
Dynamic Variable Comparability Analysis for C and C++ Programs

Philip J. Guo PGBOVINE@CSAIL.MIT.EDU

Stephen McCamant SMCC@CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

Languages like C and C++ provide programmers with only
a few basic types (e.g.,int, float). Programmers often
use these types to hold semantically unrelated values, so
types typically capture only a portion of the programmer’s
intent. For example, a programmer may use theint type
to represent array indices, sensor measurements, the cur-
rent time, or other unrelated quantities.pair<int,int>
can represent the coordinates of a point, a quotient and re-
mainder returned from a division procedure, etc. The use
of a single programming language representation type for
these conceptually distinct values obscures the differences
among the values.

int main() {
int year = 2005;
int winterDays = 58;
int summerDays = 307;
compute(year, winterDays, summerDays);
return 0;

}

int compute(int yr, int d1, int d2) {
if (yr % 4)
return d1 + d2;

else
return d1 + d2 + 1;

}

In the program above, the three variables inmain all have
the same type,int, but two of them hold related quanti-
ties (numbers of days), as can be determined by the fact
that they interact when the program adds them, whereas
the other contains a conceptually distinct quantity (a year).
day andyear, theabstract typesthat the programmer most
likely intended to convey in the program, are both repre-
sented asint.

A variable comparability analysis aims to automatically in-
fer when sets of variables with the same representation type
actually belong to the same abstract type. Sets of variables
with the same abstract type are said to becomparable. This
analysis could make the code’s intention clearer, prevent
errors, ease understanding, and assist automated program
analysis tools. In the past, it has been performed statically

using type inference, but we propose to perform a dynamic
comparability analysis by observing interactions of values
at run-time. We believe that a dynamic analysis can yield
more precise results with greater scalability, given an exe-
cution which provides adequate coverage. We have imple-
mented a tool called DynComp which performs this analy-
sis for C and C++ programs.

2. Application to Invariant Detection

One specific application of a comparability analysis is to
improve the performance and results of the Daikon invari-
ant detector (Ernst, 2000). Daikon analyzes program value
traces to infer properties that hold over all observed ex-
ecutions. Without comparability information, Daikon at-
tempts to infer invariants over all sets of variables with the
same representation type, which is expensive and likely to
produce invariants that are not meaningful. For the above
example, Daikon may state thatwinterDays < year.
While this invariant is true, it is most likely not meaning-
ful because the two variables belong to different abstract
types (they are not comparable). Comparability informa-
tion indicates which pairs of variables should be analyzed
for potential invariants, which both improves Daikon’s per-
formance and helps it produce more meaningful results.

3. Static Analysis: Lackwit

The Lackwit tool (O’Callahan & Jackson, 1997) performs
a static source code analysis on C programs to determine
when two variables have the same abstract type. It performs
type inference to give two variables the same abstract type
if their values may interact at any time during execution via
a program operation such as+ or =. Because it does not ac-
tually execute the program, it must make conservative esti-
mates regarding whether variables may interact, which may
lead to imprecise results with fewer abstract types than ac-
tually present in the program. Also, though it is sound with
respect to a large subset of C, this subset does not cover
all the features used in real programs: it may miss interac-
tions that result from some kinds of pointer arithmetic, and
it does not track control flow through function pointers.



4. Proposed Dynamic Analysis

We propose a dynamic approach for computing whether
two variables are comparable at program points such as
procedure entries and exits. The analysis conceptually
computes abstract types for values, then converts the infor-
mation into sets of comparable variables at each program
point (calledcomparability sets). It consists of a value
analysis which occurs throughout execution and a variable
analysis which occurs during each program point.

The value analysis maintains, for each value in memory and
registers, a tag representing its abstract type. It associates a
fresh abstract type with each new value created during ex-
ecution. For a primitive representation type such asint,
new values are instances of literals and values read from
a file. Only values of primitive types receive tags; structs
and arrays are treated as collections of primitive types. Two
values have the same abstract type if they interact by being
arguments to the same program operation such as+ or =.
This is a transitive notion; in the codea+b; b+c, the val-
ues ofa andc have the same abstract type. Each program
operation on two values unifies their abstract types, using
an efficient union-find data structure, and gives the result
the same abstract type.

The variable analysis is intended to report, for any pair of
variables at a given program point, whether those variables
ever held values of the same abstract type at that program
point. The abstract type information that is maintained for
values must be converted into abstract types for variables
each time a program point is executed. In order to accom-
modate this, the analysis keeps a second variable-based set
of abstract type information (independently for each pro-
gram point) and merges the value-based information into
that data structure at each execution of the program point.
We are currently experimenting with several algorithms for
this operation, each with different degrees of precision ver-
sus performance.

4.1 Implementation: DynComp

We have implemented a tool called DynComp for perform-
ing dynamic comparability analysis of C and C++ pro-
grams. It is built upon a framework based on dynamic
binary instrumentation using Valgrind (Nethercote & Se-
ward, 2003). It maintains a numeric tag along with each
byte of memory and each register which represents the ab-
stract type of the value stored in that location. The value
analysis is performed by instrumenting every machine in-
struction in which values interact to unify their tags in the
union-find data structure. The variable analysis is per-
formed by pausing the program’s normal execution dur-
ing program points, reading the tags of the values held by
relevant variables, and translating the abstract types repre-
sented by these tags to the abstract types of the variables.

4.2 Advantages of Our Dynamic Approach

Our dynamic approach has the potential to produce more
precise results than static analysis because it need not apply
approximations of run-time behavior but can observe ac-
tual behavior. Whereas a static tool must infer whether two
variables could ever possibly interact and become compa-
rable on any possible execution (usually by making conser-
vative estimates), our dynamic analysis (given a test suite
with adequate coverage) can tell exactly whether the two
variables are comparable during actual executions.

Furthermore, our use of dynamic binary instrumentation
results in a tool that can be more robust than Lackwit’s
source-based static approach because it only needs to deal
with value interactions in memory and registers, which
have relatively simple semantics. We do not need to handle
complex source code constructs (such as pointer arithmetic,
function pointers, or type casts) or analyze the source of or
make hand-written summaries for library code (which of-
ten includes difficult-to-analyze constructs), requirements
which are often difficult to implement robustly.

5. Experimental Results and Future Work

DynComp has been tested to work on moderately-sized C
and C++ programs (around 10,000 lines of code). In quan-
titative evaluations, DynComp usually produces smaller
comparability sets than Lackwit and allows Daikon to run
faster and generate fewer invariants. In qualitative evalua-
tions, the sets that DynComp produces more closely match
programmer-intendedabstract typesbecause it does not
have to make approximations about run-time behavior.

DynComp’s scalability is currently limited by the memory
overhead of maintaining tags, but we are currently working
on garbage collection and various optimizations to over-
come this limitation. In the meantime, another member of
our research group is working on a Java implementation of
dynamic comparability analysis.

References

Ernst, M. D. (2000).Dynamically discovering likely pro-
gram invariants. Doctoral dissertation, University of
Washington Department of Computer Science and En-
gineering, Seattle, Washington.

Nethercote, N., & Seward, J. (2003). Valgrind: A program
supervision framework.Proceedings of the Third Work-
shop on Runtime Verification. Boulder, Colorado, USA.

O’Callahan, R., & Jackson, D. (1997). Lackwit: A program
understanding tool based on type inference.Proceedings
of the 19th International Conference on Software Engi-
neering(pp. 338–348). Boston, MA.


