too much. Flowcheck’s

results are a sound measurement of the flow in a particular execution or set of exe-

cutions: it never underestimates a flow that occurs. Finally, Flowcheck is practical

for developers to use: we have run it on C, C++, and Objective C programs of up to

half a million lines of code, and its running time scales linearly with the length of the

program execution. Flowcheck currently uses a small number of developer-provided

annotations to improve the precision of its results, but we found that only a few an-

notations (based on local reasoning that was easy even when we were not previously

familiar with the code) were sufficient (Chapter 7).

1.3 Outline

The remainder of this thesis studies these ideas in more detail. Chapter 2 begins by

surveying previous research on systems and tools to support information-flow security.

Next, Chapter 3 describes the most fundamental information-flow analysis techniques

we use: tainting analysis, including at the level of individual bits, and a way to account

for implicit flows. Chapter 4 covers cuts in a flow network, and explains two ways

they can be used to more efficiently check whether a quantitative policy is respected.

Chapter 5 describes how to obtain more precise flow measurements by explicitly con-

structing a graph representation of flows in a program execution, and computing the

maximum flow in that graph. Chapter 6 provides a more detailed formal justification

of claims made earlier by giving a definition of soundness for a dynamic quantitative

information-flow analysis, and then introducing a simulation-based proof technique to

demonstrate how a model of the previously discussed analyses satisfies this soundness

definition. Chapter 7 discusses our implementation of a quantitative information-flow

analysis for Linux/x86 binary programs, and evaluates it on security policies from a

18



series of open-source applications. Finally, Chapter 8 provides further discussion,

suggests directions for future research, and concludes.
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Chapter 2

Related work

This chapter surveys previous techniques for information-flow security that work at

the operating system level (Section 2.1), and then two broad classes of techniques that

work at the programming language level: static analyses (including type systems) that

check programs for information-flow security ahead of time (Section 2.2), and dynamic

tainting analyses that track data flow in programs as they execute (Section 2.3).

As described in Chapter 1, our goal is a flow measurement tool that gives a quan-

titative result, whose result are sound, and which can be applied to large preexisting

programs. As summarized in Figure 2-1, several of the surveyed tools meet one or

two of these requirements, but none meets all three.

2.1 Operating system techniques

It is relatively straightforward for an operating system to enforce an information-flow

policy at the granularity of processes and files. In this context, such enforcement

is referred to as “mandatory access control,” “mandatory” in the sense that the

restrictions on access to a file are chosen by the operating system, rather than by the

user or processes that created the file. Each file or other data source has a secrecy

level. To implement an information-flow policy, the system keeps track of a level of

secrecy per process which is equal to the most secret information the process has ever

read: any data written by the process is then marked as at least that secret. Because
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Partial flows Soundness Scalability
Operating
system

Trusted declassifier
processes

Yes, dynamic checking
always enabled

Many applications
require redesign

Static type
system

Declassification or
quantification

Almost always Hard to retrofit to
existing programs

Dynamic
tainting

Trusted declassification Requires additional
static analysis

Often quite good

Our
approach

Quantitative flow policy Upper bound for
observed executions

Large pre-existing C and
C++ programs

Figure 2-1: Previous approaches to information-flow analysis support subsets of our
goals as introduced in Figure 1-1. For instance, operating system techniques are
generally sound because they explicitly check all of a program’s interactions; some
static analysis approaches support partial flows via quantification; and many dynamic
tainting tools are scalable in terms of developer effort and runtime overhead. However,
no single previous approach satisfies all three of our goals.

the operating system can be aware of all of the interactions between processes, such a

policy ensures that any information produced under the influence of a secret is secret.

However, such a policy often treats too many results as secret to be useful. An

operating system generally cannot know how programs use the information they read,

so it must assume that any part of the program’s input might influence any part

of its output; unfortunately, such pessimistic assumptions rule out whole classes of

applications. For instance, if the goal is to prevent an e-commerce application from

releasing credit card information, an operating system might prevent a process that

has read the information from using the network, or transmitting any data to a process

that does. While this would indeed keep the credit card number secret, it would also

make it impossible to send any reply at all to a user in response to a purchase request.

The traditional use of mandatory access control is in the context of multilevel-

secure operating systems, which are designed to protect classified information pri-

marily in military or intelligence contexts. Such systems can provide a high degree of

assurance that execution will respect an information-flow policy, through a combina-

tion of providing a limited set of capabilities, carefully auditing an implementation,

and formally verifying the underlying security model (for instance, as in the classic

work of Bell and La Padula [BP76]). More recent work has applied similar models to

provide mandatory access control as an addition to standard operating systems, for
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instance in the Security-Enhanced Linux (SELinux) project [LS01]. Though civilian

applications so far have focused on integrity concerns (e.g., protecting systems from

subversion via attacks on network servers), a system such as SELinux could in princi-

ple provide very robust confidentiality protections. However, such protections would

not be very useful for any application in which secret and public data are both used,

because they would apply at too coarse a level of granularity.

To protect systems while still allowing useful work, a finer-grained tracking mech-

anism is required. For instance, the Asbestos operating system [EKV+05] provides

a lightweight abstraction (“event processes”) for provide memory isolation of com-

putations on data belonging to a particular user. Similarly, the HiStar [ZBWKM06]

operating system provides a new architecture whose processes are suitable for con-

taining secret information, and Flume [KYB+07] shows how such processes could be

hosted inside a legacy operating system. In all of these systems, the processes that

confine information must have a single purpose (since they have a single information-

flow label), and their possible outputs are constrained. This is compatible with some

application models, such as CGI scripts that execute a new process for each web

request. However, current systems often use a few large server processes that handle

multiple requests and maintain state between requests for efficiency. Such systems

would need to be redesigned to use process-level flow confinement. Language-level

isolation mechanisms, like the ones in our system, can be applied to existing software

without reimplementing.

2.2 Fully static analysis

Static checking aims to verify the information-flow security of programs before exe-

cuting them [Den76]. The most common technique uses a type system, along with a

declassification mechanism (a type loophole) to allow certain flows. It is also possible

to quantify information flows in a static system as a mechanism for allowing certain

flows, though this has been difficult to make practical.

Despite significant advances, barriers remain to the adoption of information-flow
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type checking [VSI96] extensions to general purpose languages [Mye99, Sim03, LZ06].

Static type systems may also be too restrictive to easily apply to pre-existing pro-

grams: for instance, we are unaware of any large Java or OCaml applications that

have been successfully ported to the Jif [Mye99] or Flow Caml [Sim03] dialects. (Clos-

est are three Jif programs: the poker game of Askarov and Sabelfeld [AS05], 4,500

lines of code ported from Java over the course of 230 hours; the email client of Hicks

et al. [HAM06], 6,000 lines of code written from scratch over “hundreds” of hours;

and the Civitas electronic voting system [CCM08], 13,000 lines written from scratch.)

Techniques based on type safety are inapplicable to languages that do not guarantee

type safety (such as C) or ones with no static type system (such as many scripting

languages). By contrast, our current implementation is for C and related languages,

and could also be extended to scripting languages (discussed in Section 8.2.3).

Information-flow type systems generally aim to prevent all information flow. Many

type systems guarantee non-interference, the property that for any given public inputs

to a program, the public outputs will be the same no matter what the secret inputs

were [GM82, VSI96]. Because it is often necessary in practice to allow some infor-

mation flows, such systems often include a mechanism for declassification: declaring

previously secret data to be public. Such annotations are trusted: if they are poorly

written, a program can pass a type check but still leak arbitrary information. In other

words, the particular possibilities for declassification in a system are regarded as part

of the security policy that the program must satisfy. There has been significant re-

search on ways to put additional policy restrictions on declassification: restricting it

not just to certain code [FSBJ97], but to certain principals [ML97], to certain runtime

conditions [CM08], according to the integrity of the condition triggering it [MSZ04],

or a number of other restrictions [SS05].

However, declassification still introduces a difficult tension between defining the

declassification policy narrowly, and keeping the policy independent of a particular

implementation. Developers may be left with a false sense of security if declassification

is allowed under a condition on program state that is intended to reflect a specification

condition, but is really dependent on other untrusted code. (Just the fact that a
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boolean variable named authorized is set to true does not mean that a request was

actually properly authorized.) Purely quantitative policies, such as the ones used

with our tool, have a clear implementation-independent interpretation, but it is left

to developers to connect them to application-specific security goals.

The flow-graph cuts described in Chapter 4 are the closest analogue to declas-

sification annotations in our system, and they embody the same intuition that a

partial-flow policy can be enforced by allowing flow at a certain program location,

and prohibiting it everywhere else. The minimum cut locations that our tool finds

automatically could be used as suggested locations for declassification annotations.

However, the fundamental difference between declassification annotations and our

cuts is in their relation to policy. A declassification annotation becomes part of the

policy the type system guarantees (i.e., is trusted), while in our system the policy

is a numeric flow bound expressed independently of the program, and the cut is an

untrusted hint pointing out one way the program might satisfy the policy. Both de-

classification annotations and cuts can be used to focus programmer attention on a

part of a large program that is important for information-flow security, but declas-

sification annotations ask the programmer to understand the declassification point

completely, so that any information passing through it can be deemed legitimate. In

our system the amount of information revealed is the ultimate criterion of accept-

ability, and examining the code around a cut can help the programmer understand

why the program reveals the information it does (perhaps suggesting ways it could

be changed to reveal less).

Quantitative measurements based on information theory have often been used

in theoretical definitions of information-flow security [Gra91, DHW02, Low02], and

some more recent work has attempted to build practical program analyses based on

them. For instance, Lowe [Low02] begins with the same abstract definition of channel

capacity that we argue for in Chapter 6, but explores it in the context of a process al-

gebra rather than a programming language. The definition he formulates in that con-

text accounts for subtleties of nondeterminism and fine-grained interaction between

concurrent processes, but it is not clear even how to translate it to an imperative
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context, much less automate its application. Clark et al.’s system for a simple while

language [CHM04] is the most complete static quantitative information flow analysis

for a conventional programming language. Any purely static analysis is imprecise

for programs that leak different amounts of information when given different inputs.

For instance, given an example program with a loop that leaks one bit per iteration,

but without knowing how many iterations of the loop will execute, the analysis must

assume that all the available information will be leaked. Malacaria [Mal07] gives a

formula for precise per-iteration leakage bounds for loops, but it appears difficult to

apply automatically. By contrast, a dynamic technique like ours can simply count

the number of iterations that occur on a particular execution.

2.3 Dynamic analysis

Processing sensitive information often involves a sequence of calculations that trans-

form sensitive input into a different-looking output that contains some of the same

information (Chapter 7 describes examples from games, graphical and web user inter-

faces, image processing, and network protocols). To catch violations of confidentiality

policies in such software, it is important to examine the flow of information through

calculations, including comparisons and branches that cause implicit flows, not just

to track data that is copied directly. Several recent projects dynamically track data

flow for data confidentiality and integrity, but (unlike our approach) without a precise

and sound treatment of implicit flows.

Some of the earliest proposed systems for enforcing confidentiality policies on

programs were based on run-time checking: Fenton discovered the difficulties of im-

plicit flows in a tainting-based technique [Fen74], and Gat and Saal propose reverting

writes made by secret-using code [GS76] to prevent unintended flows (implicit and

otherwise) The general approach closest to ours, in which run-time checking is sup-

plemented with static annotations to account for implicit flows, was first suggested by

Denning [Den75]. However, these techniques are described as architectures for new

languages or hardware, rather than for as tools evaluating existing software, and they
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do not support permitting acceptable flows or measuring information leakage.

Many recent dynamic tools to enforce confidentiality policies do not account for

all implicit flows. Chow et al.’s whole-system simulator TaintBochs [CPG+04] traces

data flow at the instruction level to detect copies of sensitive data such as passwords.

Because it is concerned only with accidental copies or failures to erase data, Taint-

Bochs does not track all implicit flows. Masri et al. [MPL04] describe a dynamic

information-flow analysis similar to dynamic slicing, which recognizes some implicit

flows via code transformations similar in effect to our simple enclosure region inference

(Section 7.8). However, it appears that other implicit flows are simply ignored, and

their case studies do not involve implicit flows. dytan [CLO07], a generic framework

for tainting tools, applies a similar technique at the binary level, where the difficulties

of static analysis are even more acute. In case studies on Firefox and gzip, they found

that their partial support for implicit flows increased the number of bytes that were

tainted in a memory snapshot, but they did not evaluate how close their tool came to

a sound tainting. For instance, they mark the input to gzip as tainted, much as we

do with bzip2 in Section 5.3.2, but do not measure whether the output was tainted.

Accounting for all implicit flows requires static information (in our approach,

provided by the enclosure regions described in Section 3.2) Several projects have

combined completely automatic static analyses with dynamic checking; the key chal-

lenge is to make such analysis both scalable and sufficiently precise. The RIFLE

project [VBC+04] proposes an architectural extension in which dedicated hardware

tracks direct and indirect information flow with compiler support. The authors

demonstrate promising results on some realistic small programs, but their technique’s

dependence on alias analysis leaves questions as to how it can scale to programs that

store secrets in dynamically allocated memory. Our approach also uses a mix of static

analysis and dynamic enforcement, but our static analysis only needs to determine

which locations might be written, while RIFLE attempts to match each load with all

possible stores to the same location, which is more difficult to do precisely in the pres-

ence of aliasing. Two recent tools [NSCT07, CF07] apply to Java programs, where

static analysis is somewhat easier: their experimental results show low performance
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overheads, but do not measure precision. None of these tools enforces a quantitative

security policy.

In attacks against program integrity, the data bytes provided by an attacker are

often used unchanged by the unsuspecting program. Thus, many such attacks can

be prevented by an analysis that simply examines how data is copied. Quantitative

policies are rarely used for integrity; one exception is recent work by Newsome and

Song [NS08], which measures the channel capacity between an input and a control-

flow decision to distinguish between legitimate influence and malicious subversion.

Their measurement technique, based on querying the space of possible outputs with

a decision procedure, is very different from ours, and their similar choice of channel

capacity as a goal was independent.

The most active area of tainting research is on tools that prevent integrity-

compromising attacks on network services, such as SQL injection and cross-site script-

ing attacks against web applications and code injection into programs susceptible to

buffer overruns. These tools generally ignore implicit flows or treat them incom-

pletely. Newsome and Song’s TaintCheck [NS05], and the Flayer tool [DO07] are

based on the same Valgrind framework as our tool, while other researchers have sug-

gested using more optimized dynamic translation [KBA02, QWL+06], source-level

translation [XBS06], or novel hardware support [SLZD04] to perform such checking

more quickly. The same sort of technique can also be used in the implementation of a

scripting language to detect attacks such as the injection of malicious shell commands

(as in Perl’s “taint mode” [WS91]) or SQL statements [NTGG+05].
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Chapter 3

Basic techniques

This thesis considers several combinations of mechanisms for measuring and checking

information flows, but the two techniques described in this chapter are the most fun-

damental; both will be used as the basis for later techniques and in all the case studies.

First, tainting (Section 3.1) is the standard dynamic analysis technique for tracking

the flow of secret data; we describe the somewhat unusual choice of performing this

analysis at the level of individual bits. Second, enclosure (Section 3.2) is the key

technique our tool uses to soundly measure implicit flows. We then illustrate these

techniques with an example (Section 3.3), and discuss an optimized implementation

technique (Section 3.4).

3.1 Tainting

Operationally, a taint analysis computes whether each piece of data in a program is

public or secret, according to the rule that if any of the inputs to a basic operation is

secret, the output is. (The term comes from the intuition that even a small amount of

secret data can “taint” a mixture in which all the other data values are non-secret.)

Alternatively, tainting can be thought of as reachability: a piece of data is tainted

if it is reachable from the secret inputs by some sequence of operations. There are

both static tainting analyses, which compute the secrecy of program variables (e.g.,

[HYH+04, LL05, XA06]), and dynamic tainting analyses, which can assign a different
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secrecy status to each data value that occurs during execution (a number of previous

tools are discussed in Section 2.3). In this thesis, “tainting” will refer to dynamic

tainting unless otherwise qualified.

Tainting can be applied to data at any level of granularity, with the choice reflect-

ing a trade-off between analysis effort and precision. Since our goal is precise numeric

estimates of the number of bits of secret information that flow, our tool’s results ben-

efit from the finest-grained tainting: we thus choose to track the secrecy of each bit

separately (this could also be described as a bit-tracking analysis). For instance, the

flows that our tool measures for several of the case studies in Chapter 7 are no more

than a dozen bits, so its results would be much less precise if they were constrained to

be multiples of 8 or 32 bits (as in byte- or word-level tainting). Bit-level tainting can

also be loosely described as a bit-width analysis, because it computes how many bits

worth of secret data are stored in a machine word, but it is not limited to situations

where the secret bits are contiguous and start at the least-significant position, nor

does it require that the non-secret bits have value 0 (though these are all the most

common situations).

Our tainting analysis is an instance of a shadow-value analysis [NS07]: for each of

the values the original program uses, it maintains a parallel value containing metadata

used by the analysis. In our case, for each data bit in the original program (i.e., in

a register or in memory), it maintains a secrecy bit which is 1 if the data bit might

contain secret information, or 0 if it is non-secret.

In theory, a very precise bit-level tainting analysis could be derived by expressing

each basic program operation with a circuit (e.g., addition using a ripple-carry adder),

and then applying the basic principle of tainting to each bit operation. Another way

to think about the desired results is that they come from a Kleene-style three-valued

logic, in which the third logic value, traditionally glossed as “unknown,” instead

represents “secret”: the analogy is that from the perspective of public results, the

values of secret bits should be irrelevant. A result bit is secret if it might be either 0

or 1 depending on the values of secret input bits. However, it would be more precise

to call the tainting analysis a four-valued logic (with values 0, 1, ?0, and ?1), since
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sa⊕b = sa | sb

sa&b = (sa | sb) & (sa | va) & (sb | vb)
sa+b = sa | sb | (((va & sa) + (vb & sb))⊕ ((va | sa) + (vb | sb)))
sa·b = sa | sb | −(sa | sb)

Figure 3-1: Examples of formulas for computing the secrecy bits of for the results of
a basic operation, in terms of the secrecy bits of the operands (sa and sb) and the
values of the operands (va and vb). (& and | represent bitwise-AND and -OR, as in
C, ⊕ is XOR, and an overline indicates bitwise complement.) The first formula says
that a bit in the XOR of two values is secret if either of the corresponding operand
bits was secret. The second formula for AND is similar, but a bit is also public if
either one of the operand bits was both public and 0. To motivate the expression for
sa+b in the third line, note that vx & sx and vx | sx are the smallest and largest values
that can be formed by replacing the secret bits in an operand x with either 0 or 1; the
bits set in the XOR expression are those carry-in bits that might be vary depending
on the secret bits. The formula for multiplication in the last line is an imprecise
approximation that allows tainting to propagate maximally leftward (x | −x, where
− represents twos-complement negation, has a 1 in every position not to the right of
the rightmost 1 in x).

01010111 ⊕ 0000?1?0?1?1 = 0 1 0 1 ?1?1?0?0
01010111 & 0000?1?0?1?1 = 0 0 0 0 0 ?0?1?1
01010111 + 0000?1?0?1?1 = 0 1 ?1?0?0?0?1?0
01010111 · 0000?1?0?1?1 = ?1?0?1?1?1?1?0?1

Figure 3-2: Examples of secrecy-aware computations using the formulas of Figure 3-1.
0 and 1 represent public zero and one bits, while ?0 and ?1 represent secret bits whose
secret values are zero or one respectively.

even if a bit is secret, the analysis still remembers what its value is.

The circuit- or logic-level models of the previous paragraph identify the ideal that

our real implementation approximates, but for practicality, our tool computes taint-

ing results a full machine word at a time, using the hardware’s word-sized operations.

The secrecy bits for the result of a basic operation are computed by a formula that in

general depends on both the secrecy bits of the operands and their data bits. Depend-

ing on the operation, this formula may or may not involve a loss of precision compared

to the best result representable in the tainting abstraction; for instance, the formulas

our tool uses for bitwise operations, addition, and subtraction are maximally precise,

but those for multiplication and division are not. Some representative examples of

these formulas are shown in Figure 3-1 (a complete discussion is in [SN05]), and some
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concrete examples are shown in Figure 3-2.

The bitwise tainting analysis is essentially the same as the analysis that the Val-

grind Memcheck tool [SN05] uses to track undefined values; in fact, our observation of

this similarity was one of the original motivations for this research project. Our im-

plementation reuses most of the code from Memcheck. The independently-conceived

Flayer tool [DO07] also re-purposes Memcheck’s undefined value analysis as a taint

analysis, but for finding input-processing vulnerabilities (a class of non-quantitative

integrity properties without implicit flow).

3.2 Enclosing leaks from implicit flows

The tainting intuition is a good match for programs represented as circuits, but gen-

eral programs are more complex than circuits because of operations such as branches,

arrays, and pointers that allow data to affect which operations are performed or what

their operands are. When the branch condition, array index, or pointer value is secret,

these operations can lead to indirect or implicit flows which do not correspond to any

direct data flows, but may nonetheless reveal secret information. For instance, later

execution might be affected by a branch that caused a location not to be assigned to,

or the fact that the 5th entry in an array is zero might reveal that the secret index

used in a previous store was not equal to 5. To deal properly such situations, a sound

flow measurement tool must account for all implicit flows.

To recover the intuitive perspective of execution as a circuit, our tool treats each

operation (e.g., branch) that might cause an implicit flow as being enclosed as part

of a larger computation with defined outputs. For instance, consider computing a

square root. If a single hardware instruction computes square roots, then there is no

implicit flow, but the square root of a secret value is itself secret. On the other hand,

if the square root is computed by code that uses a loop or branches on the secret

value, these implicit flows can be conservatively accounted for by assuming that they

might all affect the computed square root value, so our tool can represent the implicit

flows by ensuring the computed square root is tainted. Our tool applies this concept
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of enclosure in two ways: the complete program is always enclosed with its explicit

outputs, and smaller regions of code can be enclosed with an annotated set of output

locations.

To achieve soundness, it is sufficient to consider the entire program as being en-

closed in this way. Our tool’s default behavior treats all implicit flows as potentially

revealing information to the program’s public output, and sums the amount of infor-

mation that might be revealed by each. (The amount of information revealed by the

program is also bounded by the total size of all the outputs.)

Better precision results from using additional enclosure regions around smaller

sub-computations, such as the square-root function mentioned earlier. In our system,

enclosure regions are specified using source code annotations that mark a single-exit

control-flow region and declare all of the locations the enclosed code might write to

(see Section 3.3 for an example). These annotations can be inferred using standard

static analysis techniques; Section 7.8 describes a pilot study examining what is re-

quired. Missing or poorly placed enclosure annotations can only cause the tool to

give imprecise results, but it is necessary for soundness that a region declare all the

locations it might write to, which is why it would be desirable for these to come

from a sound static analysis. Our tool can also dynamically check that the soundness

requirements for an enclosure region hold at runtime, but this is less satisfactory be-

cause if a check fails, it is not always possible to continue execution in a way that is

both sound and behavior-preserving.

Conceptually, the number of bits of information that can flow from an implicit flow

operation corresponds to the number of possible different executions: for instance,

a two-way branch on a secret reveals one bit, while a pointer operation such as an

indirect load, store, or jump could reveal as many bits as are secret in the pointer

value. (At the instruction level, multi-way branches show up as either nested two-

way branches or jump tables, and our tool estimates their flow accordingly.) As

described so far, our tool can only take advantage of this precision when counting

bits of information revealed directly to the final program output. When the flow is

represented by tainting intermediate program values, our tool must consider all of the
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outputs of an enclosed computation as tainted when any implicit flow operation on

a secret value occurs inside, since in general all the output bits might be affected by

even a single branch. (We will see further ways to use this precision in Section 5.1.)

3.2.1 Enclosure and side channels

In addition to handling simple implicit flows to other data values, enclosure regions

can also be used to limit the amount of information revealed via some other kinds

of observable behavioral differences (so-called side channels; here we discuss program

output, termination, and timing), though with varying degrees of practicality. In

each case, the goal is to prevent the decisions made within the enclosure region from

being visible outside (other than via the enclosed outputs).

In addition to the information contained in values that a program prints, its

choices of when and how many values to output may also convey information. So

that these channels are properly counted, the control flow decisions that decide when

values are output should occur outside any enclosure regions: our tool does this by

prohibiting output routines inside enclosure regions.

The termination of a program can also be considered a distinguished kind of out-

put for which the decision of when to terminate may carry information (on Unix,

termination also can pass a one-byte exit status value). It is somewhat more difficult

to prohibit exits inside enclosure regions, since a program can be killed by an excep-

tional event like a out-of-bounds memory access as well as an explicit call to exit.

However, it is possible to catch such events and continue execution at the end of the

enclosure region; our implementation of dynamic checking for regions maintains a log

of memory changes made inside a region that can be rolled back to ensure execution

can continue from the enclosure end.

A particularly notorious side channel is the timing of a program’s execution of

which non-termination can be thought of as a special case. In theory, this could

also be addressed by requiring that each execution of an enclosure region take the

same amount of time, but such a policy would be impractical to specify and enforce

in practice, so we have not implemented anything along these lines. (For short code
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1 /* Print all the "."s or "?"s,

2 whichever is more common. */

3 void count_punct(char *buf) {

4 unsigned char num_dot = 0, num_qm = 0, num;

5 char common, *p;

6 ENTER_ENCLOSE(num_dot, num_qm);

7 while (p = buf; *p != ’\0’; p++)

8 if (*p == ’.’)

9 num_dot++;

10 else if (*p == ’?’)

11 num_qm++;

12 LEAVE_ENCLOSE();

13 ENTER_ENCLOSE(common, num);

14 if (num_dot > num_qm) {

15 /* "."s were more common. */

16 common = ’.’; num = num_dot;

17 } else {

18 /* "?"s were more common. */

19 common = ’?’; num = num_qm;

20 }

21 LEAVE_ENCLOSE();

22 /* print "num" copies of "common". */

23 while (num--)

24 printf("%c", common);

25 }

Figure 3-3: C code to print all the occurrences of the most common punctuation char-
acter (. or ?) in a string. For instance, when run on its own source code, the program
produces the output “........”. We might intuitively describe this program as re-
vealing 9 bits of information about its input: 1 bit giving the identity of the most
common punctuation mark, and 8 bits from the count, which is computed modulo
256. Later chapters will describe how to make this intuition precise (Chapter 6), and
techniques that obtain that result (Chapters 4 and 5).

segments, a code translation approach is possible [MPSW05], but this would probably

not scale to enclosure regions that might execute a wide variety of operations.)

3.3 Punctuation count example

As a concrete example of the techniques introduced in this chapter, consider the

code shown in Figure 3-3. This function counts the number of periods and question
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marks in a string, and then whichever was more common, prints as many as appeared

in the string (modulo 256, because it uses an 8-bit counter). For instance, the source

code contains 8 periods and 4 question marks, so that when run on its own source

the program prints 8 periods.

The only relationships between the input buffer and num dot, between num dot

and common, and between num and the output, are implicit flows. A tool that did not

account for all of them could give an unsound (too small) result.

The example contains two enclosure regions, spanning lines 6–12 and 13–21 respec-

tively. The enclosure regions marked by ENTER ENCLOSE and LEAVE ENCLOSE improve

the precision of the results: without them, the default treatment of enclosing the

entire program would cause the tool to measure a leak of 1 bit each time a value

from the input buffer was compared to a constant, 1855 in total when run on its own

source. However, even when enhanced with enclosure regions, tainting still gives a

fairly imprecise result for this example: all of the output bytes are tainted, since they

all depend on the input string. For instance, when run on its own source code, produc-

ing a string of 8 periods as output, this means that the program would be estimated

as revealing 64 bits of information. In later chapters we will introduce additional

techniques to allow a much more precise flow bound (9 bits in this example).

A simple tainting analysis like the one described in this chapter is still most ap-

propriate if it is more important to know which output bits contain secret information

than to know how much information they contain. The voting software case study of

Section 7.3 is such an example; for it we used only these basic techniques.

3.4 Optimizing large-region operations

Because the output of an enclosure regions can be an entire array or other large

data structure, the tool often needs to represent the fact that a piece of information

might flow to any byte in a large memory region. It would be too slow to do this by

modifying the secrecy of each memory location individually. For instance, consider

a loop operating on an array in which each iteration might potentially modify any
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element (say, if the index is secret). Operating on each element during each iteration

would lead to quadratic runtime cost.

Instead, the tool performs operations on large memory regions lazily. It maintains

a limited-size set (default size: 40) of region descriptors, each of which describes a

range of more than 10 contiguous memory locations, along with another list of up

to 30 addresses excepted. Operations such as tainting an entire region are recorded

just by modifying the descriptor, and operations on single addresses are marked as

exceptions. However, if a region accumulates more than 30 exceptions, it is either

shrunk to exclude them (if they are all in the first half), or eliminated.
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Chapter 4

Cut-based techniques for more

efficient checking

A cut (sometimes more specifically called an s-t cut [CGK+97]) is a way of dividing

a flow graph into two pieces, one containing the source and the other the sink. A cut

can be defined as the set of nodes that lie in the half containing the source, but we

are interested in the set of edges that cross from that set to its complement; their

removal disconnects the source from the sink. The capacity of a cut is the sum of

the capacities of these edges. There is a close relationship between cuts of a graph

and flows through it: the amount of any flow is less than or equal to the capacity of

any cut, since the flow must traverse the cut on its way from the source to the sink.

In this chapter we describe two techniques that use this relationship to bound the

information flow in a program: as long as a tool can ensure that no secret information

reaches the sink other than by traversing a set of locations in a program execution,

those locations form a cut, and their capacity is a bound on the information revealed.

These techniques are applicable however such a cut is determined (for instance, a

developer might supply it by hand), but later in Section 5.4, we will explain how a

cut of minimal capacity can be determined automatically.

These runtime mechanisms can be used to check whether a desired information-

flow policy, as embodied in a cut, is obeyed during a particular execution. It is a small

additional step to enforce such a policy, in the sense of terminating the program or
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taking another corrective action right before the program reveals more information

than it should, but there is the additional subtlety that such action may itself reveal

some information. This is another instance of the termination channel mentioned in

Section 3.2, and the flow it causes can be bounded in the same way.

4.1 Preemptive leakage

Checking that no secret information reaches the output other than across a given cut

is an instance of a tainting problem, so one approach is to add a cut to the tainting

technique of Chapter 3. The only new behavior required is that when tainted bits

reach the cut, they are cleared, and the count of leaked bits incremented; the same

treatment given to bits that reach the output. We call this treatment preemptive

leakage since the bits are counted as leaked at the moment they reach the cut, rather

than later when they reach the output. If the cut (or preemptive leakage annotation)

is placed at a location where the secret information has a compact representation,

then counting the leakage early can give a more precise flow estimate than waiting

until it reaches the output.

We implemented preemptive leakage annotations in the original version of our

information-flow measurement tool [ME06], and performed the preliminary versions

of some of the case studies described in Chapter 7 with manually placed annotations.

Running our tool in this mode still requires the fairly expensive runtime mechanisms

of bit-tracking and enclosure regions, though the measurement they provide is un-

necessary for bits counted at a cut. Thus, if it not important to retain the capability

to report where flows outside the cut appear, a more efficient implementation of cut

checking, such as the one described in Section 4.2, would be preferable.

4.2 Two-process simulation

A more efficient cut-checking technique is based on running two copies of a program.

The basic idea is to run two copies of a program in lockstep, one which initially has
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access to the secret input, and the other which operates on a non-sensitive input of

the same size. At the point when the programs reach a cut annotation, the program

with the real secret input sends a copy of the values on the cut to the second copy.

If the programs produce the same output, then the data that the second program

received from the first at the cuts is the only secret information needed to produce

the output, and the flow policy is satisfied. If the outputs diverge, then another

flow is present and execution should be terminated. (The disadvantage compared

to a tainting approach is that detecting a violation at output time is of less help in

tracking down its cause.)

The key advantage of this technique is that the execution of the two programs

can be mostly uninstrumented: they only need to behave unusually at the cut points.

Enclosure regions are also not required, as long as the non-sensitive input is such

that the program can execute the code that would be enclosed without crashing or

looping. A factor of two overhead compares favorably with binary-level dynamic

tainting systems, and using two copies can take advantage of multiple processors.

It may happen that some of the bits of the non-sensitive input happen to match

the corresponding bits of the secret input purely by chance, so that this technique

produces some outputs dependent on the secret before recognizing a divergence. How-

ever, its output in this case is still only a prefix of the result of running the program

on the non-sensitive input, which is already available to an attacker and conveys no

information. The best way for a two-process simulation to recover from a divergence is

to hide it completely by continuing to return the outputs produced by the non-secret

copy of the program.

A simpler version of this technique (without a cut, for checking only complete

non-interference) has been implemented independently in an operating-system-level

tool called TightLip [YMC07]. We will revisit the idea of two-process simulation, in

a theoretical context, in Section 6.3.
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Chapter 5

Algorithms for flow graphs

Previous chapters used the intuition of flow or cuts in a graph to motivate techniques

for measuring information flow in program executions. This chapter extends this con-

nection to graphs further by describing techniques that build a graph representation

at runtime and operate on it directly. Most crucially, explicitly building this flow

graph allows a tool to automatically compute the maximum flow and correspond-

ing minimum cut for an execution, achieving optimal precision as compared to the

manually-selected cuts described in Chapter 4, without the need for developer insight.

We first discuss how to build a flow graph (Section 5.1), and then how to combine

flow graphs for several executions (Section 5.2), efficiently compute the maximum

flow in a graph (Section 5.3), and compute a minimum cut from a maximum flow

(Section 5.4).

5.1 Building a flow graph

Our tool builds a graph representing the possible channels for information flow in

a program execution using a dynamic shadow value analysis similar to the tainting

analysis described in Section 3.1. In fact, the two analyses run in parallel: for each

value, the tool associates a tag representing a node identity in the graph being con-

structed, and a set of secrecy bits. The node identities are used to build the structure

of the graph, while the secrecy bits are counted to give the capacities on its edges.
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1 Node regNode[NUM_REGISTERS]; /* Node identities for each register */

2 Node public; /* Distinguished node for non-secret values */

3

4 for each instruction "insn" {

5 switch (insn) {

6 case "r_i := c":

7 regNode[i] := public;

8 case "r_i := r_j":

9 regNode[i] := regNode[j];

10 case "r_i := r_j + r_k":

11 Node n := newNode();

12 newEdge(regNode[j], n);

13 newEdge(regNode[k], n);

14 regNode[i] = n;

15 }

16 execute insn;

17 }

Figure 5-1: Pseudo-code for the simplest version of the graph construction algorithm
of Section 5.1. The array regNode contains shadow node identities for the value
in each machine register. On each operation, the algorithm builds a new node to
represent the result of the operation, and adds new edges connecting the operands to
the result.

Figure 5-2: Two possible graphs representing the potential information flow in the
expression c = d = a + b, where each variable is a 32-bit integer. The graph on the
left permits 32 bits of information to flow from a to c, and a different 32 bits to flow
from b to d. To avoid this, our tool uses the graph on the right.

The flow graphs our technique constructs represent an execution in a form similar

to a circuit. For efficiency, the graph represents byte or word-sized operations. Edges

represent values, and have capacities indicating how many bits of data they can hold.

Nodes represent basic operations on those values, where the in-degree of a node is the
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1 Node regNode[NUM_REGISTERS]; /* Node identities for each register */

2 Node public; /* Distinguished node for non-secret values */

3

4 for each instruction "insn" {

5 switch (insn) {

6 case "r_i := c":

7 regNode[i] := public;

8 case "r_i := r_j":

9 regNode[i] := regNode[j];

10 case "r_i := r_j + r_k":

11 Node n := newNode();

12 newEdge(regNode[j], n);

13 newEdge(regNode[k], n);

14 Node m := newNode();

15 newEdge(n, m);

16 regNode[i] := m;

17 }

18 execute insn;

19 }

Figure 5-3: An update to the pseudo-code of Figure 5-1, to give a more precise graph
representation of the results of an operation, as described in Figure 5-2. New or
changed operations are shown in bold.

operation’s arity. Pseudo-code for the most basic version of this graph construction

algorithm is given in Figure 5-1. (For simplicity, the pseudo-code omits the compu-

tation of edge capacities.) For each machine register, the algorithm maintains a node

representing the operation that created its current value, or a distinguished node for

literal values, which are considered public. At an operation, such as addition, a new

node is created to represent the result of the operation, and it is connected by edges

to the operation inputs.

Because of the possibility that the result of an operation may be used in more

than one subsequent operation, our tool adds an additional single edge and node,

which represents the constraint that the operation has only one output; this is also

equivalent to giving a capacity limit on a node. See Figures 5-2 and 5-3 for graphical

and pseudo-code illustrations.

Copying a piece of data without modifying it does not lead to the creation of new

nodes or edges. Because memory is byte-oriented, each memory byte has its own
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1 Node regNode[NUM_REGISTERS]; /* Node identities for each register */

2 Node memNode[2**32]; /* Node identities for each memory byte */

3 Node public; /* Distinguished node for non-secret values */

4

5 for each instruction "insn" {

6 switch (insn) {

7 case "r_i := c":

8 regNode[i] := public;

9 case "r_i := r_j":

10 regNode[i] := regNode[j];

11 case "r_i := r_j + r_k":

12 Node n := newNode();

13 newEdge(regNode[j], n);

14 newEdge(regNode[k], n);

15 Node m := newNode();

16 newEdge(n, m);

17 regNode[i] := m;

18 case "r_v := load r_a":

19 Node n := newNode();

20 for each b (0 .. 3)

21 newEdge(memNode[regs[a]+b], n);

22 regNode[v] := n;

23 case "store r_a, r_v":

24 for each b (0 .. 3)

25 memNode[regs[a]+b] := regNode[v];

26 }

27 execute insn;

28 }

Figure 5-4: An update to the pseudo-code of Figure 5-3, to add support for memory
load and store operations. New or changed operations are shown in bold.

shadow value, and loads and stores of larger values are split into bytes for stores and

recombined after loads (see Figure 5-4).

The graph is directed, with edges always pointing from older to newer nodes, and

so is also acyclic. Inputs and output are represented by two distinguished nodes, a

source node representing all secret inputs, and a sink node representing all public

outputs (see Figure 5-5).

Implicit flow operations, such as branches and memory loads and stores, can reveal

additional information if the branch condition or address value is secret. The tool

represents these flows with additional edges originating from those values. In its
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1 Node regNode[NUM_REGISTERS]; /* Node identities for each register */

2 Node memNode[2**32]; /* Node identities for each memory byte */

3 Node public, source, sink;

4

5 for each instruction "insn" {

6 switch (insn) {

7 case "r_i := c":

8 regNode[i] := public;

9 case "r_i := r_j":

10 regNode[i] := regNode[j];

11 case "r_i := r_j + r_k":

12 Node n := newNode();

13 newEdge(regNode[j], n);

14 newEdge(regNode[k], n);

15 Node m := newNode();

16 newEdge(n, m);

17 regNode[i] := m;

18 case "r_v := load r_a":

19 Node n := newNode();

20 for each b (0 .. 3)

21 newEdge(memNode[regs[a]+b], n);

22 regNode[v] := n;

23 case "store r_a, r_v":

24 for each b (0 .. 3)

25 memNode[regs[a]+b] := regNode[v];

26 case "input r_i":

27 Node n := newNode();

28 newEdge(source, n);

29 regNode[i] := n;

30 case "output r_i":

31 newEdge(regNode[i], sink);

32 }

33 execute insn;

34 }

Figure 5-5: An update to the pseudo-code of Figure 5-4, to add distinguished source
and sink nodes that are the source and target of program inputs and outputs respec-
tively. New or changed operations are shown in bold.

default behavior, our tool creates paths representing the possibility of flow from these

operations directly to the program output. However, our technique still captures two

constraints on such flows: the total amount of information revealed can never be more

than the total amount of output, and information that leaks from an implicit flow
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1 Node regNode[NUM_REGISTERS]; /* Node identities for each register */

2 Node memNode[2**32]; /* Node identities for each memory byte */

3 Node public, source, sink;

4 Node leak = newNode(); /* Implicit flows go here */

5

6 for each instruction "insn" {

7 switch (insn) {

8 case "r_i := c":

9 regNode[i] := public;

10 case "r_i := r_j":

11 regNode[i] := regNode[j];

12 case "r_i := r_j + r_k":

13 Node n := newNode();

14 newEdge(regNode[j], n);

15 newEdge(regNode[k], n);

16 Node m := newNode();

17 newEdge(n, m);

18 regNode[i] := m;

19 case "if r_i > 0 goto l":

20 newEdge(regNode[i], leak);

21 case "r_v := load r_a":

22 Node n := newNode();

23 for each b (0 .. 3)

24 newEdge(memNode[regs[a]+b], n);

25 regNode[v] := n;

26 newEdge(regNode[a], leak);

27 case "store r_a, r_v":

28 for each b (0 .. 3)

29 memNode[regs[a]+b] := regNode[v];

30 newEdge(regNode[a], leak);

31 case "input r_i":

32 Node n := newNode();

33 newEdge(source, n);

34 regNode[i] := n;

35 case "output r_i":

36 Node n := newNode();

37 newEdge(regNode[i], n);

38 newEdge(leak, n);

39 newEdge(n, sink);

40 Node l := newNode();

41 newEdge(leak, l);

42 leak := l;

43 }

44 execute insn;

45 }

Figure 5-6: An update to the pseudo-code of Figure 5-5, to add paths from each
implicit flow operation to the program output. New or changed operations are shown
in bold.
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1 Node regNode[NUM_REGISTERS];

2 Node memNode[2**32];

3 Node public, source, sink;

4 Node leak = newNode(), enclosed_leak;

5 bool enclosed = false; /* In encl. region? */
6 Set<Addr> outputs; /* Locations written to */

7

8

9

10 for each instruction "insn" {

11 switch (insn) {

12 case "r_i := c":

13 regNode[i] := public;

14 case "r_i := r_j":

15 regNode[i] := regNode[j];

16 case "r_i := r_j + r_k":

17 Node n := newNode();

18 newEdge(regNode[j], n);

19 newEdge(regNode[k], n);

20 Node m := newNode();

21 newEdge(n, m);

22 regNode[i] := m;

23 case "if r_i > 0 goto l":

24 if (enclosed)

25 newEdge(regNode[i], enclosed_leak);

26 else

27 newEdge(regNode[i], leak);

28 case "r_v := load r_a":

29 Node n := newNode();

30 for each b (0 .. 3)

31 newEdge(memNode[regs[a]+b], n);

32 regNode[v] := n;

33 if (enclosed)

34 newEdge(regNode[a], enclosed_leak);

35 else

36 newEdge(regNode[a], leak);

37 case "store r_a, r_v":

38 for each b (0 .. 3)

39 memNode[regs[a]+b] := regNode[v];

40 if (enclosed)
41 newEdge(regNode[a], enclosed_leak);

42 else

43 newEdge(regNode[a], leak);

44 assert(regs[a] in outputs);

45 case "input r_i":

46 Node n := newNode();

47 newEdge(source, n);

48 regNode[i] := n;

49 case "output r_i":

50 Node n := newNode();

51 newEdge(regNode[i], n);

52 newEdge(leak, n);

53 newEdge(n, sink);

54 Node l := newNode();

55 newEdge(leak, l);

56 leak := l;

57 case "enter_enclose(memLocs)":

58 enclosed := true;

59 outputs := memLocs;

60 enclosed_leak := newNode();

61 case "exit_enclose":

62 enclosed := false;

63 for each addr in (outputs) {
64 Node n := newNode();

65 newEdge(memNode[addr], n);

66 newEdge(enclosed_leak, n);

67 memNode[addr] := n;

68 }

69 assert(all registers are dead);

70 }

71 execute insn;

72 }

Figure 5-7: An update to the pseudo-code of Figure 5-6, to add support for enclosure
regions. New or changed operations are shown in bold.

can only escape via an output that occurs later in program execution. To embody

these constraints, our tool does not direct implicit flows directly to the graph sink;

instead, it creates a chain of nodes, one for each output operation, that accumulate

all the information that might be revealed by all preceding implicit flow operations

(see Figure 5-6).

Enclosure regions (Section 3.2) allow the tool to give a more precise treatment of

implicit flows, by directing their leakage not to the output of the entire program but

to the results computed by a particular self-contained computation. For each such

region, our tool creates a distinguished node that receives flows from each implicit

flow operation, and has outgoing edges to all of the declared outputs of the region

(see Figure 5-7).
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1 /* Disjoint sets containing either original graph nodes or

2 pairs of locations and SOURCE or TARGET markers */

3 UnionFind uf;

4

5 enum EndpointType { SOURCE, TARGET };

6

7 /* One edge class for each code location */

8 Set<Location> combined;

9

10 /* Total capacity of all the edges in a class */

11 Map<Location, int> total;

12

13 /* Input loop: collect edges and sum capacities */

14 for each original edge (u, v, location, capacity) {

15 combined.add(location);

16 total[location] := total[location] + capacity;

17 uf.union(u, [location, SOURCE]);

18 uf.union(v, [location, TARGET]);

19 }

20

21 /* Construct representative for each set of merged nodes */

22 Map<UnionFindSet, Node> node;

23 for each set s in uf.sets() {

24 node[s] := fresh_label();

25 }

26 node[uf.find(source)] := source;

27 node[uf.find(sink)] := sink;

28

29 /* Output combined edges in terms of merged nodes */

30 for each loc in combined {

31 Node u := node[uf.find([loc, SOURCE])];

32 Node v := node[uf.find([loc, TARGET])];

33 output_edge(u, v, total[loc]);

34 }

Figure 5-8: Pseudocode for the graph-combining algorithm described in Section 5.2.
Each edge (u, v) is labelled with a program location and a flow capacity. The output
is a smaller graph that allows at least as many flows, formed by replacing all the edges
with the same location with a single edge, and merging the corresponding endpoints.

5.2 Combining and collapsing flow graphs

A second operation that our tool performs on flow graphs is combining the graphs

from multiple executions of the same program into a single graph, which it does by
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merging all of the edges that correspond to a particular program location, adding

their capacities. In fact, it is also sensible to apply this merging operation to a single

flow graph, to collapse a large original graph into a smaller graph that allows all the

same flows, an application we will revisit in Section 5.3.2.

More precisely, our graph combining algorithm labels each edge with a value that

includes a static location (i.e., instruction address), and optionally a 64-bit hash of

the calling context (stack backtrace), similarly to Bond and McKinley’s probabilistic

calling context [BM07]. Then, any number of labelled graphs can be combined by

identifying edges with the same label (replacing them with a single edge whose ca-

pacity is the sum of the original capacities), and unifying all of the nodes the original

edges are incident upon. This can be done in almost-linear time with a union-find

structure: for each edge (u, v) with location l, merge the sets containing u and a

placeholder for “source of edges at l”, and similarly for v and “target of edges at l”.

This operation is shown in pseudo-code form in Figure 5-8.

When flow graphs are combined in this way, any sum of possible flows in the

original graphs is possible in the combined graph, so a bound computed for the

combined graph is still sound. On the other hand, the possible cuts in the combined

graph correspond only to sets of cuts that appear in the same places in each original

graph, excluding the possibility of lower flow bounds corresponding to inconsistently

placed cuts. Section 6.4 will discuss in more detail the importance of this kind of

consistency to the soundness of the tool’s results.

5.3 Efficient maximum-flow computation

Computing the maximum flow in a network is a long-studied computational task,

but the flow graphs constructed by our technique are both very large and fairly well-

structured, so specialized optimizations are both necessary and possible. We have in-

vestigated both exact algorithms with the potential to be efficient (Section 5.3.1), and

unconditionally efficient algorithms with the potential to be precise (Section 5.3.2).

Empirically, the latter approach seems to work better.
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5.3.1 Precise and potentially efficient approaches

The best general algorithms for computing a maximum flow have time complexity

at least O(V E), where V and E are the number of vertices and edges in the input

graph [CLR90], but a dynamic program analysis is usually only feasible if its running

time is close to linear in the running time of the original program. Therefore, a more

specialized flow algorithm is called for. The flow graphs produced by our technique

have a number of special features that could guide the choice of an algorithm. Because

vertices and edges are added at the same time, the graphs are sparse; i.e., E = O(V ).

The capacities of edges are all small integers; e.g., no more than 32 if the program

only uses word-sized operations. Intuitively, the graph from a long program execution

will be deep but not very wide: the length of a path from the source to the sink is

unbounded, but the number of vertices that are in use at any moment is bounded by

the size of the original program’s memory.

In theory, this last “narrowness” property is be sufficient to give an algorithm

that is linear in the execution length, since for any flow graph with at most k

outputs, there is a bounded-size graph that allows the same flows. However, the

best upper bound we have found on the size of such a mimicking graph is 22k

ver-

tices [HKNR98, CSWZ00], clearly impractical if k is the size of memory. A related ap-

proach is to bound the treewidth of a flow graph: graphs with bounded treewidth can

be hierarchically decomposed in a way that again gives a linear-time maximum flow

algorithm [HKNR98]. Unfortunately, the well-known algorithms that are efficient for

fixed treewidth k all apparently have exponential dependencies on k that make them

impractical for treewidths as small as 4 (e.g., the algorithm of Bodlaender [Bod93]).

We suspect that the flow graphs produced by our tool have small treewidth, but we

have not been able to verify this because even computing treewidth is very expensive

in practice [Bod05]. However, a further specialization of this idea is within the realm

of experiment, using the class of series-parallel graphs, whose treewidth is at most 2.

A series-parallel graph is one that can be formed using only the operations of

series and parallel composition familiar from electrical circuits. The maximum flow
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in a series-parallel graph can be computed easily, since series and parallel composition

correspond to the operations of minimum and addition on the maximum flows of the

subgraphs.

Our flow graphs are not generally series-parallel, but they often contain large

series-parallel portions, which suggests the use of a data structure called an SPQR

tree [BT89]. An SPQR tree is a tree that represents a hierarchical decomposition of

a directed acyclic graph with exactly one source and sink (an s-t DAG). The nodes in

the tree are of four kinds labelled S, P, Q, or R: S nodes represent a series composition

of their children, P nodes represent a parallel composition, Q nodes are leaves that

represent single edges, and R nodes represent any composition that is not series-

parallel. An SPQR tree can be constructed efficiently, and maintained incrementally

as vertices and edges are added [BT89]. Depending on the structure of the graph,

the tree can range between having no R nodes (for a series-parallel graph), and

representing the entire graph by a single R node with all Q nodes attached directly.

If our flow graphs have SPQR trees without large R nodes, then the maximum

flow can be computed quickly, since a super-linear general algorithm would only be

needed inside R nodes. Moreover, the hierarchical nature of an SPQR tree allows

for a convenient incremental flow algorithm: if an edge is added to the graph, then

only the flows in the subtree corresponding to the two endpoints would need to be

recomputed.

To test the efficacy of SPQR tree decomposition on our flow graphs, we computed

SPQR trees for them using the batch algorithm from the AGD library [GJK+01].

(OGDF [CGJ+07], the successor library to AGD, also includes incremental SPQR

tree construction and is open-source, but was not yet available when we began these

experiments.) The results are shown in Figure 5-9 (for OpenSSH, the flow graph was

too large for the SPQR tool to process; for ImageMagick we used a smaller image

size). Series-parallel structure occurs across all the programs, as shown by the large

number of S and P nodes. However, most of the trees also had a large R node at

the root, indicating that the high-level structure of the flow is not series-parallel.

Comparing the two runs of bzip2, notice that the R node at the root grows as a
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S and P R largest
Program vertices edges nodes nodes R node

KBattleship 49135 57049 10583 8 5485
ImageMagick twist 1324145 1516765 286409 2639 151483
ImageMagick pixelate 225294 271464 43882 82 28714
ImageMagick blur 1898289 2354791 343095 2376 359440
OpenGroupware.org 550 647 21 2 45
X server 2010 2253 380 3 174
bzip2, 1KB input 1254073 1559800 196937 1011 197911
bzip2, 2KB input 2352727 2916519 362728 1993 373783

Figure 5-9: Experimental evaluation of SPQR trees for representing flow graphs. An
SPQR tree is an efficient representation for maximum flow computation if the size of
its largest R node (last column, measured in vertices) is small.

constant fraction of the graph size; if this is the general pattern, it means that an

SPQR tree will not provide an asymptotic performance advantage for this program.

Therefore, while SPQR trees capture some useful regularities, they do not appear

sufficient to allow the technique to scale to very large graphs.

5.3.2 Efficient and potentially precise approaches

An alternative to exactly computing the maximum flow in large graphs is to simplify

the graph in a way that makes it much smaller, while still being sound and not greatly

increasing the maximum flow. The most important regularities in large graphs seem

to come from loops in the original program, and are most easily exploited by using

information about the program. Our tool does this using the same implementation of

edge labelling and node collapsing that was described in Section 5.2: even the graph

of a single run can be simplified by combining edges with the same context-sensitive

code location, since the context does not distinguish different loop iterations. A

graph can be collapsed even further by combining edges based on their code location

(context-insensitive). With either variant, the size of the collapsed graph grows not

with the runtime of the original execution, but with its code coverage; since the latter

tends to plateau, much longer executions can be analyzed. A disadvantage of this

collapsing technique is that it undoes some of the properties that make computations
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on the original graph easy: the summed capacities on edges can be unbounded, and

collapsing can introduce cycles. For instance, collapsed graphs cannot be represented

with SPQR trees.

To test the scalability of our graph construction and maximum-flow computations

on large graphs, we ran our tool on bzip2, a general-purpose (lossless) compression

tool based on block sorting. We used bzip2 to compress inputs files marked as entirely

secret. We do not intend bzip2 as a realistic target for security analysis (obviously its

output contains the same information as its input). We chose it because it represents

a worst-case for our analysis’s performance: it is computationally intensive, almost all

of the computation operates on data derived from the input, and it makes extensive

use of large arrays that necessitate the laziness described in Section 3.4. (Chapter 7

discusses larger, more security-relevant programs; for them the tool’s overhead is less,

because many operations are not connected to the secret data.) Also, it is easy to

select inputs of various sizes, and the expected amount of information flow can be

computed a priori to give a bound on the expected results. We chose a class of inputs

that are highly compressible: the digits of π, written out in English words, as in

“three point one four one five nine”.

We ran our tool with context-sensitive edge collapsing, and bzip2 in verbose mode

-vv with a 100k block size. The computer was a 1.8GHz AMD Opteron 265 running

Linux; bzip2 and our tool ran in 32-bit mode.

Figure 5-10 compares the flow measured by our tool to the expected bound. That

expected bound is the minimum of the size of the input, and the size of that portion

of the output that depends on the input. The exact value for the latter is somewhat

uncertain, because part of the output format consists of fixed headers, and the com-

mentary printed to the terminal is only partially input-dependent; so we estimate it

with lower and upper bounds (curved dotted lines in the figure). The results match

our expectations: very small inputs cannot be compressed by bzip2, but for inputs

that bzip2 can compress, our tool’s flow bound matches the size of the compressed

output.

The running time of our tool grows linearly over this range of input sizes, thanks
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Figure 5-10: The amount of information revealed in compressing files with bzip2, as
measured by our tool (note log-log scale). The solid line shows the flows measured by
our tool, in bits. The dotted lines represent other functions that would be expected
to bound the flow. The straight line through the origin represents the input size.
The two curved lines (which are close to linear but do not pass through the origin)
represent the size of the program’s output, minus upper and lower approximations of
the amount of output (such as fixed headers and progress messages) that does not
depend on the input.

to the lazy range operation implementation and graph collapsing techniques, as shown

in Figure 5-11. For the largest input, 2.5MB, the tool’s running time was 1.5 hours.

Though still quite slow compared to an uninstrumented execution, this time reflects

processing a graph (before collapsing) with 3.6 billion nodes, since almost all of

bzip2’s time is spent operating on secret data. (After collapsing, the graph had

only about 22000 nodes and 30000 edges.) When tracing code that is not operating

on secrets, no graph is constructed, so the tool’s is overhead less, though still more

than Memcheck’s. The time to compute a maximum flow on the collapsed graph was

less than a second in all cases.
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Figure 5-11: The running time of our analysis, with graph collapsing, on bzip2

running on a range of input sizes. For a 2.5 megabyte file, the tool took about 1.5
hours. For small inputs, the performance is also linear, but dominated by a constant
startup time of about 4 seconds.

5.4 Computing a minimum cut from a flow

If all that is required is a flow measurement for one or more executions, it is enough

to calculate the amount of the maximum flow in a single or combined graph. In other

cases, however, it is useful to know a minimum cut corresponding to the maximum

flow, either to understand which program locations are information flow bottlenecks,

or in order to use one of the more efficient checking techniques of Chapter 4 on future

executions. Such a cut can be easily computed from the flow values for individual

edges produced by the maximum flow algorithm.

An algorithm for computing a minimum cut from a maximum flow is implicit in the

textbook proof of the max-flow-min-cut theorem [CLR90]. Our tool first enumerates

the nodes on the source side of the cut by depth-first search: they are the nodes that

are reachable from the source along an augmenting path, one in which each edge is

either traversed in the forward direction and has excess capacity, or is traversed in the

backward direction and has non-zero forward flow that can be cancelled. Then, the cut
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1 /* Print all the "."s or "?"s,

2 whichever is more common. */

3 void count_punct(char *buf) {

4 unsigned char num_dot = 0, num_qm = 0, num;

5 char common, *p;

6 ENTER_ENCLOSE(num_dot, num_qm);

7 while (p = buf; *p != ’\0’; p++)

8 if (*p == ’.’)

9 num_dot++;

10 else if (*p == ’?’)

11 num_qm++;

12 LEAVE_ENCLOSE();

13 ENTER_ENCLOSE(common, num);

14 if (num_dot > num_qm) {

15 /* "."s were more common. */

16 common = ’.’; num = num_dot;

17 } else {

18 /* "?"s were more common. */

19 common = ’?’; num = num_qm;

20 }

21 LEAVE_ENCLOSE();

22 /* print "num" copies of "common". */

23 while (num--)

24 printf("%c", common);

25 }

Figure 5-12: (Same as Figure 3-3.) C code to print all the occurrences of the most
common punctuation character is a string. For instance, when run on its own source
code, the program produces the output “........”.

edges are those that connect nodes reached in the DFS to nodes not reached. Because

the graph collapsing technique of Section 5.2 can introduce cycles, the computed

maximum flow can contain extra flow circulating in cycles that do not include either

the source or the sink. Though distracting to a human observer, these extra circular

flows do not contribute to the total measured flow, or disrupt the cut construction

algorithm.

5.5 Punctuation count example

Revisiting the punctuation counting example of Section 3.3 (repeated as Figure 5-
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12), we see that using the graph maximum flow techniques of this chapter instead of

a simple tainting analysis greatly increases our tool’s precision. Recall that simple

tainting finds that all the bits of the program’s output might depend on the secret

input: for instance, on an execution when the output is 8 characters, tainting measures

it as revealing 64 bits of information. On the other hand, the maximum flow our tool

computes for such an execution is 9 bits: intuitively, 1 bit telling for telling whether

the most common punctuation character is a period or a question mark, and 8 bits

counting the number of times the most common character appeared (modulo 256).

This corresponds to a minimum cut with two edges: one for the implicit flow from

the comparison between num dot and num qm on line 14 (capacity 1 bit), and one for

the value of num after the second enclosure region on line 21 (capacity 8 bits).
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Chapter 6

Formalization and soundness

Though the information flow measurement techniques described in previous chapters

can be understood using just an intuitive notion of information content (and in most

cases this was the way we originally developed them), it can be valuable to have a

more precise statement of what the tool’s results mean. This chapter formulates such

a statement, first by specifying what it means for a dynamic information-flow analysis

to give sound results for particular executions, and then giving a soundness proof for

a core version of our technique, using a new simulation-based proof technique.

6.1 Soundness and codes

A key challenge in information-flow measurement is that information can be encoded

in many different and incomparable ways. In particular, an attacker who is misus-

ing a program can use its computations to encode information differently than the

developers intended. Therefore we propose a definition of soundness that treats the

program as a channel for transmitting messages, and bounds the way the information

that can be sent using any encoding.

Specifically, we describe what it means for an analysis that examines a subset of

possible executions to give an acceptable flow bound in two steps. First, we present a

general attack model in which an adversary uses the program to communicate a secret

message of her choosing to a confederate (Section 6.1.1). Second, we define a sound
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flow bound in this model: in summary, a bound of k bits is sound if an adversary

could have communicated the same information by sending a k-bit message directly

(Section 6.1.2). Throughout, we use the perspective of expressing information with a

code that represents possible messages via bit strings of variable length.

6.1.1 A communications channel attack model

Rather than assuming that the secret to be protected is drawn from a fixed (e.g.,

uniform) distribution, we have found it more natural to consider a more powerful

adversary who can choose the secret inputs to reveal as much information as possible.

For instance, consider a division function for 32-bit words that hides its normal output,

but has an observably different behavior on a divide by zero error. If an adversary

could influence the divisor, she might cause it to be 0 with probability one half, in

which case each execution would reveal one bit of information. This result does not

depend on how likely the divisor is to be 0 during normal program execution, since not

only is that difficult to know, the adversary may not be constrained to act normally.

In more detail, consider a pair of spies, Alice and Bob. Alice wants to use the

program to send a message to Bob, by choosing the program’s secret inputs to cause

some change to the public outputs that Bob observes. Alice and Bob have prior

knowledge of the program, and they have agreed in advance on a set of possible

messages they might want to communicate. The public inputs might be out of Alice

and Bob’s control, or Alice and Bob might have chosen them, but we will treat them

as being fixed in advance: the analysis’s results and soundness will be with respect

to a particular set of public inputs. We will also assume that Alice and Bob are

interested in error-free communication (the program is deterministic), and have no

computational limits, so their strategy is to choose a set of possible program inputs

that Alice might send, each of which will cause a distinct public output. For instance,

in the division example above, they might choose the following code: Alice gives the

input 5/3, causing normal program output, to convey “attack at dawn”, while she

gives 2/0, causing an error report, to convey “no attack”.

In essence, we treat the program’s execution as a channel for transmitting mes-
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sages, and are interested in an upper bound on the amount of information the channel

can convey under any coding scheme: its channel capacity. The channel capacity is

determined by the total number of different public outputs the program can produce,

but counting them directly would be impractical. Instead, our tool’s measurements

correspond to a natural coding scheme suggested by the structure of the analyzed

program, which will always be at least as much as the channel capacity over the

observed program behaviors.

Other quantitative information-flow analyses have commonly treated the secret

to be protected as being drawn from a uniform distribution. This perspective, in

which one bit of input data always carries a full bit of information, has an intuitive

appeal: for instance, in the division example, it is tempting to argue that finding

out that a 32-bit input has all bits zero should always count as discovering 32 bits

of information. However, we believe it is ultimately less useful because it is tied to a

particular data representation, that of the inputs to the program being analyzed. By

contrast, channel capacity abstracts away from a particular representation to more

abstractly characterize the computation a program performs. In particular, channel

capacity can be more naturally be approximated compositionally, as our graph-based

analysis does.

6.1.2 Soundness of the channel model

To Alice and Bob, the originally intended behavior of the program might just be a

distraction: they wish to use its input/output behavior as a communications channel.

To define how well they can exploit the program, we can compare their results using

it to what they could achieve by using a direct communications channel. Instead of

an execution of the program that we would like to say reveals k bits, we imagine

that Alice sends a string of k binary digits directly to Bob according to a code they

have settled on in advance. For instance, 0 might correspond to “attack at dawn”,

and 1 to “no attack”. Suppose that for each program input i ∈ I that Alice sends

to convey as message, a tool reports an information-flow bound k(i). We define that

result to be sound if there is also a code of bit strings by which Alice and Bob could
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have unambiguously communicated the same messages, in which each message was

represented by a string of k(i) bits. Thus, in the division example, it would be sound

for the tool to report a bound of 1 bit.

There is also an equivalent characterization of soundness as a numeric condition

on the amounts k(i). Intuitively, it is impossible for a program to produce many dis-

tinct outputs, none of which reveal much information. The precise characterization

of this relationship is Kraft’s inequality [CT91], which in our notation states that
∑

i 2
−k(i) ≤ 1. (Kraft’s inequality holds for any uniquely-decodable code, and con-

versely, it is straightforward to construct a code to match a set of lengths that satisfy

the inequality [CT91].) Two more specific consequences follow from this soundness

definition. First, if a sound tool ever reports a flow of 0 bits, then it must be the

case that the public output for that execution is the only one that can possibly be

produced with any other secret inputs (for that public input). In other words, the

case of 0 bits corresponds to the non-interference criterion for no information flow.

Second, if there are N messages that all carry the same information, each one must be

convey at least log2 N bits: k bits are enough to distinguish between 2k possibilities.

We define soundness with respect to a code, rather a single correct amount of

information, because the same information can be coded in several incomparable

ways. Our technique can be thought of as inferring one code from the structure of

the program, but other equally good ones are possible. To illustrate this, consider an

example that makes a three way choice, such as if the modification to the punctuation

counting example shown in Figure 6-1. Because of the nested structure of the if

statements, our tool reports that 1 bit is revealed if the most common punctuation

character is a period, or 2 bits each if it is a question mark or exclamation point. But

the fact that the period is checked first is arbitrary: one could equally well code !

with one bit and . and ? each with two; or if the three characters are equally likely,

the information in each would be log2 3 (about 1.58). Since it is generally not possible

to know the probabilities of alternate program inputs, we argue that it would not be

sensible to try to define the correct amount of information revealed by choosing an

exclamation mark to be 1 bit, 1.58 bits, 2 bits, or any other single value.
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1 if (num_dot > num_qm && num_dot > num_excl) {

2 /* "."s were most common. */

3 common = ’.’;

4 } else {

5 if (num_qm > num_dot && num_qm > num_excl) {

6 /* "?"s were most common. */

7 common = ’?’;

8 } else {

9 /* "!"s were most common. */

10 common = ’!’;

11 }

12 }

Figure 6-1: C code to determine which of three punctuation marks appeared most
often in a string (as might be used in an extended version of the code in Figure 5-12).
There are several different but sound ways of measuring the information revealed in
such a three-way choice. Our technique uses one derived from the structure of the
program. In this case, it would measure that one bit is revealed if the most common
character is a period, while two bits are revealed if either a question mark or an
exclamation mark is most common.

6.2 Soundness definition for a formal language

To make our notion of soundness more precise, we will next state it in terms of a

completely-specified core subset of our real analysis. This core analysis includes the

key techniques of Chapter 3, as well as a cut checked via tainting as described in

Section 4.1. Because of the equivalence between maximum cuts and minimum flows,

soundness in this model also carries over immediately to the explicitly graph-based

analysis described in Chapter 5, as long as the cut location is fixed. We will return

to the issue of varying cut locations in Section 6.4.

6.2.1 An unstructured imperative language

Because our real tool operates on programs at the machine language level, it is ap-

propriately modelled by a technique for a language with unstructured control flow.

Since the real technique counts the amount of information in machine words in terms

of their bits, we restrict the language’s variables to single bits.

The syntax of the language is summarized in Figure 6-2. The program’s data is
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stmt ::= xi = xj

xi = not xj

xi = xj and xk

output xi

if xi then goto l

end

leak xi

enclose(l, n, R)
end enclose

Figure 6-2: Syntax for a simple imperative language used in the soundness proof of
Section 6.2.

stored in a finite set of variables xi indexed by positive integers i. Each xi may take

the values 0 or 1. A subset of the variables, the secret input variables, are initialized

by the program’s secret inputs; the remaining variables are initialized by the public

inputs. Six types of statements provide the basic operations of assignment, logical

negation and conjunction, output, conditional branches, and a statement denoting

the end of execution. Three additional statement types correspond to program an-

notations in our real system: one to explicitly count the information in a variable

as leaked, and two to enter and exit enclosure regions. A program consists of a se-

quence of statements numbered by labels l, which we take to be consecutive integers

starting from 1. In an enclose statement, l is a label referring to the corresponding

end enclose statement, n is a positive integer giving the number of steps for which

the enclosure region will execute, and R is a set of variables that we call the results

of the enclosure region. There are three syntactic well-formedness constraints on pro-

grams: each label l must refer to an existing statement, the last statement must be

end, and enclose and end enclose statements must match up one-to-one according

to the labels l (but their locations are not constrained).

Rather than defining the static well-formedness of an enclosure region in terms

of possible program side effects, the model enforces enclosure regions dynamically (a

capability that we also included in the real tool as a backstop in case an enclosure

region is given incorrectly). The purpose of these enclosure regions is to isolate

calculations that occur within the region from the rest of a program: their results
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are visible only via the result variables R. These enclosure regions are a dynamic

mechanism to ensure that even though a computation may be implemented using

branches and side-effects to arbitrary memory locations, it can be reasoned about as

if it were a pure function. To achieve this, the contents of memory are recorded when

the region is entered, and, except for R, restored on exit. (In the real system, a more

efficient logging mechanism is used to the same effect.) To prevent other side-effects

and termination of the enclosed code from being visible, the execution of the region

must end at a pre-specified label, and output and end statements are disabled for the

duration. To avoid problems of non-termination, the enclosure region can execute for

at most n steps; to make the proof simpler, we enforce that it execute for exactly n

steps, waiting at the end enclose if necessary. (If timing were visible in the model,

fixing the execution time of enclosure regions would also avoid a timing channel.)

The intent is that entries to and exits from enclosure regions should match up during

execution, but with unstructured control flow, this cannot easily be enforced ahead

of time (this difficulty applies to the real system as well). Instead, the system simply

lets an enclosure region continue until the matching end is seen. Also, in the real

system it is convenient to allow enclosure regions to dynamically nest, but this does

not increase expressiveness, so we omit it from the model for simplicity.

More formally, we refer to the behavior of a program (without the dynamic

information-flow analysis) as the regular semantics, given as a state transition re-

lation in Figure 6-3. The state of a program consists of a program counter pc holding

the label of the next instruction to execute, a store S holding the values of variables,

and a structure E holding information about the current enclosure region. E is either

a distinguished value ⊥ if execution is not in an enclosure region, or a tuple (l, k, R, S)

where l is a label, k is a nonnegative integer, R is a set of variables, and S is a store.

l is the label at which the enclosure region will end, k is a counter decremented once

per step to control how long the region executes, R is the set of result variables, and

S is a saved copy of (non-result) program variables to restore at the end of the region.

The notation S[i← b] represents a new store in which i is bound to b, and all other

variables have the same bindings as in S; we also abuse notation by using sets as
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(pc, S,E) → (pc′, S′, E′) where:
1. pc′ = l if code(pc) = “if xi then goto l” and S(i) = 1

2. pc′ = pc + 1 if code(pc) = “if xi then goto l” and S(i) = 0

3. pc′ = pc if pc = E.l and E.k > 1
4. pc′ = E.l if E.k = 1
5. pc′ = E.l if E 6= ⊥ and code(pc) = “end”
6. pc′ = pc + 1 otherwise
7. E′ = ⊥ if E.k = 0 and E.l = pc

8. E′ = ⊥ if code(pc) 6= “enclose(l, n,R)” and E = ⊥
9. E′ = (l, n,R, S) if code(pc) = “enclose(l, n,R)” and E = ⊥

10. E′ = (E.l, E.k − 1, E.R,E.S) otherwise
11. S′ = S[i← S(j)] if code(pc) = “xi = xj”
12. S′ = S[i← ¬S(j)] if code(pc) = “xi = not xj”
13. S′ = S[i← S(j) ∧ S(k)] if code(pc) = “xi = xj and xk”

14. S′ = S[E.R← E.S(E.R)] if E.k = 0 and E.l = pc

15. S′ = S otherwise
16. output S(i) if code(pc) = “output xi” and E = ⊥
17. stop if code(pc) = “end” and E = ⊥

Figure 6-3: Regular semantics for the language given in Section 6.2.1. For brevity,
we follow the convention that any condition involving a field of E is false if E = ⊥.

indexes and/or values to indicate that each i is bound to the corresponding or only

value from b. Initially, pc points to the first statement, E = ⊥, and S is populated

with the program inputs.

After most statements, execution continues with the following statement (rule

6 in Figure 6-3), but an if statement causes a branch if its condition is true (2),

and an enclosure region jumps to its end if the counter E.k runs out (4) or an end

is encountered (5). E is initialized at the beginning of an enclosure region (9) and

cleared at the end (7, 8); when it is present, E.k is decremented on each step (10). The

assignment statements modify the store in the expected way (11–13); end enclose

also restores the contents of all variables except the results of the region (14). The

output and end statements have the expected effects, but they are disabled inside

enclosure regions (16, 17).
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6.2.2 Analysis semantics

Recall, as discussed in Sections 3.1 and 4.1, that in measuring the information flow

though a program with a fixed cut, our tool counts the potential propagation of

secret information in two ways. A bit may be marked as secret (tainted) if it might

contain secret information, and a counter keeps track of other leaks outside the set

of variables. The secrecy status of bits is propagated conservatively: a copy of a

secret bit is secret, and the output of an operation is secret if any of the inputs that

contributed to it were. (But the result of an operation on a public value and a secret

value can be public if the result does not depend on the secret value: for instance,

multiplying a public 0 by a secret number yields a public 0.) Preemptive leakage

via a leak statement erases the secrecy of a bit and simultaneously increments the

counter to compensate. To account for implicit flows, a bit is also counted as leaked

in the same way if a secret bit is used as a branch condition, and of course secret bits

are counted as leaked if they are output. Branches on secret data are not counted as

leaks inside an enclosure region, but to compensate, the output of an enclosure region

is always marked as secret.

We formalize the operation of the analysis with an instrumented semantics that

extends the regular one, as shown in Figure 6-4. To the state of the system, we add

secrecy store SS parallel to the regular store S, holding 1 if the corresponding variable

is secret and 0 otherwise, and an integer counter c. We also add a saved secrecy store

E.SS to the enclosure-related information. Initially, S(i) is 1 for the secret input

variables and 0 for the others, and c is zero. The most complex rule (3 in Figure 6-4)

describes the result of an and operation: the result is secret if either input is, and

neither input is a public zero. Observe that because the instrumentation semantics

are a pure addition to the regular semantics, the behavior of an instrumented program

is the same as the behavior without analysis.

The value of c at the end of execution is the formal analysis’s measurement of the

amount of information that has been revealed on that execution. If c bits are enough

to learn whatever the attacker might learn from the program’s public outputs, then
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(pc,E, S,SS, c)→ (pc′, E′, S′,SS′, c′) where:
1. SS′ = SS[i← SS(j)] if code(pc) = “xi = xj”
2. SS′ = SS[i← SS(j)] if code(pc) = “xi = not xj”
3. SS′ = SS[i← (SS(j) ∨ SS(k)) ∧ (S(j) ∨ SS(j)) ∧ (S(k) ∨ SS(k))]

if code(pc) = “xi = xj and xk”
4. SS′ = SS[i← 0] if E = ⊥ and code(pc) = “output xi”
5. SS′ = SS[i← 0] if E = ⊥ and code(pc) = “if xi then goto l”
6. SS′ = SS[i← 0] if E = ⊥ and code(pc) = “leak xi”
7. SS′ = E.SS[E.R← 1] if E.k = 0 and E.l = pc

8. SS′ = SS otherwise
9. c′ = c + 1 if E = ⊥ and SS(i) and code(pc) = “output xi”

10. c′ = c + 1 if E = ⊥ and SS(i) and code(pc) = “if xi then goto l”
11. c′ = c + 1 if E = ⊥ and SS(i) and code(pc) = “leak xi”
12. c′ = c otherwise
13. E′.SS = SS if code(pc) = “enclose(l, n,R)” and E = ⊥
14. E′.SS = E.SS otherwise

Figure 6-4: Instrumented semantics describing secrecy tracking for the core language,
as described in Section 6.2.2. The rules for pc, E, and S are the same as in Figure 6-3.

c is a sound information-flow measurement. If we could define a single number I

that represented a perfect information-flow measurement, soundness for the analysis

would amount to a simple inequality c ≥ I, but as argued in Section 6.1, no single

such value I would be appropriate. Instead, we compare the measurement c to the

size of a coded message conveying the same information. In the next section, we will

describe how to obtain such a result: in fact we will describe a way to use the program

itself to encode and decode a c-bit message that suffices (along with the public inputs)

to reconstruct the program’s output.

6.3 A simulation-based soundness proof technique

In this section, we first describe the construction of a simulation of the instrumented

program by a pair of programs (Section 6.3.1), then prove by induction that the

simulation is a faithful one (Section 6.3.2). This result then implies (Section 6.3.3)

that the analysis meets the definition of soundness we introduced in Section 6.2: the

information conveyed by a program execution could also be conveyed by a coded
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binary message with as many bits as the flow bound the analysis reports.

6.3.1 Simulation construction

Given an instrumented program execution under the semantics described in Sec-

tion 6.2.2, we wish to prove that the counter c is an upper bound on the size of a

coded message needed to convey the same information about the secret inputs that

is present in the program’s output. To do this, we connect two copies of the instru-

mented program by a unidirectional channel called a pipe; we call the two copies the

writer and the reader according to the way they use the pipe. The two copies have

the same program text and public inputs, but initially only the writer has the secret

input data. The two copies execute in lockstep; on some steps, the writer writes a bit

to the pipe, and the reader reads it. The goal is that the two copies of the program

should produce the same results; this demonstrates that the information sent via the

pipe is the only potentially-secret information needed to produce the program output.

In order for the reader to simulate the writer, the reader needs access to secret

data whenever it affects control flow, or is output. In fact, we choose to have the

writer send a secret bit exactly whenever it is counted as leaked in the instrumented

program. The writer and the reader both maintain the same secrecy bits as the

instrumented program, which tell the reader when to use a value from the pipe.

Enclosure regions can make decisions based on secret bits without leaking them, so

the reader is unable to simulate them; instead, it simply waits for them to complete.

The writer semantics are purely an addition to the instrumented semantics, just as

the instrumented semantics added to the regular semantics, so the writer’s behavior is

the same. By contrast, the reader’s semantics are different; proving that the reader’s

behavior is similar is the main task of the proof below. The modified semantic rules

for the writer and reader are given in Figure 6-5, where the pipe operations are

represented as write(xi) and read(). (When read() appears in the definitions of two

post-state variables for a single state transition, the intended meaning is that a single

bit is read, and used in multiple places.) As mentioned earlier, the reader does not

start with any secret information. It does not matter what its copies of the secret
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Writer:
(pc,E, S,SS, c)→ (pc′, E′, S′,SS′, c′) where:
1. write(xi) if E = ⊥ and SS(i) and code(pc) = “output xi”
2. write(xi) if E = ⊥ and SS(i) and code(pc) = “if xi then goto l”
3. write(xi) if E = ⊥ and SS(i) and code(pc) = “leak xi”

Reader:
(pc,E, S,SS, c)→ (pc′, E′, S′,SS′, c′) where:
4. output read() if SS(i) and code(pc) = “output xi” and E = ⊥ (*)
5. output xi if ¬SS(i) and code(pc) = “output xi” and E = ⊥
6. pc′ = l if code(pc) = “enclose(l, n,R)”
7. pc′ = l if SS(i) and code(pc) = “if xi then goto l” and read() = 1 (*)
8. pc′ = l if ¬SS(i) and code(pc) = “if xi then goto l” and xi = 1

9. pc′ = pc + 1 if SS(i) and code(pc) = “if xi then goto l” and read() = 0 (*)
10. pc′ = pc + 1 if ¬SS(i) and code(pc) = “if xi then goto l” and xi = 0

11. S′ = S[i← read()] if SS(i) and code(pc) = “output xi”
12. S′ = S[i← read()] if SS(i) and code(pc) = “if xi then goto l”
13. S′ = S[i← read()] if SS(i) and code(pc) = “leak xi”

Figure 6-5: Modified semantics for the pipe writer and reader, as described in Sec-
tion 6.3. The writer rules are in addition to those given in Figures 6-3 and 6-4. The
reader rules also extend those, except that the three rules marked (*) replace the
corresponding ones from Figure 6-3; the reader rules add the condition SS(i) and use
read() in place of xi. Because the reader skips directly to the end of enclosure regions,
the effect is as if each of the new reader rules included the condition E = ⊥, but we
omit it for space.

input variables are initialized to, but for concreteness, say they all start as 0.

6.3.2 Simulation lemma

Section 6.3.1 described the construction of a pair of programs intended to give the

same results as an instrumented secret-using program, but with the use of secret

data by the second (reader) program rationed by a special channel. To use this

construction to obtain a soundness result for the analysis, we must first prove that the

reader faithfully simulates the instrumented program, and then relate the information

disclosed by the reader to the leakage count maintained by the instrumented program.

To relate the behavior of the writer and the reader, we define a relation ∼ between

states of the writer and states of the reader. The definition captures the intuition
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that the writer and reader should generally run in lockstep, but that the contents of

secret store locations may be different in the reader, and the correspondence is broken

while executing enclosure regions. For convenience, we use subscripts of W and R to

distinguish the state variables of the writer and reader. Two states are related by ∼

if all the following hold:

• The program counters are the same: pcW = pcR

• The secrecy bits are the same: ∀i, SSW(i) = SSR(i)

• The store contents that are public are the same: ∀i,¬SSW(i)⇒ SW(i) = SR(i)

• The writer is not in an enclosure region: EW = ⊥

Given this definition of ∼, the key simulation lemma states that each writer state

for which EW = ⊥ is related to the corresponding (simultaneous) reader state by ∼.

We prove this by induction over the execution history of the programs. Clearly the

initial states are related by ∼: the program counters are both 1, both programs are

outside enclosure regions, and except for the reader’s missing secret bits (for which

SSR(i) = SSW(i) = 1), their initial store contents are the same.

For the inductive step, suppose that the current states are related by ∼, and let

primed state variables represent the next states. (Note we can omit the subscripts on

pc, SS, and E without ambiguity.) We take one case for each of the potential next

statement types:

• xi = xj : Only the value stored at location i is modified, so we must check

that it is either the same or secret in both post-states. If SS(j) = 0, then

SW(j) = SR(j), and so S ′

W(i) = S ′

R(i). On the other hand if SS(j) = 1, then

SS′

W(i) = SS′

R(i) = 1.

• xi = not xj : Similarly, if SS(j) = 0, then SW(j) = SR(j), and so S ′

W(i) =

¬SW(j) = ¬SR(j) = S ′

R(i). On the other hand if SS(j) = 1, then SS′

W(i) =

SS′

R(i) = 1.
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• xi = xj and xk: Here there are three kinds of cases. If both values are public,

SS(j) = SS(k) = 0, then both arguments are the same by assumption, SW(j) =

SR(j) and SW(k) = SR(k), so the results are also the same: S ′

W(i) = SW(j) ∧

SW(k) = SR(j) ∧ SR(k) = S ′

R(i). If either argument is public and zero, say

SS(j) = 0 and SW(j) = SR(j) = 0, then both results must be zero, and so

equal: S ′

W(i) = 0 ∧ SW(k) = 0 = 0 ∧ SR(k) = S ′

R(i). Otherwise, at least one

argument is secret, and neither argument is both public and zero, so all three

of the conjuncts in the rule for SS′ are true, and SS′

W(i) = SS′

R(i) = 1.

• output xi: If SS(i) = 0, then the state is unchanged. Otherwise, note that E =

⊥, so the writer writes a bit b which is read by the reader. SS′

W(i) = SS′

R(i) = 0,

but S ′

W(i) = S ′

R(i) = b. Also, observe that the writer and reader output the

same bit in either case.

• if xi then goto l: As in the output case, the branch condition is either the

same by assumption if it is public, or if it is secret, the same because it is written

by the writer and read by the reader. Thus, either pc′W = l = pc′R if the branch

is taken, or pc′W = pc + 1 = pc′R if not.

• end: Note that E = ⊥, so both programs stop and this case is satisfied vacu-

ously.

• leak xi: Also like the output case, if SS(i) = 0, then the state is unchanged.

Otherwise, E = ⊥, so the writer writes a bit b which is read by the reader, and

S ′

W(i) = S ′

R(i) = b.

• enclose(l, n, R): Uniquely in this case, it is not the next states that are related

by ∼, but the next non-enclosed states, n+1 steps later. Because end is disabled

in an enclosure region, there are sure to be such subsequent states: when the

countdown E.k reaches zero, control will have reached the end enclose at l, so

the next states have pc referring to the next statement after that. Using primes

for this state, we clearly have E ′

W = E ′

R = ⊥. The secrecy store in this state

consists of the saved secrecy store SS, with all of the locations in R marked as
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secret, but R is the same for both programs, so SS′

W = SS′

R. For the regular

store, locations not in R were saved and restored, so match the values in SW

and SR, which are either equal or secret by the induction hypothesis. Values in

R are marked as secret, so may be different, but ∼ holds.

• end enclose: The usual situation of the end of an enclosure region was de-

scribed in the previous case. Here, E = ⊥; if an end enclose is encountered

outside an enclosure region, it has no effect.

This completes the induction. As a corollary, observe that writes to and reads

from the pipe are always made on the same step by both programs, so there are never

any left-over bits or blocking. Also, on each output statement, the bits output by

the two programs are the same.

6.3.3 Using the simulation

If we take the intuitive view of secret information as a kind of substance that can be

transformed but not created by computation, the simulation property leads immedi-

ately to a bound on the amount of information in the program output. We simply

look at the reader process as a unit, and observe that the only secret information

entering it is via the pipe; thus at most the same amount of information can come

out in the output, which by construction is the same as the output of the original

program. (The intuition that processing cannot create information is formalized as

the Data Processing Theorem of information theory [McE02].)

The same conclusion holds in the more rigorous model of Alice, Bob, and their

secret messages. The c bits of information that traverse the pipe in fact exactly give

a binary-coded message, and using the reader as a decoder shows that the message

contains any information in the program’s output, since the exact program output

can be recovered from it using only public information.

6.4 Consistency for multiple cut locations
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1 int ident(int i) {

2 i &= 3;

3

4 x1 = i;

5 x2 = 0;

6 ENTER_ENCLOSE(x1, x2);

7 while (x1 > 0) { x1--; x2++; }

8 LEAVE_ENCLOSE();

9

10 x2 = (x2 + 1) & 3;

11 x3 = 0;

12 ENTER_ENCLOSE(x2, x3);

13 while (x2 > 0) { x2--; x3++; }

14 LEAVE_ENCLOSE();

15

16 x3 = (x3 + 1) & 3;

17 x4 = 0;

18 ENTER_ENCLOSE(x3, x4);

19 while (x3 > 0) { x3--; x4++; }

20 LEAVE_ENCLOSE();

21

22 x4 = (x4 + 1) & 3;

23 x5 = 0;

24 ENTER_ENCLOSE(x4, x5);

25 while (x4 > 0) { x4--; x5++; }

26 LEAVE_ENCLOSE();

27

28 return (x5 + 1) & 3;

29 }

Figure 6-6: An artificial example that demonstrates a particularly bad case of the
unsoundness that is caused by choosing a cut location dependent on the secret input.
This code is an unusual implementation of the identity function on integers between
0 and 3, so we would expect it to reveal 2 bits of information; and that is the value
corresponding to many cut locations. But a cut location at implicit flows in the first
while loop on line 7 would measure the flow according to the number of times the
test executes: 1 bit for 0, 2 bits for 1, 3 bits for 2, and 4 bits for 3. The remaining
loops are similar, but operate on (i + 1) mod 4, (i + 2) mod 4, or (i + 3) mod 4 for
input i. Thus for any value between 0 and 3, there is a loop such that if the cut is
chosen at that loop, the flow is measured as 1 bit.
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As explained in Section 6.2, soundness is best defined as a property about sets

of inputs, even if the tool examines only a single execution. But if a tool analyzes

a set of executions, soundness requires that the results taken together correspond to

a single possible code. As described so far, the maximum flow values our technique

produces would only be guaranteed to be sound in this sense if the minimum cut

always occurred at the same place in the flow graph. (In the simulation proof, this

can be seen in the fact that the location of the preemptive leakage annotations is

required to be known by both writer and reader: if the writer chose a different cut for

different secret inputs, the reader would not know the right way to decode the pipe

bits.)

For instance, consider the final phase (lines 22–24) of the example program of

Figure 5-12, in which a character is printed n times (0 ≤ n ≤ 255). If the analysis

chooses a cut before the loop, n will be measured in its binary representation, and

so will be counted as revealing 8 bits. Alternatively, if it chooses a cut at the im-

plicit flow edges corresponding to each loop test, then printing n characters will be

counted as revealing n + 1 bits. Either of these choices is sound on its own (they

correspond to binary and unary encodings of n), but always choosing the smaller one

(i.e., min(8, n+1)) gives measurements that are too small. Kraft’s inequality confirms

this unsoundness:
∑255

n=0 2−min(8,n+1) = 503
256

> 1. Another even more stark example of

this problem is shown in Figure 6-6.

These examples show that if our maximum-flow analysis is run independently on

different executions of a program, the results may be inconsistent with each other:

some of the variation between the executions may cause the tool to pick different

cut locations, rather than contributing to the estimated information flow. To get

sound results from multiple executions, our tool combines the graphs from multiple

executions and analyzes them together using the algorithm of Section 5.2. (Another

possibility would be to count the choice of a cut itself as leaking some information, but

this seems difficult to do precisely because there are exponentially many possible cuts,

even though usually only a few are ever selected.) When flow graphs are combined,

any sum of possible flows in the original graphs is possible in the combined graph,
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so a bound computed for the combined graph is still sound. On the other hand, the

possible cuts in the combined graph correspond only to sets of cuts that appear in

the same places in each original graph, excluding the possibility of lower flow bounds

corresponding to inconsistently placed cuts.

78



Chapter 7

Case studies

A key aim of this research was to be able to measure information flows in real software.

To this end, we used our implementation to test a different confidentiality policy

in each of six open-source applications. The programs and the secret information

protected are summarized in Figure 7-1. In each program the secret information

participates in implicit flows, and is partially disclosed in ways that are nonetheless

acceptable; thus both a quantified policy and a sound treatment of implicit flows are

needed.

Playing the role of a developers interested in whether their software adequately

controlled secret information, we used our tool in each case to measure the amount

of information the program revealed on an execution of a typical use case. Then

using our understanding of the intended use of the system, and the location of a

cut in the program where the tool measured the flow, we reasoned about whether

the measured information flow was legal to allow. In some cases, an excessive flow

indicated a bug or a questionable design choice, so we investigated changes to the

code to reduce the flow. In other cases, an excessive flow indicated that an operation,

though implemented as intended, was not appropriate for use with secret data. In

the remaining cases, our results verify that the programs satisfy what we believe to

be a reasonable confidentiality policy, on the executions we examined.

To start, Section 7.1 covers some additional implementation details of our tool

not directly related to any of the previously discussed main techniques. Next, one
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# of secret
Program KLOC libraries data

KBattleship 6.6 37 ship locations
eVACS 9.3 7 authentication barcode
OpenSSH client 65 13 authentication key
ImageMagick 290 20 original image details
OpenGroupware.org 550 34 schedule details
X server 440 11 displayed text

Figure 7-1: Summary of the programs examined in the case studies of Chapter 7. The
program sizes, measured in thousands of lines of code (KLOC), include blank lines
and comments, but do not include binary libraries (3rd column, measured with ldd)
that were included in the analysis but not directly involved with the security policy.

section will describe each of the six case-studies in turn.

To obtain precise results, all of the programs required enclosure region annota-

tions. Section 7.8 describes a pilot experiment with a very simple static analysis for

C which was able to infer a majority of the annotations used, and discusses how to

improve its results by adding other standard techniques. We supplied the remaining

enclosure annotations by hand: we found the locations where they were needed by

running the tool in a mode in which every implicit flow operation caused a warning

message. Because of limitations in our current syntax for specifying such regions, this

sometimes required minor local code refactorings, such as introducing a temporary

variable to hold a return value. Writing annotations was easy: we spent about as

much time writing such annotations as compiling and configuring the programs to

run on our system and developing test cases for the relevant policies.

7.1 Implementation details

Because the analysis operates at the binary level, all of the libraries that a program

uses are included automatically. It would be possible to treat malloc as part of the

instrumented program, though we currently inherit Memcheck’s behavior of replacing

the program’s allocator. Doing so leaves the possibility of information flow via the

addresses returned from malloc; this channel could be blocked by using a separate
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arena for allocations inside enclosure regions, or by randomizing the addresses.

Inputs and outputs are recognized based on system calls, such as read and write

respectively. Memory-mapped I/O is not recognized, though doing so would not be

difficult because every memory operation is already instrumented.

We have not studied the best extension of our technique to multi-threaded pro-

grams, since Valgrind implicitly serializes the programs it executes; it would likely

suffice to execute enclosure regions atomically. (The case studies of this chapter are

all single-threaded.)

Many aspects of a program’s interactions with its environment might reveal infor-

mation about its internals, such as how long it takes to execute or how much power

the CPU draws. If such side channels are reflected in the program’s output, they

can be included in our approach: for instance, the result of gettimeofday could be

treated as secret. However, observations made outside the program are beyond this

scope of our technique.

7.2 KBattleship

In the children’s game Battleship, successful play requires keeping secrets from one’s

opponent. Each player secretly chooses locations for four rectangular ships on a grid

representing the ocean, and then the players take turns firing shots at locations on

the other player’s board. The player is notified whether each shot is a hit or a miss,

and if a hit has sunk a complete ship. A player wins by shooting all of the squares

of all of the opponent’s ships. In a networked version of this game, one would like

to know how much information about the layout of one’s board is revealed in the

network messages to the other player. If the program is written securely, each missed

shot by the opponent should reveal only one bit, since “hit” and “miss” represent

only two possibilities. KBattleship is an implementation of the game that is part

of the KDE graphical desktop. We used our tool to measure how much information

about the player’s ship locations is revealed when playing KBattleship.

We were inspired to try this example because Jif, a statically information-flow
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secure Java dialect (the latest descendant of the work described in [Mye99]) includes

as an example a 500-line Battleship game. Apparently unlike Jif Battleship, however,

the version of KBattleship we examined (3.3.2) contains an information leak bug.

In responding to an opponent’s shot, a routine calls a method named shipTypeAt

to check whether a board location is occupied, and returns the integer return value

in the network reply to the opponent. However, as the name suggests, this return

value indicates not only whether the location is occupied, but the type (length) of

the ship occupying it. An opponent with a modified game program could use this

fact to infer additional information about the state of adjacent board locations. The

KBattleship developers agreed with our judgement that this previously unrecognized

leakage constituted a bug, and our patch for it appears in version 3.5.3. Though

this bug shows up as excessive flow under our tool, we discovered it by inspection

while considering whether to use the program as a case study (before the tool was

implemented).

Our tool can verify that the bug is eliminated in a patched version: we mark the

position and orientation of each of the player’s ships as secret, and measure how much

of this information reaches the network. In response to a miss, the program reports

one bit of information; a non-fatal hit reveals two bits, one indicating the shot is a

hit and a second indicating it is non-fatal. These flows can be observed in real time

by running our tool in a mode that recomputes the flow on every program output, or

each second, whichever is less frequent. Information about the ship locations is also

revealed via the program’s graphical interface, but we excluded that code from the

analysis by explicitly declassifying some data passed to drawing routines; thus this

analysis could miss leaks that occurred through the GUI libraries.

7.3 eVACS

The eVACS system is a client-server implementation of electronic voting developed

for use in elections in the Australian Capital Territory starting in 2001. The client

software that runs on each voting terminal is a graphical application using a small
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keypad; voters are authenticated using a unique barcode that they scan at the begin-

ning and end of the voting session. If an attacker gained access to a valid barcode,

it could be used to cast a false vote, and if the association between a barcode and a

voter’s identity were known, it could be used together with information on the server

to determine the voter’s vote. If the client program is working correctly, the only uses

of the authentication data are to verify it with an internal checksum and to send it

to the server on two occasions. We used our tool to measure how much information

derived from the barcode is revealed, and to where.

An eVACS barcode consists of 128 bits of data and a 4-bit checksum, encoded in

22 ASCII characters. We modified the client so it can run by itself on a regular Linux

workstation (for instance, the modified version simulates the scanning of a barcode

in response to a key press) and marked the barcode data as tainted.

For this application, it was more important to have precision in the assessment

of where information leaked, and less important to measure the amount precisely, so

we used only the basic tainting and enclosure techniques of Chapter 3, and not the

minimum-cut or maximum-flow based techniques of Chapters 4 and 5. We let the

barcode data propagate taint through the program, so that we could count separately

all the ways in which it is used (though this leads to a larger total bound). In total, our

tool reports that at most 403 bits of barcode-derived data are revealed. Specifically,

our tool counts the 176 bytes of the barcode in each of two network socket writes,

one in an authentication request to the server at the beginning of the voting process,

and one along with the votes and other information in the final commit message.

Our tool also shows a few other disclosures of barcode-related information. Each

time the barcode is read, a computed checksum is compared to the one encoded

at the end of the barcode and, similarly, the two scanned barcodes are verified to

be equal; each of these comparisons reveals one bit. Though the barcode is of a

fixed length, it is represented as a null-terminated string in the code used to send

network messages using HTTP. The lengths of these messages reveal the length of

the barcode; we use a preemptive annotation to leak this value. In sum, this analysis

of the results indicates that all of the ways eVACS might reveal barcode information
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on the observed executions are acceptable: the two network writes of the barcode

match the intended protocol, and the additional flows are small and appropriate.

7.4 OpenSSH client

OpenSSH is the most commonly used remote-login application on Unix systems. In

one of the authentication modes supported by the protocol, an SSH client program

proves to a remote server the identity of the host on which it is running using a

machine-specific RSA key pair. For this mode to be used, the SSH client program

must be trusted to use but not leak the private key, since if it is revealed to the

network or even to a user on the host where the client is running, it would allow

others to impersonate the host. (We were inspired to consider this example by the

discussion of it by Smith and Thober [ST06].) We used our tool to measure how

much information about the private key is revealed by a client execution using this

authentication mode, by marking the private key (a number of arbitrary-precision

integers) as secret as it is read from a file.

Our tool finds that 128 bits of information about the secret key are revealed. The

cut location reveals that this is the MD5 checksum of a response that includes a value

decrypted with the public key, as expected under the protocol. Of course, our tool

is not able to verify that MD5 is a secure one-way function, though that belief is

part of why revealing those particular 128 bits is acceptable. Our tool demonstrates

that if the 218-line MD5 implementation is secure, the entire execution obeys the

confidentiality property: no information leaks from the rest of the program.

7.5 ImageMagick

ImageMagick is a suite of programs for converting and transforming bitmap images.

We evaluated some of its transformations to assess how much information about

the original they preserve. For instance, if one tries to anonymize a photograph

by obscuring the subject’s face, using a transformation that preserves very little
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Figure 7-2: Image transformations vary in how much information they preserve. Our
tool verifies that pixelating (left) or blurring (middle) the original image (top, 375120
bits), reveals only 1464 or 1720 bits respectively. By contrast, the bound our tool
finds for the information revealed by a twisting transformation (right) is 375120 bits,
no less than the input size. Applying the same transformation with the opposite
direction to the twisted image gives back an image fairly close to the original (lower
right).

information would prevent the original face from being reconstructed.

Figure 7-2 shows an original 125-pixel square image, which is represented by

375120 bits in an uncompressed format, and the output of three different transfor-

mations. Pixelation to a 5x5 grid uses the options -sample 5x5 -sample 125x125,

while blurring uses -resize 5x5 -resize 125x125, and the twisting transformation

uses -swirl 720. Though all three transformed images are visually unidentifiable,
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they differ greatly in the amount of information they preserve, as our tool verifies.

Pixelation and blurring both involve shrinking the image to a small intermediate form

and then enlarging it, so the maximum flow is dominated by the size of the inter-

mediate form. Since ImageMagick uses 16-bit pixel component values internally, a

5-pixel square image is represented by 1200 bits. In addition there are some implicit

flows, since the header of the file, which includes its size and other metadata, is also

considered secret. In total our tool gives bounds of 1464 bits revealed for pixelation

and 1720 bits for blurring.

On the other hand, the twist transformation computes each output pixel by find-

ing the corresponding input image location under a continuous transformation, and

interpolating between the four input pixels near it. There is no apparent bottleneck

in this computation, so our tool’s bound is the same as the input and output size,

375120 bits. Though the result is only an upper bound, and does not prove that no

information is lost, it accords with the intuition that a continuous transformation is

reversible, aside from blurring caused by the interpolation. In fact, a twist of the same

magnitude in the opposite direction gives back an image fairly close to the original

(and more sophisticated inversion techniques are possible).

7.6 OpenGroupware.org

OpenGroupware.org is a web-based system for collaboration between users in an

enterprise, providing email and calendar features similar to Microsoft Outlook or

Lotus Notes. We focused specifically on its appointment scheduling mechanism. Each

user may maintain a calendar listing of personal appointments, and the program

allows one user to request a meeting with a second user during a specified time

interval. The program then displays a grid that is colored according to what times

the second user is busy or free. This grid is intended to provide enough information

about the second user’s schedule to allow choosing an appropriate appointment time,

but without revealing all the details of the schedule: for instance, the boundaries of

appointments are not shown, and the granularity of the display is only 30 minutes.
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We used our tool to measure the amount of information about the user’s calendar

this grid reveals, marking the starting and ending times of appointments as tainted

when the program reads them with a SQL query.

For instance, for a proposal for a one hour appointment between 9:00am and

6:00pm, when the target user has an appointment from 10 to noon, our tool bounds

the amount of information revealed as 12 bits. In previous experiments using the

basic version of our tool, we had discovered that a loop that computes time period

intersections unnecessarily considered times every minute, and fixed it to use the same

half-hour interval as the final display; the 12-bit measurement corresponds to a cut

at checks made in this loop.

This example also demonstrates the possibility of different flow estimates that are

equally correct, but differ in when they are more precise. Later in the code, the objects

created in the intersection-checking loop are used to decide whether each of the 18

squares in the grid should be colored beige or red; a cut there would measure every

one-day appointment search as revealing 18 bits. For the case of a single morning

appointment, a cut at the intersection loop gives a more precise bound, but if the user

had many appointments, later in the day, an 18-bit bound from the display routine

would be more precise.

7.7 X Window System server

In the X Window System commonly used on Unix, a single program called the X server

manages the display hardware, and each program (X client) that wishes to display

windows communicates with the server over a socket. The X server’s mediating role

makes it a significant potential source of security problems: programs can use it to

communicate with each other (including using the same mechanisms that support

cut and paste), and any information displayed on the screen also passes through the

server. The original design of X addressed security only with respect to access control;

more recently, the protocol has been extended with mechanisms that can enforce

information-flow policies, by dividing clients into trusted and untrusted classes and
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restricting what untrusted clients can do [Wig96]. However, it can be difficult in a

large monolithic system like the X server to ensure that enough permissions checks

have been added. Since the X server is written in C, there is also the danger that

an attack such as a buffer overflow could allow any checks to be subverted. As an

alternate approach, we examined whether it is possible to avoid trusting most of the

server implementation, and instead enforce our information flow goals directly. We

used our tool to measure how much information from client programs is revealed to

other clients or otherwise leaked from the server, by marking text data as secret when

it arrived in requests used for cut-and-paste or drawing text on the screen.

Data bytes provided for cut-and-paste are uninterpreted by the server, and cause

no implicit flows. By contrast, drawing text on the screen involves a number of

computations: looking up bitmaps from a font, computing the width of the area

drawn, and drawing each pixel according to the current rendering mode. The main

effect is to change pixels in the framebuffer, which we do not count as a public

output; but as a side effect, the server also computes a bounding box for the text

that was drawn, for use in later redrawing calculations. The dimensions of this

bounding box reveal information about the text that was drawn, in the same way

that the dimensions of a black redaction rectangle in a declassified document would,

by constraining the sum of the widths of the characters drawn inside.

For instance, our tool estimates (somewhat imprecisely) that in one font and

drawing context, the bounding box generated from the string Hello, world! could

reveal up to 21 bits about the characters of the string. However, on examining the

location of this possible leak, it was clear to us that it could be eliminated by using a

more conservative bounding box (not dependent on the contents of string), perhaps at

the expense of requiring more redrawing later. Once the expected leaks are accounted

for, either with cut annotations or algorithmic changes, a dynamic checking tool can

catch any other information flows that violate the policy. For instance, we used our

tainting-based checker with a single policy to catch both leaks caused by user errors,

like pasting text from a secret application into an untrusted one, and code injection

attacks, like a simulated exploitation of a an integer overflow vulnerability [Her07] in
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which code supplied via a network request walks through memory, looks for strings

of digits that resemble credit card numbers, and writes them to a hidden file in /tmp.

7.8 Inferring enclosure regions

Enclosure regions, introduced in Section 3.2, are static program annotations that

improve our tool’s precision by directing the implicit flows from a code region to the

locations holding results used by the rest of the program. This section discusses how

they can be inferred by static analysis. We first describe the general approach, then

describe a pilot study with a simple analysis tool. Even our very simple analysis tool

discovered most of the annotations needed in our case studies, and the aspects it did

not cover could be handled by other standard static analysis techniques.

An enclosure region delimits particular starting and ending program locations, and

lists locations, which we call outputs, that hold results used in the rest of the program.

If no implicit flows occur within them, enclosure regions have no effect, so an inference

can simply choose starting and ending points enclosing every possible implicit flow

operation in a program. Also, there is no harm in including extra outputs that might

not be read. Therefore, the key challenge in inferring enclosure regions is, given a

fragment of code in a program, to conservatively determine a list of data locations

it might write to: essentially a kind of side-effect analysis. As with other kinds of

side-effect analysis, it is necessary to take aliasing into account [CBC93, SR05]: in

our case, the annotation requires an expression valid at the enclosure entrance that

must-aliases the lvalue expression in a later assignment, similar to the interstatement

must-alias pairs used by Qian et al. [QXM07].

For an initial assessment of the prospects for automatic inference of enclosure

regions, we built a very simple pilot implementation, and compared its results to the

complete hand-checked annotations used in the case studies above. The inference is

a static analysis for C source code, based on the CIL framework [NMRW02]. It is

intraprocedural, syntax-directed, and context-insensitive, operating as a single pass

that disregards control flow except as implied by block structure. It does not use an
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pilot analysis
hand need missed found

Program annot. length exp’n interproc.

bzip2 79 17 17 13 49
eVACS 10 2 0 3 7
OpenSSH client 2 0 0 1 1
ImageMagick 23 1 1 0 22
X server 19 2 0 2 17

Figure 7-3: Summary of the results of the static analysis discussed in Section 7.8 to
compute which locations a code region (containing an implicit flow) might modify.
Overall, the pilot analysis found 72% (“found” column) of the hand-verified output
annotations used in the case studies (“hand annotations” column).

alias analysis, so it only finds locations that can be named by the same expression at

the region entrance as at the modification location.

Treating the set of output annotations used in the case studies as our target, we

measured how many of the region outputs annotated by hand were found correctly

by the pilot analysis. The results of the comparison are shown in Figure 7-3. (The

remaining case studies are written in C++ or Objective C, so CIL cannot parse them.)

Overall, even this very simple analysis found 72% of the required annotations: in

most cases, the implicit flow, side-effect, and annotation were all close together, and

no aliasing was involved.

We then further classified the remaining missed outputs, determining that more

sophisticated analysis in two areas would be required to infer a full set of annotations:

arrays, and interprocedural aliasing. The column “need length” in Figure 7-3 counts

the outputs where the location being written to was a dynamically allocated array,

and the enclosure annotation has a bound (currently supplied by hand) on the size

of the array. These bounds would not be required in a language like Java whose

arrays keep track of their own size. Among the output annotations the tool missed,

the column “missed / expansion” counts cases where the inferred enclosure region

referred to only a single element in an array, but it needed instead to refer to the

entire array, commonly because the index expression was not constant. Finally, the

column “missed / interprocedural” counts cases where the annotation we added by
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hand was in a different function than the side-effecting operation. While we found

no cases in which an intraprocedural alias was required, interprocedural annotations

often required that the modified location be referred to with a different expression in

the annotation, such as by substituting an argument expression in place of a parameter

in an lvalue expression.

Comparing the results between the various case study programs, bzip2 is an

outlier in the complexity of its annotations, because of its sophisticated use of arrays

and pointers: for instance, to conserve space, many of its main data structures are

allocated as subranges of two large arrays.
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Chapter 8

Conclusion

Now that we have presented the main technical results of the thesis, this final chapter

discusses some further issues about the utility of the technique, suggests directions

for future research, and wraps up with a summary of our contributions.

8.1 Utility and applicability

This section provides some additional discussion of the ways in which a dynamic

quantitative analysis would be useful in developing secure software, including which

policies can be quantified, how to use a dynamic tool, and a comparison between our

technique and standard tainting.

A quantitative policy may only be an approximation to the complete security

policy one might specify—the projection of a set of acceptable and unacceptable

behaviors onto a single axis—but it is usually sufficient to catch large categories of

attack. For instance, in a system protecting privacy in a census database, a simple

quantitative policy could not prevent the query “Was Stephen McCamant’s income

more than $40,000?”, since it carries the same amount of information as an acceptable

query like “Was the average income of Boston residents more than $40,000?”. But

it could prevent a query from requesting the incomes of everyone in Boston. Since

the flow bounds our tool supports are whole numbers, it is also important to control

the number of times an attacker might repeat a process, since even a small bound
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would become large if multiplied by a large number of repeated requests; but if the

executions are analyzed together, our tool can be used to determine whether they are

revealing the same or different information.

Our tool measures the flows in particular executions, and is intended for testing

or debugging: its results do not say anything about other possible executions, which

might leak either more information or less. As with any other kinds of testing,

developers must choose inputs that exercise program behaviors relevant to a policy.

It is still important for a dynamic tool that its results never underestimate the amount

of flow that has occurred on a single run, even though this soundness for a dynamic

analysis is different from soundness for a static analysis that describes all possible

executions. As discussed in Chapter 4, other techniques can be used to check for

violations of a policy on future executions, such as after a system has been deployed.

No matter how automated a flow measurement tool is, it is still the responsibility

of a developer to decide which flows are acceptable, and how to resolve any violations.

Using a tool like ours can be seen as a kind of machine-checked auditing: the developer

conjectures a security policy the program is expected to satisfy, and the tool checks

whether it really is satisfied in a particular case. Mismatches might either represent a

policy that is too restrictive, or a bug in the program. The same kind of understanding

and policy specification would be required to annotate a program with an information-

flow type system: the difference is that a dynamic tool can be used to examine one

program execution at a time, while a static approach requires that a policy covering

every possibility be provided up-front.

Our analysis has a close relationship with dynamic tainting: the graph it con-

structs contains all the values that a tainting analysis would mark as secret. Our tool

reports a flow of 0 bits in exactly the cases when a (sound) tainting analysis would

allow a program. Conversely, any program with non-zero flow would be rejected by

a taint analysis (counting the number of tainted output bits corresponds to the total

capacity of edges to the sink in our graph). Using maximum flows allows our tech-

nique to find a more precise flow measurement, but it does not provide any more

precise information about which parts of the output contain secret information. For
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instance, in the example of Section 3.3, 64 bits of the output are tainted, and our

tool finds that together, these bits carry 9 bits of information about the secret input.

But it is not possible to pick out a particular 9 bits out of the 64 that contain the

information.

8.2 Future directions

Directions for possible further application of these ideas include interactions between

different kinds of secret, replacing the dynamic parts of the current technique to

produce a completely static analysis, and supporting interpreted languages without

trusting the interpreter.

8.2.1 Different kinds of secret

If a program operates on different classes of secret information, such as Alice’s secrets

and Bob’s secrets, or “classified” secrets and “top secret” secrets, our analysis can be

used independently for each kind of secret. This is conceptually straightforward, and

possible with our current tool just by running a program repeatedly, but for efficiency

and ease of use, it would be better for to run the analyses together. A question is how

much of the analysis can be shared between kinds of secret without hurting precision.

For instance, would it be enough to have one set of graph capacities for any kind of

secret, or should the bit-width analysis be repeated?

There may also be a possibility of increasing precision by analyzing the interactions

between different types of secret, because of crowding-out effects: for instance, a

certain byte might be able to store 8 bits of Alice’s data, or 8 bits of Bob’s data, but

not both at once. However, the obvious approach of analyzing the flows of multiple

kinds of information as multi-commodity flow would not be sound in general, because

multiple information flows can share capacity via coding [ACLY00].
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8.2.2 An all-static maximum-flow analysis

Since the dynamic analysis considered in the body of this paper already takes advan-

tage of static inference, and we found that a flow graph labelled with static identifiers

was fairly precise, it is instructive to consider how the same basic idea of network

maximum flow could be applied to an entirely static version of the information-flow

task. The flow graphs we consider are similar to the program dependence graphs

used in slicing, and the dynamic bit-width analysis of Section 3.1 has a close static

analogue [BSWG00]. The key difficulty is likely how to bound the number of times

a static flow edge will execute, in terms of a developer-understandable parameter of

the program input. The result of a static information flow analysis would need to be

a formula in terms of such parameters, rather than a single number.

8.2.3 Supporting interpreters

In the past, information flow tracking for languages such as Perl and PHP has

been implemented by adding explicit tracking to operations in an interpreter [WS91,

NTGG+05]. However, since such interpreters are themselves written in languages

such as C, an alternative technique would be to add a small amount of additional

information about the interpreter to make its control-flow state accessible to our tool

in the same way a compiled program’s is, and then use the rest of the tracking mech-

anism (for data) unchanged. This technique is analogous to Sullivan et al.’s use of

an extended program counter combining the real program counter with a representa-

tion of the current interpreter location to automatically optimize an interpreter via

instruction trace caching [SBB+03]. Compared to a hand-instrumented interpreter,

this technique would exclude most of the scripting language’s implementation from

the trusted computing base, and could also save development time.

96



8.3 Contributions

Protecting secret information is a key challenge for computer security, and a par-

ticularly difficult aspect is distinguishing when it is acceptable or unacceptable for

a program to reveal some data that is derived from a secret. Previous researchers

have suggested quantitative measurement of information flows as a way to distinguish

acceptable from unacceptable flows: we show for the first time that the technique can

be used in practice on real software.

We propose that dynamic tainting applied at the level of individual bits can be

used for quantitative information-flow measurement. When combined with a tech-

nique such as our enclosure regions, such tainting can soundly account for implicit

flows associated with secret-dependent control flow.

We introduce the idea that information flow can be measured as the maximum

flow in a network of program operations. Based on this insight, we first describe a

simple technique in which a flow bound can be obtained by describing a cut that

separates a program’s secret inputs from its public outputs. The we give a more

complex technique in which a program analysis constructs a flow graph at run time.

In support of the latter technique, we give a number of algorithms for operating on

flow graphs, including a graph collapsing algorithm based on program structure that

is critical to making the graph-based approach scale.

These techniques make it possible to assess a program’s potential for information

leakage via testing, which was previously difficult because the presence of secret in-

formation in a program’s output is not directly visible. Some dynamic flow checking

techniques also have low enough overheads to be used to catch all policy violations

in secrecy-sensitive production applications. In particular, we use a minimum cut,

which can be automatically derived from a maximum flow, to extend a technique

based on parallel execution to support a quantitative policy.

We investigate formally what it means for a dynamic quantitative information-

flow analysis to give sound results, and propose a new definition using concepts from

coding theory. This definition is related to the channel capacity of the program for
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conveying information from an adversary who can choose arbitrary secret inputs, but

can be achieved by an analysis that examines only a subset of executions. We also

introduce a simulation-based soundness proof technique, and use it to show how the

features of a core version of our analysis allow it to achieve soundness.

Finally, we study and evaluate our technique and a prototype implementation by

applying it to six pre-existing open-source programs written in C, C++, and Objective

C, totaling more than a million lines of code. For each program, we analyzed a the

secrecy of a kind of information appropriate to the program. Depending on the

programs and the way they were used, our tool’s results either verified that the

information was appropriately kept secret on the examined executions, or revealed

unacceptable leaks, in one case due to a previously unknown bug.

Though ensuring that computer programs keep adequate control of secret infor-

mation will continue to be a challenge for developers in the years to come, the research

described here gives reason to believe that they will be helped in this task by increas-

ingly sophisticated automated support. With the help of tools and techniques like

the ones we have described, concerns of information-flow security can move from ex-

isting solely as abstract considerations in the minds of developers and users, to being

concrete properties that can be tested and evaluated like other kinds of correctness.
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