
Daikon Invariant Detector User Manual

Daikon version 5.8.20

May 14, 2024

Copyright c© 1998-2020

i

Table of Contents

1 Introduction . 1

2 Installing Daikon . 2
2.1 Requirements for running Daikon . 2
2.2 Installation . 2

3 Example usage for Java, C/C++, C#/F#/Visual Basic,
Perl, and Eiffel . 4

3.1 Detecting invariants in Java programs . 4
3.1.1 StackAr example . 4
3.1.2 Detecting invariants when running a Java program from a jar file 5
3.1.3 Understanding the invariants . 6
3.1.4 A second Java example . 6

3.2 Detecting invariants in C/C++ programs . 8
3.2.1 C examples . 8
3.2.2 Dealing with large examples . 9

3.3 Detecting invariants in C#, F#, and Visual Basic programs 10
3.4 Detecting invariants in Perl programs . 10

3.4.1 Instrumenting Perl programs . 10
3.4.2 Perl examples . 10

3.5 Detecting invariants in Eiffel programs . 12
3.6 Detecting invariants in Simulink/Stateflow programs . 12

4 Running Daikon . 13
4.1 Options to control Daikon output . 13
4.2 Options to control invariant detection . 15
4.3 Processing only part of the trace file . 16
4.4 Daikon configuration options . 16
4.5 Daikon debugging options . 17

5 Daikon output . 18
5.1 Invariant syntax . 18
5.2 Program points . 19

5.2.1 OBJECT and CLASS program points . 19
5.3 Variable names . 20

5.3.1 orig() variable example . 21
5.4 Interpreting Daikon output . 22

5.4.1 Redundant invariants . 23
5.4.2 Equal variables . 23
5.4.3 Has only one value variables . 23
5.4.4 Object inequality . 23

5.5 Invariant list . 23
5.6 Invariant filters . 41

ii

6 Enhancing Daikon output . 43
6.1 Configuration options . 43

6.1.1 List of configuration options . 43
6.1.1.1 Options to enable/disable filters . 43
6.1.1.2 Options to enable/disable specific invariants . 44
6.1.1.3 Other invariant configuration parameters . 52
6.1.1.4 Options to enable/disable derived variables . 55
6.1.1.5 Simplify interface configuration options . 57
6.1.1.6 Splitter options . 59
6.1.1.7 Debugging options . 59
6.1.1.8 Quantity of output . 60
6.1.1.9 General configuration options . 61

6.2 Conditional invariants (disjunctions) and implications . 64
6.2.1 Splitter info file format . 65

6.2.1.1 Program point sections . 65
6.2.1.2 Replacement sections . 66

6.2.2 Indiscriminate splitting . 66
6.2.3 Example splitter info file . 66

6.2.3.1 Example class . 66
6.2.3.2 Resulting .spinfo file . 67

6.3 Enhancing conditional invariant detection . 67
6.3.1 Static analysis for splitters . 68

6.3.1.1 Static analysis of Java for splitters . 68
6.3.1.2 Static analysis of C for splitters . 68

6.3.2 Cluster analysis for splitters . 69
6.3.3 Random selection for splitters . 69

6.4 Dynamic abstract type inference (DynComp) . 70
6.5 Loop invariants . 70

7 Front ends and instrumentation . 72
7.1 Java front end Chicory . 72

7.1.1 Chicory options . 72
7.1.1.1 Program points in Chicory output . 73
7.1.1.2 Variables in Chicory output . 74
7.1.1.3 Chicory miscellaneous options . 76

7.1.2 Static fields (global variables) . 77
7.1.3 Troubleshooting Chicory . 77

7.2 DynComp dynamic comparability (abstract type) analysis for Java 77
7.2.1 Instrumenting the JDK with DynComp . 81
7.2.2 DynComp options . 82
7.2.3 Instrumentation of Object methods . 83
7.2.4 Troubleshooting DynComp for Java . 84
7.2.5 Known bugs and limitations . 84

7.3 C/C++ front end Kvasir . 84
7.3.1 Using Kvasir . 85
7.3.2 Kvasir options . 85
7.3.3 DynComp dynamic comparability (abstract type) analysis for C/C++ . . . 90
7.3.4 Tracing only part of a program . 92
7.3.5 Pointer type disambiguation . 95

7.3.5.1 Pointer type coercion . 96
7.3.5.2 Pointer type disambiguation example . 97

iii

7.3.5.3 Using pointer type disambiguation with partial program tracing 99
7.3.6 C++ support . 100
7.3.7 Online execution . 101

7.3.7.1 Online execution with DynComp for C/C++ . 101
7.3.8 Installing Kvasir . 102
7.3.9 Kvasir implementation and limitations . 102

7.4 .NET (C#) front end Celeriac . 103
7.5 Perl front end dfepl . 104

7.5.1 dfepl options . 106
7.6 Comma-separated-value front end convertcsv.pl . 109
7.7 Other front ends . 109

8 Tools for use with Daikon . 111
8.1 Tools for manipulating invariants . 111

8.1.1 Printing invariants . 111
8.1.2 MergeInvariants . 112
8.1.3 Invariant Diff . 112
8.1.4 Annotate . 113
8.1.5 AnnotateNullable . 114
8.1.6 Runtime-check instrumenter (runtimechecker) . 115

8.1.6.1 How to access violations . 116
8.1.6.2 Problems compiling instrumented code . 116

8.1.7 InvariantChecker . 117
8.1.8 LogicalCompare . 118

8.2 DtraceDiff utility . 120
8.3 Reading dtrace files . 121

9 Troubleshooting . 122
9.1 Problems running Daikon . 122

9.1.1 Can’t run Daikon: could not find or load main class, or
NoClassDefFoundError . 122

9.1.2 File input errors . 122
9.1.3 decl format errors . 122
9.1.4 Too much output . 123
9.1.5 Missing output invariants . 123
9.1.6 True invariants are not reported due to output filters 124
9.1.7 No samples and no output . 124
9.1.8 No return from procedure . 125
9.1.9 Unsupported class version . 125
9.1.10 Out of memory . 125
9.1.11 Simplify errors . 126

9.1.11.1 Installing Simplify . 126
9.1.12 Contradictory invariants . 126
9.1.13 Method needs to be implemented . 127
9.1.14 Daikon runs slowly . 127

9.1.14.1 Slow creation of large trace files . 127
9.1.14.2 Slow inference of invariants . 127

9.1.15 Bigger traces cause invariants to appear . 128
9.2 Large data trace (.dtrace) files . 128

9.2.1 Compressed .dtrace files . 128
9.2.2 Save large files in a scratch directory . 129

iv

9.2.3 Run Daikon online . 129
9.2.4 Create multiple smaller data trace files . 129
9.2.5 Record or read less information in the data trace file . 129

9.2.5.1 Reducing program points (functions) . 129
9.2.5.2 Reducing variables . 130
9.2.5.3 Reducing executions . 130

9.3 Problems with Chicory . 131
9.3.1 BCEL must be in the classpath, or couldn’t find or load main class 131
9.3.2 ClassFormatError LVTT entry does not match . 131
9.3.3 Attempted duplicate class definition error . 131

9.4 Reporting problems . 132
9.5 Further reading . 132

10 Details . 134
10.1 History . 134
10.2 License . 135

10.2.1 Library licenses . 135
10.2.1.1 getopt license . 135
10.2.1.2 JUnit license . 135

10.2.2 Front end licenses . 135
10.2.2.1 dfepl license . 136
10.2.2.2 Kvasir license . 136
10.2.2.3 Celeriac license . 136

10.3 Mailing lists . 136
10.4 Credits . 137
10.5 Citing Daikon . 137

General Index . 138

Chapter 1: Introduction 1

1 Introduction

Daikon is an implementation of dynamic detection of likely invariants; that is, the Daikon invariant
detector reports likely program invariants. An invariant is a property that holds at a certain point or points
in a program; these are often seen in assert statements, documentation, and formal specifications. Invariants
can be useful in program understanding and a host of other applications. Examples include ‘x.field >
abs(y)’; ‘y = 2*x+3’; ‘array a is sorted’; for all list objects lst, ‘lst.next.prev = lst’; for all treenode
objects n, ‘n.left.value < n.right.value’; ‘p != null => p.content in myArray’; and many more. You
can extend Daikon to add new properties (see Chapter 6 [Enhancing Daikon output], page 43, or see Section
“New invariants” in Daikon Developer Manual).

Dynamic invariant detection runs a program, observes the values that the program computes, and then
reports properties that were true over the observed executions. Daikon can detect properties in C, C++,
C#, Eiffel, F#, Java, Perl, and Visual Basic programs; in spreadsheet files; and in other data sources.
(Dynamic invariant detection is a machine learning technique that can be applied to arbitrary data.) It is
easy to extend Daikon to other applications.

Daikon is freely available for download from download-site. Daikon’s license permits unrestricted use (see
Section 10.2 [License], page 135). The distribution includes both source code (also available on GitHub)
and documentation, Many researchers and practitioners have used Daikon; those uses, and Daikon itself,
are described in various publications.

For more information on Daikon, see Section “Introduction” in Daikon Developer Manual. For instance,
the Daikon Developer Manual indicates how to obtain Daikon’s source code and how to extend Daikon
with new invariants, new derived variables, and front ends for new languages. It also contains information
about the implementation and about debugging flags.

http://plse.cs.washington.edu/daikon/
http://plse.cs.washington.edu/daikon/download/
https://github.com/codespecs/daikon
http://plse.cs.washington.edu/daikon/download/doc/
http://plse.cs.washington.edu/daikon/pubs/

Chapter 2: Installing Daikon 2

2 Installing Daikon

Shortcut for the impatient: skip directly to the Section 2.2 [Installation], page 2 instructions.

The main way to install Daikon is from a release, as explained in this section. (Alternately, see Section
“Source code (version control repository)” in Daikon Developer Manual, to obtain the latest Daikon source
code from its version control repository.) Here is an overview of the steps.

1. Download Daikon.

2. Place two commands in your shell initialization file.

3. Optionally, customize your installation.

4. Compile Daikon and build other tools. (This is optional but often needed.)

Details appear below; select the instructions for your operating system.

Differences from previous versions of Daikon appear in the file doc/CHANGELOG.md in the distribution.
To be notified of new releases, or to join discussions about Daikon, subscribe to one of the mailing lists
(see Section 10.3 [Mailing lists], page 136).

2.1 Requirements for running Daikon
In order to run Daikon, you must have a Java 8 (or later) JDK, including a Java Virtual Machine and

a Java compiler.

If you wish to analyze C or C++ programs, or if you wish to edit the Daikon source code and re-compile
Daikon, see Section “Compiling Daikon” in Daikon Developer Manual.

Daikon is supported on Unix environments, including Linux, Mac OS X, and Windows Subsystem for
Linux (WSL). It is not supported on Windows or Cygwin.

2.2 Installation
1. Choose the directory where you want to install Daikon; we’ll call this the daikonparent directory. In

this directory, download and unpack Daikon.

cd daikonparent
wget http://plse.cs.washington.edu/daikon/download/daikon-5.8.20.tar.gz
tar zxf daikon-5.8.20.tar.gz

This creates a daikonparent/daikon-5.8.20/ subdirectory.

2. Place two commands in your shell initialization file: set an environment variable and source a Daikon
startup file.

We will assume that you are using the bash shell or one of its variants. Add commands like these to
your ~/.bashrc or ~/.bash_profile file:

"daikonparentpath" is the absolute path to the directory that contains Daikon.
export DAIKONDIR=daikonparentpath/daikon-5.8.20
source $DAIKONDIR/scripts/daikon.bashrc

After editing your shell initialization file, either execute the commands you placed in it (e.g., run
source ~/.bashrc), or else log out and log back in to achieve the same effect.

3. Optionally, customize other variables. The customizable variables are listed in the Daikon startup file:
$DAIKONDIR/scripts/daikon.bashrc.

You may customize them by setting environment variables, or by adding a Makefile.user file to
directory $DAIKONDIR/java (it is automatically read at the beginning of the main Makefile, and
prevents you from having to edit the main Makefile directly).

CHANGELOG.md
https://www.oracle.com/java/technologies/java-se-glance.html

Chapter 2: Installing Daikon 3

4. Compile Daikon and build other tools. (Strictly speaking, this step is optional, but it is highly
recommended: some parts of this are required in order to infer invariants in Java programs, and other
parts are needed in order to infer invariants in C programs.) First, make sure that you have satisfied
the requirements in Section “Requirements for compiling Daikon” in Daikon Developer Manual. Then,
run:

make -C $DAIKONDIR rebuild-everything

This builds the various executables used by Daikon, such as the C/C++ front end Kvasir (see
Section 7.3.8 [Installing Kvasir], page 102) and the JDK for use with DynComp (see Section 7.2.1
[Instrumenting the JDK with DynComp], page 81). If you need more information about compiling
Daikon, see Section “Compiling Daikon” in Daikon Developer Manual. If you have trouble compiling
the C/C++ front end Kvasir, see See Section 7.3.8 [Installing Kvasir], page 102.

Note that running this make command may take 20 minutes or more, depending on your computer.

Optionally, download other executables, such as the Simplify theorem prover (see Section 9.1.11.1
[Installing Simplify], page 126).

Chapter 3: Example usage for Java, C/C++, C#/F#/Visual Basic, Perl, and Eiffel 4

3 Example usage for Java, C/C++, C#/F#/Visual Basic,
Perl, and Eiffel

Detecting invariants involves two steps:

1. Obtain one or more data trace files by running your program under the control of a front end (also
known as an instrumenter or tracer) that records information about variable values. You can run your
program over one or more inputs of your own choosing, such as regression tests or a typical user input
session. You may choose to obtain trace data for only part of your program; this can avoid inundating
you with output, and can also improve performance.

2. Run the Daikon invariant detector over the data trace files (see Chapter 4 [Running Daikon], page 13).
This detects invariants in the recorded information. You can view the invariants textually, or process
them with a variety of tools.

This section briefly describes how to obtain data traces for Java, C, C#, Perl, and Eiffel programs,
and how to run Daikon. For detailed information about these and other front ends that are available for
Daikon, see Chapter 7 [Front ends and instrumentation], page 72.

3.1 Detecting invariants in Java programs
Before detecting invariants in Java programs, you must run make -C $DAIKONDIR/java dcomp_rt.jar

(for more details, see Section 7.2.1 [Instrumenting the JDK with DynComp], page 81).

In order to detect invariants in a Java program, you will run the program twice — once using DynComp
(see Section 7.2 [DynComp for Java], page 77) to create a .decls file and once using Chicory (see Section 7.1
[Chicory], page 72) to create a data trace file. Then, run Daikon on the data trace file to detect invariants.
With the --daikon option to Chicory, a single command performs the last two steps.

For example, if you usually run

java -cp myclasspath mypackage.MyClass arg1 arg2 arg3

then instead you would run these two commands:

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.DynComp mypackage.MyClass arg1 arg2 arg3
java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.Chicory --daikon \

--comparability-file=MyClass.decls-DynComp \
mypackage.MyClass arg1 arg2 arg3

and the Daikon output is written to the terminal.

3.1.1 StackAr example

The Daikon distribution contains some sample programs that will help you get practice in running
Daikon.

To detect invariants in the StackAr sample program, perform the following steps after installing Daikon
(see Chapter 2 [Installing Daikon], page 2).

1. Compile the program with the -g switch to enable debugging symbols. (The program and test suite
appear in the DataStructures subdirectory.)

cd examples/java-examples/StackAr
javac -g DataStructures/*.java

2. Run the program under the control of DynComp to generate comparability information in the file
StackArTester.decls-DynComp.

java -cp .:$DAIKONDIR/daikon.jar daikon.DynComp DataStructures.StackArTester

3. Run the program a second time, under the control of the Chicory front end. Chicory observes the
variable values and passes the information to Daikon. Daikon infers invariants, prints them, and writes
a binary representation of them to file StackArTester.inv.gz.

Chapter 3: Example usage for Java, C/C++, C#/F#/Visual Basic, Perl, and Eiffel 5

java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory --daikon \
--comparability-file=StackArTester.decls-DynComp \
DataStructures.StackArTester

Alternately, replacing the --daikon argument by --daikon-online has the same effect, but does not
write a data trace file to disk.

If you wish to have more control over the invariant detection process, you can split the third step
above into multiple steps. Then, step 3 would become:

a. Run the program under the control of the Chicory front end in order to create a trace file named
StackArTester.dtrace.gz.

java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory \
--comparability-file=StackArTester.decls-DynComp \
DataStructures.StackArTester

b. Run Daikon on the trace file.

java -cp $DAIKONDIR/daikon.jar daikon.Daikon StackArTester.dtrace.gz

4. Examine the invariants. (They were also printed to standard out by the previous step.)

There are various ways to do this.

• Examine the output from running Daikon. (You may find it convenient to capture the output in
a file; add ‘> StackAr.txt’ to the end of the command that runs Daikon.)

• Use the PrintInvariants program to display the invariants.

java -cp $DAIKONDIR/daikon.jar daikon.PrintInvariants StackArTester.inv.gz

For more options to the PrintInvariants program, see Section 8.1.1 [Printing invariants],
page 111.

• Use the Annotate program to insert the invariants as comments into the Java source program.

java -cp .:$DAIKONDIR/daikon.jar daikon.tools.jtb.Annotate StackArTester.inv.gz \
DataStructures/StackAr.java

Now examine file DataStructures/StackAr.java-escannotated. For more information about
the Annotate program, see Section 8.1.4 [Annotate], page 113.

Daikon can analyze multiple runs (executions) of the program. You can supply Daikon with multiple
trace files:

java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory \

--dtrace-file=StackArTester1.dtrace.gz \

--comparability-file=StackArTester.decls-DynComp DataStructures.StackArTester

java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory \

--dtrace-file=StackArTester2.dtrace.gz \

--comparability-file=StackArTester.decls-DynComp DataStructures.StackArTester

java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory \

--dtrace-file=StackArTester3.dtrace.gz \

--comparability-file=StackArTester.decls-DynComp DataStructures.StackArTester

java -cp $DAIKONDIR/daikon.jar daikon.Daikon StackArTester*.dtrace.gz

(In this example, all the runs are identical, so multiple runs yield the same invariants as one run.)

3.1.2 Detecting invariants when running a Java program from a jar file

If your Java program is run directly from a jar file, such as either of:

java mypackage.jar arguments
java -cp myclasspath mypackage.jar arguments

then to detect invariants in that Java program, run these two commands:

Chapter 3: Example usage for Java, C/C++, C#/F#/Visual Basic, Perl, and Eiffel 6

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.DynComp <MyMain> arguments
java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.Chicory --daikon \

--comparability-file=<MyMain>.decls-DynComp <MyMain> arguments

where <MyMain> is the Main-class of the jar file, which you can determine by running the command:

unzip -p mypackage.jar META-INF/MANIFEST.MF | grep ’^Main-Class:’

3.1.3 Understanding the invariants

This section examines some of the invariants for the StackAr example. For more help interpreting
invariants, see Section 5.4 [Interpreting output], page 22.

The StackAr example is an array-based stack implementation. Take a look at
DataStructures/StackAr.java to get a sense of the implementation. Now, look at the sixth
section of Daikon output.

==
StackAr:::OBJECT
this.theArray != null
this.theArray.getClass().getName() == java.lang.Object[].class
this.topOfStack >= -1
this.topOfStack <= size(this.theArray[])-1
==

These four annotations describe the representation invariant. The array is never null, and its run-time
type is Object[]. The topOfStack index is at least -1 and is less than the length of the array.

Next, look at the invariants for the top() method. top() has two different exit points, at lines 74 and
75 in the original source. There is a set of invariants for each exit point, as well as a set of invariants that
hold for all exit points. Look at the invariants when top() returns at line 75.

==
StackAr.top():::EXIT75
return == this.theArray[this.topOfStack]
return == this.theArray[orig(this.topOfStack)]
return == orig(this.theArray[post(this.topOfStack)])
return == orig(this.theArray[this.topOfStack])
this.topOfStack >= 0
return != null
==

The return value is never null, and is equal to the array element at index topOfStack. The top of the
stack is at least 0.

3.1.4 A second Java example

A second example is located in the examples/java-examples/QueueAr subdirectory. Run this sample
using the following steps:

• Compile

cd examples/java-examples/QueueAr
javac -g DataStructures/*.java

• Trace file generation and invariant detection

java -cp .:$DAIKONDIR/daikon.jar daikon.DynComp DataStructures.QueueArTester
java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory --daikon \

--comparability-file=QueueArTester.decls-DynComp \
DataStructures.QueueArTester

Chapter 3: Example usage for Java, C/C++, C#/F#/Visual Basic, Perl, and Eiffel 7

Alternately, you can split the very last command into two parts:

• Trace file generation

java -cp .:$DAIKONDIR/daikon.jar daikon.Chicory \
--comparability-file=QueueArTester.decls-DynComp \
DataStructures.QueueArTester

• Invariant detection

java -cp $DAIKONDIR/daikon.jar daikon.Daikon QueueArTester.dtrace.gz

Chapter 3: Example usage for Java, C/C++, C#/F#/Visual Basic, Perl, and Eiffel 8

3.2 Detecting invariants in C/C++ programs
In order to detect invariants over C or C++ programs, you must first install a C/C++ front end (instru-

menter). We recommend that you use Kvasir (see Section 7.3 [Kvasir], page 84), and this section gives
examples using Kvasir. By default, Kvasir also runs the DynComp tool to improve Daikon’s performance
and Daikon’s output by filtering out invariants involving unrelated variables (see Section 7.3.3 [DynComp
for C/C++], page 90).

To use the C/C++ front end Kvasir with your program, first compile your program. (If you use gcc to
compile your program, use the following command-line arguments: -gdwarf-2 -no-pie. Also use -fno-
stack-clash-protection if your gcc supports it. Note that if your build system separates the compile
and link steps, then -no-pie needs to be on the link step.) Then, run your program as usual, but prepend
kvasir-dtrace to the command line.

Kvasir will produce two output files: a .dtrace file containing a trace of a particular execution, and a
.decls file that contains information about what variables and functions exist in a program, along with
information grouping the variables into abstract types. You will supply both of these files to Daikon.

For more information about Kvasir, including more detailed documentation on its command-line options,
see Section 7.3 [Kvasir], page 84.

3.2.1 C examples

The Daikon distribution comes with several example C programs to enable users to become familiar with
running Daikon on C programs. These examples are located in the examples/c-examples directory.

To detect invariants for a program with Kvasir, you need to perform two basic tasks: run the program
under Kvasir to create a trace and declaration files (steps 1–3), and run Daikon over these files to produce
invariants (step 4). The following instructions are for the wordplay example, which is a program for finding
anagrams.

1. Change to the directory containing the program.

cd $DAIKONDIR/examples/c-examples/wordplay

2. Compile the program with DWARF-2 debugging information enabled (and all optimizations disabled).

gcc -gdwarf-2 -no-pie wordplay.c -o wordplay

Kvasir can also be used for programs constructed by compiling a number of .c files separately, and
then linking them together; in such a program, specify -gdwarf-2 when compiling each source file
containing code you wish to see invariants about.

3. Run the program just as you normally would, but prepend kvasir-dtrace to the command line.

kvasir-dtrace ./wordplay -f words.txt ’Daikon Dynamic Invariant Detector’

Any options to the program can be specified as usual; here, for instance, we give commands to look for
anagrams of the phrase “Daikon Dynamic Invariant Detector” using words from the file words.txt.

Executing under Kvasir, the program runs normally, but Kvasir executes additional checks and collects
trace information (for this reason, the program will run more slowly than usual). Kvasir creates a
directory named daikon-output under the current directory, and creates the wordplay.dtrace file,
which lists variable values, and the wordplay.decls file that contains information about what variables
and functions exist in a program, along with information grouping the variables into abstract types.

Kvasir will also print messages if it observes your program doing something with undefined effects;
these may indicate bugs in your program, or they may be spurious. (If they are bugs, they can also
be tracked down by using Valgrind (https://valgrind.org/) with its regular memory checking tool;
if they do not appear with that tool, they are probably spurious).

4. Run Daikon on the trace and declaration files.
java -cp $DAIKONDIR/daikon.jar daikon.Daikon \

--config_option daikon.derive.Derivation.disable_derived_variables=true \

https://valgrind.org/

Chapter 3: Example usage for Java, C/C++, C#/F#/Visual Basic, Perl, and Eiffel 9

daikon-output/wordplay.decls daikon-output/wordplay.dtrace

The invariants are printed to standard output, and a binary representation of the invariants is written
to wordplay.inv.gz. Note that the example uses a configuration option to disable the use of derived
variables; it can also run without that option, but takes significantly longer.

Daikon can analyze multiple runs (executions) of the program. You can supply Daikon with multiple
trace files:

kvasir-dtrace --dtrace-file=daikon-output/wordplay1.dtrace \

./wordplay -f words.txt ’daikon dynamic invariant detector’

kvasir-dtrace --no-dyncomp --dtrace-file=daikon-output/wordplay2.dtrace \

./wordplay -f words.txt ’better results from multiple runs’

kvasir-dtrace --no-dyncomp --dtrace-file=daikon-output/wordplay3.dtrace \

./wordplay -f words.txt ’more testing equals better testing’

java -Xmx3600m -cp $DAIKONDIR/daikon.jar daikon.Daikon \

daikon-output/wordplay*.dtrace daikon-output/wordplay.decls

Note that this example makes the assumption that the DynComp .decls information for wordplay
does not vary from run to run. Thus it specifies --no-dyncomp on subsequent runs to improve
performance. (This assumption may not be true for other programs.)

Alternatively, you can append information from multiple runs in a single trace file:
kvasir-dtrace --dtrace-file=daikon-output/wordplay-all.dtrace \

./wordplay -f words.txt ’daikon dynamic invariant detector’

kvasir-dtrace --no-dyncomp --dtrace-append \

--dtrace-file=daikon-output/wordplay-all.dtrace \

./wordplay -f words.txt ’better results from multiple runs’

kvasir-dtrace --no-dyncomp --dtrace-append \

--dtrace-file=daikon-output/wordplay-all.dtrace \

./wordplay -f words.txt ’more testing equals better testing’

java -Xmx3600m -cp $DAIKONDIR/daikon.jar daikon.Daikon \

daikon-output/wordplay-all.dtrace daikon-output/wordplay.decls

5. Examine the invariants. As described in Section 3.1.1 [StackAr example], page 4, there are several
ways to do this:

• Examine the output from running Daikon.

• Use the PrintInvariants program to display the invariants.

For help understanding the invariants, see Section 5.4 [Interpreting output], page 22.

There is a second example C program in the bzip2 directory. It may be run in a similar fashion as
the wordplay example, but it is a more complex program and the kvasir-dtrace step may take several
minutes.

3.2.2 Dealing with large examples

Since the default memory size used by a Java virtual machine varies, we suggest that Daikon be run
with at least 256 megabytes of memory (and perhaps much more). For many JVMs, specify a maximum
heap size of 3.6GB by the option -Xmx3600m. For more information about specifying the memory usage
for Daikon, see Section 9.1.10 [Out of memory], page 125.

Disk usage can be reduced by specifying that the front end should compress its output .dtrace files.

In some cases, the time and space requirements of the examples can be reduced by reducing the length
of the program run. However, Daikon’s running time depends on both the length of the test run and the
size of the program data (such as its use of global variables and nested data structures). The examples also
demonstrate disabling derived variables, which significantly improves Daikon’s performance at the cost of
producing fewer invariants. For more techniques for using Daikon with large programs and long program
runs, see Section 9.2 [Large dtrace files], page 128.

Chapter 3: Example usage for Java, C/C++, C#/F#/Visual Basic, Perl, and Eiffel 10

3.3 Detecting invariants in C#, F#, and Visual Basic programs
The Daikon front end for .NET languages (C#, F#, and Visual Basic) is called Celeriac.

Please see its documentation at :
https://github.com/codespecs/daikon-dot-net-front-end.

3.4 Detecting invariants in Perl programs
The Daikon front end for Perl is called dfepl.

Using the Perl front end is a two-pass process: first you must run the annotated program so that
the runtime system can dynamically infer the kind of data stored in each variable, and then you must
re-annotate and re-run the program with the added type information. This is necessary because Perl
programs do not contain type declarations.

dfepl requires version 5.8 or later of Perl.

3.4.1 Instrumenting Perl programs

Perl programs must be instrumented twice. First they must be instrumented without type informa-
tion. Then, once the first instrumented version has been run to produce type information, they must be
instrumented again taking the type information into account.

To instrument a stand-alone Perl program, invoke dfepl with the name of the program as an argument.

dfepl program.pl

To instrument a Perl module or a collection of modules, invoke dfepl either with the name of each
module, or with the name of a directory containing the modules. To instrument all the modules in the
current directory, give dfepl the argument .. For instance, if the current directory contains a module
Acme::Trampoline in Acme/Trampoline.pm and another module Acme::Date in Acme/Date.pm, they can
be annotated by either of the following two commands:

dfepl Acme/Trampoline.pm Acme/Date.pm
dfepl .

Once type information is available, run the instrumentation command again with the -T or -t options
added to use the produced type information.

For more information about dfepl, see Section 7.5 [dfepl], page 104.

3.4.2 Perl examples

The Daikon distribution includes sample Perl programs suitable for use with Daikon in the
examples/perl-examples directory.

Here are step-by-step instructions for examining a simple module, Birthday.pm, as used by a test script
test-bday.pl.

1. Change to the directory containing the Birthday.pm module.

cd examples/perl-examples

2. Instrument the Birthday.pm file.

dfepl Birthday.pm

This command creates a directory daikon-untyped, and puts the instrumented version of Birthday.pm
into daikon-untyped/Birthday.pm. As the directory name implies, this instrumented version doesn’t
contain type information.

3. Run a test suite using the instrumented Birthday.pm file.

dtype-perl test_bday.pl 10

https://github.com/codespecs/daikon-dot-net-front-end

Chapter 3: Example usage for Java, C/C++, C#/F#/Visual Basic, Perl, and Eiffel 11

The dtype-perl is a script that runs Perl with the appropriate command line options to find the
modules used by the Daikon Perl runtime tracing modules, and to use the instrumented versions of
modules in daikon-untyped in preference to their original ones. The number 10 is an argument to
the test_bday.pl script telling it to run a relatively short test.

This will also generate a file daikon-instrumented/Birthday.types recording the type of each vari-
able seen during the execution of the instrumented program.

4. Re-annotate the module using the type information.

dfepl -T Birthday.pm

This step repeats step 2, except that the -T flag to dfepl tells it to use the type information generated
in the previous step, and to put the output in the directory daikon-instrumented. dfepl also converts
the type information into a file daikon-output/Birthday.decls containing subroutine declarations
suitable for Daikon.

5. Run the full test suite with the type-instrumented Birthday.pm.

dtrace-perl test_bday.pl 30

Here we run another test suite, which happens to be the same test_bday.pl, but running for longer.
(The example will also work with a smaller number). The script dtrace-perl is similar to dtype-perl
mentioned earlier, but looks for instrumented source files in daikon-instrumented.

This creates daikon-output/test_bday-combined.dtrace, a trace file containing the values of vari-
ables at each invocation. (The file name is formed from the name of the test program, with -combined
appended because it contains the trace information from all the instrumented modules invoked from
the program).

6. Change to the daikon-output directory to analyze the output.

cd daikon-output

7. Run Daikon on the trace file

java -cp $DAIKONDIR/daikon.jar daikon.Daikon Birthday.decls test_bday-combined.dtrace

8. Examine the invariants. They are printed to standard output, and they are also saved to file
Birthday.inv.gz, which you can manipulate with the PrintInvariants program and other Daikon
tools. For example:

java -cp $DAIKONDIR/daikon.jar daikon.PrintInvariants Birthday.inv.gz

Invariants produced from Perl programs can be examined using the same tools as other Daikon in-
variants.

In the example above, the script test_bday.pl was not itself instrumented; it was only used to test the
instrumented code. The Perl front end can also be used to instrument stand-alone Perl programs. The
following sequence of commands, similar to those above, show how Daikon can be used with the stand-alone
program standalone.pl, also in the examples/perl-examples directory.

dfepl standalone.pl
dtype-perl daikon-untyped/standalone.pl
dfepl -T standalone.pl
dtrace-perl daikon-instrumented/standalone.pl
cd daikon-output
java -cp $DAIKONDIR/daikon.jar daikon.Daikon -o standalone.inv standalone-main.decls \

standalone-combined.dtrace

Note two differences when running a stand-alone program. First, the instrumented versions of the program,
in the daikon-untyped or daikon-instrumented directory, are run directly. Second, the declarations file
is named after the package in which the subroutines were declared, but since every stand-alone program
uses the main package, the name of the program is prepended to the .decls file name to avoid collisions.

Chapter 3: Example usage for Java, C/C++, C#/F#/Visual Basic, Perl, and Eiffel 12

3.5 Detecting invariants in Eiffel programs
CITADEL is an Eiffel front-end to the Daikon invariant detector. You can obtain Citadel from https://

se.inf.ethz.ch/people/polikarpova/citadel/.

3.6 Detecting invariants in Simulink/Stateflow programs
Hynger (HYbrid iNvariant GEneratoR) instruments Simulink/Stateflow (SLSF) block diagrams to gen-

erate Daikon input (.dtrace files). Hynger was created by Taylor Johnson, Stanley Bak, and Steven
Drager. You can obtain Hynger from https://github.com/verivital/hynger.

https://se.inf.ethz.ch/people/polikarpova/citadel/
https://se.inf.ethz.ch/people/polikarpova/citadel/
https://github.com/verivital/hynger

Chapter 4: Running Daikon 13

4 Running Daikon

This section describes how to run Daikon on a data trace (.dtrace) file, and describes Daikon’s
command-line options. This section assumes you have already run a front end (e.g., an instrumenter)
to produce a .dtrace file (and optionally .decls and .spinfo files); to learn more about that process,
see Chapter 3 [Example usage], page 4, and see Chapter 7 [Front ends and instrumentation], page 72.

Run the Daikon invariant detector via the command

java -cp $DAIKONDIR/daikon.jar daikon.Daikon \
[flags] dtrace-files... \
[decls-files...] [spinfo-files...]

• The dtrace-files are data trace (.dtrace) files containing variable values from an execution of the
target program.

• The decls-files are declaration (.decls) files containing program point declarations. Be sure to include
all declaration files that are needed for the particular data trace file; the simplest way is to include
every declaration file created when instrumenting the program.

Not all Daikon front ends produce .decls files, since program point declarations may also appear
in .dtrace files. For instance, the Chicory front end for Java (see Section 7.1 [Chicory], page 72)
produces only .dtrace files. If there are no .decls files, then it is not necessary to include them on
the command line to Daikon.

Note that using a DynComp generated .decls file as input to Daikon will lead to a decl format error.
The correct usage is to use the DynComp generated .decls file(s) as input to Chicory. See Section 3.1
[Detecting invariants in Java programs], page 4 for more details.

• The spinfo-files are splitter info (.spinfo) files that enable detection of conditional invariants (see
Section 6.2 [Conditional invariants], page 64); these are optional and may be created automatically or
by hand.

The files may appear in any order; the file type is determined by whether the file name contains .decls,
.dtrace, or .spinfo. As a special case, a file name of - means to read data trace information from
standard input.

The optional flags are described in the sections that follow. For further ways to control Daikon’s behavior
via configuration options, see Section 6.1 [Configuration options], page 43; also see the list of options to
the front ends — such as DynComp (see Section 7.2.2 [DynComp for Java options], page 82), Chicory (see
Section 7.1.1 [Chicory options], page 72) or Kvasir (see Section 7.3.2 [Kvasir options], page 85).

4.1 Options to control Daikon output

--help
Print usage message.

-o inv_file
Output serialized invariants to the specified file; they can later be postprocessed, compared, etc.
Default: basename.inv.gz in the current directory, where the first data trace file’s basename starts
with basename.dtrace. Default is no serialized output, if no such data trace file was supplied. If a
data trace file was supplied, there is currently no way to avoid creating a serialized invariant file.

--no_text_output
Don’t print invariants as text output. This option may be used in conjunction with the -o option.

--format name
Produce output in the given format. For a list of the output formats supported by Daikon, see
Section 5.1 [Invariant syntax], page 18.

Chapter 4: Running Daikon 14

--show_progress
--no_show_progress

Prints (respectively, suppresses) timing information as major portions of Daikon are executed.

--show_detail_progress
Like --show_progress but includes details about invariants.

--noversion
Suppress the printing of version information

--output_num_samples
Output numbers of values and samples for invariants and program points; this is a debugging flag.
(That is, it helps you understand why Daikon produced the output that it did.)

The ‘Samples breakdown’ output indicates how many samples in the .dtrace file had a modified
value (‘m’), had an unmodified value (‘u’), and had a nonsensical value (‘x’). The summary uses a
capital letter if the sample had any of the corresponding type of variable, and a lower-case letter if
it had none. These types affect statistical tests that determine whether a particular invariant (that
was true over all the test runs) is printed.

Only variables that appear in both the pre-state and the post-state (variables that are in scope at
both procedure exit and entry) are eligible to be listed as modified or unmodified. This is why the
list of all variables is not the union of the modified and unmodified variables.

--files_from filename
Read a list of .decls, .dtrace, or .spinfo file names from the given text file, one filename per line,
as an alternative to providing the file names on the command line.

--server dirname
Server mode for Daikon in which it reads files from dirname as they appear (sorted lexicographically)
until it finds a file ending in ‘.end’, at which point it calculates and outputs the invariants.

--omit_from_output [0rs]
Omit some potentially redundant information from the serialized output file produced with -o. By
default, the serialized output contains all of the data structures produced by Daikon while inferring
invariants. Depending on the use to which the serialized output will later be put, the file can
sometimes be significantly shortened by omitting information that is no longer needed. The flag
should be followed by one or more characters each representing a kind of structures the can be
omitted. The following characters are recognized:

0 (zero)
Omit information about program points that were declared, but for which no samples were
found in any .dtrace file.

r Omit reflexive invariants, those in which a variable appears more than once. Usually, such
invariants are not interesting, because their meaning is duplicated by invariants with fewer
variables: for instance, x = x - x and y = z + z can be expressed as x = 0 and y = 2 * z instead.
However, Daikon generates and uses such invariants internally to decide what invariants to
create when two previously equal variables turn out to be different.

s Omit invariants that are suppressed by other invariants. Suppression refers to a particular
optimization in which the processing of an invariant is postponed as long as certain other
invariants that logically imply it hold.

For most uses of serialized output in the current version, it is safe to use the 0 and r omissions, but
the s omission will cause subtle output changes. In many cases, the amount of space saved is modest
(typically around 10%), but the savings can be more substantial for programs with many unused
program points, or program points with many variables.

Chapter 4: Running Daikon 15

4.2 Options to control invariant detection

--conf_limit val
Set the confidence limit for justifying invariants. If the confidence level for a given invariant is larger
than the limit, then Daikon outputs the invariant. This mechanism filters out invariants that are
satisfied purely by chance. This is only relevant to invariants that were true in all observed samples;
Daikon never outputs invariants that were ever false.

val must be between 0 and 1; the default is .99. Larger values yield stronger filtering.

Each type of invariant has its own rules for determining confidence. See the computeConfidence
method in the Java source code for the invariant.

For example, consider the invariant a<b whose confidence computation is 1 - 1/2^numsamples, which
indicates the likelihood that the observations of a and b did not occur by chance. If there were 3
samples, and a<b on all of them, then the confidence would be 7/8 = .875. If there were 6 samples,
and a<b on only 5 on them, the confidence would be 0. If there were 9 samples, and a<b on all of
them, then the confidence would be 1-1/2^9 = .998.

There are two ways to print the confidence of each invariant. You can use Diff (see Section 8.1.3
[Invariant Diff], page 112):

java -cp $DAIKONDIR/daikon.jar daikon.diff.Diff MyFile.inv.gz

or you can use PrintInvariants (see Section 8.1.1 [Printing invariants], page 111):

java -cp $DAIKONDIR/daikon.jar daikon.PrintInvariants --dbg daikon.PrintInvariants.repr \
MyFile.inv.gz

To print the confidence of each invariant that is discarded, run Daikon with the --disc_reason all
command-line option (see Section 4.5 [Daikon debugging options], page 17).

--list_type classname
Indicate that the given class implements the java.util.List interface. The preferred mechanism
for indicating such information is the ListImplementors section of the .decls file. See Section
“ListImplementors declaration” in Daikon Developer Manual.

--user-defined-invariant classname
Use a user-defined invariant that not built into Daikon but is defined in the given class. The
classname should be in the fully-qualified format expected by Class.getName(), such as
“mypackage.subpackage.ClassName”, and its .class file should appear on the classpath.

--disable-all-invariants
Disable all known invariants: all those that are built into Daikon, and all those that have been
specified by --user-defined-invariant so far. An invariant may be re-enabled after this option is
specified, see Section 6.1.1.2 [Options to enable/disable specific invariants], page 44.

--nohierarchy
Avoid connecting program points in a dataflow hierarchy. For example, Daikon normally connects
the :::ENTER program points of class methods with the class’s :::CLASS program point, so that
any invariant that holds on the :::CLASS program point is considered to hold true on the :::ENTER
program point. With no hierarchy, each program point is treated independently. This is for using
Daikon on applications that do not have a concept of hierarchy. It can also be useful when you wish
to process unmatched enter point samples from a trace file that is missing some exit point samples.

--suppress_redundant
Suppress display of logically redundant invariants, using the Simplify automatic theorem prover.
Daikon already suppresses most logically redundant output (this can be controlled by invariant
filters; see Section 5.6 [Invariant filters], page 41. For example, if ‘x >= 0’ and ‘x > 0’ are both
true, then Daikon outputs only ‘x > 0’. Use of the --suppress_redundant option tells Daikon to

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getName--

Chapter 4: Running Daikon 16

use Simplify to eliminate even more redundant output, and should be used if it is important that
absolutely no redundancies appear in the output.

The Simplify program must be installed in order to take advantage of this option (see Section 9.1.11.1
[Installing Simplify], page 126). Beware that Simplify can run slowly; the amount of effort Simplify
exerts for each invariant can be controlled using both the daikon.simplify.Session.simplify_
max_iterations and daikon.simplify.Session.simplify_timeout configuration options.

4.3 Processing only part of the trace file

--ppt-select-pattern=ppt_regexp
Only process program points whose names match the regular expression. The --ppt-omit-pattern
argument takes precedence over this argument.

--ppt-omit-pattern=ppt_regexp
Do not process program points whose names match the regular expression. This takes precedence
over the --ppt-select-pattern argument.

--var-select-pattern=var_regexp
Only process variables (whether in the trace file or derived) whose names match the regular expres-
sion. The --var-omit-pattern argument takes precedence over this argument.

--var-omit-pattern=var_regexp
Ignore variables (whether in the trace file or derived) whose names match the regular expression.
This takes priority over the --var-select-pattern argument.

All of the regular expressions used by Daikon use Java’s regular expression syntax. Multiple items can
be matched by using the logical or operator (‘|’), for example var1|var2|var3. Java’s regular expression
syntax is similar to Perl’s but not exactly the same.

The ...-omit-pattern arguments take precedence: if a name matches an omit pattern, it is excluded. If a
name does not match an omit pattern, it is tested against the select pattern (if any). If any select patterns
are specified, the name must match one of the patterns in order to be included. If no select patterns are
specified, then any ‘ppt’ name that does not match the omit patterns is included.

Using --ppt-select-pattern and --ppt-omit-pattern can save time even if there are no samples for
the excluded program points, as Daikon can skip the declarations and need not initialize data structures
that would be used if samples were encountered.

Front ends such as Chicory (see Section 7.1.1.1 [Program points in Chicory output], page 73) and Kvasir
(see Section 7.3.2 [Kvasir options], page 85), and other tools such as DynComp (see Section 7.2.2 [DynComp
for Java options], page 82) and PrintInvariants (see Section 8.1.1 [Printing invariants], page 111), also
support these command-line options (Kvasir names them slightly differently). Passing the command-line
option to the front end means that the target program will run faster and the trace file will be smaller.

4.4 Daikon configuration options

--config filename
Load the configuration settings specified in the given file. See Section 6.1 [Configuration options],
page 43, for details.

--config_option name=value
Specify a single configuration setting. See Section 6.1 [Configuration options], page 43, for details.

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#sum
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#jcc

Chapter 4: Running Daikon 17

4.5 Daikon debugging options
Also see configuration options related to debugging (see Section 6.1.1.7 [Debugging options], page 59).

--dbg category
--debug

These debugging options cause output to be written to a log file (by default, to the terminal); in other
words, they enable a Logger. The --dbg category option enables debugging output (logging output)
for a specific part of Daikon; it may be specified multiple times, permitting fine-grained control over
debugging output. The --debug option turns on all debugging flags. (This produces a lot of output!)
Most categories are class or package names in the Daikon implementation, such as daikon.split
or daikon.derive.binary.SequencesJoin. Only classes that check the appropriate categories are
affected by the debug flags; you can determine this by looking for a call to Logger.getLogger in the
specific class.

--track class<var1,var2,var3>@ppt
Turns on debugging information on the specified class, variables, and program point. In contrast
to the --dbg option, track logging follows a particular invariant through Daikon. Multiple --track
options can be specified. Each item (class, variables, and program point) is optional. Multiple
classes can be specified separated by vertical bars (‘|’). Matching is a simple substring (not a
regular expression) comparison. Each item must match in order for a printout to occur. For more
information, see Section “Track logging” in Daikon Developer Manual.

--disc_reason inv_class<var1,var2,...>@ppt
Prints all discarded invariants of class inv class at the program point specified that involve exactly
the variables given, as well as a short reason and discard code explaining why they were not worthy
of print. Any of the three parts of the argument may be made a wildcard by excluding it. For
example, ‘inv_class’ and ‘<var1,var2,...>@ppt’ are valid arguments. Some concrete examples are
‘Implication<x,y>@foo():::EXIT’, ‘<x,y>@foo():::EXIT’, and ‘Implication<x,y>’. To print all
discarded invariants, use the argument ‘all’.

--mem_stat
Prints memory usage statistics into a file named stat.out in the current directory.

Chapter 5: Daikon output 18

5 Daikon output

Daikon outputs the invariants that it discovers in textual form to your terminal. This chapter describes
how to interpret those invariants — in other words, what do they mean?

Daikon also creates a .inv file that contains the invariants in serialized (binary) form. You can use the
.inv file to print the invariants (see Section 8.1.1 [Printing invariants], page 111) in a variety of formats,
to insert the invariants in your source code (see Section 8.1.4 [Annotate], page 113), to perform run-time
checking of the invariants (see Section 8.1.6 [Runtime-check instrumenter], page 115, and Section 8.1.7
[InvariantChecker], page 117), and to do various other operations. See Chapter 8 [Tools], page 111, for
descriptions of such tools.

If you wish to write your own tools for processing invariants, you have two general options. You can
parse Daikon’s textual output, or you can write Java code that processes the .inv file. The .inv file is
simply a serialized PptMap object. In addition to reading the Javadoc, you can examine how the other
tools use this data structure.

5.1 Invariant syntax
Daikon can produce output in a variety of formats. Each of the format names can be specified as an ar-

gument to the --format argument of Daikon (see Section 4.1 [Options to control Daikon output], page 13),
PrintInvariants (see Section 8.1.1 [Printing invariants], page 111), and Annotate (see Section 8.1.4 [An-
notate], page 113). When passed on the command line, the format names are case-insensitive: --format
JML and --format jml have the same effect.

You can enhance Daikon to produce output in other formats. See Section “New formatting for invariants”
in Daikon Developer Manual.

Daikon format
Daikon’s default format is a mix of Java, mathematical logic, and some additional extensions. It is
intended to concisely convey meaning to programmers.

DBC format
This format produces output in the design-by-contract (DBC) format expected by Parasoft’s Jtest
tool (https://www.parasoft.com).

ESC/Java format
ESC format

The Extended Static Checker for Java (ESC/Java) is a programming tool for finding errors in Java
programs by checking annotations that are inserted in source code; for more details, see https://
www.hpl.hp.com/downloads/crl/jtk/. Daikon’s ESC/Java format (which can also be specified as
ESC format) is intended for use with the original ESC/Java tool. Use Daikon’s JML format for use
with the ESC/Java2 tool.

Java format
Write output as Java expressions. This means that each invariant is a valid Java expression, if
inserted at the correct program point: right after method entry, for method entry invariants; right
before method exit, for method exit invariants; or anywhere in the code, for object invariants.

There are two exceptions. Method exit invariants that refer to ‘pre-state’, such as ‘x == old(x)
+ 1’, are output with the tag ‘\old’ surrounding the ‘pre-state’ expression (e.g. ‘x == \old(x)
+ 1’. Method exit invariants that refer to the return value of the method, such as ‘return == x +
y’, are output with the tag ‘\result’ in place of the return value (e.g. ‘\result == x + y’). These
expression are obviously not valid Java code.

http://plse.cs.washington.edu/daikon/download/api/daikon/PptMap.html
https://www.parasoft.com
https://www.hpl.hp.com/downloads/crl/jtk/
https://www.hpl.hp.com/downloads/crl/jtk/
https://www.kindsoftware.com/products/opensource/escjava2/

Chapter 5: Daikon output 19

JML format
Produces output in JML (Java Modeling Language, https://www.cs.ucf.edu/~leavens/JML/);
for details, see the JML Manual. JML format lets you use the various JVM tools on Daikon invariants,
including run-time assertion checking and the ESC/Java2 tool.

Simplify format
Produces output in the format expected by the Simplify automated theorem prover; for details, see
the Simplify distribution.

CSharpContract format
Produces C# output for use with Microsoft’s Code Contracts https://www.microsoft.com/en-us/
research/project/code-contracts/ . The format employs some extension/utility methods to
improve contract readability; the library containing these methods can be found at https://github.
com/twschiller/daikon-code-contract-extensions.

5.2 Program points
A program point is a specific place in the source code, such as immediately before a particular line of

code. Daikon’s output is organized by program points.

For example, foo():::ENTER is the point at the entry to procedure foo(); the invariants at that point
are the preconditions for the foo() method, properties that are always true when the procedure is invoked.

Likewise, foo():::EXIT is the program point at the procedure exit, and invariants there are postcon-
ditions. When there are multiple exit points from a procedure (for instance, because of multiple return
statements), the different exits are differentiated by suffixing them with their line numbers; for instance,
StackAr.top():::EXIT79. The exit point lacking a line number (in this example, StackAr.top():::EXIT)
collects the postconditions that are true at every numbered exit point. This is an example of a program
point that represents a collection of locations in the program source rather than a single location. This
concept is represented in Daikon by the dataflow hierarchy, see Section “Dataflow hierarchy” in Daikon
Developer Manual.

The Java instrumenter Chicory selects names for program points that include an indication of the
argument and return types for each method. These signatures are presented in Class.getName format:
one character for each primitive type (‘B’ for byte, ‘C’ for character, ‘Z’ for boolean, etc.); ‘Lclassname;’
for object types; and a ‘[’ prefix for each level of array nesting.

5.2.1 OBJECT and CLASS program points

Two program point tags that have special meaning to Daikon’s hierarchy organization are :::OBJECT
and :::CLASS. The :::OBJECT tag indicates object invariants (sometimes called representation invariants
or class invariants) over all the instance (member) fields and static fields of the class. These properties
always hold for any object of the given class, from the point of view of a client or user. These properties
hold at entry to and exit from every public method of the class (except not the entry to constructors, when
fields are not yet initialized).

The :::CLASS tag is just like :::OBJECT, but only for static variables, which have only one value for all
objects. Static fields and instance fields are often used for different purposes. Daikon’s separation of the
two types of fields permits programmers to see the properties over the static fields without knowing which
are the static fields and pick them out of the :::OBJECT program point.

(By contrast, ESC/Java and JML make class invariants hold even at the entry and exit of private methods.
Their designers believe that most private methods preserve the class invariant and are called only when
the class invariant holds. ESC/Java and JML require an explicit helper annotation to indicate a private
method for which the class invariant does not hold.)

A trace file does not contain samples for the :::OBJECT and :::CLASS program points. Variable values
for these artificial program points are constructed from samples that do appear in a trace file. For example,

https://www.cs.ucf.edu/~leavens/JML/
http://www.eecs.ucf.edu/~leavens/JML/documentation.shtml
https://www.kindsoftware.com/products/opensource/escjava2/
https://www.hpl.hp.com/downloads/crl/jtk/
https://www.microsoft.com/en-us/research/project/code-contracts/
https://www.microsoft.com/en-us/research/project/code-contracts/
https://github.com/twschiller/daikon-code-contract-extensions
https://github.com/twschiller/daikon-code-contract-extensions

Chapter 5: Daikon output 20

an object invariant is a property that holds at entry to and exit from every public method of the class, so
the :::OBJECT program point is constructed from samples at those points.

5.3 Variable names
A front end produces a trace file that associates trace variable names with values. Trace variable names

need not be exactly the same as the variables in the program. The trace may contain values that are not
held in any program variables; in this case, the front end must make up a name to express that value (see
below for examples).

Daikon ignores variable names when inferring invariants; it uses the names only when performing output.
(Thus, the only practical restriction on trace names is that the VarInfoName parse method must be able
to parse the name.)

By convention, trace variables are similar to program variables and field accesses. For example, w and
x.y.z are legal trace variables. (So are ‘a[i]’, and ‘a[0].next’, but these are usually handled as derived
variables instead; see below.) As in languages such as Java and C, a period character represents field access
and square brackets represent selecting an element of a sequence.

In addition to variables that appear in the trace file, Daikon creates additional variables, called derived
variables, by combining trace variables. For example, for any array a and integer i, Daikon creates a
derived variable a[i]. This is not a variable in the program (and this expression might not even appear in
the source code), but it may still be useful to compute invariants over this expression. For a list of derived
variables and how to control Daikon’s use of them, see Section 6.1.1.4 [Options to enable/disable derived
variables], page 55.

Some trace variables and derived variables may represent meaningless expressions; in such a circumstance,
the value is said to be nonsensical (see Section “Nonsensical values” in Daikon Developer Manual).

The remainder of this section describes conventions for naming expressions. Those that cannot be named
by simple C/Java expressions are primarily related to arrays and sequences. (In part, these special expres-
sions are necessary because Daikon can only handle variables of scalar (integer, floating-point, boolean,
String) and array-of-scalar types. Daikon cannot handle structs, classes, or multidimensional arrays or
structures, but such data structures can be represented as scalars and arrays by choosing variable names
that indicate their relationship.)

• a[i] array access. a and i are themselves arbitrary variable names, of array and integral type,
respectively.

• a[-1] from-end array access. a[-1] denotes the last element of array a; it is syntactic sugar for
a[a.length-1].

• a[] array contents. For array-valued expression a, all of its elements, as a sequence. Simply using the
expression a means the identity (address or hashcode) of the array, not a list of its elements. For two
arrays a and b, ‘a=b’ implies ‘a[]=b[]’, but ‘a[]=b[]’ does not imply ‘a=b’.

• x.y, x->y field access. When field access is applied to a structure/class, it has the usual meaning of
selecting one field from the structure/class.

When field access is applied to an array, it means to map the field access across the elements of the
array. For example, if a is an array, then a[].foo is the sequence consisting of the foo fields of each
of the elements of a. Likewise, a[].foo.bar contains the bar fields of a[].foo. By contrast, a.foo
does not make sense, because one cannot ask for the foo field of an address, and a[].foo[] would be
a two-dimensional array.

• As in Java, x.getClass() is the run-time type of x, which may differ from its declared type.

• a.length is the length (number of elements) of array a; this is not necessarily the number of initialized
or used elements.

• s.toString is the string value of String s, namely a sequence of characters.

Chapter 5: Daikon output 21

• Classname.varname static class variable. Static variables of a class have names of the form
‘classname.varname’

• orig(x) refers to the value of variable x upon entry to a procedure (because the procedure body might
modify the value of x). These variables appear only at :::EXIT program points. Typically, orig()
variables do not appear in the trace, but are automatically created by Daikon when it matches up
:::ENTER and :::EXITnn program points. See Section 5.3.1 [orig variable example], page 21.

This variable prints as orig when using Daikon output format (see Section 5.1 [Invariant syntax],
page 18), but may print differently in other formats (such as \old).

• post(x) refers to the value of variable x upon exit from a procedure. Such a value is usually written
simply x; the post prefix is needed only within an orig expression, when the post-state value needs
to be referenced. Just as orig may be used only in a post-state context and specifies an expression
to be evaluated in the ‘pre-state’, post may be used only in a ‘pre-state’ context and specifies an
expression to be evaluated in the post-state. See Section 5.3.1 [orig variable example], page 21.

• /globalVar C global variable. In C output, global variables with external linkage are prefixed with a
slash. For instance, global /x is distinct from procedure parameter /x. (In Java programs, variables
can be distinguished by prefixing them with this. or, for class-static variables, a class name.)

• myfile_c/staticVar C static variable. In C output, file-static variables have names of the form
‘filename/varname’, where periods (‘.’) in the filename are converted into underscores (‘_’). For
example, ‘Global_c/x’ is the name for a file-static variable x declared in the file Global.c).

• myfile_c@funcname/funcStaticVar C function-scoped static variable. In C output, for
static variables which are declared within functions, an at-sign ‘@’ separates the filename and
the function name and then a slash separates the function name and variable name (e.g.,
‘Global_c@main/funcStaticVar’ for a static variable funcStaticVar declared within the function
main in the file Global.c).

Daikon’s current front ends do not produce output for local variables, only for variables visible from
outside a procedure. (Also see the --std-visibility option to Chicory, Section 7.1.1 [Chicory options],
page 72.) More generally, Daikon’s front ends produce output at procedure exit and entry, not within
the procedure. Thus, Daikon’s output forms a specification from the view of a client of a procedure. If
you wish to compute invariants over local variables, you can extend one of Daikon’s front ends (or request
us to do so). An alternative that permits computing invariants at arbitrary locations is to call a dummy
procedure, passing all the variables of interest. The dummy procedure’s pre and postconditions will be
identical and will represent the invariants at the point of call.

The array introduction operator [] can made Daikon variables look slightly odd, but it is intended to
assist in interpreting the variables and to provide an indication that the variable name cannot be substituted
directly in a program as an expression.

Each array introduction operator [] increases the dimensionality of the variable, and each array indexing
operation [i] decreases it. Since all Daikon variables are scalars or one-dimensional arrays, these operators
must be matched up, or have at most one more [] than [i]. (There is one exception: according to a
strict interpretation of the rules, the C/Java expression a[i] would turn into the Daikon variable a[][i],
since it does not change the dimensionality of any expression it appears in. However, that would be even
more confusing, and the point is to avoid confusion, so by convention Daikon front ends use just a[i], not
a[][i]. Strictly speaking, none of the [] operators is necessary, since a user with a perfect knowledge of
the type of each program variable and field could use that to infer the type of any Daikon expression.)

5.3.1 orig() variable example

This section gives an example of use of orig() and post() variables and arrays.

Suppose you have initially that (in Java syntax)

int i = 0;

Chapter 5: Daikon output 22

int[] a = new int[] { 22, 23 };
int[] b = new int[] { 46, 47 };

and then you run the following:

// pre-state values at this point
a[0] = 24;
a[1] = 25
a = b;
a[0] = 48;
a[1] = 49;
i = 1;
// post-state values at this point

The values of various variables are as follows:

orig(a[i]) = 22
The value of a[i] in the ‘pre-state’: {22, 23}[0]

orig(a[])[orig(i)] = 22
This is the same as orig(a[i]): {22, 23}[0].

orig(a[])[i] = 23
The value of a[] in the ‘pre-state’ (which is an array object, not a reference), indexed by the
post-state value of i: {22, 23}[1]

orig(a)[orig(i)] = 24
orig(a) is the original value of the reference a, not a’s original elements: {24, 25}[0]

orig(a)[i] = 25
The original pointer value of a, indexed by the post-state value of i: {24, 25}[1]

a[orig(i)] = 48
In the post-state, a indexed by the original value of i: {48, 49}[0]

a[i] = 49
The value of a[i] in the post-state.

b = orig(b) = some hashcode
The identity of the array b has not changed.

b[] = [48, 49]
orig(b[]) = [46, 47]

For an array b, ‘b=orig(b)’ does not imply ‘b[]=orig(b[])’.

orig(a[post(i)]) = 23
The ‘pre-state’ value of a[1] (because the post-state value of i is 1): {22, 23}[1]

5.4 Interpreting Daikon output
If nothing gets printed before the ‘Exiting’ line, then Daikon found no invariants. You can get a little

bit more information by using the --output_num_samples flag to Daikon (see Section 4.1 [Options to
control Daikon output], page 13).

Daikon’s output is predicated on the assumption that all expressions that get evaluated are sensible. For
instance, if Daikon prints ‘a.b == 0’, then that means that if ‘a.b’ is sensible (that is, ‘a’ is non-null), then
its value is zero. When ‘a’ is ‘null’, then ‘a.b’ is called nonsensical. Daikon’s output ignores all nonsensical
values. If you would like the assumptions to be printed explicitly, then set the daikon.Daikon.guardNulls
configuration option (see Section 6.1.1.9 [General configuration options], page 61).

Chapter 5: Daikon output 23

5.4.1 Redundant invariants

By default, Daikon does not display redundant invariants — those that are implied by other invariants
in the output — because such results would merely clutter the output without adding any valuable infor-
mation. For instance, if Daikon reports ‘x==y’, then it never also reports ‘x-1==y-1’. You can control this
behavior to some extent by disabling invariant filters; see Section 5.6 [Invariant filters], page 41. (You can
also print all invariants, even redundant ones, by saving the invariants to a .inv file and then using the
PrintInvariants (see Section 8.1.1 [Printing invariants], page 111) or Diff (see Section 8.1.3 [Invariant
Diff], page 112) programs to print the results.)

5.4.2 Equal variables

If two variables x and y are equal, then any invariant about x is also true about y. Daikon chooses one
variable (the leader) from the set of equal variables, and only prints invariants over the leader.

Suppose that a = b = c. Then Daikon will print a = b and a = c, but not b = c. Furthermore, Daikon
might print a > d, but would not print b > d or c > d.

You can control which variables are in an equality set; see Section “Variable comparability” in Daikon
Developer Manual.

5.4.3 Has only one value variables

The output ‘var has only one value’ in Daikon’s output means that every time that variable var was
encountered, it had the same value. Daikon ordinarily reports the actual value, as in ‘var == 22’. Typically,
the “has only one value” output means that the variable is a hashcode or address — that is, its declared
type is ‘hashcode’ (see Section “Variable declarations” in Daikon Developer Manual). For example, ‘var
== 0x38E8A’ is not very illuminating, but it is still interesting that var was never rebound to a different
object.

Note that ‘var has only one value’ is different from saying that var is unmodified.

A variable might have only one value but not be reported as unmodified because the variable is not
a parameter to a procedure — for instance, if a routine always returns the same object, or in a class
invariant. A variable can be reported as unmodified but not have only one value because the variable is
never modified during any execution of the procedure, but has different values on different invocations of
the procedure.

5.4.4 Object inequality

Daikon may report ‘x < y’ where the operator ‘<’ is not applicable to the type of ‘x’ and ‘y’, as in
‘myString < otherString’.

In this case, the invariant means that the first expression is always less than the second, according to
the ‘Comparable.compareTo’ method.

5.5 Invariant list
The following is a list of all of the invariants that Daikon detects. Each invariant has a configuration

enable switch. By default most invariants are enabled. Any that are not enabled by default are indicated
below. Some invariants also have additional configuration switches that control their behavior. These are
indicated below as well. See Section 6.1.1.2 [Options to enable/disable specific invariants], page 44.

AndJoiner
This is a special invariant used internally by Daikon to represent an antecedent invariant in an
implication where that antecedent consists of two invariants anded together.

CommonFloatSequence
Represents sequences of double values that contain a common subset. Prints as {e1, e2, e3, ...}
subset of x[].

Chapter 5: Daikon output 24

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.CommonFloatSequence.enabled’.

See also the following configuration option:

• ‘daikon.inv.unary.sequence.CommonFloatSequence.hashcode_seqs’

CommonSequence
Represents sequences of long values that contain a common subset. Prints as {e1, e2, e3, ...}
subset of x[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.CommonSequence.enabled’.

See also the following configuration option:

• ‘daikon.inv.unary.sequence.CommonSequence.hashcode_seqs’

CommonStringSequence
Represents string sequences that contain a common subset. Prints as {s1, s2, s3, ...} subset of
x[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.stringsequence.CommonStringSequence.enabled’.

CompleteOneOfScalar
Tracks every unique value and how many times it occurs. Prints as either x has no values or as x
has values: v1 v2 v3 The set has no maximum size; it may be arbitrarily large.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.scalar.CompleteOneOfScalar.enabled’.

CompleteOneOfString
Tracks every unique value and how many times it occurs. Prints as either x has no values or as x
has values: "v1" "v2" "v3" The set has no maximum size; it may be arbitrarily large.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.string.CompleteOneOfString.enabled’.

DummyInvariant
This is a special invariant used internally by Daikon to represent invariants whose meaning Daikon
doesn’t understand. The only operation that can be performed on a DummyInvariant is to print it.
In particular, the invariant cannot be tested against a sample: the invariant is always assumed to
hold and is always considered to be statistically justified.

The main use for a dummy invariant is to represent a splitting condition that appears in a .spinfo
file. The .spinfo file can indicate an arbitrary Java expression, which might not be equivalent to
any invariant in Daikon’s grammar.

Ordinarily, Daikon uses splitting conditions to split data, then seeks to use that split data to form
conditional invariants out of its standard built-in invariants. If you wish the expression in the
.spinfo file to be printed as an invariant, whether or not it is itself discovered by Daikon during
invariant detection, then the configuration option daikon.split.PptSplitter.dummy_invariant_
level must be set, and formatting information must be supplied in the splitter info file.

EltLowerBound
Represents the invariant that each element of a sequence of long values is greater than or equal to a
constant. Prints as x[] elements >= c.

See also the following configuration options:

• ‘daikon.inv.unary.sequence.EltLowerBound.minimal_interesting’

• ‘daikon.inv.unary.sequence.EltLowerBound.maximal_interesting’

EltLowerBoundFloat
Represents the invariant that each element of a sequence of double values is greater than or equal to
a constant. Prints as x[] elements >= c.

See also the following configuration options:

• ‘daikon.inv.unary.sequence.EltLowerBoundFloat.minimal_interesting’

Chapter 5: Daikon output 25

• ‘daikon.inv.unary.sequence.EltLowerBoundFloat.maximal_interesting’

EltNonZero
Represents the invariant "x != 0" where x represents all of the elements of a sequence of long. Prints
as x[] elements != 0.

EltNonZeroFloat
Represents the invariant "x != 0" where x represents all of the elements of a sequence of double.
Prints as x[] elements != 0.

EltOneOf
Represents sequences of long values where the elements of the sequence take on only a few distinct
values. Prints as either x[] elements == c (when there is only one value), or as x[] elements one
of {c1, c2, c3} (when there are multiple values).

May print as x[] elements has only one value when x is an array of hashcodes (pointers) – this is
because the numerical value of the hashcode (pointer) is uninteresting.

See also the following configuration options:

• ‘daikon.inv.unary.sequence.EltOneOf.size’

• ‘daikon.inv.unary.sequence.EltOneOf.omit_hashcode_values_Simplify’

EltOneOfFloat
Represents sequences of double values where the elements of the sequence take on only a few distinct
values. Prints as either x[] elements == c (when there is only one value), or as x[] elements one
of {c1, c2, c3} (when there are multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.sequence.EltOneOfFloat.size’

EltOneOfString
Represents sequences of String values where the elements of the sequence take on only a few distinct
values. Prints as either x[] elements == c (when there is only one value), or as x[] elements one
of {c1, c2, c3} (when there are multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.stringsequence.EltOneOfString.size’

EltRangeFloat.EqualMinusOne
Internal invariant representing double scalars that are equal to minus one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeFloat.EqualOne
Internal invariant representing double scalars that are equal to one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeFloat.EqualZero
Internal invariant representing double scalars that are equal to zero. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeFloat.GreaterEqual64
Internal invariant representing double scalars that are greater than or equal to 64. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

EltRangeFloat.GreaterEqualZero
Internal invariant representing double scalars that are greater than or equal to 0. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

Chapter 5: Daikon output 26

EltRangeInt.BooleanVal
Internal invariant representing longs whose values are always 0 or 1. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeInt.Bound0 63
Internal invariant representing longs whose values are between 0 and 63. Used for non-instantiating
suppressions. Will never print since Bound accomplishes the same thing.

EltRangeInt.EqualMinusOne
Internal invariant representing long scalars that are equal to minus one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeInt.EqualOne
Internal invariant representing long scalars that are equal to one. Used for non-instantiating sup-
pressions. Will never print since OneOf accomplishes the same thing.

EltRangeInt.EqualZero
Internal invariant representing long scalars that are equal to zero. Used for non-instantiating sup-
pressions. Will never print since OneOf accomplishes the same thing.

EltRangeInt.Even
Invariant representing longs whose values are always even. Used for non-instantiating suppressions.
Since this is not covered by the Bound or OneOf invariants it is printed. Prints as x is even.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.EltRangeInt.Even.enabled’.

EltRangeInt.GreaterEqual64
Internal invariant representing long scalars that are greater than or equal to 64. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

EltRangeInt.GreaterEqualZero
Internal invariant representing long scalars that are greater than or equal to 0. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

EltRangeInt.PowerOfTwo
Invariant representing longs whose values are always a power of 2 (exactly one bit is set). Used
for non-instantiating suppressions. Since this is not covered by the Bound or OneOf invariants it is
printed. Prints as x is a power of 2.

EltUpperBound
Represents the invariant that each element of a sequence of long values is less than or equal to a
constant. Prints as x[] elements <= c.

See also the following configuration options:

• ‘daikon.inv.unary.sequence.EltUpperBound.minimal_interesting’

• ‘daikon.inv.unary.sequence.EltUpperBound.maximal_interesting’

EltUpperBoundFloat
Represents the invariant that each element of a sequence of double values is less than or equal to a
constant. Prints as x[] elements <= c.

See also the following configuration options:

• ‘daikon.inv.unary.sequence.EltUpperBoundFloat.minimal_interesting’

• ‘daikon.inv.unary.sequence.EltUpperBoundFloat.maximal_interesting’

EltwiseFloatEqual
Represents equality between adjacent elements (x[i], x[i+1]) of a double sequence. Prints as x[]
elements are equal.

Chapter 5: Daikon output 27

EltwiseFloatGreaterEqual
Represents the invariant >= between adjacent elements (x[i], x[i+1]) of a double sequence. Prints as
x[] sorted by >=.

EltwiseFloatGreaterThan
Represents the invariant > between adjacent elements (x[i], x[i+1]) of a double sequence. Prints as
x[] sorted by >.

EltwiseFloatLessEqual
Represents the invariant <= between adjacent elements (x[i], x[i+1]) of a double sequence. Prints as
x[] sorted by <=.

EltwiseFloatLessThan
Represents the invariant < between adjacent elements (x[i], x[i+1]) of a double sequence. Prints as
x[] sorted by <.

EltwiseIntEqual
Represents equality between adjacent elements (x[i], x[i+1]) of a long sequence. Prints as x[]
elements are equal.

EltwiseIntGreaterEqual
Represents the invariant >= between adjacent elements (x[i], x[i+1]) of a long sequence. Prints as
x[] sorted by >=.

EltwiseIntGreaterThan
Represents the invariant > between adjacent elements (x[i], x[i+1]) of a long sequence. Prints as x[]
sorted by >.

EltwiseIntLessEqual
Represents the invariant <= between adjacent elements (x[i], x[i+1]) of a long sequence. Prints as
x[] sorted by <=.

EltwiseIntLessThan
Represents the invariant < between adjacent elements (x[i], x[i+1]) of a long sequence. Prints as x[]
sorted by <.

Equality
Keeps track of sets of variables that are equal. Other invariants are instantiated for only one member
of the Equality set, the leader. If variables x, y, and z are members of the Equality set and x is
chosen as the leader, then the Equality will internally convert into binary comparison invariants that
print as x == y and x == z.

FloatEqual
Represents an invariant of == between two double scalars. Prints as x == y.

FloatGreaterEqual
Represents an invariant of >= between two double scalars. Prints as x >= y.

FloatGreaterThan
Represents an invariant of > between two double scalars. Prints as x > y.

FloatLessEqual
Represents an invariant of <= between two double scalars. Prints as x <= y.

FloatLessThan
Represents an invariant of < between two double scalars. Prints as x < y.

FloatNonEqual
Represents an invariant of != between two double scalars. Prints as x != y.

Chapter 5: Daikon output 28

FunctionBinary.BitwiseAndLong {xyz, yxz, zxy}
Represents the invariant x = BitwiseAnd(y, z) over three long scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.BitwiseOrLong {xyz, yxz, zxy}
Represents the invariant x = BitwiseOr(y, z) over three long scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.BitwiseXorLong {xyz, yxz, zxy}
Represents the invariant x = BitwiseXor(y, z) over three long scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.DivisionLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Division(y, z) over three long scalars. Since the function is non-
symmetric, all six permutations of the variables are checked.

FunctionBinary.GcdLong {xyz, yxz, zxy}
Represents the invariant x = Gcd(y, z) over three long scalars. Since the function is symmetric, only
the permutations xyz, yxz, and zxy are checked.

FunctionBinary.LogicalAndLong {xyz, yxz, zxy}
Represents the invariant x = LogicalAnd(y, z) over three long scalars. For logical operations,
Daikon treats 0 as false and all other values as true. Since the function is symmetric, only the
permutations xyz, yxz, and zxy are checked.

FunctionBinary.LogicalOrLong {xyz, yxz, zxy}
Represents the invariant x = LogicalOr(y, z) over three long scalars. For logical operations, Daikon
treats 0 as false and all other values as true. Since the function is symmetric, only the permutations
xyz, yxz, and zxy are checked.

FunctionBinary.LogicalXorLong {xyz, yxz, zxy}
Represents the invariant x = LogicalXor(y, z) over three long scalars. For logical operations,
Daikon treats 0 as false and all other values as true. Since the function is symmetric, only the
permutations xyz, yxz, and zxy are checked.

FunctionBinary.LshiftLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Lshift(y, z) over three long scalars. Since the function is non-
symmetric, all six permutations of the variables are checked.

FunctionBinary.MaximumLong {xyz, yxz, zxy}
Represents the invariant x = Maximum(y, z) over three long scalars. Since the function is symmetric,
only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.MinimumLong {xyz, yxz, zxy}
Represents the invariant x = Minimum(y, z) over three long scalars. Since the function is symmetric,
only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.ModLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Mod(y, z) over three long scalars. Since the function is non-symmetric,
all six permutations of the variables are checked.

FunctionBinary.MultiplyLong {xyz, yxz, zxy}
Represents the invariant x = Multiply(y, z) over three long scalars. Since the function is symmetric,
only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.PowerLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Power(y, z) over three long scalars. Since the function is
non-symmetric, all six permutations of the variables are checked.

Chapter 5: Daikon output 29

FunctionBinary.RshiftSignedLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = RshiftSigned(y, z) over three long scalars. Since the function is
non-symmetric, all six permutations of the variables are checked.

FunctionBinary.RshiftUnsignedLong {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = RshiftUnsigned(y, z) over three long scalars. Since the function is
non-symmetric, all six permutations of the variables are checked.

FunctionBinaryFloat.DivisionDouble {xyz, xzy, yxz, yzx, zxy, zyx}
Represents the invariant x = Division(y, z) over three double scalars. Since the function is non-
symmetric, all six permutations of the variables are checked.

FunctionBinaryFloat.MaximumDouble {xyz, yxz, zxy}
Represents the invariant x = Maximum(y, z) over three double scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinaryFloat.MinimumDouble {xyz, yxz, zxy}
Represents the invariant x = Minimum(y, z) over three double scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

FunctionBinaryFloat.MultiplyDouble {xyz, yxz, zxy}
Represents the invariant x = Multiply(y, z) over three double scalars. Since the function is sym-
metric, only the permutations xyz, yxz, and zxy are checked.

GuardingImplication
This is a special implication invariant that guards any invariants that are over variables that are
sometimes missing. For example, if the invariant a.x = 0 is true, the guarded implication is a !=
null => a.x = 0.

Implication
The Implication invariant class is used internally within Daikon to handle invariants that are only
true when certain other conditions are also true (splitting).

IntEqual
Represents an invariant of == between two long scalars. Prints as x == y.

IntGreaterEqual
Represents an invariant of >= between two long scalars. Prints as x >= y.

IntGreaterThan
Represents an invariant of > between two long scalars. Prints as x > y.

IntLessEqual
Represents an invariant of <= between two long scalars. Prints as x <= y.

IntLessThan
Represents an invariant of < between two long scalars. Prints as x < y.

IntNonEqual
Represents an invariant of != between two long scalars. Prints as x != y.

See also the following configuration option:

• ‘daikon.inv.binary.twoScalar.IntNonEqual.integral_only’

IsPointer
IsPointer is an invariant that heuristically determines whether an integer represents a pointer (a
32-bit memory address). Since both a 32-bit integer and an address have the same representation,
sometimes a a pointer can be mistaken for an integer. When this happens, several scalar invariants
are computed for integer variables. Most of them would not make any sense for pointers. Determining
whether a 32-bit variable is a pointer can thus spare the computation of many irrelevant invariants.

Chapter 5: Daikon output 30

The basic approach is to discard the invariant if any values that are not valid pointers are encountered.
By default values between -100,000 and 100,000 (except 0) are considered to be invalid pointers. This
approach has been experimentally confirmed on Windows x86 executables.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.scalar.IsPointer.enabled’.

LinearBinary
Represents a Linear invariant between two long scalars x and y, of the form ax + by + c = 0. The
constants a, b and c are mutually relatively prime, and the constant a is always positive.

LinearBinaryFloat
Represents a Linear invariant between two double scalars x and y, of the form ax + by + c = 0. The
constants a, b and c are mutually relatively prime, and the constant a is always positive.

LinearTernary
Represents a Linear invariant over three long scalars x, y, and z, of the form ax + by + cz + d = 0.
The constants a, b, c, and d are mutually relatively prime, and the constant a is always positive.

LinearTernaryFloat
Represents a Linear invariant over three double scalars x, y, and z, of the form ax + by + cz + d =
0. The constants a, b, c, and d are mutually relatively prime, and the constant a is always positive.

LowerBound
Represents the invariant x >= c, where c is a constant and x is a long scalar.

See also the following configuration options:

• ‘daikon.inv.unary.scalar.LowerBound.minimal_interesting’

• ‘daikon.inv.unary.scalar.LowerBound.maximal_interesting’

LowerBoundFloat
Represents the invariant x >= c, where c is a constant and x is a double scalar.

See also the following configuration options:

• ‘daikon.inv.unary.scalar.LowerBoundFloat.minimal_interesting’

• ‘daikon.inv.unary.scalar.LowerBoundFloat.maximal_interesting’

Member
Represents long scalars that are always members of a sequence of long values. Prints as x in y[]
where x is a long scalar and y[] is a sequence of long.

MemberFloat
Represents double scalars that are always members of a sequence of double values. Prints as x in
y[] where x is a double scalar and y[] is a sequence of double.

MemberString
Represents String scalars that are always members of a sequence of String values. Prints as x in y[]
where x is a String scalar and y[] is a sequence of String.

Modulus
Represents the invariant x == r (mod m) where x is a long scalar variable, r is the (constant) remain-
der, and m is the (constant) modulus.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.scalar.Modulus.enabled’.

NoDuplicates
Represents sequences of long that contain no duplicate elements. Prints as x[] contains no
duplicates.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.NoDuplicates.enabled’.

Chapter 5: Daikon output 31

NoDuplicatesFloat
Represents sequences of double that contain no duplicate elements. Prints as x[] contains no
duplicates.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.NoDuplicatesFloat.enabled’.

NonModulus
Represents long scalars that are never equal to r (mod m) where all other numbers in the same range
(i.e., all the values that x doesn’t take from min(x) to max(x)) are equal to r (mod m). Prints as x
!= r (mod m), where r is the remainder and m is the modulus.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.scalar.NonModulus.enabled’.

NonZero
Represents long scalars that are non-zero. Prints as x != 0, or as x != null for pointer types.

NonZeroFloat
Represents double scalars that are non-zero. Prints as x != 0.

NumericFloat.Divides
Represents the divides without remainder invariant between two double scalars. Prints as x % y ==
0.

NumericFloat.Square
Represents the square invariant between two double scalars. Prints as x = y**2.

NumericFloat.ZeroTrack
Represents the zero tracks invariant between two double scalars; that is, when x is zero, y is also
zero. Prints as x = 0 => y = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.NumericFloat.ZeroTrack.enabled’.

NumericInt.BitwiseAndZero
Represents the BitwiseAnd == 0 invariant between two long scalars; that is, x and y have no bits
in common. Prints as x & y == 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.NumericInt.BitwiseAndZero.enabled’.

NumericInt.BitwiseComplement
Represents the bitwise complement invariant between two long scalars. Prints as x = ~y.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.NumericInt.BitwiseComplement.enabled’.

NumericInt.BitwiseSubset
Represents the bitwise subset invariant between two long scalars; that is, the bits of y are a subset
of the bits of x. Prints as x = y | x.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.NumericInt.BitwiseSubset.enabled’.

NumericInt.Divides
Represents the divides without remainder invariant between two long scalars. Prints as x % y == 0.

NumericInt.ShiftZero
Represents the ShiftZero invariant between two long scalars; that is, x right-shifted by y is always
zero. Prints as x >> y = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.NumericInt.ShiftZero.enabled’.

NumericInt.Square
Represents the square invariant between two long scalars. Prints as x = y**2.

NumericInt.ZeroTrack
Represents the zero tracks invariant between two long scalars; that is, when x is zero, y is also zero.
Prints as x = 0 => y = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoScalar.NumericInt.ZeroTrack.enabled’.

Chapter 5: Daikon output 32

OneOfFloat
Represents double variables that take on only a few distinct values. Prints as either x == c (when
there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.scalar.OneOfFloat.size’

OneOfFloatSequence
Represents double[] variables that take on only a few distinct values. Prints as either x == c (when
there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.sequence.OneOfFloatSequence.size’

OneOfScalar
Represents long variables that take on only a few distinct values. Prints as either x == c (when there
is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

May print as x has only one value when x is a hashcode (pointer) – this is because the numerical
value of the hashcode (pointer) is uninteresting.

See also the following configuration options:

• ‘daikon.inv.unary.scalar.OneOfScalar.size’

• ‘daikon.inv.unary.scalar.OneOfScalar.omit_hashcode_values_Simplify’

OneOfSequence
Represents long[] variables that take on only a few distinct values. Prints as either x == c (when
there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

See also the following configuration options:

• ‘daikon.inv.unary.sequence.OneOfSequence.size’

• ‘daikon.inv.unary.sequence.OneOfSequence.omit_hashcode_values_Simplify’

OneOfString
Represents String variables that take on only a few distinct values. Prints as either x == c (when
there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.string.OneOfString.size’

OneOfStringSequence
Represents String[] variables that take on only a few distinct values. Prints as either x == c (when
there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

See also the following configuration option:

• ‘daikon.inv.unary.stringsequence.OneOfStringSequence.size’

PairwiseFloatEqual
Represents an invariant between corresponding elements of two sequences of double values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] ==
y[].

PairwiseFloatGreaterEqual
Represents an invariant between corresponding elements of two sequences of double values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] >=
y[].

Chapter 5: Daikon output 33

PairwiseFloatGreaterThan
Represents an invariant between corresponding elements of two sequences of double values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] >
y[].

PairwiseFloatLessEqual
Represents an invariant between corresponding elements of two sequences of double values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] <=
y[].

PairwiseFloatLessThan
Represents an invariant between corresponding elements of two sequences of double values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] <
y[].

PairwiseIntEqual
Represents an invariant between corresponding elements of two sequences of long values. The length
of the sequences must match for the invariant to hold. A comparison is made over each (x[i],
y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] == y[].

PairwiseIntGreaterEqual
Represents an invariant between corresponding elements of two sequences of long values. The length
of the sequences must match for the invariant to hold. A comparison is made over each (x[i],
y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] >= y[].

PairwiseIntGreaterThan
Represents an invariant between corresponding elements of two sequences of long values. The length
of the sequences must match for the invariant to hold. A comparison is made over each (x[i],
y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] > y[].

PairwiseIntLessEqual
Represents an invariant between corresponding elements of two sequences of long values. The length
of the sequences must match for the invariant to hold. A comparison is made over each (x[i],
y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] <= y[].

PairwiseIntLessThan
Represents an invariant between corresponding elements of two sequences of long values. The length
of the sequences must match for the invariant to hold. A comparison is made over each (x[i],
y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] < y[].

PairwiseLinearBinary
Represents a linear invariant (i.e., y = ax + b) between the corresponding elements of two sequences
of long values. Each (x[i], y[i]) pair is examined. Thus, x[0] is compared to y[0], x[1] to y[1]
and so forth. Prints as y[] = a * x[] + b.

PairwiseLinearBinaryFloat
Represents a linear invariant (i.e., y = ax + b) between the corresponding elements of two sequences
of double values. Each (x[i], y[i]) pair is examined. Thus, x[0] is compared to y[0], x[1] to
y[1] and so forth. Prints as y[] = a * x[] + b.

PairwiseNumericFloat.Divides
Represents the divides without remainder invariant between corresponding elements of two sequences
of double. Prints as x[] % y[] == 0.

Chapter 5: Daikon output 34

PairwiseNumericFloat.Square
Represents the square invariant between corresponding elements of two sequences of double. Prints
as x[] = y[]**2.

PairwiseNumericFloat.ZeroTrack
Represents the zero tracks invariant between corresponding elements of two sequences of double;
that is, when x[] is zero, y[] is also zero. Prints as x[] = 0 => y[] = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.PairwiseNumericFloat.ZeroTrack.enabled’.

PairwiseNumericInt.BitwiseAndZero
Represents the BitwiseAnd == 0 invariant between corresponding elements of two sequences of long;
that is, x[] and y[] have no bits in common. Prints as x[] & y[] == 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseAndZero.enabled’.

PairwiseNumericInt.BitwiseComplement
Represents the bitwise complement invariant between corresponding elements of two sequences of
long. Prints as x[] = ~y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseComplement.enabled’.

PairwiseNumericInt.BitwiseSubset
Represents the bitwise subset invariant between corresponding elements of two sequences of long;
that is, the bits of y[] are a subset of the bits of x[]. Prints as x[] = y[] | x[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseSubset.enabled’.

PairwiseNumericInt.Divides
Represents the divides without remainder invariant between corresponding elements of two sequences
of long. Prints as x[] % y[] == 0.

PairwiseNumericInt.ShiftZero
Represents the ShiftZero invariant between corresponding elements of two sequences of long; that is,
x[] right-shifted by y[] is always zero. Prints as x[] >> y[] = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.PairwiseNumericInt.ShiftZero.enabled’.

PairwiseNumericInt.Square
Represents the square invariant between corresponding elements of two sequences of long. Prints as
x[] = y[]**2.

PairwiseNumericInt.ZeroTrack
Represents the zero tracks invariant between corresponding elements of two sequences of long; that
is, when x[] is zero, y[] is also zero. Prints as x[] = 0 => y[] = 0.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.PairwiseNumericInt.ZeroTrack.enabled’.

PairwiseString.SubString
Represents the substring invariant between corresponding elements of two sequences of String. Prints
as x[] is a substring of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.PairwiseString.SubString.enabled’.

PairwiseStringEqual
Represents an invariant between corresponding elements of two sequences of String values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] ==
y[].

PairwiseStringGreaterEqual
Represents an invariant between corresponding elements of two sequences of String values. The
length of the sequences must match for the invariant to hold. A comparison is made over each

Chapter 5: Daikon output 35

(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] >=
y[].

PairwiseStringGreaterThan
Represents an invariant between corresponding elements of two sequences of String values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] >
y[].

PairwiseStringLessEqual
Represents an invariant between corresponding elements of two sequences of String values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] <=
y[].

PairwiseStringLessThan
Represents an invariant between corresponding elements of two sequences of String values. The
length of the sequences must match for the invariant to hold. A comparison is made over each
(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] <
y[].

Positive
Represents the invariant x > 0 where x is a long scalar. This exists only as an example for the purposes
of the manual. It isn’t actually used (it is replaced by the more general invariant LowerBound).

PrintableString
Represents a string that contains only printable ascii characters (values 32 through 126 plus 9 (tab).

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.string.PrintableString.enabled’.

RangeFloat.EqualMinusOne
Internal invariant representing double scalars that are equal to minus one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

RangeFloat.EqualOne
Internal invariant representing double scalars that are equal to one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

RangeFloat.EqualZero
Internal invariant representing double scalars that are equal to zero. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

RangeFloat.GreaterEqual64
Internal invariant representing double scalars that are greater than or equal to 64. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

RangeFloat.GreaterEqualZero
Internal invariant representing double scalars that are greater than or equal to 0. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

RangeInt.BooleanVal
Internal invariant representing longs whose values are always 0 or 1. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

RangeInt.Bound0 63
Internal invariant representing longs whose values are between 0 and 63. Used for non-instantiating
suppressions. Will never print since Bound accomplishes the same thing.

Chapter 5: Daikon output 36

RangeInt.EqualMinusOne
Internal invariant representing long scalars that are equal to minus one. Used for non-instantiating
suppressions. Will never print since OneOf accomplishes the same thing.

RangeInt.EqualOne
Internal invariant representing long scalars that are equal to one. Used for non-instantiating sup-
pressions. Will never print since OneOf accomplishes the same thing.

RangeInt.EqualZero
Internal invariant representing long scalars that are equal to zero. Used for non-instantiating sup-
pressions. Will never print since OneOf accomplishes the same thing.

RangeInt.Even
Invariant representing longs whose values are always even. Used for non-instantiating suppressions.
Since this is not covered by the Bound or OneOf invariants it is printed. Prints as x is even.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.scalar.RangeInt.Even.enabled’.

RangeInt.GreaterEqual64
Internal invariant representing long scalars that are greater than or equal to 64. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

RangeInt.GreaterEqualZero
Internal invariant representing long scalars that are greater than or equal to 0. Used for non-
instantiating suppressions. Will never print since Bound accomplishes the same thing.

RangeInt.PowerOfTwo
Invariant representing longs whose values are always a power of 2 (exactly one bit is set). Used
for non-instantiating suppressions. Since this is not covered by the Bound or OneOf invariants it is
printed. Prints as x is a power of 2.

Reverse
Represents two sequences of long where one is in the reverse order of the other. Prints as x[] is
the reverse of y[].

ReverseFloat
Represents two sequences of double where one is in the reverse order of the other. Prints as x[] is
the reverse of y[].

SeqFloatEqual
Represents an invariant between a double scalar and a a sequence of double values. Prints as x[]
elements == y where x is a double sequence and y is a double scalar.

SeqFloatGreaterEqual
Represents an invariant between a double scalar and a a sequence of double values. Prints as x[]
elements >= y where x is a double sequence and y is a double scalar.

SeqFloatGreaterThan
Represents an invariant between a double scalar and a a sequence of double values. Prints as x[]
elements > y where x is a double sequence and y is a double scalar.

SeqFloatLessEqual
Represents an invariant between a double scalar and a a sequence of double values. Prints as x[]
elements <= y where x is a double sequence and y is a double scalar.

SeqFloatLessThan
Represents an invariant between a double scalar and a a sequence of double values. Prints as x[]
elements < y where x is a double sequence and y is a double scalar.

Chapter 5: Daikon output 37

SeqIndexFloatEqual
Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] == i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexFloatEqual.enabled’.

SeqIndexFloatGreaterEqual
Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] >= i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexFloatGreaterEqual.enabled’.

SeqIndexFloatGreaterThan
Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] > i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexFloatGreaterThan.enabled’.

SeqIndexFloatLessEqual
Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] <= i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexFloatLessEqual.enabled’.

SeqIndexFloatLessThan
Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] < i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexFloatLessThan.enabled’.

SeqIndexFloatNonEqual
Represents an invariant over sequences of double values between the index of an element of the
sequence and the element itself. Prints as x[i] != i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexFloatNonEqual.enabled’.

SeqIndexIntEqual
Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] == i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIntEqual.enabled’.

SeqIndexIntGreaterEqual
Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] >= i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIntGreaterEqual.enabled’.

SeqIndexIntGreaterThan
Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] > i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIntGreaterThan.enabled’.

SeqIndexIntLessEqual
Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] <= i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIntLessEqual.enabled’.

SeqIndexIntLessThan
Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] < i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIntLessThan.enabled’.

Chapter 5: Daikon output 38

SeqIndexIntNonEqual
Represents an invariant over sequences of long values between the index of an element of the sequence
and the element itself. Prints as x[i] != i.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.unary.sequence.SeqIndexIntNonEqual.enabled’.

SeqIntEqual
Represents an invariant between a long scalar and a a sequence of long values. Prints as x[] elements
== y where x is a long sequence and y is a long scalar.

SeqIntGreaterEqual
Represents an invariant between a long scalar and a a sequence of long values. Prints as x[] elements
>= y where x is a long sequence and y is a long scalar.

SeqIntGreaterThan
Represents an invariant between a long scalar and a a sequence of long values. Prints as x[] elements
> y where x is a long sequence and y is a long scalar.

SeqIntLessEqual
Represents an invariant between a long scalar and a a sequence of long values. Prints as x[] elements
<= y where x is a long sequence and y is a long scalar.

SeqIntLessThan
Represents an invariant between a long scalar and a a sequence of long values. Prints as x[] elements
< y where x is a long sequence and y is a long scalar.

SeqSeqFloatEqual
Represents invariants between two sequences of double values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[] == y[]
lexically.

If order doesn’t matter for each variable, then the sequences are compared to see if they are set
equivalent. Prints as x[] == y[].

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqFloatGreaterEqual
Represents invariants between two sequences of double values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[] >= y[]
lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqFloatGreaterThan
Represents invariants between two sequences of double values. If order matters for each variable
(which it does by default), then the sequences are compared lexically. Prints as x[] > y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqFloatLessEqual
Represents invariants between two sequences of double values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[] <= y[]
lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

Chapter 5: Daikon output 39

SeqSeqFloatLessThan
Represents invariants between two sequences of double values. If order matters for each variable
(which it does by default), then the sequences are compared lexically. Prints as x[] < y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqIntEqual
Represents invariants between two sequences of long values. If order matters for each variable (which
it does by default), then the sequences are compared lexically. Prints as x[] == y[] lexically.

If order doesn’t matter for each variable, then the sequences are compared to see if they are set
equivalent. Prints as x[] == y[].

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqIntGreaterEqual
Represents invariants between two sequences of long values. If order matters for each variable (which
it does by default), then the sequences are compared lexically. Prints as x[] >= y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqIntGreaterThan
Represents invariants between two sequences of long values. If order matters for each variable (which
it does by default), then the sequences are compared lexically. Prints as x[] > y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqIntLessEqual
Represents invariants between two sequences of long values. If order matters for each variable (which
it does by default), then the sequences are compared lexically. Prints as x[] <= y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqIntLessThan
Represents invariants between two sequences of long values. If order matters for each variable (which
it does by default), then the sequences are compared lexically. Prints as x[] < y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqStringEqual
Represents invariants between two sequences of String values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[] == y[]
lexically.

If order doesn’t matter for each variable, then the sequences are compared to see if they are set
equivalent. Prints as x[] == y[].

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqStringGreaterEqual
Represents invariants between two sequences of String values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[] >= y[]
lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

Chapter 5: Daikon output 40

SeqSeqStringGreaterThan
Represents invariants between two sequences of String values. If order matters for each variable
(which it does by default), then the sequences are compared lexically. Prints as x[] > y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqStringLessEqual
Represents invariants between two sequences of String values. If order matters for each vari-
able (which it does by default), then the sequences are compared lexically. Prints as x[] <= y[]
lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

SeqSeqStringLessThan
Represents invariants between two sequences of String values. If order matters for each variable
(which it does by default), then the sequences are compared lexically. Prints as x[] < y[] lexically.

If the auxiliary information (e.g., order matters) doesn’t match between two variables, then this
invariant cannot apply to those variables.

StdString.SubString
Represents the substring invariant between two String scalars. Prints as x is a substring of y.

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoString.StdString.SubString.enabled’.

StringEqual
Represents an invariant of == between two String scalars. Prints as x == y.

StringGreaterEqual
Represents an invariant of >= between two String scalars. Prints as x >= y.

StringGreaterThan
Represents an invariant of > between two String scalars. Prints as x > y.

StringLessEqual
Represents an invariant of <= between two String scalars. Prints as x <= y.

StringLessThan
Represents an invariant of < between two String scalars. Prints as x < y.

StringNonEqual
Represents an invariant of != between two String scalars. Prints as x != y.

SubSequence
Represents two sequences of long values where one sequence is a subsequence of the other. Prints as
x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.SubSequence.enabled’.

SubSequenceFloat
Represents two sequences of double values where one sequence is a subsequence of the other. Prints
as x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.SubSequenceFloat.enabled’.

SubSet
Represents two sequences of long values where one of the sequences is a subset of the other; that is
each element of one sequence appears in the other. Prints as either x[] is a subset of y[] or as
x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.SubSet.enabled’.

Chapter 5: Daikon output 41

SubSetFloat
Represents two sequences of double values where one of the sequences is a subset of the other; that
is each element of one sequence appears in the other. Prints as either x[] is a subset of y[] or as
x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.SubSetFloat.enabled’.

SuperSequence
Represents two sequences of long values where one sequence is a subsequence of the other. Prints as
x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.SuperSequence.enabled’.

SuperSequenceFloat
Represents two sequences of double values where one sequence is a subsequence of the other. Prints
as x[] is a subsequence of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.SuperSequenceFloat.enabled’.

SuperSet
Represents two sequences of long values where one of the sequences is a subset of the other; that is
each element of one sequence appears in the other. Prints as either x[] is a subset of y[] or as
x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.SuperSet.enabled’.

SuperSetFloat
Represents two sequences of double values where one of the sequences is a subset of the other; that
is each element of one sequence appears in the other. Prints as either x[] is a subset of y[] or as
x[] is a superset of y[].

This invariant is not enabled by default. See the configuration option ‘daikon.inv.binary.twoSequence.SuperSetFloat.enabled’.

UpperBound
Represents the invariant x <= c, where c is a constant and x is a long scalar.

See also the following configuration options:

• ‘daikon.inv.unary.scalar.UpperBound.minimal_interesting’

• ‘daikon.inv.unary.scalar.UpperBound.maximal_interesting’

UpperBoundFloat
Represents the invariant x <= c, where c is a constant and x is a double scalar.

See also the following configuration options:

• ‘daikon.inv.unary.scalar.UpperBoundFloat.minimal_interesting’

• ‘daikon.inv.unary.scalar.UpperBoundFloat.maximal_interesting’

5.6 Invariant filters
Invariant filters are used to suppress the printing of invariants that are true, but not considered “inter-

esting” — usually because the invariants are considered obvious or redundant in a given context.

The following is a list of the invariant filters that Daikon supports. Each of these filters has a corre-
sponding configuration enable switch; by default, all filters are enabled. See Section 6.1.1.1 [Options to
enable/disable filters], page 43, for details.

• DerivedParameterFilter: suppress parameter-derived postcondition invariants

This filter suppresses invariants at procedure exit points that are uninteresting because they refer to
‘pre-state’ variables derived from pass-by-value parameters. For example, suppose that param is a
parameter to a Java method. If param itself is modified, that change won’t be visible to a caller, so

Chapter 5: Daikon output 42

it’s uninteresting to print. If param points to an object, and that object is changed, that is visible,
but only if param hasn’t changed; otherwise, the invariant would report a change in some object other
than the one that was passed in.

• ObviousFilter: suppress “obvious”, or redundant, invariants — that is, invariants that are implied by
some other invariant

This filter suppresses any invariant that is a logical consequence of other invariants that are printed.
This keeps the output from becoming cluttered with redundant facts. Some examples are:

• If ‘size(args[])==0’ is shown, then ‘size(args[])-1==-1’ is obvious and will not be displayed
by default.

• If ‘this.topOfStack < size(this.theArray[])-1’ is shown, then ‘this.topOfStack <
size(this.theArray[])’ is obvious and will not be displayed by default.

To suppress even more invariants, use the --suppress_redundant command-line option; see
Section 4.2 [Options to control invariant detection], page 15.

• OnlyConstantVariablesFilter: suppress invariants containing only constants

This filter suppresses comparison invariants in which all of the variables being compared were observed
to be constant. In the current version of Daikon, most such invariants are not even created in the
first place, because constants are detected on an early pass over the data. However, Daikon will note
that all of the invariants that had any particular constant value were also equal to each other: such
invariants will be suppressed by this filter.

• ParentFilter: filter invariants that match a parent program point invariant

A controlled invariant is an invariant that is “controlled” — or implied — by a parent program point
in the dataflow hierarchy. For example, for Java instrumented code each class is associated with an
object program point, which contain invariants that are found at the entry and exit of all public
methods. So in addition to the usual program points such as StackAr.StackAr(int):::ENTER
and StackAr.isEmpty():::EXIT48, Daikon outputs invariants for the artificial program
point StackAr:::OBJECT. The invariants for StackAr:::OBJECT control the invariants for
StackAr.StackAr(int):::ENTER and StackAr.isEmpty():::EXIT48, because the former imply the
latter. Because of this redundancy, controlled invariants are not displayed by default. Note that if for
some reason, the controlling invariant is not displayed (for example, because it’s unjustified), then
the controlled invariant will be displayed.

• SimplifyFilter: eliminate redundant invariants using Simplify

Daikon contains built-in test that remove most redundant (logically implied) invariants from its output;
see

Daikon can use the Simplify theorem-prover to eliminate even more implied invariants than Daikon’s
built-in tests are able to eliminate. Simplify must be installed in order to take advantage of this filter
(see Section 9.1.11.1 [Installing Simplify], page 126).

If you don’t also specify the --suppress_redundant command-line option (see Section 4.2 [Options
to control invariant detection], page 15) to enable Simplify processing, this filter doesn’t do anything.

• UnjustifiedFilter: suppress unjustified invariants

For every invariant, Daikon estimates the probability of that invariant happening by chance. If that
probability is less than the limit, then the invariant is deemed to be an actual invariant, not just a
chance occurrence. Currently the limit is .01. So by default, only invariants with probabilities of less
than 1% are shown. See the --conf_limit option (Section 4.2 [Options to control invariant detection],
page 15).

• UnmodifiedVariableEqualityFilter: suppress invariants that merely indicate that a variable was un-
modified

This filter is only useful for ESC output.

Chapter 6: Enhancing Daikon output 43

6 Enhancing Daikon output

6.1 Configuration options
Many aspects of Daikon’s behavior can be controlled by setting various configuration parameters. These

configuration parameters control which invariants are checked and reported, the statistical tests for invari-
ants, which derived variables are created, and more.

There are two ways to set configuration options. You can specify a configuration setting directly on the
command line, using the --config_option name=value option (which you may repeat as many times as
you want). Or, you can create a configuration file and supplying it to Daikon on the command line using
the --config filename option. Daikon applies all the command-line arguments in order. You may wish
to use the supplied example configuration file daikon/java/daikon/config/example-settings.txt as
an example when creating your own configuration files. (If you did not download Daikon’s sources, you
must extract the example from daikon.jar to read it.)

You can also control Daikon’s output via its command-line options (see Chapter 4 [Running Daikon],
page 13) and via the command-line options to its front ends — such as DynComp (see Section 7.2.2
[DynComp for Java options], page 82), Chicory (see Section 7.1.1 [Chicory options], page 72) or Kvasir
(see Section 7.3.2 [Kvasir options], page 85).

The configuration options are different from the debugging flags --debug and --dbg category (see
Section 4.5 [Daikon debugging options], page 17). The debugging flags permit Daikon to produce debugging
output, but they do not affect the invariants that Daikon computes.

6.1.1 List of configuration options

This is a list of all Daikon configuration options. The configuration option name contains the Java class
in which it is defined. (In the Daikon source code, the configuration value is stored in a variable whose
name contains a dkconfig_ prefix, but that should be irrelevant to users.) To learn more about a specific
invariant or derived variable than appears in this manual, see its source code.

6.1.1.1 Options to enable/disable filters

These configuration options enable or disable filters that suppress printing of certain invariants. Invari-
ants are filtered if they are redundant. See Section 5.6 [Invariant filters], page 41, for more information.
Also see configuration option daikon.PrintInvariants.print_all.

daikon.inv.filter.DerivedParameterFilter.enabled
Boolean. If true, DerivedParameterFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.DotNetStringFilter.enabled
Boolean. If true, DotNetStringFilter is initially turned on. See its Javadoc. The default value is
‘false’.

daikon.inv.filter.ObviousFilter.enabled
Boolean. If true, ObviousFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.OnlyConstantVariablesFilter.enabled
Boolean. If true, OnlyConstantVariablesFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.ParentFilter.enabled
Boolean. If true, ParentFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.ReadonlyPrestateFilter.enabled
Boolean. If true, ReadonlyPrestateFilter is initially turned on. The default value is ‘true’.

Chapter 6: Enhancing Daikon output 44

daikon.inv.filter.SimplifyFilter.enabled
Boolean. If true, SimplifyFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.UnjustifiedFilter.enabled
Boolean. If true, UnjustifiedFilter is initially turned on. The default value is ‘true’.

daikon.inv.filter.UnmodifiedVariableEqualityFilter.enabled
Boolean. If true, UnmodifiedVariableEqualityFilter is initially turned on. The default value is ‘true’.

6.1.1.2 Options to enable/disable specific invariants

These options control whether Daikon looks for specific kinds of invariants. See Section 5.5 [Invariant
list], page 23, for more information about the corresponding invariants.

daikon.inv.binary.sequenceScalar.Member.enabled
Boolean. True iff Member invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.MemberFloat.enabled
Boolean. True iff Member invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqFloatEqual.enabled
Boolean. True iff SeqFloatEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqFloatGreaterEqual.enabled
Boolean. True iff SeqFloatGreaterEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqFloatGreaterThan.enabled
Boolean. True iff SeqFloatGreaterThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqFloatLessEqual.enabled
Boolean. True iff SeqFloatLessEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqFloatLessThan.enabled
Boolean. True iff SeqFloatLessThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqIntEqual.enabled
Boolean. True iff SeqIntEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqIntGreaterEqual.enabled
Boolean. True iff SeqIntGreaterEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqIntGreaterThan.enabled
Boolean. True iff SeqIntGreaterThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqIntLessEqual.enabled
Boolean. True iff SeqIntLessEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceScalar.SeqIntLessThan.enabled
Boolean. True iff SeqIntLessThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.sequenceString.MemberString.enabled
Boolean. True iff Member invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.FloatEqual.enabled
Boolean. True iff FloatEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.FloatGreaterEqual.enabled
Boolean. True iff FloatGreaterEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.FloatGreaterThan.enabled
Boolean. True iff FloatGreaterThan invariants should be considered. The default value is ‘true’.

Chapter 6: Enhancing Daikon output 45

daikon.inv.binary.twoScalar.FloatLessEqual.enabled
Boolean. True iff FloatLessEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.FloatLessThan.enabled
Boolean. True iff FloatLessThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.FloatNonEqual.enabled
Boolean. True iff FloatNonEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.IntEqual.enabled
Boolean. True iff IntEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.IntGreaterEqual.enabled
Boolean. True iff IntGreaterEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.IntGreaterThan.enabled
Boolean. True iff IntGreaterThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.IntLessEqual.enabled
Boolean. True iff IntLessEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.IntLessThan.enabled
Boolean. True iff IntLessThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.IntNonEqual.enabled
Boolean. True iff IntNonEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.LinearBinary.enabled
Boolean. True iff LinearBinary invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.LinearBinaryFloat.enabled
Boolean. True iff LinearBinary invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.NumericFloat.Divides.enabled
Boolean. True iff divides invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.NumericFloat.Square.enabled
Boolean. True iff square invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.NumericFloat.ZeroTrack.enabled
Boolean. True iff zero-track invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoScalar.NumericInt.BitwiseAndZero.enabled
Boolean. True iff BitwiseAndZero invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoScalar.NumericInt.BitwiseComplement.enabled
Boolean. True iff bitwise complement invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoScalar.NumericInt.BitwiseSubset.enabled
Boolean. True iff bitwise subset invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoScalar.NumericInt.Divides.enabled
Boolean. True iff divides invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.NumericInt.ShiftZero.enabled
Boolean. True iff ShiftZero invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoScalar.NumericInt.Square.enabled
Boolean. True iff square invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoScalar.NumericInt.ZeroTrack.enabled
Boolean. True iff zero-track invariants should be considered. The default value is ‘false’.

Chapter 6: Enhancing Daikon output 46

daikon.inv.binary.twoSequence.PairwiseFloatEqual.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseFloatGreaterEqual.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseFloatGreaterThan.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseFloatLessEqual.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseFloatLessThan.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseIntEqual.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseIntGreaterEqual.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseIntGreaterThan.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseIntLessEqual.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseIntLessThan.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseLinearBinary.enabled
Boolean. True iff PairwiseLinearBinary invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseLinearBinaryFloat.enabled
Boolean. True iff PairwiseLinearBinary invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseNumericFloat.Divides.enabled
Boolean. True iff divides invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseNumericFloat.Square.enabled
Boolean. True iff square invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseNumericFloat.ZeroTrack.enabled
Boolean. True iff zero-track invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseAndZero.enabled
Boolean. True iff BitwiseAndZero invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseComplement.enabled
Boolean. True iff bitwise complement invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.BitwiseSubset.enabled
Boolean. True iff bitwise subset invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.Divides.enabled
Boolean. True iff divides invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.ShiftZero.enabled
Boolean. True iff ShiftZero invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.PairwiseNumericInt.Square.enabled
Boolean. True iff square invariants should be considered. The default value is ‘true’.

Chapter 6: Enhancing Daikon output 47

daikon.inv.binary.twoSequence.PairwiseNumericInt.ZeroTrack.enabled
Boolean. True iff zero-track invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.PairwiseString.SubString.enabled
Boolean. True iff SubString invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.PairwiseStringEqual.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseStringGreaterEqual.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseStringGreaterThan.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseStringLessEqual.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.PairwiseStringLessThan.enabled
Boolean. True iff PairwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.Reverse.enabled
Boolean. True iff Reverse invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.ReverseFloat.enabled
Boolean. True iff Reverse invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqFloatEqual.enabled
Boolean. True iff SeqSeqFloatEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqFloatGreaterEqual.enabled
Boolean. True iff SeqSeqFloatGreaterEqual invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoSequence.SeqSeqFloatGreaterThan.enabled
Boolean. True iff SeqSeqFloatGreaterThan invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoSequence.SeqSeqFloatLessEqual.enabled
Boolean. True iff SeqSeqFloatLessEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqFloatLessThan.enabled
Boolean. True iff SeqSeqFloatLessThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqIntEqual.enabled
Boolean. True iff SeqSeqIntEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqIntGreaterEqual.enabled
Boolean. True iff SeqSeqIntGreaterEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqIntGreaterThan.enabled
Boolean. True iff SeqSeqIntGreaterThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqIntLessEqual.enabled
Boolean. True iff SeqSeqIntLessEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqIntLessThan.enabled
Boolean. True iff SeqSeqIntLessThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqStringEqual.enabled
Boolean. True iff SeqSeqStringEqual invariants should be considered. The default value is ‘true’.

Chapter 6: Enhancing Daikon output 48

daikon.inv.binary.twoSequence.SeqSeqStringGreaterEqual.enabled
Boolean. True iff SeqSeqStringGreaterEqual invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoSequence.SeqSeqStringGreaterThan.enabled
Boolean. True iff SeqSeqStringGreaterThan invariants should be considered. The default value is
‘true’.

daikon.inv.binary.twoSequence.SeqSeqStringLessEqual.enabled
Boolean. True iff SeqSeqStringLessEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SeqSeqStringLessThan.enabled
Boolean. True iff SeqSeqStringLessThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoSequence.SubSequence.enabled
Boolean. True iff SubSequence invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.SubSequenceFloat.enabled
Boolean. True iff SubSequence invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.SubSet.enabled
Boolean. True iff SubSet invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.SubSetFloat.enabled
Boolean. True iff SubSet invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.SuperSequence.enabled
Boolean. True iff SubSequence invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.SuperSequenceFloat.enabled
Boolean. True iff SubSequence invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.SuperSet.enabled
Boolean. True iff SubSet invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoSequence.SuperSetFloat.enabled
Boolean. True iff SubSet invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoString.StdString.SubString.enabled
Boolean. True iff SubString invariants should be considered. The default value is ‘false’.

daikon.inv.binary.twoString.StringEqual.enabled
Boolean. True iff StringEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoString.StringGreaterEqual.enabled
Boolean. True iff StringGreaterEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoString.StringGreaterThan.enabled
Boolean. True iff StringGreaterThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoString.StringLessEqual.enabled
Boolean. True iff StringLessEqual invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoString.StringLessThan.enabled
Boolean. True iff StringLessThan invariants should be considered. The default value is ‘true’.

daikon.inv.binary.twoString.StringNonEqual.enabled
Boolean. True iff StringNonEqual invariants should be considered. The default value is ‘true’.

daikon.inv.ternary.threeScalar.FunctionBinary.enabled
Boolean. True if FunctionBinary invariants should be considered. The default value is ‘false’.

Chapter 6: Enhancing Daikon output 49

daikon.inv.ternary.threeScalar.FunctionBinaryFloat.enabled
Boolean. True if FunctionBinaryFloat invariants should be considered. The default value is ‘false’.

daikon.inv.ternary.threeScalar.LinearTernary.enabled
Boolean. True iff LinearTernary invariants should be considered. The default value is ‘true’.

daikon.inv.ternary.threeScalar.LinearTernaryFloat.enabled
Boolean. True iff LinearTernary invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.CompleteOneOfScalar.enabled
Boolean. True iff CompleteOneOfScalar invariants should be considered. The default value is ‘false’.

daikon.inv.unary.scalar.IsPointer.enabled
Boolean. True iff IsPointer invariants should be considered. The default value is ‘false’.

daikon.inv.unary.scalar.LowerBound.enabled
Boolean. True iff LowerBound invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.LowerBoundFloat.enabled
Boolean. True iff LowerBoundFloat invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.Modulus.enabled
Boolean. True iff Modulus invariants should be considered. The default value is ‘false’.

daikon.inv.unary.scalar.NonModulus.enabled
Boolean. True iff NonModulus invariants should be considered. The default value is ‘false’.

daikon.inv.unary.scalar.NonZero.enabled
Boolean. True iff NonZero invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.NonZeroFloat.enabled
Boolean. True iff NonZeroFloat invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.OneOfFloat.enabled
Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.OneOfScalar.enabled
Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.Positive.enabled
Boolean. True iff Positive invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.RangeInt.Even.enabled
Boolean. True if Even invariants should be considered. The default value is ‘false’.

daikon.inv.unary.scalar.RangeInt.PowerOfTwo.enabled
Boolean. True if PowerOfTwo invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.UpperBound.enabled
Boolean. True iff UpperBound invariants should be considered. The default value is ‘true’.

daikon.inv.unary.scalar.UpperBoundFloat.enabled
Boolean. True iff UpperBoundFloat invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.CommonFloatSequence.enabled
Boolean. True iff CommonSequence invariants should be considered. The default value is ‘false’.

daikon.inv.unary.sequence.CommonSequence.enabled
Boolean. True iff CommonSequence invariants should be considered. The default value is ‘false’.

daikon.inv.unary.sequence.EltLowerBound.enabled
Boolean. True iff EltLowerBound invariants should be considered. The default value is ‘true’.

Chapter 6: Enhancing Daikon output 50

daikon.inv.unary.sequence.EltLowerBoundFloat.enabled
Boolean. True iff EltLowerBoundFloat invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltNonZero.enabled
Boolean. True iff EltNonZero invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltNonZeroFloat.enabled
Boolean. True iff EltNonZero invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltOneOf.enabled
Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltOneOfFloat.enabled
Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltRangeInt.Even.enabled
Boolean. True if Even invariants should be considered. The default value is ‘false’.

daikon.inv.unary.sequence.EltRangeInt.PowerOfTwo.enabled
Boolean. True if PowerOfTwo invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltUpperBound.enabled
Boolean. True iff EltUpperBound invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltUpperBoundFloat.enabled
Boolean. True iff EltUpperBoundFloat invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltwiseFloatEqual.enabled
Boolean. True iff EltwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltwiseFloatGreaterEqual.enabled
Boolean. True iff EltwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltwiseFloatGreaterThan.enabled
Boolean. True iff EltwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltwiseFloatLessEqual.enabled
Boolean. True iff EltwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltwiseFloatLessThan.enabled
Boolean. True iff EltwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltwiseIntEqual.enabled
Boolean. True iff EltwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltwiseIntGreaterEqual.enabled
Boolean. True iff EltwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltwiseIntGreaterThan.enabled
Boolean. True iff EltwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltwiseIntLessEqual.enabled
Boolean. True iff EltwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.EltwiseIntLessThan.enabled
Boolean. True iff EltwiseIntComparison invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.NoDuplicates.enabled
Boolean. True iff NoDuplicates invariants should be considered. The default value is ‘false’.

daikon.inv.unary.sequence.NoDuplicatesFloat.enabled
Boolean. True iff NoDuplicates invariants should be considered. The default value is ‘false’.

Chapter 6: Enhancing Daikon output 51

daikon.inv.unary.sequence.OneOfFloatSequence.enabled
Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.OneOfSequence.enabled
Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.sequence.SeqIndexFloatEqual.enabled
Boolean. True iff SeqIndexFloatEqual invariants should be considered. The default value is ‘false’.

daikon.inv.unary.sequence.SeqIndexFloatGreaterEqual.enabled
Boolean. True iff SeqIndexFloatGreaterEqual invariants should be considered. The default value is
‘false’.

daikon.inv.unary.sequence.SeqIndexFloatGreaterThan.enabled
Boolean. True iff SeqIndexFloatGreaterThan invariants should be considered. The default value is
‘false’.

daikon.inv.unary.sequence.SeqIndexFloatLessEqual.enabled
Boolean. True iff SeqIndexFloatLessEqual invariants should be considered. The default value is
‘false’.

daikon.inv.unary.sequence.SeqIndexFloatLessThan.enabled
Boolean. True iff SeqIndexFloatLessThan invariants should be considered. The default value is
‘false’.

daikon.inv.unary.sequence.SeqIndexFloatNonEqual.enabled
Boolean. True iff SeqIndexFloatNonEqual invariants should be considered. The default value is
‘false’.

daikon.inv.unary.sequence.SeqIndexIntEqual.enabled
Boolean. True iff SeqIndexIntEqual invariants should be considered. The default value is ‘false’.

daikon.inv.unary.sequence.SeqIndexIntGreaterEqual.enabled
Boolean. True iff SeqIndexIntGreaterEqual invariants should be considered. The default value is
‘false’.

daikon.inv.unary.sequence.SeqIndexIntGreaterThan.enabled
Boolean. True iff SeqIndexIntGreaterThan invariants should be considered. The default value is
‘false’.

daikon.inv.unary.sequence.SeqIndexIntLessEqual.enabled
Boolean. True iff SeqIndexIntLessEqual invariants should be considered. The default value is ‘false’.

daikon.inv.unary.sequence.SeqIndexIntLessThan.enabled
Boolean. True iff SeqIndexIntLessThan invariants should be considered. The default value is ‘false’.

daikon.inv.unary.sequence.SeqIndexIntNonEqual.enabled
Boolean. True iff SeqIndexIntNonEqual invariants should be considered. The default value is ‘false’.

daikon.inv.unary.string.CompleteOneOfString.enabled
Boolean. True iff CompleteOneOfString invariants should be considered. The default value is ‘false’.

daikon.inv.unary.string.OneOfString.enabled
Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.string.PrintableString.enabled
Boolean. True iff PrintableString invariants should be considered. The default value is ‘false’.

daikon.inv.unary.stringsequence.CommonStringSequence.enabled
Boolean. True iff CommonStringSequence invariants should be considered. The default value is
‘false’.

Chapter 6: Enhancing Daikon output 52

daikon.inv.unary.stringsequence.EltOneOfString.enabled
Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

daikon.inv.unary.stringsequence.OneOfStringSequence.enabled
Boolean. True iff OneOf invariants should be considered. The default value is ‘true’.

6.1.1.3 Other invariant configuration parameters

The configuration options listed in this section parameterize the behavior of certain invariants. See
Section 5.5 [Invariant list], page 23, for more information about the invariants.

daikon.inv.Invariant.confidence_limit
Floating-point number between 0 and 1. Invariants are displayed only if the confidence that the
invariant did not occur by chance is greater than this. (May also be set via the --conf_limit
command-line option to Daikon; refer to manual.) The default value is ‘0.99’.

daikon.inv.Invariant.fuzzy_ratio
Floating-point number between 0 and 0.1, representing the maximum relative difference between
two floats for fuzzy comparisons. Larger values will result in floats that are relatively farther apart
being treated as equal. A value of 0 essentially disables fuzzy comparisons. Specifically, if abs(1 -
f1/f2) is less than or equal to this value, then the two doubles (f1 and f2) will be treated as equal
by Daikon. The default value is ‘1.0E-4’.

daikon.inv.Invariant.simplify_define_predicates
A boolean value. If true, Daikon’s Simplify output (printed when the --format simplify flag is
enabled, and used internally by --suppress_redundant) will include new predicates representing
some complex relationships in invariants, such as lexical ordering among sequences. If false, some
complex relationships will appear in the output as complex quantified formulas, while others will not
appear at all. When enabled, Simplify may be able to make more inferences, allowing --suppress_
redundant to suppress more redundant invariants, but Simplify may also run more slowly. The
default value is ‘false’.

daikon.inv.binary.twoScalar.IntNonEqual.integral_only
Boolean. True iff IntNonEqual invariants should be considered. The default value is ‘true’.

daikon.inv.filter.DerivedVariableFilter.class_re
Regular expression to match against the class name of derived variables. Invariants that contain
derived variables that match will be filtered out. If null, nothing will be filtered out. The default
value is ‘null’.

daikon.inv.unary.scalar.LowerBound.maximal_interesting
Long integer. Together with the corresponding minimal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
LowerBound invariants whose cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.scalar.LowerBound.minimal_interesting
Long integer. Together with the corresponding maximal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
LowerBound invariants whose cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.scalar.LowerBoundFloat.maximal_interesting
Long integer. Together with the corresponding minimal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
LowerBoundFloat invariants whose cutoff was one of (-1,0,1,2). The default value is ‘2’.

Chapter 6: Enhancing Daikon output 53

daikon.inv.unary.scalar.LowerBoundFloat.minimal_interesting
Long integer. Together with the corresponding maximal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
LowerBoundFloat invariants whose cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.scalar.OneOfFloat.size
Positive integer. Specifies the maximum set size for this type of invariant (x is one of size items).
The default value is ‘3’.

daikon.inv.unary.scalar.OneOfScalar.omit_hashcode_values_Simplify
Boolean. If true, invariants describing hashcode-typed variables as having any particular value will
have an artificial value substituted for the exact hashhode values. The artificial values will stay the
same from run to run even if the actual hashcode values change (as long as the OneOf invariants
remain the same). If false, hashcodes will be formatted as the application of a hashcode uninterpreted
function to an integer representing the bit pattern of the hashcode. One might wish to omit the exact
values of the hashcodes because they are usually uninteresting; this is the same reason they print in
the native Daikon format, for instance, as var has only one value rather than var == 150924732.
The default value is ‘false’.

daikon.inv.unary.scalar.OneOfScalar.size
Positive integer. Specifies the maximum set size for this type of invariant (x is one of size items).
The default value is ‘3’.

daikon.inv.unary.scalar.UpperBound.maximal_interesting
Long integer. Together with the corresponding minimal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
UpperBound invariants whose cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.scalar.UpperBound.minimal_interesting
Long integer. Together with the corresponding maximal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
UpperBound invariants whose cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.scalar.UpperBoundFloat.maximal_interesting
Long integer. Together with the corresponding minimal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
UpperBoundFloat invariants whose cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.scalar.UpperBoundFloat.minimal_interesting
Long integer. Together with the corresponding maximal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
UpperBoundFloat invariants whose cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.sequence.CommonFloatSequence.hashcode_seqs
Boolean. Set to true to consider common sequences over hashcodes (pointers). The default value is
‘false’.

daikon.inv.unary.sequence.CommonSequence.hashcode_seqs
Boolean. Set to true to consider common sequences over hashcodes (pointers). The default value is
‘false’.

Chapter 6: Enhancing Daikon output 54

daikon.inv.unary.sequence.EltLowerBound.maximal_interesting
Long integer. Together with the corresponding minimal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
EltLowerBound invariants whose cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.sequence.EltLowerBound.minimal_interesting
Long integer. Together with the corresponding maximal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
EltLowerBound invariants whose cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.sequence.EltLowerBoundFloat.maximal_interesting
Long integer. Together with the corresponding minimal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
EltLowerBoundFloat invariants whose cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.sequence.EltLowerBoundFloat.minimal_interesting
Long integer. Together with the corresponding maximal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
EltLowerBoundFloat invariants whose cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.sequence.EltOneOf.omit_hashcode_values_Simplify
Boolean. If true, invariants describing hashcode-typed variables as having any particular value will
have an artificial value substituted for the exact hashhode values. The artificial values will stay the
same from run to run even if the actual hashcode values change (as long as the OneOf invariants
remain the same). If false, hashcodes will be formatted as the application of a hashcode uninterpreted
function to an integer representing the bit pattern of the hashcode. One might wish to omit the exact
values of the hashcodes because they are usually uninteresting; this is the same reason they print in
the native Daikon format, for instance, as var has only one value rather than var == 150924732.
The default value is ‘false’.

daikon.inv.unary.sequence.EltOneOf.size
Positive integer. Specifies the maximum set size for this type of invariant (x is one of size items).
The default value is ‘3’.

daikon.inv.unary.sequence.EltOneOfFloat.size
Positive integer. Specifies the maximum set size for this type of invariant (x is one of size items).
The default value is ‘3’.

daikon.inv.unary.sequence.EltUpperBound.maximal_interesting
Long integer. Together with the corresponding minimal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
EltUpperBound invariants whose cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.sequence.EltUpperBound.minimal_interesting
Long integer. Together with the corresponding maximal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
EltUpperBound invariants whose cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.sequence.EltUpperBoundFloat.maximal_interesting
Long integer. Together with the corresponding minimal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,

Chapter 6: Enhancing Daikon output 55

setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
EltUpperBoundFloat invariants whose cutoff was one of (-1,0,1,2). The default value is ‘2’.

daikon.inv.unary.sequence.EltUpperBoundFloat.minimal_interesting
Long integer. Together with the corresponding maximal_interesting parameter, specifies the range
of the computed constant that is “interesting” — the range that should be reported. For instance,
setting minimal_interesting to -1 and maximal_interesting to 2 would only permit output of
EltUpperBoundFloat invariants whose cutoff was one of (-1,0,1,2). The default value is ‘-1’.

daikon.inv.unary.sequence.OneOfFloatSequence.size
Positive integer. Specifies the maximum set size for this type of invariant (x is one of size items).
The default value is ‘3’.

daikon.inv.unary.sequence.OneOfSequence.omit_hashcode_values_Simplify
Boolean. If true, invariants describing hashcode-typed variables as having any particular value will
have an artificial value substituted for the exact hashhode values. The artificial values will stay the
same from run to run even if the actual hashcode values change (as long as the OneOf invariants
remain the same). If false, hashcodes will be formatted as the application of a hashcode uninterpreted
function to an integer representing the bit pattern of the hashcode. One might wish to omit the exact
values of the hashcodes because they are usually uninteresting; this is the same reason they print in
the native Daikon format, for instance, as var has only one value rather than var == 150924732.
The default value is ‘false’.

daikon.inv.unary.sequence.OneOfSequence.size
Positive integer. Specifies the maximum set size for this type of invariant (x is one of size items).
The default value is ‘3’.

daikon.inv.unary.sequence.SingleSequence.SeqIndexDisableAll
Boolean. Set to true to disable all SeqIndex invariants (SeqIndexIntEqual, SeqIndexFloatLessThan,
etc). This overrides the settings of the individual SeqIndex enable configuration options. To disable
only some options, the options must be disabled individually. The default value is ‘false’.

daikon.inv.unary.string.OneOfString.size
Positive integer. Specifies the maximum set size for this type of invariant (x is one of size items).
The default value is ‘3’.

daikon.inv.unary.stringsequence.EltOneOfString.size
Positive integer. Specifies the maximum set size for this type of invariant (x is one of size items).
The default value is ‘3’.

daikon.inv.unary.stringsequence.OneOfStringSequence.size
Positive integer. Specifies the maximum set size for this type of invariant (x is one of size items).
The default value is ‘2’.

6.1.1.4 Options to enable/disable derived variables

These options control whether Daikon looks for invariants involving certain forms of derived variables.
Also see Section 5.3 [Variable names], page 20.

daikon.derive.Derivation.disable_derived_variables
Boolean. If true, Daikon will not create any derived variables. Derived variables, which are combi-
nations of variables that appeared in the program, like array[index] if array and index appeared,
can increase the number of properties Daikon finds, especially over sequences. However, derived
variables increase Daikon’s time and memory usage, sometimes dramatically. If false, individual
kinds of derived variables can be enabled or disabled individually using configuration options under
daikon.derive. The default value is ‘false’.

Chapter 6: Enhancing Daikon output 56

daikon.derive.binary.SequenceFloatIntersection.enabled
Boolean. True iff SequenceFloatIntersection derived variables should be generated. The default value
is ‘false’.

daikon.derive.binary.SequenceFloatSubscript.enabled
Boolean. True iff SequenceFloatSubscript derived variables should be generated. The default value
is ‘true’.

daikon.derive.binary.SequenceFloatSubsequence.enabled
Boolean. True iff SequenceFloatSubsequence derived variables should be generated. The default
value is ‘false’.

daikon.derive.binary.SequenceFloatUnion.enabled
Boolean. True iff SequenceFloatUnion derived variables should be generated. The default value is
‘false’.

daikon.derive.binary.SequenceScalarIntersection.enabled
Boolean. True iff SequenceScalarIntersection derived variables should be generated. The default
value is ‘false’.

daikon.derive.binary.SequenceScalarSubscript.enabled
Boolean. True iff SequenceScalarSubscript derived variables should be generated. The default value
is ‘true’.

daikon.derive.binary.SequenceScalarSubsequence.enabled
Boolean. True iff SequenceScalarSubsequence derived variables should be generated. The default
value is ‘false’.

daikon.derive.binary.SequenceScalarUnion.enabled
Boolean. True iff SequenceScalarUnion derived variables should be generated. The default value is
‘false’.

daikon.derive.binary.SequenceStringIntersection.enabled
Boolean. True iff SequenceStringIntersection derived variables should be generated. The default
value is ‘false’.

daikon.derive.binary.SequenceStringSubscript.enabled
Boolean. True iff SequenceStringSubscript derived variables should be generated. The default value
is ‘true’.

daikon.derive.binary.SequenceStringSubsequence.enabled
Boolean. True iff SequenceStringSubsequence derived variables should be generated. The default
value is ‘false’.

daikon.derive.binary.SequenceStringUnion.enabled
Boolean. True iff SequenceStringUnion derived variables should be generated. The default value is
‘false’.

daikon.derive.binary.SequencesConcat.enabled
Boolean. True iff SequencesConcat derived variables should be created. The default value is ‘false’.

daikon.derive.binary.SequencesJoin.enabled
Boolean. True iff SequencesJoin derived variables should be generated. The default value is ‘false’.

daikon.derive.binary.SequencesJoinFloat.enabled
Boolean. True iff SequencesJoin derived variables should be generated. The default value is ‘false’.

daikon.derive.binary.SequencesPredicate.boolOnly
Boolean. True if Daikon should only generate derivations on boolean predicates. The default value
is ‘true’.

Chapter 6: Enhancing Daikon output 57

daikon.derive.binary.SequencesPredicate.enabled
Boolean. True iff SequencesPredicate derived variables should be generated. The default value is
‘false’.

daikon.derive.binary.SequencesPredicate.fieldOnly
Boolean. True if Daikon should only generate derivations on fields of the same data structure. The
default value is ‘true’.

daikon.derive.binary.SequencesPredicateFloat.boolOnly
Boolean. True if Daikon should only generate derivations on boolean predicates. The default value
is ‘true’.

daikon.derive.binary.SequencesPredicateFloat.enabled
Boolean. True iff SequencesPredicate derived variables should be generated. The default value is
‘false’.

daikon.derive.binary.SequencesPredicateFloat.fieldOnly
Boolean. True if Daikon should only generate derivations on fields of the same data structure. The
default value is ‘true’.

daikon.derive.ternary.SequenceFloatArbitrarySubsequence.enabled
Boolean. True iff SequenceFloatArbitrarySubsequence derived variables should be generated. The
default value is ‘false’.

daikon.derive.ternary.SequenceScalarArbitrarySubsequence.enabled
Boolean. True iff SequenceScalarArbitrarySubsequence derived variables should be generated. The
default value is ‘false’.

daikon.derive.ternary.SequenceStringArbitrarySubsequence.enabled
Boolean. True iff SequenceStringArbitrarySubsequence derived variables should be generated. The
default value is ‘false’.

daikon.derive.unary.SequenceInitial.enabled
Boolean. True iff SequenceInitial derived variables should be generated. The default value is ‘false’.

daikon.derive.unary.SequenceInitialFloat.enabled
Boolean. True iff SequenceInitial derived variables should be generated. The default value is ‘false’.

daikon.derive.unary.SequenceLength.enabled
Boolean. True iff SequenceLength derived variables should be generated. The default value is ‘true’.

daikon.derive.unary.SequenceMax.enabled
Boolean. True iff SequencesMax derived variables should be generated. The default value is ‘false’.

daikon.derive.unary.SequenceMin.enabled
Boolean. True iff SequenceMin derived variables should be generated. The default value is ‘false’.

daikon.derive.unary.SequenceSum.enabled
Boolean. True iff SequenceSum derived variables should be generated. The default value is ‘false’.

daikon.derive.unary.StringLength.enabled
Boolean. True iff StringLength derived variables should be generated. The default value is ‘false’.

6.1.1.5 Simplify interface configuration options

The configuration options in this section are used to customize the interface to the Simplify theorem
prover. See the description of the --suppress_redundant command-line option in Section 4.2 [Options to
control invariant detection], page 15.

Chapter 6: Enhancing Daikon output 58

daikon.simplify.LemmaStack.print_contradictions
Boolean. Controls Daikon’s response when inconsistent invariants are discovered while running Sim-
plify. If true, Daikon will print an error message to the standard error stream listing the contradictory
invariants. This is mainly intended for debugging Daikon itself, but can sometimes be helpful in trac-
ing down other problems. For more information, see the section on troubleshooting contradictory
invariants in the Daikon manual. The default value is ‘false’.

daikon.simplify.LemmaStack.remove_contradictions
Boolean. Controls Daikon’s response when inconsistent invariants are discovered while running
Simplify. If false, Daikon will give up on using Simplify for that program point. If true, Daikon
will try to find a small subset of the invariants that cause the contradiction and avoid them, to
allow processing to continue. For more information, see the section on troubleshooting contradictory
invariants in the Daikon manual. The default value is ‘true’.

daikon.simplify.LemmaStack.synchronous_errors
Boolean. If true, ask Simplify to check a simple proposition after each assumption is pushed, pro-
viding an opportunity to wait for output from Simplify and potentially receive error messages about
the assumption. When false, long sequences of assumptions may be pushed in a row, so that by the
time an error message arrives, it’s not clear which input caused the error. Of course, Daikon’s input
to Simplify isn’t supposed to cause errors, so this option should only be needed for debugging. The
default value is ‘false’.

daikon.simplify.Session.simplify_max_iterations
A non-negative integer, representing the largest number of iterations for which Simplify should be
allowed to run on any single conjecture before giving up. Larger values may cause Simplify to
run longer, but will increase the number of invariants that can be recognized as redundant. The
default value is small enough to keep Simplify from running for more than a few seconds on any one
conjecture, allowing it to verify most simple facts without getting bogged down in long searches. A
value of 0 means not to bound the number of iterations at all, though see also the simplify_timeout
parameter..

daikon.simplify.Session.simplify_timeout
A non-negative integer, representing the longest time period (in seconds) Simplify should be allowed
to run on any single conjecture before giving up. Larger values may cause Simplify to run longer,
but will increase the number of invariants that can be recognized as redundant. Roughly speaking,
the time spent in Simplify will be bounded by this value, times the number of invariants generated,
though it can be much less. A value of 0 means to not bound Simplify at all by time, though also see
the option simplify_max_iterations. Beware that using this option might make Daikon’s output
depend on the speed of the machine it’s run on. The default value is ‘0’.

daikon.simplify.Session.trace_input
Boolean. If true, the input to the Simplify theorem prover will also be directed to a file named
simplifyN.in (where N is a number starting from 0) in the current directory. Simplify’s operation
can then be reproduced with a command like Simplify -nosc <simplify0.in. This is intended
primarily for debugging when Simplify fails. The default value is ‘false’.

daikon.simplify.Session.verbose_progress
Positive values mean to print extra indications as each candidate invariant is passed to Simplify
during the --suppress_redundant check. If the value is 1 or higher, a hyphen will be printed when
each invariant is passed to Simplify, and then replaced by a T if the invariant was redundant, F if it
was not found to be, and ? if Simplify gave up because of a time limit. If the value is 2 or higher,
a < or > will also be printed for each invariant that is pushed onto or popped from from Simplify’s
assumption stack. This option is mainly intended for debugging purposes, but can also provide
something to watch when Simplify takes a long time. The default value is ‘0’.

Chapter 6: Enhancing Daikon output 59

6.1.1.6 Splitter options

The configuration options in this section are used to customize the behavior of splitters, which yield
conditional invariants and implications (see Section 6.2 [Conditional invariants], page 64).

daikon.split.ContextSplitterFactory.granularity
Enumeration (integer). Specifies the granularity to use for callsite splitter processing. (That is, for
creating invariants for a method that are dependent on where the method was called from.) 0 is
line-level granularity; 1 is method-level granularity; 2 is class-level granularity. The default value is
‘1’.

daikon.split.PptSplitter.disable_splitting
Boolean. If true, the built-in splitting rules are disabled. The built-in rules look for implications
based on boolean return values and also when there are exactly two exit points from a method. The
default value is ‘false’.

daikon.split.PptSplitter.dummy_invariant_level
Integer. A value of zero indicates that DummyInvariant objects should not be created. A value of
one indicates that dummy invariants should be created only when no suitable condition was found
in the regular output. A value of two indicates that dummy invariants should be created for each
splitting condition. The default value is ‘0’.

daikon.split.PptSplitter.split_bi_implications
Split bi-implications ("a <==> b") into two separate implications ("a ==> b" and "b ==> a"). The
default value is ‘false’.

daikon.split.PptSplitter.suppressSplitterErrors
When true, compilation errors during splitter file generation will not be reported to the user. The
default value is ‘true’.

daikon.split.SplitterFactory.compile_timeout
Positive integer. Specifies the Splitter compilation timeout, in seconds, after which the compilation
process is terminated and retried, on the assumption that it has hung. The default value is ‘20’.

daikon.split.SplitterFactory.compiler
String. Specifies which Java compiler is used to compile Splitters. This can be
the full path name or whatever is used on the command line. Uses the cur-
rent classpath. The default value is ‘javac -nowarn -source 8 -target 8 -classpath
/homes/gws/markro/jdk1.8.0 351/lib/tools.jar:/homes/gws/markro/jdk1.8.0 351/classes’.

daikon.split.SplitterFactory.delete_splitters_on_exit
Boolean. If true, the temporary Splitter files are deleted on exit. Set it to "false" if you are debugging
splitters. The default value is ‘true’.

daikon.split.SplitterList.all_splitters
Boolean. Enables indiscriminate splitting (see Daikon manual, Section 6.2.2 [Indiscriminate split-
ting], page 66, for an explanation of this technique). The default value is ‘true’.

6.1.1.7 Debugging options

The configuration options in this section are used to cause extra output that is useful for debugging.
Also see section "Daikon debugging options" (see Section 4.5 [Daikon debugging options], page 17).

daikon.Debug.internal_check
When true, perform detailed internal checking. These are essentially additional, possibly costly assert
statements. The default value is ‘false’.

daikon.Debug.logDetail
Determines whether or not detailed info (such as from add_modified) is printed. The default value
is ‘false’.

Chapter 6: Enhancing Daikon output 60

daikon.Debug.showTraceback
Determines whether or not traceback information is printed for each call to log. The default value
is ‘false’.

daikon.Debug.show_stack_trace
If true, show stack traces for errors such as file format errors. The default value is ‘false’.

6.1.1.8 Quantity of output

The configuration options in this section make Daikon print more or less output. They do not affect
which invariants Daikon computes, only how it ouputs them. Also see the following section.

daikon.Daikon.guardNulls
If "always", then invariants are always guarded. If "never", then invariants are never guarded. If
"missing", then invariants are guarded only for variables that were missing ("can be missing") in
the dtrace (the observed executions). If "default", then use "missing" mode for Java output and
"never" mode otherwise.

Guarding means adding predicates that ensure that variables can be dereferenced. For instance, if a
can be null — that is, if a.b can be nonsensical — then the guarded version of

a.b == 5

is

(a != null) -> (a.b == 5)

.

(To do: Some configuration option (maybe this one) should add guards for other reasons that lead
to nonsensical values (see Section 5.3 [Variable names], page 20).)
The default value is ‘default’.

daikon.Daikon.output_conditionals
Boolean. Controls whether conditional program points are displayed. The default value is ‘true’.

daikon.Daikon.print_sample_totals
Boolean. Controls whether or not the total samples read and processed are printed at the end of
processing. The default value is ‘false’.

daikon.Daikon.progress_delay
The amount of time to wait between updates of the progress display, measured in milliseconds. A
value of -1 means do not print the progress display at all. The default value is ‘1000’.

daikon.Daikon.progress_display_width
The number of columns of progress information to display. In many Unix shells, this can be set to an
appropriate value by --config_option daikon.Daikon.progress_display_width=$COLUMNS. The
default value is ‘80’.

daikon.Daikon.quiet
Boolean. Controls whether or not processing information is printed out. Setting this variable to true
also automatically sets progress_delay to -1. The default value is ‘false’.

daikon.FileIO.count_lines
Boolean. When false, don’t count the number of lines in the dtrace file before reading. This will
disable the percentage progress printout. The default value is ‘true’.

daikon.FileIO.dtrace_line_count
Long integer. If non-zero, this value will be used as the number of lines in (each) dtrace file input
for the purposes of the progress display, and the counting of the lines in the file will be suppressed.
The default value is ‘0’.

Chapter 6: Enhancing Daikon output 61

daikon.FileIO.unmatched_procedure_entries_quiet
Boolean. When true, don’t print a warning about unmatched procedure entries, which are ignored
by Daikon (unless the --nohierarchy command-line argument is provided). The default value is
‘false’.

daikon.FileIO.verbose_unmatched_procedure_entries
Boolean. If true, prints the unmatched procedure entries verbosely. The default value is ‘false’.

daikon.PrintInvariants.print_all
If true, print all invariants without any filtering. The default value is ‘false’.

daikon.PrintInvariants.print_inv_class
Print invariant classname with invariants in output of format() method. Normally used only for
debugging output rather than ordinary printing of invariants. This is especially useful when two
different invariants have the same printed representation. The default value is ‘false’.

daikon.PrintInvariants.true_inv_cnt
If true, print the total number of true invariants. This includes invariants that are redundant and
would normally not be printed or even created due to optimizations. The default value is ‘false’.

6.1.1.9 General configuration options

This section lists miscellaneous configuration options for Daikon.

daikon.Daikon.calc_possible_invs
Boolean. Just print the total number of possible invariants and exit. The default value is ‘false’.

daikon.Daikon.ppt_perc
Integer. Percentage of program points to process. All program points are sorted by name, and
all samples for the first ppt_perc program points are processed. A percentage of 100 matches all
program points. The default value is ‘100’.

daikon.Daikon.undo_opts
Boolean. Controls whether the Daikon optimizations (equality sets, suppressions) are undone at the
end to create a more complete set of invariants. Output does not include conditional program points,
implications, reflexive and partially reflexive invariants. The default value is ‘false’.

daikon.DynamicConstants.OneOf_only
Boolean. Controls which invariants are created for variables that are constant for the entire run. If
true, create only OneOf invariants. If false, create all possible invariants.

Note that setting this to true only fails to create invariants between constants. Invariants between
constants and non-constants are created regardless.

A problem occurs with merging when this is turned on. If a var info is constant at one child slice, but
not constant at the other child slice, interesting invariants may not be merged because they won’t
exist on the slice with the constant. This is thus currently defaulted to false. The default value is
‘false’.

daikon.DynamicConstants.use_dynamic_constant_optimization
Whether to use the dynamic constants optimization. This optimization doesn’t instantiate invariants
over constant variables (i.e., that that have only seen one value). When the variable receives a second
value, invariants are instantiated and are given the sample representing the previous constant value.
The default value is ‘true’.

daikon.FileIO.add_changed
Boolean. When false, set modbits to 1 iff the printed representation has changed. When true, set
modbits to 1 if the printed representation has changed; leave other modbits as is. The default value
is ‘true’.

Chapter 6: Enhancing Daikon output 62

daikon.FileIO.continue_after_file_exception
Boolean. When true, suppress exceptions related to file reading. This permits Daikon to continue
even if there is a malformed trace file. Use this with care: in general, it is better to fix the problem
that caused a bad trace file, rather than to suppress the exception. The default value is ‘false’.

daikon.FileIO.ignore_missing_enter
When true, just ignore exit ppts that don’t have a matching enter ppt rather than exiting with an
error. Unmatched exits can occur if only a portion of a dtrace file is processed. The default value is
‘false’.

daikon.FileIO.max_line_number
Integer. Maximum number of lines to read from the dtrace file. If 0, reads the entire file. The default
value is ‘0’.

daikon.FileIO.read_samples_only
Boolean. When true, only read the samples, but don’t process them. Used to gather timing infor-
mation. The default value is ‘false’.

daikon.FileIO.rm_stack_dups
If true, modified all ppt names to remove duplicate routine names within the ppt name. This is
used when a stack trace (of active methods) is used as the ppt name. The routine names must be
separated by vertical bars (|). The default value is ‘false’.

daikon.PptRelation.enable_object_user
Boolean. Controls whether the object-user relation is created in the variable hierarchy. The default
value is ‘false’.

daikon.PptSliceEquality.set_per_var
If true, create one equality set for each variable. This has the effect of turning the equality optimiza-
tion off, without actually removing the sets themselves (which are presumed to exist in many parts
of the code). The default value is ‘false’.

daikon.PptTopLevel.pairwise_implications
Boolean. If true, create implications for all pairwise combinations of conditions, and all pairwise
combinations of exit points. If false, create implications for only the first two conditions, and create
implications only if there are exactly two exit points. The default value is ‘false’.

daikon.PptTopLevel.remove_merged_invs
Remove invariants at lower program points when a matching invariant is created at a higher program
point. For experimental purposes only. The default value is ‘false’.

daikon.PrintInvariants.old_array_names
In the new decl format, print array names as ’a[]’ as opposed to ’a[..]’ This creates names that are
more compatible with the old output. This option has no effect in the old decl format. The default
value is ‘true’.

daikon.PrintInvariants.print_implementer_entry_ppts
If false, don’t print entry method program points for methods that override or implement another
method (i.e., entry program points that have a parent that is a method). Microsoft Code Contracts
does not allow contracts on such methods. The default value is ‘true’.

daikon.PrintInvariants.remove_post_vars
If true, remove as many variables as possible that need to be indicated as ’post’. Post variables
occur when the subscript for a derived variable with an orig sequence is not orig. For example:
orig(a[post(i)]) An equivalent expression involving only orig variables is substitued for the post
variable when one exists. The default value is ‘false’.

Chapter 6: Enhancing Daikon output 63

daikon.PrintInvariants.replace_prestate
This option must be given with "–format Java" option.

Instead of outputting prestate expressions as "\old(E)" within an invariant, output a variable name
(e.g. ‘v1’). At the end of each program point, output the list of variable-to-expression mappings.
For example: with this option set to false, a program point might print like this:

foo.bar.Bar(int):::EXIT
\old(capacity) == sizeof(this.theArray)

With the option set to true, it would print like this:

foo.bar.Bar(int):::EXIT
v0 == sizeof(this.theArray)
prestate assignment: v0=capacity

The default value is ‘true’.

daikon.PrintInvariants.static_const_infer
This enables a different way of treating static constant variables. They are not created into invariants
into slices. Instead, they are examined during print time. If a unary invariant contains a value which
matches the value of a static constant varible, the value will be replaced by the name of the variable,
"if it makes sense". For example, if there is a static constant variable a = 1. And if there exists an
invariant x <= 1, x <= a would be the result printed. The default value is ‘false’.

daikon.ProglangType.convert_to_signed
If true, treat 32 bit values whose high bit is on, as a negative number (rather than as a 32 bit
unsigned). The default value is ‘false’.

daikon.VarInfo.constant_fields_simplify
If true, the treat static constants (such as MapQuick.GeoPoint.FACTOR) as fields within an object
rather than as a single name. Not correct, but used to obtain compatibility with VarInfoName. The
default value is ‘true’.

daikon.VarInfo.declared_type_comparability
If true, then variables are only considered comparable if they are declared with the same type. For
example, java.util.List is not comparable to java.util.ArrayList and float is not comparable to double.
This may miss valid invariants, but significant time can be saved and many variables with different
declared types are not comparable (e.g., java.util.Date and java.util.ArrayList). The default value is
‘true’.

daikon.VarInfoName.direct_orig
When true, apply orig directly to variables, do not apply orig to derived variables. For example,
create ’size(orig(a[]))’ rather than ’orig(size(a[]))’. The default value is ‘false’.

daikon.chicory.DaikonVariableInfo.constant_infer
Enable experimental techniques on static constants. The default value is ‘false’.

daikon.suppress.NIS.enabled
Boolean. If true, enable non-instantiating suppressions. The default value is ‘true’.

daikon.suppress.NIS.hybrid_threshhold
Int. Less and equal to this number means use the falsified method in the hybrid method of processing
falsified invariants, while greater than this number means use the antecedent method. Empirical data
shows that number should not be more than 10000. The default value is ‘2500’.

daikon.suppress.NIS.skip_hashcode_type
Boolean. If true, skip variables of file rep type hashcode when creating invariants over constants in
the antecedent method. The default value is ‘true’.

Chapter 6: Enhancing Daikon output 64

daikon.suppress.NIS.suppression_processor
Specifies the algorithm that NIS uses to process suppressions. Possible selections are ’HYBRID’,
’ANTECEDENT’, and ’FALSIFIED’. The default is the hybrid algorithm which uses the falsified al-
gorithm when only a small number of suppressions need to be processed and the antecedent algorithm
when a large number of suppressions are processed. The default value is ‘HYBRID’.

daikon.suppress.NIS.suppressor_list
Boolean. If true, use the specific list of suppressor related invariant prototypes when creating constant
invariants in the antecedent method. The default value is ‘true’.

6.2 Conditional invariants (disjunctions) and implications
Conditional invariants are invariants that are true only part of the time. For instance, consider the

absolute value procedure. Its postcondition is

if arg < 0
then return == -arg
else return == arg

The invariant return == -arg is a conditional invariant because it depends on the predicate arg < 0 being
true. An implication is a compound invariant that includes both the predicate and the conditional invariant
(also called the consequent); an example of an implication is arg < 0 ==> return == -arg.

Another type of implication is a context-sensitive invariant — a fact about method A that is true only
when A is called by method B, but not true in general about A. You can use the configuration option
daikon.split.ContextSplitterFactory.granularity to control creation of context-sensitive invariants.
Alternately, you can use implications to construct context-sensitive invariants: set a variable that depends
on the call site, then compute an implication whose predicate tests that variable. For an example, see the
paper Selecting, refining, and evaluating predicates for program analysis (http://plse.cs.washington.
edu/daikon/pubs/predicates-tr914-abstract.html).

Daikon must be supplied with the predicate for an implication. Daikon has certain built-in predicates
that it uses for finding conditional invariants; examples are which return statement was executed in a
procedure and whether a boolean procedure returns true or false. Additionally, Daikon can read predicates
from a file called a splitter info (.spinfo) file and find implications based on those predicates. The splitter
info file can be produced automatically, such as by static analysis of the program using the CreateSpinfo
and CreateSpinfoC programs (see Section 6.3.1 [Static analysis for splitters], page 68) or by cluster analysis
of the traced values in the data trace file. Details of these techniques and usage guides can be found in
Section 6.3 [Enhancing conditional invariant detection], page 67. Users can also create splitter info files
themselves or can augment automatically-created ones.

To detect conditional invariants and implications:

1. Create the splitter info file, either automatically or by hand.

2. Run Daikon with the .spinfo file as one of its arguments. (The order of arguments does not matter.)
For example,

java -cp $DAIKONDIR/daikon.jar daikon.Daikon Foo.decls Foo.spinfo Foo.dtrace

The term splitter comes from Daikon’s technique for detecting implications and conditional invariants.
For each predicate, Daikon creates two conditional program points — one for program executions that
satisfy the condition and one for those that don’t — and splits the data trace into two parts. Invariant
detection is then performed on the conditional program points (that is, the parts of the data trace)
separately and any invariants detected are reported as conditional invariants (as implications).

To be precise, we say that an invariant holds exclusively if it is discovered on one side of a split, and
its negation is discovered on the opposite side. Daikon creates conditional invariants whose predicates are
invariants that hold exclusively on one side of a split, and whose consequents are invariants that hold on

http://plse.cs.washington.edu/daikon/pubs/predicates-tr914-abstract.html
http://plse.cs.washington.edu/daikon/pubs/predicates-tr914-abstract.html

Chapter 6: Enhancing Daikon output 65

that side of the split but not on the unsplit program point. If Daikon finds multiple exclusive conditions, it
will create biconditional (“if and only if”) invariants between the equivalent conditions. Within the context
of the program, each of the exclusive conditions is equivalent to the splitting condition. In particular, if
both the splitting condition and its negation are within the grammar of invariants that Daikon detects,
the splitting condition may appear as the predicate of the generated conditional invariants. On the other
hand, if other equivalent conditions are found, or if the splitting condition is not expressible in Daikon’s
grammar, it might not appear in the generated implications.

In some cases, the default policy of selecting predicates from Daikon’s output may be insufficient. For
instance, Daikon might not detect any invariant equivalent to the splitting condition, if the splitting
condition is sufficiently complex or application-specific. In such situations, Daikon can also use the splitting
condition itself, as what is called a dummy invariant. To use dummy invariants, set the configuration
option daikon.split.PptSplitter.dummy_invariant_level to a non-zero value (see Section 6.1.1 [List
of configuration options], page 43).

6.2.1 Splitter info file format

A splitter info file contains the conditions that Daikon should use to create conditional invariants. Each
section in the .spinfo file consists of a sequence of non-blank lines; sections are separated by blank
lines. There are two types of sections: program point sections and replacement sections. See Section 6.2.3
[Example splitter info file], page 66, for an example splitter info file.

6.2.1.1 Program point sections

Program point sections have a line specifying a program point name followed by lines specifying the
condition(s) associated with that program point, each condition on its own line. Additional information
about a condition may be specified on indented lines. For example, a typical entry is

PPT_NAME pptname
condition1
condition2

DAIKON_FORMAT string
ESC_FORMAT string

condition3
...

pptname can be any string that matches a part of the desired program point name as printed in the .decls
file. In finding matching program points, Daikon uses the first program point that matches pptname.
Caution is necessary when dealing with method names that are prefixes of other method names. For
instance, if the class List has methods add and addAll, specifying ‘PPT_NAME List.add’ might select
either method, depending on which was encountered first. Instead writing ‘PPT_NAME List.add(’ will
match only the add method.

Each condition is a Java expression of boolean type. All variables that appear in the condition must
also appear in the declaration of the program point in the .decls file. (In other words, all the variables
must be in scope at the program point(s) where the Splitter is intended to operate.) The automatically
generated Splitter source code fails to compile (but Daikon proceeds without it) if a variable name in a
condition is not found at the matching program point.

An indented lines beginning with ‘DAIKON_FORMAT’, ‘JAVA_FORMAT’, ‘ESC_FORMAT’, or ‘SIMPLIFY_FORMAT’
specifies how to print the condition. These are optional; for any Daikon output format that is omitted,
the Java condition itself is used. The alternate printed representation is used when the splitting condition
is used as a dummy invariant; see configuration option daikon.split.PptSplitter.dummy_invariant_
level.

Chapter 6: Enhancing Daikon output 66

6.2.1.2 Replacement sections

Ordinarily, a splitting condition may not invoke user-defined methods, because when Daikon reads data
trace files, it does not have access to the program source. A replace section of the splitter info file can
specify the bodies of methods, permitting conditions to invoke those methods. The format is as follows:

REPLACE
procedure1
replacement1
procedure2
replacement2
...

where replacementi is a Java expression for the body of procedurei. In each condition, Daikon replaces
procedure calls by their replacements. A replace section may appear anywhere in the splitter info file.

6.2.2 Indiscriminate splitting

Each condition in an .spinfo is associated with a program point. The condition can be used at only
that program point by placing the following line in a file that is passed to Daikon via the --config flag
(see Section 4.4 [Daikon configuration options], page 16):

daikon.split.SplitterList.all_splitters = false

The default, called indiscriminate splitting, is to use every condition at every program point, regardless
of where in the .spinfo file the condition appeared.

The advantage of indiscriminate splitting is that a condition that is useful at one program point may
also be useful at another — if the same variables are in scope or other variables of the same name are in
scope. The disadvantage of indiscriminate splitting is that it slows Daikon down.

Daikon uses a condition only where it can be used. For example, the condition myArray.length == x is
applicable only at program points that have variables named myArray and x. To see warnings about places
a splitting condition cannot be used (reported as failure to compile splitters at those locations), place the
following line in a file that is passed to Daikon via the --config flag (see Section 4.4 [Daikon configuration
options], page 16):

daikon.split.SplitterList.all_splitters_errors = true

6.2.3 Example splitter info file

Below is an implementation of a simple Queue for positive integers and a corresponding .spinfo file.
The splitter info file is like the one that CreateSpinfo would create for that class, but also demonstrates
some other features.

6.2.3.1 Example class
class simpleStack {

private int[] myArray;

private int currentSize;

public simpleStack(int capacity) {

myArray = new int[capacity];

currentSize = 0;

}

/** Adds an element to the back of the stack, if the stack is

* not full.

* Returns true if this succeeds, false otherwise. */

public String push(int x) {

Chapter 6: Enhancing Daikon output 67

if (!isFull() && x >= 0) {

myArray[currentSize] = x;

currentSize++;

return true;

} else {

return false;

}

}

/** Returns the most recently inserted stack element.

* Returns -1 if the stack is empty. */

public int pop() {

if (!isEmpty()) {

currentSize--;

return myArray[currentSize];

} else {

return -1;

}

}

/** Returns true if the stack is empty, false otherwise. */

private boolean isEmpty() {

return (currentSize == 0);

}

/** Returns true if the stack is full, false otherwise. */

private boolean isFull() {

return (currentSize == myArray.length);

}

}

6.2.3.2 Resulting .spinfo file
REPLACE

isFull()

currentSize == myArray.length

isEmpty()

currentSize == 0

PPT_NAME simpleStack.push

!isFull() && x >= 0

DAIKON_FORMAT !isFull() and x >= 0

SIMPLIFY_FORMAT (AND (NOT (isFull this)) (>= x 0))

PPT_NAME simpleStack.pop

!isEmpty()

PPT_NAME simpleStack.isFull

currentSize == myArray.length - 1

PPT_NAME simpleStack.isEmpty

currentSize == 0

6.3 Enhancing conditional invariant detection
The built-in mechanisms (see Section 6.2 [Conditional invariants], page 64) have limitations in the

invariants they can find. By supplying splitting conditions to Daikon via a splitter info file, the user can

Chapter 6: Enhancing Daikon output 68

infer more conditional invariants. To ease this task, there are methods to automatically create splitter info
files for use by Daikon.

6.3.1 Static analysis for splitters

In static analysis, all boolean statements in the program source are extracted and used as splitting
conditions. The assumption is that conditions that are explicitly tested in the program are likely to affect
the program’s behavior and could lead to useful conditional invariants. The simple heuristic of using these
conditional statements as predicates for conditional invariant detection is often quite effective.

6.3.1.1 Static analysis of Java for splitters

The CreateSpinfo program takes Java source code as input and creates a splitter info file for each Java
file; for instance,

java -cp $DAIKONDIR/daikon.jar daikon.tools.jtb.CreateSpinfo Foo.java Bar.java

creates the splitter info files Foo.spinfo and Bar.spinfo. Given an -o filename argument, CreateSpinfo
puts all the splitters in the specified file instead. The resulting splitter info file(s) contains each boolean
expression that appears in the source code.

If you get an error such as

jtb.ParseException: Encountered ";" at line 253, column 8.
Was expecting one of: "abstract" ...

then you may have encountered a bug in the JTB library on which CreateSpinfo is built. It does not
permit empty declarations in a class body. Remove the extra semicolon in your Java file (at the indicated
position) and re-rerun CreateSpinfo.

6.3.1.2 Static analysis of C for splitters

The CreateSpinfoC program performs the same function for C source code as CreateSpinfoC does for
Java. CreateSpinfoC can only be run on postprocessed source files—that is, source files contain no CPP
commands. CPP commands are lines starting with ‘#’, such as ‘#include’. To expand CPP commands into
legal C, run either cpp -P or gcc -P -E. For instance, here is how you could use CreateSpinfoC:

cpp -P foo.c foo.c-expanded
cpp -P bar.c bar.c-expanded
java -cp $DAIKONDIR/daikon.jar daikon.tools.jtb.CreateSpinfoC \

foo.c-expanded bar.c-expanded

WARNING: The names produced by CreateSpinfoC sometimes differ from the names produced by Kvasir.
For example, suppose you have a C file that contains a function ‘foo’. Then CreateSpinfoC may create a
.spinfo file that mentions a program point named ‘std.foo’, whereas Kvasir creates a .dtrace file that
mentions a program point named ‘..foo’. Such a mismatch will cause Daikon to produce no conditional
invariants for the given program point. This is a bug that needs to be fixed! (Patches are welcome.) In the
meanwhile, you can edit the generated .spinfo file to conform to the .dtrace file’s naming conventions.

If you get an error such as

... Lexical error at line 5, column 1.
Encountered: "#" (35), after : ""

then you forgot to run CPP before running CreateSpinfoC.

If you get an error such as

CreateSpinfoC encountered errors during parse.
Encountered "__extension__ typedef struct { ...

then your program uses non-standard C syntax. The ‘__extension__’ keyword is supported only by the
gcc compiler, and isn’t handled by the CreateSpinfoC program. You could extend the CreateSpinfoC

Chapter 6: Enhancing Daikon output 69

program to handle non-standard gcc extensions, or you could remove non-standard gcc extensions from
your program. The extensions might also result from standard libraries rather than your own program —
removing a directives such as ‘#include <stdio.h>’ when preprocessing may also resolve the problem.

6.3.2 Cluster analysis for splitters

Cluster analysis is a statistical method that finds groups or clusters in data. The clusters may indicate
conditional properties in the program. The cluster analysis mechanism finds clusters in the data trace file,
infers invariants over any clusters that it finds, and writes these invariants into a splitter info file. Then,
you supply the splitter info file to Daikon in order to infer conditional invariants.

To find splitting conditions using cluster analysis, run the runcluster.pl program (found in the
$DAIKONDIR/scripts directory) in the following way:

runcluster.pl [options] dtrace_file ... decls_files ...

The options are:

-a ALG
--algorithm ALG

ALG specifies a clustering algorithm. Current options are ‘km’ (for kmeans), ‘hierarchical’, and
‘xm’ (for xmeans). The default is ‘xm’.

-k The number of clusters to use (for algorithms which require this input, which is everything except
xmeans). The default is 4.

--keep
Don’t delete the temporary files created by the clustering process. This is a debugging flag.

The runcluster.pl script currently supports three clustering programs. They are implementations of
the kmeans algorithm, hierarchical clustering, and the xmeans algorithm (kmeans algorithm with efficient
discovery of the number of clusters). The kmeans and hierarchical clustering tools are provided in the
Daikon distribution. The xmeans code and executable are publicly available at http://www.cs.cmu.edu/
~dpelleg/kmeans.html (fill in the license form and mail it in).

6.3.3 Random selection for splitters

Random selection can create representative samples of a data set with the added benefit of finding
conditional properties and eliminating outliers. Given trace data, the TraceSelect tool creates several
small subsets of the data by randomly selecting parts of the original trace file. Any invariant that is
discovered in the smaller samples but not found over the entire data is a conditional invariant.

To find splitting conditions using random selection, run the daikon.tools.TraceSelect program in the
following way:

java -cp $DAIKONDIR/daikon.jar daikon.tools.TraceSelect \
num_reps sample_size [options] \
dtrace_file decls_files ... [daikon_options]

num reps is the number of subsets to create, and sample size is the number of invocations to collect for
each method.

The daikon options are the same options that can be provided to the daikon.Daikon program.

The options for TraceSelect are:

-NOCLEAN
Don’t delete the temporary trace samples created by the random selection process. This can help for
debugging or for using the tool solely to create trace samples instead of calculating invariants over
the samples.

http://www.cs.cmu.edu/~dpelleg/kmeans.html
http://www.cs.cmu.edu/~dpelleg/kmeans.html

Chapter 6: Enhancing Daikon output 70

-INCLUDE_UNRETURNED
Allows random selection to choose method invocations that entered the method successfully but did
not exit normally; either from a thrown Exception or abnormal termination.

-DO_DIFFS
Creates an .spinfo file for generating conditional invariants and implications by reporting the in-
variants that appear in at least one of the samples but not over the entire data set.

6.4 Dynamic abstract type inference (DynComp)
Abstract types group variables that are used for related purposes in a program. For example, suppose

that some int variables in your program are array indices, and other int variables represent time. Even
though these variables have the same type (int) in the programming language, they have different abstract
types.

Abstract types can be provided as input to Daikon, so that it only infers invariants between values of
the same abstract type. This has two benefits. First, it improves Daikon’s performance, often by over an
order of magnitude, because it reduces the number of potential invariants that must be checked. Second, it
reduces spurious output caused by invariants over unrelated variables. You are strongly recommended to
supply abstract types when running Daikon; Daikon does not produce satisfactory output without abstract
type information.

Abstract type inference is performed by the front-ends, before Daikon runs. The Daikon distribution
includes three tools that infer abstract types (also called comparability types) from program executions.

• The Java DynComp tool produces a comparability file that must then be supplied to the Chicory Java
front-end. For examples of using DynComp with Java programs, see Section 3.1 [Detecting invariants
in Java programs], page 4. For full details about the DynComp tool for Java, see Section 7.2 [DynComp
for Java], page 77.

• The Kvasir front-end for C/C++ binaries by default uses a DynComp mode in which it produces a sep-
arate .decls file containing comparability information, which must be supplied to Daikon along with
the .dtrace file. For examples of using DynComp with C programs, see Section 3.2.1 [C examples],
page 8. For full details about the DynComp tool for C/C++, see Section 7.3.3 [DynComp for C/C++],
page 90.

• The Celeriac front-end for .NET programs can compute variable comparability. It does so statically
by examining the program text, rather than dynamically by running the program as DynComp does.
For full details about variable comparability in Celeriac, see https://github.com/codespecs/
daikon-dot-net-front-end.

6.5 Loop invariants
Daikon does not by default output loop invariants. Daikon can detect invariants at any location where

it is provided with variable values, but currently Daikon’s front ends do not supply Daikon with variable
values at loop heads.

You could extend a front end to output more variable values, or you could write a new front end.

Alternately, here is a way to use the current front ends to produce loop invariants. This workaround
requires you to change your program, but it requires no change to Daikon or its front ends.

At the top of a loop (or at any other location in the program at which you would like to obtain invariants),
insert a call to a dummy procedure that does no work but returns immediately. Pass, as arguments to
the dummy procedure, all variables of interest (including local variables). Daikon will produce (identical)
preconditions and postconditions for the dummy procedure; these are properties that held at the call site.

For instance, you might change the original code

https://github.com/codespecs/daikon-dot-net-front-end
https://github.com/codespecs/daikon-dot-net-front-end

Chapter 6: Enhancing Daikon output 71

public void calculate(int x) {
int tmp = 0;
while (x > 0) {
// you desire to compute an invariant here
tmp=tmp+x;
x=x-1;

}
}

into

public void calculate(int x) {
int tmp = 0;
while (x > 0) {

calculate_loophead(x, tmp);
tmp=tmp+x;
x=x-1;

}
}

// dummy procedure
public void calculate_loophead(int x, int tmp) {
}

Chapter 7: Front ends and instrumentation 72

7 Front ends and instrumentation

The Daikon invariant detector is a machine learning tool that finds patterns (invariants) in data. That
data can come from any source. A front end is a tool that converts data from some other format into
Daikon’s input format.

Daikon is often used to find invariants over variable values in a running program. For that use case,
the most common type of front end is an instrumenter. An instrumenter changes a program to add
instrumentation (sometimes called probes) so that when the program runs, it does all its usual operations
and also produces output to a side file, such as a Daikon .dtrace file (see Section “Reading dtrace files”
in Daikon Developer Manual).

This chapter describes several front ends that are distributed with Daikon. It is relatively easy to build
your own front end, if these do not serve your purpose; we are aware of a number of users who have done
so (see Section 7.7 [Other front ends], page 109). For more information about building a new front end,
see Section “New front ends” in Daikon Developer Manual.

7.1 Java front end Chicory
The Daikon front end for Java, named Chicory, executes Java programs, creates data trace (.dtrace)

files, and optionally runs Daikon on them. Chicory is named after the chicory plant, whose root is sometimes
used as a coffee substitute or flavor enhancer.

While Daikon can be run using only the Chicory front end, it is highly recommend that DynComp be
run prior to Chicory. See Section 7.2 [DynComp for Java], page 77 for more details.

To use Chicory, run your program as you normally would, but replace the java command with java
daikon.Chicory. For instance, if you usually run

java -cp myclasspath mypackage.MyClass arg1 arg2 arg3

then instead you would run

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.Chicory \
mypackage.MyClass arg1 arg2 arg3

This runs your program and creates file MyClass.dtrace in the current directory. Furthermore, a single
command can both create a trace file and run Daikon:

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.Chicory \
--daikon mypackage.MyClass arg1 arg2 arg3

See below for more options.

That’s all there is to it! Since Chicory instruments class files directly as they are loaded into Java, you do
not need to perform separate instrumentation and recompilation steps. However, you should compile your
program with debugging information enabled (the -g command-line switch to javac); otherwise, Chicory
uses the names arg0, arg1, . . . as the names of method arguments.

Chicory must be run in a version 8 (or later) JVM, but it is backward-compatible with older versions of
Java code. Chicory can process class files from any version of Java.

7.1.1 Chicory options

Chicory is invoked as follows:

java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
chicory-args classname args

where

java classname args

is a valid invocation of Java.

This section lists the optional command-line arguments to Chicory, which appear before the classname
on the Chicory command line.

Chapter 7: Front ends and instrumentation 73

7.1.1.1 Program points in Chicory output

This section lists options that control which program points appear in Chicory’s output.

--ppt-select-pattern=regexp
Only produce trace output for classes/procedures/program points whose names match the given
regular expression. This option may be supplied multiple times, and may be used in conjunction
with --ppt-omit-pattern.

When this switch is supplied, filtering occurs in the following way: for each program point, Chicory
checks the fully qualified class name, the method name, and the the program point name against
each regexp that was supplied. If any of these match, then the program point is included in the
instrumentation.

Suppose that method bar is defined only in class C. Then to traces only bar, you could match the
method name (in any class) with regular expression ‘bar$’, or you could match the program point
name with ‘C\.bar\(’.

java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
--ppt-select-pattern=’bar$’ ...

java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
--ppt-select-pattern=’C\.bar\(’ ...

--ppt-omit-pattern=regexp
Do not produce data trace output for classes/procedures/program points whose names match the
given regular expression. This reduces the size of the data trace file and also may make the instru-
mented program run faster, since it need not output those variables.

This option works just like --ppt-select-pattern does, except that matching program points are
excluded, not included.

The --ppt-omit-pattern argument may be supplied multiple times, in order to specify multiple
omitting criteria. A program point is omitted if its fully qualified class, fully qualified procedure
name, or complete program point name exactly matches one of the omitting criteria. A regular
expression matches if it matches any portion of the program point name. Note that currently only
classes are matched, not each full program point name. Thus, either all of a class’s methods are
traced, or none of them are.

Here are examples of how to avoid detecting invariants over various parts of your program.

• omit a whole package:
java -cp $DAIKONDIR/daikon.jar daikon.Chicory \

’--ppt-omit-pattern=^org\.junit\.’ ...

java -cp $DAIKONDIR/daikon.jar daikon.Chicory \

’--ppt-omit-pattern=^daikon\.util\..*’ ...

• omit a single class:
java -cp $DAIKONDIR/daikon.jar daikon.Chicory \

’--ppt-omit-pattern=HashSetLinear\$HslIterator’ ...

• omit a single method:
java -cp $DAIKONDIR/daikon.jar daikon.Chicory \

’--ppt-omit-pattern=StackAr.topAndPop()’ ...

• omit a single program point:
java -cp $DAIKONDIR/daikon.jar daikon.Chicory \

’--ppt-omit-pattern=StackAr.<init>(int):::EXIT33’ ...

--sample-start=sample-cnt
When this option is chosen, Chicory will record each program point until that program point has
been executed sample-cnt times. Chicory will then begin sampling. Sampling starts at 10% and

Chapter 7: Front ends and instrumentation 74

decreases by a factor of 10 each time another sample-cnt samples have been recorded. If sample-cnt
is 0, then all calls will be recorded.

--boot-classes=regex
Chicory treats classes that match the regex as boot classes. Such classes are not instrumented.

--instrument-clinit
Causes Chicory to output empty dtrace records when static initializers are entered and exited. This
is useful for clients that use Chicory to trace method entry and exit.

7.1.1.2 Variables in Chicory output

This section lists options that control which variables appear in Chicory’s output.

--nesting-depth=n
Depth to which to examine structure components (default 2). This parameter determines which
variables the front end causes to be output at run time. For instance, suppose that a program
contained the following data structures and a method foo:

class A {
int x;
B b;

}
class B {
int y;
int z;

}

class Link {
int val;
Link next;

}

void foo(A myA, Link myList) { ... }

Consider what variables would be output at the entry to method foo:

• If depth=0, only the identities (hash codes) of myA and myList would be examined; those
variables could be determined to be equal or not equal to other variables.

• If depth=1, then in addition to the above, myA.x, the identity of myA.b, myList.val, and the
identity of myList.next would be examined.

• If depth=2, then, in addition to the above, also myA.b.y, myA.b.z, the identity of
myList.next.next, and myList.next.val would be examined.

Values whose value is undefined are not examined. For instance, if myA is null on a particular
execution of a program point, then myA.b is not accessed on that execution regardless of the depth
parameter. That variable appears in the .dtrace file, but its value is marked as nonsensical.

--omit-var=regex
Do not include variables whose name matches the regular expression. (For static fields, the fully-
qualified name is used.) Variables will be omitted from each program point in which they appear.
Also see Daikon’s --var-omit-pattern command-line argument. Note that you may need to omit
the same variables from downstream tools that process invariant files, such as Annotate

--std-visibility
When this switch is on, Chicory will traverse exactly those fields that are visible from a given program
point. For instance, only the public fields of class pack1.B will be included at a program point for

Chapter 7: Front ends and instrumentation 75

class pack2.A whether or not pack1.B is instrumented. By default, Chicory outputs all fields in
instrumented classes (even those that would not be accessible in Java code at the given program
point) and outputs no fields from uninstrumented classes (even those that are accessible). When you
supply --std-visibility, consider also supplying --purity-file to enrich the set of expressions
in Daikon’s output.

--purity-file=pure-methods-file
File pure-methods-file lists the pure methods (sometimes called observer methods; one type of ob-
server is getter methods) in a Java program. Pure methods have no externally side effects, such
as setting variables or producing output. For example, most implementations of the hashCode(),
toString(), and equals() methods are pure.

For each variable, Chicory adds to the trace new fields that represent invoking each pure method
on the variable. (Currently, Chicory does so only for pure methods that take no parameters, and
obviously this mechanism is only useful for methods that return a value: a pure method that returns
no value does nothing!)

Here is an example:

class Point {
private int x, y;
public int radiusSquared() {
return x*x + y*y;

}
}

If radiusSquared() has been specified as pure, then for each point p, Chicory will output the vari-
ables p.x, p.y, and p.radiusSquared(). Use of pure methods can improve the Daikon output, since
they represent information that the programmer considered important but that is not necessarily
stored in a variable.

Invoking a pure method at any time in an application should not change the application’s behavior.
If a non-pure method is listed in a purity file, then application behavior can change. Chicory does
not verify the purity of methods listed in the purity file.

The purity file lists a set of methods, one per line. The format of each method is given by the Sun
JDK API:

The string is formatted as the method access modifiers, if any, followed by the method return
type, followed by a space, followed by the class declaring the method, followed by a period,
followed by the method name, followed by a parenthesized, comma-separated list of the method’s
formal parameter types. If the method throws checked exceptions, the parameter list is followed
by a space, followed by the word throws followed by a comma-separated list of the thrown
exception types. For example:

public boolean java.lang.Object.equals(java.lang.Object)

The access modifiers are placed in canonical order as specified by "The Java Language Spec-
ification". This is public, protected or private first, and then other modifiers in the following
order: abstract, static, final, synchronized native.

By convention, pure-methods-file has the suffix .pure. If pure-methods-file is specified as a
relative (not absolute) file name, it is searched for in the configuration directory specified via
--configs=directory, or in the current directory if no configuration directory is specified.

One way to create a .pure file is to run the Purity Analysis Kit (https://jppa.sourceforge.net/
). If you supply the --daikon-purity-file when running the Purity Analysis Kit, it writes a file
that can be supplied to Chicory.

https://jppa.sourceforge.net/
https://jppa.sourceforge.net/

Chapter 7: Front ends and instrumentation 76

7.1.1.3 Chicory miscellaneous options

This section lists all other Chicory options — that is, all options that do not control which program
points and variables appear in Chicory’s output.

--help
-h Print a help message.

--verbose
-v Print information about the classes being processed.

--debug
-d Produce debugging information. For other debugging options, run Chicory with the --help option.

--dtrace-file=filename
Specifies the default name for the trace output (.dtrace) file. If this is not specified, then the value
of the DTRACEFILE environment variable (at the time the instrumented program runs) is used. If
that environment variable is not used, then the default is ./CLASSNAME.dtrace.gz.

If the DTRACEAPPEND environment variable is set to any value, the .dtrace file will be appended to
instead of overwritten. Compressed data trace files may not be appended to. In some cases you may
find a single large data trace file more convenient; in other cases, a collection of smaller data trace
files may give you more control over which subsets of runs to invoke Daikon on.

Note that while Chicory will accept any valid value for filename, it must contain .dtrace to be
recognized by Daikon.

--comparability-file=filename
This option specifies a declaration file (see Section “Declarations” in Daikon Developer Manual) that
contains comparability information. This information will be incorporated in the output of Chicory.
Any variables not included in the comparability file will have their comparability set so that they
are comparable to all other variables of the same type. The DynComp tool is a common source for
such a file (see Section 7.2 [DynComp for Java], page 77 and Section 7.3.3 [DynComp for C/C++],
page 90).

--output-dir=directory
Write the .dtrace trace output file to the specified directory. The default is the current directory.

--config-dir=directory
Chicory will use this location to search for configuration files. Currently, this only includes *.pure
files.

--daikon
After creating a data trace (.dtrace) file, run Daikon on it. To specify arguments to Daikon use
the --daikon-args option. Also see the --daikon-online option.

This option supplies Daikon with a single trace from one execution of your program. By contrast to
this option (and --daikon-online), if you invoke Daikon from the command line, you can supply
Daikon with as many trace files as you wish.

If the program that Chicory is tracing aborts with an error, then Chicory does not run Daikon, but
prints a message such as “Warning: Did not run Daikon because target exited with 1 status”.

--daikon-online
This option is like --daikon, except that no .dtrace data trace file is produced. Instead, Chicory
sends trace information over a socket to Daikon, which processes the information incrementally
(“online”), as Chicory produces it.

Just like with the --daikon option, Daikon is only given a single trace from one execution of your
program.

Chapter 7: Front ends and instrumentation 77

The Kvasir front end also supports online execution, via use of (normal or named) Linux pipes (see
Section 7.3.7 [Online execution], page 101).

--daikon-args=arguments
Specifies arguments to be passed to Daikon if the --daikon or --daikon-online options are used.

--heap-size=max_heap
Specifies the maximum size, in bytes, of the memory allocation pool for the target program. Also
applies to Daikon, if the --daikon command-line argument is given. The size is specified in the same
manner as the --Xmx switch to java; for example: --heap-size=3600m.

--premain=path
Specifies the absolute pathname to the ChicoryPremain.jar file. Chicory requires this jar file in
order to execute. By default Chicory looks for the jar file in the classpath and in $DAIKONDIR/java
(where DAIKONDIR is the complete installation of Daikon).

Chicory can also use the daikon.jar file for this purpose. If it doesn’t find ChicoryPremain.jar
above, it will use daikon.jar itself (if a file named daikon.jar appears in the classpath). If the
Daikon jar file is not named daikon.jar, you can use this switch to specify its name. For example:

--premain=C:\lib\daikon-5.8.20.jar

7.1.2 Static fields (global variables)

Chicory (Daikon’s front end for Java) outputs the values of static fields in the current class, but not in
other classes. That means that Daikon cannot report properties over static fields in other classes, because
it never sees their values. (By contrast, Kvasir (see Section 7.3 [Kvasir], page 84) supplies the values of
C/C++ global variables to Daikon.)

If you need Daikon to include all static variables when processing each class, then ask the maintainers
to add that feature to Chicory (or work with them to implement the enhancement). In the meanwhile,
here are two workarounds.

1. Add a static field whose type is the class containing the fields of interest. You don’t have to ever
assign to the new field. A disadvantage of this approach is that it gives you properties over the global
variables as observed by each class (which might be different).

2. At the beginning and end of each method, add a call to a dummy method that has access to all the
globals (via adding the field mentioned above). This produces a single formula that is valid for all
global variables at all times.

7.1.3 Troubleshooting Chicory

A message like

Chicory warning: ClassFile: ... - classfile version (49) is out of date and may not be processed correctly.

means that your program uses an old classfile format that is missing information that Chicory uses during
instrumentation. Chicory might work properly, or it might not. You can eliminate the warning by re-
compiling your program, using a -target command-line argument for a more recent version of Java. (In
the example above, classfile version 49 corresponds to Java 5, which was released in 2004; Java 6 was
released in 2006, and Java 8 was released in 2014.)

Programs that are run via JUnit often benefit from using --ppt-omit-pattern=org.junit as an option
to Chicory (and DynComp). This avoids inferring invariants about the JUnit library, which are almost
always uninteresting.

7.2 DynComp dynamic comparability (abstract type) analysis for Java
While Daikon can be run using only the Chicory front end, it is highly recommend that DynComp be

run prior to Chicory. The DynComp dynamic comparability analysis tool performs dynamic type inference

Chapter 7: Front ends and instrumentation 78

to group variables at each program point into comparability sets (see Section “Program point declarations”
in Daikon Developer Manual for the file representation of these sets). All variables in each comparability
set belong to the same “abstract type” of data that the programmer likely intended to represent, which is
a richer set of types than the few basic declared types (e.g., int, float) provided by the language.

Without comparability information, Daikon attempts to find invariants over all pairs (and sometimes
triples) of variables present at every program point. This can lead to two negative consequences: First, it
may take lots of time and memory to infer all of these invariants, especially when there are many global or
derived variables present. Second, many of those invariants are true but meaningless because they relate
variables which conceptually represent different types (e.g., an invariant such as winterDays < year is true
but meaningless because days and years are not comparable).

Consider the example below:

public class Year {
public static void main(String[] args) {

int year = 2005;
int winterDays = 58;
int summerDays = 307;
compute(year, winterDays, summerDays);

}

public static int compute(int yr, int d1, int d2) {
if (0 != yr % 4)

return d1 + d2;
else

return d1 + d2 + 1;
}

}

The three variables in main() all have the same Java representation type, int, but two of them hold
related quantities (numbers of days), as can be determined by the fact that they interact when the program
adds them, whereas the other contains a conceptually distinct quantity (a year). The abstract types “day”
and “year” are both represented as int, but DynComp can differentiate them with its dynamic analysis.
For example, DynComp can infer that winterDays and summerDays are comparable (belong to the same
abstract type) because the program adds their values together within the compute() function.

Without comparability information, Daikon attempts to find invariants over all pairs (and sometimes
triples) of variables present at every program point. This can lead to two negative consequences: First, it
may take lots of time and memory to infer all of these invariants, especially when there are many global or
derived variables present. Second, many of those invariants are true but meaningless because they relate
variables which conceptually represent different types (e.g., an invariant such as winterDays < year is true
but meaningless because days and years are not comparable).

To use DynComp, run your program as you normally would, but replace the java command with java
daikon.DynComp. For instance, if you usually run

java -cp myclasspath mypackage.MyClass arg1 arg2 arg3

then instead you would run

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.DynComp mypackage.MyClass arg1 arg2 arg3

This runs your program and creates the file MyClass.decls-DynComp in the current directory. The
.decls-DynComp file may be passed to Chicory, as described in Section 3.1 [Detecting invariants in Java
programs], page 4.

java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
--comparability-file=MyClass.decls-DynComp \
mypackage.MyClass arg1 arg2 arg3

Chapter 7: Front ends and instrumentation 79

See below for more options.

Here is part of a sample .decls-DynComp file generated by running DynComp on the example above:

ppt Year.compute(int, int, int):::ENTER
ppt-type enter
variable yr

var-kind variable
dec-type int
rep-type int
flags is_param
comparability 3

variable d1
var-kind variable
dec-type int
rep-type int
flags is_param
comparability 2

variable d2
var-kind variable
dec-type int
rep-type int
flags is_param
comparability 2

ppt Year.compute(int, int, int):::EXIT11
ppt-type subexit
variable yr

var-kind variable
dec-type int
rep-type int
flags is_param
comparability 3

variable d1
var-kind variable
dec-type int
rep-type int
flags is_param
comparability 2

variable d2
var-kind variable
dec-type int
rep-type int
flags is_param
comparability 2

variable return
var-kind return
dec-type int
rep-type int
comparability 2

The declaration file format is described in Section “Program point declarations” in Daikon Developer
Manual.

Chapter 7: Front ends and instrumentation 80

You can cause DynComp to create two additional representations of the comparability information.

Given the option --comparability-file=filename, DynComp outputs comparability sets as sets. The
above .decls-DynComp output corresponds to the following comparability-file output:

Daikon Variable sets for Year.compute(int yr, int d1, int d2) enter
[2] [daikon.chicory.ParameterInfo:d1] [daikon.chicory.ParameterInfo:d2]
[1] [daikon.chicory.ParameterInfo:yr]

Daikon Variable sets for Year.compute(int yr, int d1, int d2) exit
[3] [daikon.chicory.ParameterInfo:d1, daikon.chicory.ParameterInfo:

d2, daikon.chicory.ReturnInfo:return]
[1] [daikon.chicory.ParameterInfo:yr]

Given the option --trace-file=filename, DynComp outputs comparability sets as trees, structured
such that each variable in the tree has interacted with its children. The lack of a parent-child relation-
ship between two variables in a set does not imply anything about whether they interacted. The above
.decls-DynComp output corresponds to the following trace-file output:

Daikon Traced Tree for Year.compute(int yr, int d1, int d2) enter
daikon.chicory.ParameterInfo:d1
--daikon.chicory.ParameterInfo:d2 ()

daikon.chicory.ParameterInfo:yr

Daikon Traced Tree for Year.compute(int yr, int d1, int d2) exit
daikon.chicory.ParameterInfo:d1
--daikon.chicory.ParameterInfo:d2 (Year:compute(), 11)
--daikon.chicory.ReturnInfo:return (Year:compute(), 11)

daikon.chicory.ParameterInfo yr

The file here shows that d1, d2, and the return value of the compute method are in the same comparability
set; this is correct, as they are all of the abstract type “days”. The variable yr is in its own comparability
set; it has abstract type “year”, and so is not comparable to the other variables. In addition, the structure
of the [d1, d2, return] set shows that at some point, d1 interacted with d2, and that d2 interacted with
return. The absence of a d1 -- return edge does not imply that d1 and return never interacted directly.

In addition, non-root nodes in the trace trees can indicate a list of class names, method names, and line
numbers at which values interacted, resulting in comparability between the preceding child node and its
parent. In the above example, d1 interacted with d2 on line 11 of the compute method of the Year class.

Duplicate values in this list represent the results of separate calls to another method which each of the
relevant variables. For example, if we modify the sample to use global variables instead of locals and add
an additional call to compute:

public class Year2 {
static int year = 2005;
static int winterDays = 58;
static int summerDays = 307;
static int schoolDays = 180;
static int breakDays = 185;
public static void main(String[] args) {

compute(year, winterDays, summerDays);
compute(year, schoolDays, breakDays);

}

Chapter 7: Front ends and instrumentation 81

public static int compute(int yr, int d1, int d2) {
if (0 != yr % 4)

return d1 + d2;
else

return d1 + d2 + 1;
}

}

then for compute we might see this output:

DynComp Traced Tree for Year2.compute(int yr, int d1, int d2) exit
daikon.chicory.FieldInfo:Year2.schoolDays
--daikon.chicory.FieldInfo:Year2.breakDays (Year2:compute(), 14)
--daikon.chicory.ParameterInfo:d1 (Year2:compute(), 14)
----daikon.chicory.FieldInfo:Year2.winterDays (Year2:compute(), 14)
------daikon.chicory.FieldInfo:Year2.summerDays (Year2:compute(), 14)
------daikon.chicory.ParameterInfo:d2 (Year2:compute(), 14)
------daikon.chicory.ReturnInfo:return (Year2:compute(), 14)

Empty lists indicate that no non-assignment interactions occurred in the series of interactions connecting
the two variables.

Elements of these lists are essentially parts of stack traces. The maximum number of stack trace levels
displayed is set by --trace-line-depth, which is equal to 1 by default.

For these files, DynComp also has a --abridged-vars option that replaces text like
daikon.chicory.ParameterInfo:d2 with text like Parameter d2 in the comparability-file and
trace-file. It writes this instead of daikon.chicory.ThisObjInfo:this; and return instead of
daikon.chicory.ReturnInfo:return. This option is off by default, but can be turned on with
--abridged-vars.

7.2.1 Instrumenting the JDK with DynComp

If you did not already do so when installing Daikon (see Chapter 2 [Installing Daikon], page 2), follow
the instructions here to build an instrumented copy of the JDK. Use the following command:

make -C $DAIKONDIR/java dcomp_rt.jar

Either the JAVA_HOME environment variable must be set, or javac must be on the execution path. This
command instruments the classes in the rt.jar file of the JDK, and creates a new file, dcomp_rt.jar, in
the java directory.

Building dcomp_rt requires 10-30 minutes to complete and uses 1024 MB of memory. Regular progress
indicators are printed to standard output.

You can ignore warnings issued during the instrumentation process, so long as the make target itself
completes normally.

If there are any methods in the JDK that DynComp is unable to instrument, their names will be printed
at the end of the instrumentation process. This is not a problem unless your application calls one of these
methods (directly or indirectly). If one of these methods is called, a ‘NoSuchMethodException’ will be
generated when the call is attempted.

If the instrumented JDK is in a non-standard location, use the --rt-file switch to specify its location,
or change your classpath to include it.

One final note: if you update your JDK in any way (such as an OS upgrade), you will need to rebuild
dcomp_rt.jar.

Chapter 7: Front ends and instrumentation 82

7.2.2 DynComp options

DynComp is invoked as follows:

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.DynComp dyncomp-args classname args

where

java classname args

is a valid invocation of Java.

This section lists the optional command-line arguments to DynComp, which appear before the classname
on the DynComp command line.

--help
-h Print a help message.

--verbose
-v Print information about the classes being processed.

--dump
Dump the instrumented class files to the bin subdirectory of the directory specified by --debug-dir.
Dump the original, uninstrumented class files to the orig subdirectory of the directory specified by
--debug-dir. If --debug-dir is not specified, it defaults to debug/ in the current working directory.

--debug
-d Produce debugging information. (This produces a lot of output!) This option also turns on --dump.

--debug-dir
The directory in which to dump instrumented class files (only if dump or --debug is specified).
Defaults to debug in the current working directory.

--output-dir=dir
The directory in which to create output files. Defaults to the current working directory.

--decl-file=file
-f Output filename for .decls file suitable for input to Chicory. Defaults to target_

program.decls-DynComp.

--comparability-file=file
Output filename for a more easily human-readable file summarizing comparability sets. The file is
intended primarily for debugging. It is not meant to be used as input to Chicory’s --comparability-
file option; use the output from DynComp’s --decl-file option for that.

--trace-file=file
If specified, write a human-readable file showing some of the interactions that occurred. The file is
intended primarily for debugging.

--trace-line-depth=n
Controls size of the stack displayed in tracing the interactions that occurred. Default behavior is to
only display one element in the stack — that is, display at most the topmost function on the stack
when the interaction occurred. This switch has no effect if --trace-file is not specified, or is null.

--abridged-vars
When this switch is on, DynComp abridges the variables printed in the files specified by
--comparability-file and --trace-file. For example, DynComp will output ‘Field foo’
instead of ‘dyncomp.chicory.FieldInfo:MyClass.foo’. In particular, it replaces ‘dyncomp.
chicory.ReturnInfo:return’ with ‘return’ and ‘dyncomp.chicory.ThisObjInfo:this’ with
‘this’.

Chapter 7: Front ends and instrumentation 83

--ppt-select-pattern=regex
Only emit program points that match regex. Specifically, a program point is considered to match
regex if the fully qualified class name, the method name, or the program point name matches regex.
The behavior of this switch is the same as in Chicory (see Section 7.1.1.1 [Program points in Chicory
output], page 73).

This option can be specified multiple times, and may be used in conjunction with --ppt-omit-
pattern. If a program point matches both a select pattern and an omit pattern, it is omitted.

--ppt-omit-pattern=regex
Suppress program points that match regex. Specifically, a program point is considered to match
regex if the fully qualified class name, the method name, or the program point name matches regex.
The behavior of this switch is the same as in Chicory (see Section 7.1.1.1 [Program points in Chicory
output], page 73).

This option can be specified multiple times, any may be used in conjunction with --ppt-select-
pattern. If a program point matches both a select pattern and an omit pattern, it is omitted.

--rt-file=jdk-jar-file
Specifies the location of the instrumented JDK (see Section 7.2.1 [Instrumenting the JDK with
DynComp], page 81). This option is rarely necessary, because if --rt-file is not specified, DynComp
will search for a file named dcomp_rt.jar along the classpath, and in $DAIKONDIR/java. Both this
file and the current classpath are placed on the boot classpath for DynComp’s execution.

If the filename is NONE, then run DynComp with an uninstrumented JDK, instead of with a copy of
the JDK that has been instrumented with DynComp. This will improve run-time performance, but
will yield less accurate results.

--std-visibility
When this switch is on, DynComp traverses exactly those fields that are visible from a given program
point. For an example, see Section 7.1.1.2 [Variables in Chicory output], page 74.

--nesting-depth=n
Depth to which to examine structure components (default 2). This parameter determines which
variables the front end causes to be output at run time. For an example, see Section 7.1.1.2 [Variables
in Chicory output], page 74.

--premain=path
Specifies the absolute pathname to the dcomp_premain.jar file. DynComp requires this jar file in
order to execute. By default DynComp looks for the jar file in the classpath and in $DAIKONDIR/java
(where DAIKONDIR is the complete installation of Daikon).

DynComp can also use the daikon.jar file for this purpose. If it doesn’t find dcomp_premain.jar
above, it will use daikon.jar itself (if a file named daikon.jar appears in the classpath). If the
Daikon jar file is not named daikon.jar, you can use this switch to specify its name. For example:

--premain=C:\lib\daikon-5.8.20.jar

7.2.3 Instrumentation of Object methods

DynComp is unable to directly instrument methods of the class Object, such as clone and equals.
DynComp uses a few tricks, described here in brief, to track comparability in these methods.

Calls such as o1.equals(o2) are replaced with calls to a static method in DynComp, dcomp_equals(o1,
o2). This static method dynamically determines whether or not o1 is an instance of a class that has
been instrumented by DynComp; every such class implements the interface DCompInstrumented. If so,
it attempts to invoke the instrumented version of the equals method for o1. If not, or if o1 has not
overridden the equals method from Object, then no instrumented version exists, so the uninstrumented
version is invoked.

Chapter 7: Front ends and instrumentation 84

In either case, the references o1 and o2 are considered to be comparable. In a future release, we will
provide a command-line switch to customize this behavior.

The clone method operates in a similar manner, choosing dynamically to invoke the instrumented
method or the uninstrumented method. In the case of clone, the methods are invoked via reflection. In
either case, the object being cloned and the resulting clone are made comparable to each other. Again, we
will provide a switch to customize this behavior in a future release.

7.2.4 Troubleshooting DynComp for Java

If DynComp crashes the JVM, then the most likely problem is that you are running with a wrong version
of the JDK. Re-instrument the JDK as described in Section 7.2.1 [Instrumenting the JDK with DynComp],
page 81.

Examples of errors that you may obtain when using the wrong version of the JDK include the following:

Error occurred during initialization of VM
java.lang.UnsatisfiedLinkError:

A fatal error has been detected by the Java Runtime Environment:
#
SIGSEGV

When running DynComp, an exception similar to the following:

Exception in thread "main" java.lang.AbstractMethodError:
example1c$$Lambda$5/1722023916.sayHello(Ldaikon/dcomp/DCompMarker;)Ljava/lang/String;

probably means that sayHello is the method of an functional interface that has not been annotated with
@FunctionalInterface.

7.2.5 Known bugs and limitations

• Java reflection finds the original, uninstrumented code. DynComp will not observe code that is called
reflectively, and so DynComp’s output will not indicate interactions in such code.

This is relevant to frameworks such as JUnit that call code reflectively. If you want to run tests using
JUnit, then explicitly create a Suite that contains the tests you want to run, rather than annotating
methods with @Test and depending on JUnit to find them and call them via reflection. If you are
generating JUnit test suites with Randoop, then supply the --junit-reflection-allowed=false
command-line option to Randoop.

Programs that are run via JUnit often benefit from using --ppt-omit-pattern=org.junit as an
option to Chicory (and DynComp). This avoids inferring invariants about the JUnit library, which
are almost always uninteresting.

• Instrumentation of the clone() method may fail on particular invocations within private classes in
the JDK.

7.3 C/C++ front end Kvasir
Daikon’s front end for C and C++, named Kvasir, executes C and C++ programs and creates data trace

(.dtrace) files of variables and their values by examining the operation of the binary at run time. Kvasir
is named after the Norse god of knowledge and beet juice. It is built upon the Fjalar dynamic analysis
framework for C and C++ programs (available at http://groups.csail.mit.edu/pag/fjalar/, but
already included in the Daikon distribution).

To use Kvasir, first compile your program using the DWARF-2 debugging format (e.g., supply the
-gdwarf-2 option to gcc) and without optimizations (e.g., supply the -O0 option to gcc). Also, some
versions of gcc now output position independent code by default. Kvasir cannot properly process these
binaries. You must add the -no-pie option to disable this feature. Note that if your build system separates

https://randoop.github.io/randoop/
http://groups.csail.mit.edu/pag/fjalar/

Chapter 7: Front ends and instrumentation 85

the compile and link steps, the -no-pie option needs to be on the link step. Then, prefix your command
line by kvasir-dtrace. For example, if you normally run your program with the command

./program -option input.file

then instead use the command

kvasir-dtrace ./program -option input.file

to run your program and create a data trace file daikon-output/program.dtrace, which can be fed
as input into Daikon. You can perform this step multiple times to create multiple data trace files for
Daikon. You can also run Daikon without creating an intermediate data trace file; see Section 7.3.7
[Online execution], page 101.

For information about installing Kvasir, see Section 7.3.8 [Installing Kvasir], page 102. Kvasir only
works under Linux running on an x86-64 processor (also known as an amd64 processor); for full details,
see Section 7.3.9 [Kvasir limitations], page 102. When you run Kvasir, if you get a message of the form:

valgrind: failed to start tool ’fjalar’ for platform ’x86-linux’: No such file or directory

it indicates that your program is not an x86-64 binary. For information about how to create an instru-
menter for C that works on non-Linux or non-x86 platforms, see Section “Instrumenting C programs” in
Daikon Developer Manual.

7.3.1 Using Kvasir

Before using Kvasir, you must compile your program compile and link your program normally, with two
exceptions:

• Do not use optimization. Remove any optimization flags, such as -O or -O2, and any flags that affect
calling conventions, such as -fomit-frame-pointer.

• Include debugging information, by supplying the -g flag. The debugging information must be in the
DWARF-2 format. DWARF-2 is the default format for debugging information in gcc 3 and later, and
otherwise is produced by supplying the -gdwarf-2 command line option.

• Kvasir cannot properly process position independent binaries. You must add the -no-pie option to
disable this feature.

In the second step of using Kvasir, run your program as you normally would, but prepend the command
kvasir-dtrace to the beginning. For instance, if you normally run your program with the command

./myprogram -option input.file

just say

kvasir-dtrace ./myprogram -option input.file

As well as running your program (more slowly than usual), this command also creates a directory
daikon-output in the current directory containing a program.dtrace file suitable as input to Daikon.

Kvasir’s first argument, the program name, should be given as a pathname, as shown above. If you
usually just give a program name that is not in the current directory but is found in your path, you may
need to modify your command to specify a pathname. For example:

kvasir-dtrace `which myprogram` -option input.file

You may supply options to Kvasir before the argument that is the name of your program (see Section 7.3.2
[Kvasir options], page 85).

7.3.2 Kvasir options

To see a complete list of options, run this command: kvasir-dtrace --help

Output file format:

Chapter 7: Front ends and instrumentation 86

--decls-file=filename
Write the .decls file listing the names of functions and variables (called declarations) to the specified
file name. This forces Kvasir to generate separate .decls and .dtrace files instead of outputting
everything to the .dtrace file, which is the default behavior. If only a .dtrace file is created (default
behavior), then it contains both variable declarations and a trace of values. If separate .decls and
.dtrace files are created, then the .decls file contains declarations and the .dtrace file contains
the trace of values. Note that while Kvasir will accept any valid value for filename, it must contain
.decls to be recognized by Daikon.

--decls-only
Exit after writing the .decls file; don’t run the program or generate trace information. Since the
.decls file is the same for any run of a program, it can be generated once and then reused on
later runs, as long as no new program points are added and each program point has the same set of
variables.

--dtrace-file=filename
Write the .dtrace trace file to the specified file name. The default is daikon-output/programname.dtrace,
where programname is the name of the program. A filename of - may be used to specify the
standard output; in this case, the regular standard output of the program will be redirected back to
the terminal (/dev/tty), to avoid intermixing it with the trace output. If the given filename ends
in .gz, then --dtrace-gzip is enabled and the .dtrace file will be compressed. Note that while
Kvasir will accept any valid value for filename, it must contain .dtrace to be recognized by Daikon.

--dtrace-no-decls
By default, the .dtrace file contains both a list of variable declarations followed by a trace of
variable values (see Section “File formats” in Daikon Developer Manual). If this option is used, then
variable declarations are not outputted in the .dtrace file. This option is equivalent to --decls-
file=/dev/null, except that it runs faster. This is useful when you want to generate one copy of
the declarations in the .decls file using --decls-only, generate many .dtrace files from different
program runs, and then feed 1 .decls and several .dtrace files into Daikon.

--dtrace-append
Append new trace information to the end of an existing .dtrace file. The default is to overwrite a
preexisting .dtrace file. When this option is used, no declaration information is written because it
is assumed that the existing .dtrace file already contains all declarations (Daikon does not accept
duplicate declarations).

--dtrace-gzip
Compress trace information with the gzip program before writing it to the .dtrace file. You must
have the gzip program available.

--output-fifo
Create the output .dtrace file as a FIFO (also known as a named pipe). Kvasir will then open first
the .decls FIFO and then the .dtrace FIFO, blocking until another program (such as Daikon)
reads from them. Using FIFO files for the output of Kvasir avoids the need for large trace files, but
FIFO files are not supported by some file systems, including the Andrew File System (AFS).

--program-stdout=filename
--program-stderr=filename

Redirect the standard output (respectively, standard error) stream of the program being traced to
the specified path. By default, the standard output and standard error streams will be left pointing
to the same locations specified by the shell, except that if --dtrace-file=- is specified, then the
default behavior is as if --program-stdout=/dev/tty were specified, since mixing the program’s
output and Kvasir’s trace output is not advisable. If the same filename is given for both options,
the streams will be interleaved in the same way as if by the Bourne shell construction 2>&1.

Chapter 7: Front ends and instrumentation 87

Also, as in the shell, filename can be an ampersand followed by an integer, to redirect to a numbered
file descriptor. For instance, to redirect the program’s standard output and error, and Kvasir’s
standard error, to a single file, you can say --program-stdout=’&2’ --program-stderr=’&2’
2>filename.

Selective program point and variable tracing:

--ppt-list-file=filename
--var-list-file=filename

Trace only the program points (respectively, variables) listed in the given file. Other program points
(respectively variables) will be omitted from the .decls and .dtrace files. A convenient way to
produce such files is by editing the output produced by the --dump-ppt-file (respectively, --dump-
var-file) option described below (see Section 7.3.4 [Tracing only part of a program], page 92).

--dump-ppt-file=filename
--dump-var-file=filename

Print a list of all the program points (respectively all the variables) in the program to the specified
file. An edited version of this file can then be used with the --ppt-list-file (respectively --var-
list-file) option (see Section 7.3.4 [Tracing only part of a program], page 92). Note: You must use
these options with the --no-dyncomp option because otherwise, the behavior is undefined. Running
Kvasir with these options will initialize but not actually execute the target program, so the dynamic
comparability analysis cannot be performed in the first place.

--ignore-globals
Omit any global or static variables from the .decls and .dtrace files. Leaving these out can
significantly improve Kvasir and Daikon’s performance, at the expense of missing properties involving
them. The default is to generate trace information for global and static variables.

--ignore-static-vars
Omit any static variables but generate trace information for global variables in the .decls and
.dtrace files.

--all-static-vars
Output all static variables at all program points in the .decls and .dtrace files. By default, file-
static variables are only outputted at program points for functions that are defined in the same
file (compilation unit) as the variable, and static variables declared within a particular function are
only outputted at program points for that function. These heuristics decrease clutter in the output
without greatly reducing precision because functions have no easy way of modifying variables that
are not in-scope, so it is often not useful to output those variables. This option turns off these
heuristics and always outputs static variables at all program points.

Other options affecting the amount of output Kvasir produces:

--object-ppts
Enables printing of object program points for C/C++ structs and C++ classes. See Section 5.2
[Program points], page 19 for more information.

--flatten-arrays
This option forces the flattening of statically-sized arrays into separate variables, one for each element.
For example, an array foo of size 3 would be flattened into 3 variables: foo[0], foo[1], foo[2].
By default, Kvasir flattens statically-sized arrays only after it has already exhausted the one level
of sequences that Daikon allows in the .dtrace output format (e.g. an array of structs where each
struct contains a statically-sized array).

--array-length-limit=N
Only visit at most the first N elements of all arrays. This can improve performance at the expense
of losing coverage; it is often useful for tracing selected parts of programs that use extremely large
arrays or memory buffers.

Chapter 7: Front ends and instrumentation 88

--output-struct-vars
This option forces Kvasir to output .decls and .dtrace entries for struct variables. By default,
Kvasir ignores struct variables because there is really no value that can be meaningfully associ-
ated with these variables. However, some tools require struct variables to be outputted, so we
have included this option. Struct variables are denoted by a ‘# isStruct=true’ annotation in their
declarations.

--nesting-depth=N
For recursively-defined structures (structs or classes with members that are structs or classes or
pointers to structs or classes of any type), N (an integer between 0 and 100) specifies approximately
how many levels of pointers to dereference. This is useful for controlling the output of complex data
structures with many references to other structures. The default is 2.

--struct-depth=N
For recursively-defined structures (structs or classes with members that are pointers to the same
type of struct or class), N (an integer between 0 and 100) specifies approximately how many levels of
pointers to dereference. This is useful for controlling the output of linked lists and trees. The default
is 4. If you are trying to traverse deep into data structures, try adjusting the --struct-depth and
--total-depth options until Kvasir traverses deep enough to reach the desired variables.

Section 7.3.5 [Pointer type disambiguation], page 95:

--disambig-file=filename
Specifies the name of the pointer type disambiguation file (see Section 7.3.5 [Pointer type disam-
biguation], page 95). If this file exists, Kvasir uses it to make decisions about how to output the
referents of pointer variables. If the file does not exist, then Kvasir creates it. This file may then
be edited and used on subsequent runs. This option initializes but does not fully execute the target
program (unless it is run with the --smart-disambig option).

--disambig
Tells Kvasir to create or read pointer type disambiguation (see Section 7.3.5 [Pointer type disam-
biguation], page 95) with the default filename, which is myprog.disambig in the same directory
as the target program, where myprog is the name of the target program. This is equivalent to
--disambig-file=myprog.disambig.

--smart-disambig
This option should be used in addition to either the --disambig or --disambig-file options (it
does nothing by itself). If the .disambig file specified by the option does not exist, then Kvasir
executes the target program, observes whether each pointer refers to either one element or an array
of elements, and creates a disambiguation file that contains suggestions for the disambiguation types
of each pointer variable. This potentially provides more accuracy than using either the --disambig
or --disambig-file options alone, but at the expense of a longer run time. (If the .disambig file
already exists, then this option provides no extra functionality.)

--func-disambig-ptrs
By default, Kvasir treats all pointers as arrays when outputting their contents. This option forces
Kvasir to treat function parameters and return values that are pointers as pointing to single values.
However, all pointers nested inside of data structures pointed-to by parameters and return values
are still treated as arrays. This is useful for outputting richer data information for functions that
pass parameters or return values via pointers, which happens often in practice.

--disambig-ptrs
By default, Kvasir treats all pointers as arrays when outputting their contents. This option forces
Kvasir to treat all pointers as pointing to single values. This is useful when tracing nested structures
with lots of pointer fields which all refer to one element.

Chapter 7: Front ends and instrumentation 89

Section 7.3.3 [DynComp for C/C++], page 90:

--dyncomp
Run Kvasir with the DynComp dynamic comparability analysis tool to determine which variables
have the same abstract type. (This is the default behavior for Kvasir and it is not necessary to
specify this option.) Variable comparability information improves the performance of Daikon and
improves Daikon’s output by filtering out irrelevant invariants. Because it is not available until
the end of execution, comparability information is always written to a separate .decls file (in the
format specified in the Section “Program point declarations” in Daikon Developer Manual), as if the
--decls-file option had been specified (--decls-file can still be used to control the name of the
file). This file must be provided to Daikon along with the .dtrace file. This option may also be
used with --decls-only to only generate a .decls file without a .dtrace.

Note that if you are running multiple runs (executions) of your test program and you are certain
that the comparability information will not vary from run to run, you may use --no-dyncomp on the
second and subsequent runs to reduce the time required to generate the .trace file(s).

--dyncomp-interactions=all
--dyncomp-interactions=units
--dyncomp-interactions=comparisons
--dyncomp-interactions=none

By default, DynComp considers any binary operation as an interaction between its two operands.
(=all)

You may restrict this such that the only binary operations that qualify as interactions are compar-
isons, addition, subtraction. This ensures that the variables that DynComp groups together into one
set all have the same units (e.g., physics units). (=units)

A tighter restriction is to stipulate that the only binary operations that qualify as interactions are
comparisons between values (e.g., x <= y or x != y). (=comparisons)

Finally, you may specify that no binary operations qualify as interactions between values. Thus,
DynComp only tracks dataflow. (=none)

--dyncomp-approximate-literals
This option applies an approximation for handling literal values which greatly speeds up the perfor-
mance of DynComp and drastically lowers its memory usage, but at the expense of a slight loss in
precision of the generated comparability sets. If you cannot get DynComp to successfully run on a
large program, even after tweaking --dyncomp-gc-num-tags, try turning on this option.

--dyncomp-detailed-mode
This option runs a more detailed (but more time- and space-intensive) algorithm for tracking variable
comparability. It takes O(n^2) time and space, whereas the default algorithm takes roughly O(n)
time and space. However, it can produce more precise results. Despite its name, this mode can
be used together with --dyncomp-fast-mode to run the more precise algorithm but still use an
approximation for handling literal values. (This mode is still experimental and not well-tested yet.)

--dyncomp-separate-entry-exit
The default behavior for DynComp is to generate the same comparability numbers for Daikon vari-
ables at each pair of function entrance and exit program points. If this option is used, then DynComp
keeps track of comparability separately for function entrances and exits, which can lead to more ac-
curate results, but sometimes generates output .decls files that Daikon cannot accept.

--dyncomp-gc-num-tags=N
By default, DynComp runs a garbage collector for the tag metadata once after every 10,000,000
tags have been assigned. This option tells the garbage collector to run once after every N tags have
been assigned. Making the value of N larger allows your program to run faster (because the garbage
collector runs less frequently), but may cause your program to run out of memory as well. Making

Chapter 7: Front ends and instrumentation 90

the value of N too small may cause your program to never terminate if N is smaller than the total
number of tags that your program uses in steady state. You will probably need to experiment with
tweaking this value in order to get DynComp to work properly.

Making the value of N equal to 0 turns off the garbage collector. This may reduce your program’s
execution time; however, it is not recommended for long program runs, because without the garbage
collector, it will likely run out of memory.

Debugging:

--xml-output-file=filename
Outputs a representation of data structures, functions, and variables in the target program to an
XML file in order to aid in debugging. These are all the entities that Kvasir tracks for a particular
run of a target program, so if you do not see an entity in this XML file, then you should either adjust
command-line options or contact us with a bug report.

--with-gdb
This pauses the program’s execution in an infinite loop during initialization. You can attach a
debugger such as gdb to the running process by running gdb on inst/lib/valgrind/fjalar-amd64-
linux under the Kvasir directory and using the attach command.

--kvasir-debug
--fjalar-debug
--dyncomp-debug

Enable progress messages meant for debugging problems with Kvasir, Fjalar, or DynComp. By
default, they are disabled. This option is intended mainly for Kvasir’s developers.

--dyncomp-trace
--dyncomp-trace-merge
--dyncomp-print-inc

Enables trace messages to be output to stderr. These are disabled by default. These options are
intended mainly for DynComp developers.

7.3.3 DynComp dynamic comparability (abstract type) analysis for C/C++

By default, Kvasir outputs both a .dtrace file that contains value traces, and a .decls file with
variable comparability information that was produced by the DynComp tool. You can run Daikon on
just the .dtrace file without the DynComp variable comparability information, but doing so is strongly
discouraged.

The DynComp dynamic comparability analysis tool performs dynamic type inference to group variables
at each program point into comparability sets. (See Section “Program point declarations” in Daikon
Developer Manual, for the file representation format of these sets.) All variables in each comparability set
belong to the same “abstract type” of data that the programmer likely intended to represent, which is a
richer set of types than the few basic declared types (e.g., int, float) provided by the language. Consider
the example below:

int main() {
int year = 2005;
int winterDays = 58;
int summerDays = 307;
compute(year, winterDays, summerDays);

}

int compute(int yr, int d1, int d2) {
if (yr % 4)
return d1 + d2;

Chapter 7: Front ends and instrumentation 91

else
return d1 + d2 + 1;

}

The three variables in main() all have the same C representation type, int, but two of them hold related
quantities (numbers of days), as can be determined by the fact that they interact when the program adds
them, whereas the other contains a conceptually distinct quantity (a year). The abstract types “day”
and “year” are both represented as int, but DynComp can differentiate them with its dynamic analysis.
For example, DynComp can infer that winterDays and summerDays are comparable (belong to the same
abstract type) because the program adds their values together within the compute() function.

Without comparability information, Daikon attempts to find invariants over all pairs (and sometimes
triples) of variables present at every program point. This can lead to two negative consequences: First, it
may take lots of time and memory to infer all of these invariants, especially when there are many global or
derived variables present. Second, many of those invariants are true but meaningless because they relate
variables which conceptually represent different types (e.g., an invariant such as winterDays < year is true
but meaningless because days and years are not comparable).

By default, Kvasir runs with DynComp to generate a .decls file with comparability information along
with the usual value trace in the .dtrace file. Using --decls-only will only generate the .decls file
without the extra slowdown of writing the .dtrace file to disk (however, because DynComp must execute
the entire program to perform its analysis, the only time saved is I/O time). Other DynComp options are
listed in the Section 7.3.2 [Kvasir options], page 85 section. Running Kvasir with DynComp takes more
memory and longer time than Kvasir without DynComp, but Daikon will run faster and produce better
output. Furthermore, it is possible to run DynComp only once to generate a .decls file with comparability
information, and pass that one file into Daikon along with many different .dtrace files generated during
subsequent Kvasir runs without DynComp. You may wish to verify that your .decls file information does
not vary from run to run if you choose to use this approach. The .decls-DynComp files should be identical.

Here is part of the .decls file generated by running Kvasir with DynComp on the above example:
ppt ..compute():::ENTER

ppt-type enter

variable yr

var-kind variable

rep-type int

dec-type int

flags is_param

comparability 1

variable d1

var-kind variable

rep-type int

dec-type int

flags is_param

comparability 2

variable d2

var-kind variable

rep-type int

dec-type int

flags is_param

comparability 2

ppt ..compute():::EXIT0

ppt-type subexit

variable yr

var-kind variable

rep-type int

dec-type int

flags is_param

Chapter 7: Front ends and instrumentation 92

comparability 1

variable d1

var-kind variable

rep-type int

dec-type int

flags is_param

comparability 2

variable d2

var-kind variable

rep-type int

dec-type int

flags is_param

comparability 2

variable return

var-kind variable

rep-type int

dec-type int

comparability 2

The abstract type of “year” (and its corresponding comparability set) is represented by the number 1
while the abstract type of “day” is represented by the number 2. DynComp places two variables in the
same comparability set when their values interact via program operations such as arithmetic or assignment.
Because the parameters d1 and d2 were added together, DynComp inferred that those variables were
somehow related and put them in the same comparability set. The return value is also related to d1 and
d2 because it is the result of the addition operation. Notice that yr never interacts with any other variables,
so DynComp places it into its own comparability set. With this comparability information, Daikon will
never attempt to find invariants between yr and d1/d2, which both saves time and memory and eliminates
meaningless invariants (the savings are minuscule in this trivial example, but they can be rather dramatic
in larger examples).

7.3.4 Tracing only part of a program

When Kvasir is run on a target program of significant size, often times too much output is generated,
which causes an enormous performance slowdown of both Kvasir outputting the trace file and also Daikon
trying to process the trace file. It is often desirable to only trace a specific portion of the target program,
program points and variables that are of interest for a particular invariant detection application. For
instance, one may only be interested in tracking changes in a particular global data structure during calls
to a specific set of functions (program points), and thus have no need for information about any other
program points or variables in the trace file. The --ppt-list-file and --var-list-file options can be
used to achieve such selective tracing.

The program point list file (abbreviated as ppt-list-file) consists of a newline-separated list of names
of functions that the user wants Kvasir to trace. Every name corresponds to both the entrance (:::ENTER)
and exit (:::EXIT) program points for that function and is printed out in the exact same format that
Kvasir uses for that function in the trace file. (See Section 7.3.1 [Using Kvasir], page 85, for the program
point naming scheme.) Here is an example of a ppt-list-file:

FunctionNamesTest.cpp.staticFoo(int, int)
..firstFileFunction(int)
..main()
second_file.cpp.staticFoo(int, int)
..secondFileFunction()

It is very important to follow this format in the ppt-list-file because Kvasir performs string com-
parisons to determine which program points to trace. Thus, it is often easier to have Kvasir generate a
ppt-list-file file that contains a list of all program points in a target program by using the --dump-
ppt-file option, and then either comment out (by using the ‘#’ comment character at the beginning of

Chapter 7: Front ends and instrumentation 93

the line) or delete lines in that file for program points not to be traced or create a new ppt-list-file
using the names in the Kvasir-generated file. This prevents typos and the tedium of manually typing up
program point names. In fact, the ppt-list-file presented in the above example was generated from a
C++ test program named FunctionNamesTest by using the following command:

kvasir-dtrace --dump-ppt-file=FunctionNamesTest.ppts \
./FunctionNamesTest

That file represents all the program points that Kvasir would normally trace. If the user wanted to only
trace the main() function, he could comment out all other lines by placing a single ‘#’ character at the
beginning of each line to be commented out, as demonstrated here:

#FunctionNamesTest.cpp.staticFoo(int, int)
#..firstFileFunction(int)
..main()
#second_file.cpp.staticFoo(int, int)
#..secondFileFunction()

When running Kvasir with the --ppt-list-file option using this as the ppt-list-file, Kvasir only
stops the execution of the target program at the entrance and exit of main() in order to output values
to the .dtrace file. In order to reduce the file size, when running Kvasir with the --ppt-list-file
option, the .decls file only contains program point declarations for those listed in the ppt-list-file
(..main():::ENTER and ..main():::EXIT in this case) because no other declarations are necessary.

The variable list file (abbreviated as var-list-file) contains all of the variables that the user wants
Kvasir to output. There is one section for global variables and a section for variables associated with each
function (formal parameters and return values). Again, the best way to create a var-list-file is to have
Kvasir generate a file with all variables using the --dump-var-file option and then modifying that file for
one’s particular needs by either deleting or commenting out lines (again using the ‘#’ comment character).
For example, executing

kvasir-dtrace --dump-var-file=FunctionNamesTest.vars \
./FunctionNamesTest

will generate the following var-list-file named FunctionNamesTest.vars:

----SECTION----
globals
/globalIntArray
/globalIntArray[]
/anotherGlobalIntArray
/anotherGlobalIntArray[]

----SECTION----
FunctionNamesTest.cpp.staticFoo()
x
y

----SECTION----
..firstFileFunction(int)
blah

----SECTION----
..main()

Chapter 7: Front ends and instrumentation 94

argc
argv
argv[]
return

----SECTION----
second_file.cpp.staticFoo()
x
y

----SECTION----
..secondFileFunction()

The file format is straightforward. Each section is marked by a special string ‘----SECTION----’ on a
line by itself followed immediately by a line that either denotes the program point name (formatted like how
it appears in the .decls and .dtrace files) or the special string ‘globals’. This is followed by a newline-
delimited list of all variables to be outputted for that particular program point. Global variables listed in
the globals section are outputted for all program points. Additional global variables to be outputted for
a particular program point can be specified in the corresponding section entry. For clarity, one or more
blank lines should separate neighboring sections, although the ‘----SECTION----’ string literal on a line
by itself is the only required delimiter. If an entire section is missing, then no variables for that program
point (or no global variables, if it is the special globals section) are traced.

The variables listed in this file are written exactly as they appear in the .decls and .dtrace file. (See
Section 7.3.1 [Using Kvasir], page 85, for the variable naming scheme.) In the program that generated the
output for the above example, int* globalIntArray is a global integer pointer variable. For that variable,
Kvasir generates two Daikon variables: /globalIntArray to represent the hashcode pointer value, and
/globalIntArray[] to represent the array of integers referred-to by that pointer. The latter is a derived-
variable that can be thought of as the child of /globalIntArray. If the entry for /globalIntArray is
commented-out or missing, then Kvasir will not output any values for /globalIntArray or for any of its
children, which in this case is /globalIntArray[]. If a struct or struct pointer variable is commented-
out or missing, then none of its members are traced. Thus, a general rule about variable entries in the
var-list-file is that if a parent variable is not present, then neither it nor its children are traced.

record
record->entries[1]
record->entries[1]->list
record->entries[1]->list->head
record->entries[1]->list->head->magic

For example, if you wanted to trace the value of the magic field nested deep within several layers of
structs and arrays, it would not be enough to merely list this variable in the var-list-file. You would
need to list all variables that are the parents of this one, as indicated by their names. This can be easily
accomplished by creating a file with --dump-var-file and cutting out variable entries, taking care to not
cut out entries that are the parents of entries that you want to trace.

In order to limit both the number of program points traced as well as the variables traced at those
program points, the user can run Kvasir with both the --ppt-list-file and --var-list-file options
with the appropriate ppt-list-file and var-list-file, respectively. The var-list-file only needs
to contain a section for global variables and sections for all program points to be traced because variable

Chapter 7: Front ends and instrumentation 95

listings for program points not to be traced are irrelevant (their presence in the var-list-file does not
affect correctness but does cause an unnecessary performance and memory inefficiency).

If the --dump-var-file option is used in conjunction with the --ppt-list-file option, then the only
sections generated in the var-list-file will be the global section and sections for all program points
explicitly mentioned in the ppt-list-file. This is helpful for generating a smaller var-list-file for
use with an already-existent ppt-list-file.

7.3.5 Pointer type disambiguation

Kvasir permits users (or external analyses) to specify whether pointers refer to arrays or to single values,
and optionally, to specify the type of a pointer (see Section 7.3.5.1 [Pointer type coercion], page 96). For
example, in

void sum(int* array, int* result) { ... } // definition of "sum"
...
int a[40];
int total;
...
sum(a, &total); // use of "sum"

the first pointer parameter refers to an array while the second refers to a single value. Kvasir (and Daikon)
should treat these values differently. For instance, *array is better printed as array[], an array of integers,
and result[] isn’t a sensible array at all, even though in C result[0] is semantically identical to *result.
By default, Kvasir treats all pointers as referencing arrays. For instance, it would print result[] rather
than result[0] and would indicate that the length of array result[] is always 1. In order to improve the
formatting of Daikon’s output (and to speed it up), you can indicate to Kvasir that certain pointers refer
to single elements rather than to arrays. For an example, see Section 7.3.5.2 [Pointer type disambiguation
example], page 97. For a list of command-line options that are related to pointer type disambiguation, see
[Pointer type disambiguation command-line arguments], page 88.

Information about whether each pointer refers to an array or a single element can be specified in a
.disambig file that resides in the same directory as the target program (by default). The --disambig option
instructs Kvasir to read this file if it exists. (If it does not exist, Kvasir produces the file automatically
and, if invoked along with the --smart-disambig option, heuristically infers whether each pointer variable
refers to single or multiple elements. Thus, users can edit this file for use on subsequent runs rather than
having to create it from scratch.) The .disambig file lists all the program points and user-defined types,
and under each, lists certain types of variables along with their custom disambiguation types as shown
below. The list of disambiguation options is:

1. For variables of type char and unsigned char:

1. ’I’: an integer, signed for char and unsigned for unsigned char. (Default)

2. ’C’: a single character, output as a string.

2. For pointers to (or arrays of) char and unsigned char:

1. ’S’: a string, possibly zero-terminated. (Default)

2. ’C’: a single character, output as a string.

3. ’A’: an array of integers.

4. ’P’: a single integer.

3. For pointers to (or arrays of) all other variable types (if invoked along with --smart-disambig, Kvasir
automatically infers a default ’A’ or ’P’ for each variable during the generation of a .disambig file):

1. ’A’: an array. (Default) (For an array of structs, an array will be output for each scalar field of
the struct. Aggregate children (arrays, other structs) will not be output.)

2. ’P’: a pointer to a single element. (For a pointer to a struct, each field will be output as a single
instance, and child aggregate types will be output recursively. This extra information obtained

Chapter 7: Front ends and instrumentation 96

from struct pointers is a powerful consequence of pointer type disambiguation. This will be the
default if the --disambig-ptrs option is used.)

The .disambig file that Kvasir creates contains a section for each function, which can be used to disam-
biguate parameter variables visible at that function’s entrance program point and parameter and return
value variables visible at that function’s exit program point. It also contains a section for every user-defined
struct/class, which can be used to disambiguate member variables of that struct/class. Disambiguation
information entered here will apply to all instances of a struct/class of that type, at all program points.
There is also a section called “globals”, which disambiguates global variables which are output at every
program point. The entries in the .disambig file may appear in any order, and whole entries or individual
variables within a section may be omitted. In this case, Kvasir will retain their default values.

7.3.5.1 Pointer type coercion

In addition to specifying whether a particular pointer refers to one element or to an array of elements,
the user can also specify what type of data a pointer refers to. This type coercion acts like an explicit type
cast in C, except that it only works on struct/class types and not on primitive types. This feature is useful
for traversing inside of data structures with generic void* pointer fields. Another use is to cast a pointer
from one that refers to a “super class” to one that refers to a “sub class”. This structural equivalence
pattern is often found in C programs that emulate object orientation. To coerce a pointer to a particular
type, simply write the name of the struct type after the disambiguation letter (e.g., A, P, S, C, I) in the
.disambig file:

----SECTION----
function: ..view_foo_and_bar()
f
P foo
b
P bar

Without the type coercion, Kvasir cannot print out anything except for a hashcode for the two void*
parameters of this function:

void view_foo_and_bar(void* f, void* b);

With type coercion, though, Kvasir treats f as a foo* and b as bar* and can traverse inside of them. Of
course, if those are not the true run-time types of the variables, then Kvasir’s output will be meaningless.

Due to the use of typedefs, there may be more than one name for a particular struct type. The exact
name that you need to write in the .disambig file is the one that appears in that file after the usertype
prefix. Note that if a struct does not have any pointer fields, then there will be no usertype section for
it in the .disambig file. In that case, try different names for the struct if necessary until Kvasir accepts
the name (names are all one word long; you will never have to write struct foo). There should only be
at most a few choices to make. If the coercion if successful, Kvasir prints out a message in the following
form while it is processing the .disambig file:

.disambig: Coerced variable f into type ’foo’

.disambig: Coerced variable b into type ’bar’

One more caveat about type coercion is that you can currently only coerce pointers into types that
at least one variable in the program (e.g., globals, function parameters, struct fields) belongs to. It is
not enough to merely declare a struct type in your source code; you must have a variable of that type
somewhere in your program. This is a limitation of the current implementation, but it should not matter
most of the time because programs rarely have struct declarations with no variables that belong to that
type. If you encounter this problem, you can simply create a global variable of a certain type to make type
coercion work.

Chapter 7: Front ends and instrumentation 97

7.3.5.2 Pointer type disambiguation example

This example demonstrates the power of pointer type disambiguation in creating more accurate Daikon
output. Consider this file:

struct record {

char* name; // Initialize to: "Daikon User"

int numbers[5]; // Initialize to: {5, 4, 3, 2, 1}

};

void foo(struct record* bar) {

int i;

for (i = 0; i < 5; i++) {

bar->numbers[i] = (5 - i);

}

}

int main() {

char* myName = "Daikon User";

struct record baz;

baz.name = myName;

foo(&baz);

}

In foo(), bar is a pointer to a record struct. By inspection, it is evident that in this program, bar only
refers to one element: &baz within main. However, by default, Kvasir assumes that bar is an array of record
structs since a C pointer contains no information about how many elements it refers to. Because Kvasir
must output bar as an array and bar->numbers is an array of integers, it “flattens” bar->numbers into
5 separate arrays named bar->numbers[0] through bar->numbers[4] and creates fairly verbose output.
This is a direct consequence of the fact that Daikon can only handle one layer of sequences (it cannot
handle arrays within arrays, i.e., multidimensional arrays).

Here is part of the Daikon output for this program:
==

..foo():::ENTER

bar has only one value

bar[].name == [Daikon User]

bar[].name elements == "Daikon User"

==

..foo():::EXIT

size(bar[]).numbers[0] == size(bar[]).numbers[0][0]

size(bar[]).numbers[0] == size(bar[]).numbers[1]

size(bar[]).numbers[0] == size(bar[]).numbers[1][0]

size(bar[]).numbers[0] == size(bar[]).numbers[2]

size(bar[]).numbers[0] == size(bar[]).numbers[2][0]

size(bar[]).numbers[0] == size(bar[]).numbers[3]

size(bar[]).numbers[0] == size(bar[]).numbers[3][0]

size(bar[]).numbers[0] == size(bar[]).numbers[4]

size(bar[]).numbers[0] == size(bar[]).numbers[4][0]

bar[].name == [Daikon User]

bar[].name elements == "Daikon User"

bar[].numbers[0] contains no nulls and has only one value, of length 1

bar[].numbers[0] elements has only one value

bar[].numbers[0][0] == [5]

bar[].numbers[0][0] elements == 5

bar[].numbers[1] contains no nulls and has only one value, of length 1

bar[].numbers[1] elements has only one value

bar[].numbers[1][0] == [4]

bar[].numbers[1][0] elements == 4

bar[].numbers[2] contains no nulls and has only one value, of length 1

Chapter 7: Front ends and instrumentation 98

bar[].numbers[2] elements has only one value

bar[].numbers[2][0] == [3]

bar[].numbers[2][0] elements == 3

bar[].numbers[3] contains no nulls and has only one value, of length 1

bar[].numbers[3] elements has only one value

bar[].numbers[3][0] == [2]

bar[].numbers[3][0] elements == 2

bar[].numbers[4] contains no nulls and has only one value, of length 1

bar[].numbers[4] elements has only one value

bar[].numbers[4][0] == [1]

bar[].numbers[4][0] elements == 1

size(bar[]).numbers[0] == 1

bar[].numbers[4][0] elements == size(bar[]).numbers[0]

size(bar[]).numbers[0] in bar[].numbers[4][0]

This is a bit verbose due to the fact that Kvasir treats bar like an array by default when it actually
only points to one element. However, by running Kvasir with the --disambig option, we create the
myprog.disambig file, which we can then edit and feed back to Kvasir to change how the pointer is
treated. (We run Kvasir twice on the same program, but we edit the .disambig file in between the runs.)

kvasir-dtrace ...options... --disambig --smart-disambig myprog

This creates the myprog.disambig file. It contains, at the top:

----SECTION----

function: ..foo()

bar

P

This means that at the program points corresponding to the entry and exit of foo(), the variable bar
is treated as a ‘Pointer’ type. Since we have used the --smart-disambig option, Kvasir automatically
inferred Pointer instead of Array for bar because it observed that bar only pointed to one element during
the execution of the target program which generated the .disambig file. This heuristic allows users to
use .disambig files more effectively with less manual editing. Without --smart-disambig, Kvasir does
not execute the program to make such inferences, which allows .disambig files to be generated faster, but
leaves the default disambiguation types for all entries (in this case, bar would have the default array type
of ’A’).

Then, running Kvasir again with the --disambig option causes Kvasir to open the existing
myprog.disambig file, read the definitions, and alter the output accordingly:

kvasir-dtrace ...options... --disambig myprog

This tells Kvasir to output bar as a ‘Pointer’ to a single element, which in turn causes Daikon to generate a
much more concise set of invariants. Notice that bar->numbers no longer has to be “flattened” because bar
is now a pointer to one struct, so Daikon can recognize bar->numbers as a single-dimensional array (Daikon
uses a Java-like syntax, replacing the arrow ‘->’ symbol with a dot, so it actually outputs bar.numbers).

==

..foo():::ENTER

bar has only one value

bar.name == "Daikon User"

==

..foo():::EXIT

bar.name == "Daikon User"

bar.numbers has only one value

bar.numbers[] == [5, 4, 3, 2, 1]

size(bar.numbers[]) == 5

bar.name == orig(bar.name)

size(bar.numbers[]) in bar.numbers[]

size(bar.numbers[])-1 in bar.numbers[]

Chapter 7: Front ends and instrumentation 99

7.3.5.3 Using pointer type disambiguation with partial program tracing

It is possible to use pointer type disambiguation while only tracing selected program points and/or
variables in a target program, combining the functionality described in the Section 7.3.5 [Pointer type
disambiguation], page 95 and Section 7.3.4 [Tracing only part of a program], page 92 sections. This section
describes the interaction of the ppt-list-file, var-list-file, and .disambig files.

The interaction between selective program point tracing (via the ppt-list-file) and pointer type
disambiguation is fairly straightforward: If the user creates a .disambig file while running Kvasir with a
ppt-list-file that only specifies certain program points, the generated .disambig file will only contain
sections for those program points (as well as the global section and sections for each struct type). If the user
reads in a .disambig file while running Kvasir with a ppt-list-file, then disambiguation information is
applied for all variables at the program points to be traced. This can be much faster and generate a much
smaller disambiguation file, one that only contains information about the program points of interest.

The interaction between selective variable tracing (via the var-list-file) and pointer type disam-
biguation is a bit more complicated. This is because the var-list-file lists variables as they appear
in the .decls and .dtrace files, but using a .disambig file can actually change the way that variable
names are printed out in the .decls and .dtrace files. For example, consider the test program from the
Section 7.3.5.2 [Pointer type disambiguation example], page 97. The struct record* bar parameter of
foo() is treated like an array by default. Hence, the .decls, .dtrace, and var-list-file will list the
following variables derived from this parameter:

----SECTION----
..foo()
bar
bar[].name
bar[].numbers[0]
bar[].numbers[0][0]
bar[].numbers[1]
bar[].numbers[1][0]
bar[].numbers[2]
bar[].numbers[2][0]
bar[].numbers[3]
bar[].numbers[3][0]
bar[].numbers[4]
bar[].numbers[4][0]

However, if we use a disambiguation file to denote bar as a pointer to a single element, then the .decls
and .dtrace files will instead list the following variables:

----SECTION----
..foo()
bar
bar->name
bar->numbers
bar->numbers[]

Notice how the latter variable list is more compact and reflects the fact that bar is a pointer to a single
struct. Thus, the flattening of the numbers[5] static array member variable is no longer necessary (it was
necessary without disambiguation because Daikon does not support nested arrays of arrays, which can
occur if bar were itself an array since numbers[5] is already an array).

Notice that, with the exception of the base variable bar, all other variable names differ when running
without and with disambiguation. Thus, if you used a var-list-file generated on a run without the
disambiguation information while running Kvasir with the disambiguation information, the names will not
match up at all, and you will not get the proper selective variable tracing behavior.

Chapter 7: Front ends and instrumentation 100

The suggested way to use selective variable tracing with pointer type disambiguation is as follows:

1. First create the proper .disambig file by using either --disambig or --disambig-file. You can use
--ppt-list-file as well to only create the .disambig file for certain program points, but do NOT
use --var-list-file to try to create a .disambig only for certain variables; this feature does not
work yet. Modify the variable entries in the Kvasir-generated .disambig file to suit your needs.

2. Now create a var-list-file by using --dump-var-file while running Kvasir with the .disambig
file that you have just created. This ensures that the variables listed in var-list-file will have the
proper names for use with that particular .disambig file. Modify the Kvasir-generated var-list-file
to suit your needs.

3. Finally, run Kvasir with the --var-list-file option using the var-list-file that you have just
created and either the --disambig or --disambig-file option with the proper .disambig file. This
will perform the desired function: selective variable tracing along with disambiguation for all of the
traced variables.

For maximum control of the output, you can use selective program point tracing, variable tracing, and
disambiguation together all at once.

7.3.6 C++ support

Kvasir supports C++, but Kvasir has been tested more on C programs than on C++ programs, so Kvasir’s
C++ support is not as mature as its C support. Here is a partial list of C++ features that Kvasir currently
supports:

• Class member functions are traced just like regular functions, except that their first parameter is a
pointer (called this) to a single instance of the class. They are printed with the class name as the
prefix, followed by a period and then the full function signature. For example, a push() function of a
Stack class might be named Stack.push(char*).

• OBJECT program points (see Section 5.2 [Program points], page 19) are printed out in the .decls file
for each class with at least 1 member variable and 1 member function. No extra information besides
member function traces are required in the .dtrace file; Daikon can link together class and function
names to determine when a particular function is a member function and generate object invariants
for that class by observing the values of the this parameter.

• Static member variables are currently treated just like global variables, because they actually have
static global locations. Another (not yet implemented) possibility is to only print them at program
points of member functions belonging to the respective variable’s own class.

• Inheritance is handled correctly because whenever Kvasir traverses inside of a class to print out its
member variables, it also recursively traverses inside all superclasses (and inside their superclasses,
etc...) to print out inherited member variables. The superclass class names are appended onto the
variable names to make them unique. For example, if this is an instance of a class that inherits from
another class called fooClass which has a member variable fooVar, then Kvasir prints out fooVar
as this->fooClass.fooVar. This correctly handles the case of multiple inheritance as well as several
layers of inheritance. Thus, object invariants capture properties of a class’s own member variables as
well as those of its superclasses’ member variables.

• Inheritance-based polymorphism is handled correctly without any extra effort because when a function
entrance or exit is encountered at run time, the version that is called has already been resolved.

• Overloaded functions are handled correctly because Kvasir prints out the full function signature as its
name in order to prevent conflicts. For example, two overloaded versions of a function foo() will be
disambiguated by their signatures, such as foo(int, int) and foo(double, double).

• Kvasir handles functions that pass parameters by reference as well as those that pass parameters by
value.

Chapter 7: Front ends and instrumentation 101

One current C++ limitation is that Kvasir cannot print out the contents of classes which are defined in
external libraries rather than in the user’s program (e.g., it can properly output a C-string represented
as char* but not the contents of the C++ string class). If further support for specific C++ features are
important to you, please send email to daikon-developers@googlegroups.com, so that we can increase
its priority on our to-do list.

7.3.7 Online execution

The term online execution refers to running Daikon at the same time as the target program, without
writing any information to a file. This can avoid some I/O overhead, prevent filling up your disk with
files, and in the future Daikon may be able to produce partial results as the target program is executing.
A limitation of online execution is that, unless FIFO files, or named pipes (see Section 7.3.7.1 [Online
execution with DynComp for C/C++], page 101) are used, it runs Daikon over only a single execution, as
opposed to generalizing over multiple executions as can be done when writing to files and supplying all the
files to Daikon. The Chicory front end for Java also supports online execution, via its --daikon-online
option (see Section 7.1.1.3 [Chicory miscellaneous options], page 76).

To use regular pipes in lieu of a disk file, simply use - as the name of the .dtrace file, and run the
target program and Daikon in a Linux pipeline. When the --dtrace-file=- option is used to redirect the
dtrace output to stdout, the target program’s stdout is redirected to the terminal (/dev/tty) so that it
does not intermix with the dtrace output.

kvasir-dtrace --dtrace-file=- ./bzip2 --help | $DAIKON -

Of course, you could also replace --help with -vv1 file.txt to compress a text file (but start with a
small one first).

(This example assumes that you have compiled the bzip2 example (in $DAIKONDIR/examples/
c-examples/bzip2 of the distribution) by saying gcc -gdwarf-2 -no-pie bzip2.c -o bzip2, and that
$DAIKON stands for the command that invokes Daikon, for instance java -Xmx3600m daikon.Daikon
--config_option daikon.derive.Derivation.disable_derived_variables=true.)

Instead of a regular pipe, you can use a named pipe, also known as a FIFO, which is a special kind of
file supported by most Linux-compatible systems. When one process tries to open a FIFO for reading, it
blocks, waiting for another process to open it for writing (or vice-versa). When both a reader and a writer
are ready, the FIFO connects the reader to the writer like a regular Linux pipe.

The --output-fifo option causes Kvasir to create its output .dtrace file as a named pipe. When
Kvasir is run with this option, Daikon needs to be run at the same time to read from the FIFO, such as
from another terminal or using the shell’s ‘&’ operator.

For instance, the following two commands have the same effect as the pipeline above that used ordinary
pipes. The FIFO is named bzip2.dtrace.

kvasir-dtrace --output-fifo ./bzip2 --help &
$DAIKON bzip2.dtrace

The two commands (before and after the ampersand) could also be run in two different terminals.

7.3.7.1 Online execution with DynComp for C/C++

When running Kvasir with DynComp (the default), Kvasir generates the .decls file after it generates
the .dtrace file, so it is not possible to perform online execution using one run. The recommended
way to perform online execution with DynComp is to run it once and only generate a .decls file with
comparability information, then run Kvasir again without DynComp and pipe the .dtrace data directly
into Daikon while using the .decls file generated from the previous run:

kvasir-dtrace --decls-only ./foo

This should generate a .decls file with comparability information named daikon-output/foo.decls.

mailto:daikon-developers@googlegroups.com

Chapter 7: Front ends and instrumentation 102

kvasir-dtrace --no-dyncomp --dtrace-no-decls --dtrace-file=- \
./foo | java -cp $DAIKONDIR/daikon.jar daikon.Daikon daikon-output/foo.decls -

When you run Kvasir the second time, you don’t need to run DynComp again since you are only
interested in the .dtrace file. Notice that the .dtrace output is directed to standard out (--dtrace-
file=-) and does not contain any declarations (--dtrace-no-decls) because the .decls file already
contains the declarations. You can simply pipe that .dtrace output out to Daikon, which is invoked using
the .decls file (with comparability information) generated during your previous run.

7.3.8 Installing Kvasir

There are two scenarios for building the Kvasir tool:

• You have downloaded a packaged release of Daikon from our website and have followed the installation
steps in Chapter 2 [Installing Daikon], page 2. If so, Kvasir is already built and available for use.

• You wish to customize or extend Daikon and are (or will be) working with a clone of the Daikon
repository. The remainder of this section describes this case.

We assume you are already familiar with the Daikon Developer Manual, in particular Section “Compiling
Daikon” in Daikon Developer Manual. If that is not the case, you should read that section first.

You will need to make a clone of Fjalar’s version control repository, named fjalar, as a sibling of your
Daikon clone.

cd $DAIKONDIR
cd ..
git clone https://github.com/codespecs/fjalar.git

You may now build Fjalar (which includes Kvasir). The following commands build Fjalar, install it
locally, and make a symbolic link to it in your Daikon tree.

cd $DAIKONDIR
make kvasir

You may see warnings during this process. You can ignore these.

If you receive an error of the form:

readelf.c:53:17: fatal error: bfd.h: No such file or directory
#include "bfd.h"

^
compilation terminated.

then install the package binutils-dev.

If you receive an error of the form:

readelf.c:72:10: fatal error: zlib.h: No such file or directory
#include <zlib.h>

^~~~~~~~
compilation terminated.

then install the package zlib1g-dev.

Once Kvasir has been installed, it can be used via the kvasir-dtrace script in the $DAIKONDIR/scripts
directory. If you have set up the Daikon environment according to the instructions above, it should already
be in your PATH. For instructions on using Kvasir, see Section 7.3 [Kvasir], page 84.

7.3.9 Kvasir implementation and limitations

Kvasir is based on the Valgrind dynamic program supervision framework (which is best known for its
memory error detection tool). Using Valgrind allows Kvasir to interrupt your program’s execution, read
its variables, and examine its memory usage, all transparently to the program. Also, rather than using

Chapter 7: Front ends and instrumentation 103

your program’s source code to find the names and types of functions and variables, Kvasir obtains them
from debugging information included in the executable in a standard format (DWARF-2).

However, Kvasir has some limitations of its own. Because Kvasir uses Valgrind, it shares Valgrind’s
processor and operating system limitations. Furthermore, of the platforms supported by Valgrind, the only
one currently supported by Kvasir is amd64-linux. Valgrind support for x86-linux is now in maintenance
mode and Kvasir no longer supports this platform. x86-linux refers to Intel 386-compatible processors (the
so-called IA-32 architecture) such as the Intel Pentium and the AMD Athlon, running Linux. amd64-linux
refers to the 64-bit extension of the x86 architecture found in many newer Intel and AMD processors, also
variously referred to as x86-64, IA-32e, EM64T, and Intel 64, when running under a Linux kernel in 64-bit
mode. The Itanium or IA-64 architecture is not supported.

Kvasir requires that your program have debugging information available in the DWARF-2 format, as
produced by gcc version 3 and later. For the best results, the programs used by Kvasir should be compiled
without optimization.

This subsection lists some of the known limitations of the current Kvasir release; if you encounter
any problems other than listed here, please report them as bugs (see Section 9.4 [Reporting problems],
page 132). The limitations are listed roughly in decreasing order of severity.

• Kvasir-traced programs take a while to start (often a good fraction of a second). When tracing short-
lived programs, this overhead can dominate Kvasir’s per-instruction runtime overhead. In order to
make Kvasir run faster, try the --ignore-globals option in order to limit the amount of generated
output. However, please keep in mind that, when running simultaneously with Daikon using the
--output-fifo option (see Section 7.3.7 [Online execution], page 101), Kvasir can generate output
data much faster than Daikon can process it. Thus, it is not the performance bottleneck in the entire
invariant detection system.

• Kvasir’s support for outputting arrays is not yet complete. It still does not have the functionality to
print out multidimensional arrays with all of their elements or the option to flatten multidimensional
arrays into multiple single-dimensional arrays.

• Kvasir behaves somewhat differently with different versions of gcc. If feasible, we recommend that
you use Kvasir with version 4.7 (or newer). Incompatibilities between Kvasir and the debugging
information produced by older gcc versions can lead to incorrect output and, in some cases, can cause
Kvasir to crash.

• The AMD64 ABI allows structs that are less than 8-bytes to be passed to a function via register.
DynComp categorizes this as an interaction between all fields of the struct and will mark all fields of
the struct as comparable to each other. This is due to a DynComp limitation with regards to handling
the AMD64 ABI.

• Kvasir is incompatible with some compiler optimizations. It is definitely incompatible with the
-fomit-frame-pointer optimization, and it may have trouble with other optimizations as well. We
recommend that you compile programs for Kvasir without optimization.

• Kvasir always prints the contents of structures according to their compile-time type. Programs that use
generic pointers and structural equivalence to simulate object-orientation will have derived-class fields
missing when a structure is passed via a base-class pointer. This limitation can be worked around by
manually coercing a pointer to a particular type (see Section 7.3.5.1 [Pointer type coercion], page 96).

7.4 .NET (C#) front end Celeriac
The Daikon front end for .NET languages, named Celeriac, is distributed separately; it currently supports

the C#, F# and Visual Basic .NET languages. Celeriac runs the .NET program, creates data trace
(.dtrace) files, and optionally runs Daikon on them. Celeriac is named after the celeriac plant, whose
root may be used as an ingredient in soups or stews.

To use Celeriac, run your program as you normally would, but with the Celeriac Launcher. For instance,
if you usually run

Chapter 7: Front ends and instrumentation 104

MyProgram.exe arg1 arg2 arg3

then instead you would run

CeleriacLauncher.exe celeriacArg1 celeriacArg2 MyProgram.exe arg1 arg2 arg3

This runs your program and creates the MyProgram.dtrace in the current directory. Since Celeriac instru-
ments class files directly as they are loaded into .NET, you do not need to perform separate instrumentation
and recompilation steps.

For more details about how to download and use Celeriac, please see https://github.com/codespecs/
daikon-dot-net-front-end.

It should be noted that Celeriac works under Mono as well as under the Microsoft .NET implementation.

To insert Daikon-inferred invariants in C# source code as Code Contracts, use Scout (previously called
Contract Inserter): https://bitbucket.org/michael.ernst/scout-contract-inserter/.

7.5 Perl front end dfepl
This section contains details about dfepl, the Daikon front end for Perl. For a brief introduction to

dfepl, see Section 3.4.2 [Perl examples], page 10 and Section 3.4.1 [Instrumenting Perl programs], page 10.

dfepl works with Perl versions 5.8 and later. (To be precise, Perl programs instrumented with dfepl can
also be run with Perl 5.6, but the instrumentation engine, which is itself written in Perl, requires version
5.8). dfepl reads the source code for Perl modules or programs, and writes out instrumented versions
of that code that keep track of function parameters, and make calls to routines in the daikon_runtime
package whenever an instrumented subroutine is entered or exited.

The instrumentation engine recognizes parameters as those variables that are declared with my(...) or
local(...) and, in the same expression, assigned to from a value related to the argument array @_, but
only among the first contiguous series of such assignments in the body of a subroutine. This will capture
the most common assignment idioms, such as my $self = shift; (where shift is short for shift @_), my
$x = $_[0];, and my($x, $y, @a) = @_;, but the arguments to subroutines which access them only directly
through @_, or that perform other operations before reading their arguments, will not be recognized.

If the uninstrumented code requested warnings via the use warnings pragma or by adding the -w flag
on the #! line, the instrumented code will also request warnings. In this case, or if -w is specified on the
command line when running it, the instrumented code may produce warnings that the original code did
not. There are several situations in which the instrumented code produced by dfepl, while functionally
equivalent to the original, generates more warnings. The most common such problem, which arises from
code that captures the scalar-context return value of a subroutine that returns a list, has been avoided
in the current version by disabling the warning in question. Other warnings which are known to be
produced innocuously in this way include ‘Ambiguous call resolved as CORE::foo(), qualify as such
or use &’ (caused by code that uses CORE:: to distinguish a built-in function from a user subroutine of
the same name), and ‘Constant subroutine foo redefined’ (caused by loading both instrumented and
uninstrumented versions of a file). Though some such warnings represent deficiencies in the instrumentation
engine, they can be safely ignored when they occur.

Because Perl programs do not contain static type information to distinguish, for instance, between strings
and numbers, the Perl front end incorporates an additional dynamic analysis to infer these types. This
type guessing, which occurs as a first pass before the program can be instrumented to produce output for
Daikon, operates in a manner somewhat analogous to Daikon itself: watching the execution of a program,
the runtime system chooses the most restrictive type for a variable that is not contradicted during that
execution. These types indicate, for instance, whether a scalar value always holds an integer, a possibly
fractional numeric value, or a reference to another object. It should not be necessary to examine or modify
this type information directly, but for the curious, the syntax of the type information is described in
comments in the Daikon::PerlType module.

https://github.com/codespecs/daikon-dot-net-front-end
https://github.com/codespecs/daikon-dot-net-front-end
https://bitbucket.org/michael.ernst/scout-contract-inserter/

Chapter 7: Front ends and instrumentation 105

The safest course is to infer types for variables using exactly the same program executions (e.g., test
cases) which will later be used to generate traces for Daikon, as this guarantees that the type information
will match the actual data written to the trace file. However, because the type-guessing-instrumented
versions of programs run fairly slowly in the current version, you may be tempted to use a subset of the
input data for type guessing. Doing so is possible, but it will only work correctly if the smaller tests
exercise all of the instrumented subroutines and exit points with all the types of data they will later be
used with. If the trace runtime tries to output a data value that doesn’t match the inferred type, the value
may silently be converted according to Perl’s usual conventions (for instance, a non-numeric string may be
treated as the number zero), or it may cause an error during tracing (for instance, trying to dereference a
supposed array reference that isn’t). Also, if a subroutine exit point is traced but was never encountered
during type guessing, the generated .decls and .dtrace files will be incompatible in a way that will cause
Daikon to abort with an error message of the form ‘Program point foo():::EXIT22 appears in .dtrace
file but not in any .decls file’.

Figure 7.1: Workflow of instrumenting Perl code with dfepl.

Chapter 7: Front ends and instrumentation 106

dfepl works by reading one or more Perl programs or modules, and writing out new versions of those files,
instrumented to capture information about their execution, by default to another directory. dfepl is used
in two passes: first, before type information is available, instrumented versions are written to a directory
daikon-untyped. These untyped programs, when run, will write files containing dynamically inferred type
information (with the extension .types), by default to the daikon-instrumented directory. When dfepl
is rerun with this type information, it produces type-aware instrumented code in the daikon-instrumented
directory, which when run produces execution traces in files with the extension .dtrace in the a directory
daikon-output.

7.5.1 dfepl options

--absolute
--no-absolute

--absolute stores the absolute path to the output directories (by default named daikon-untyped,
daikon-instrumented or daikon-output) in the instrumented programs, so that no matter where
the instrumented program is run, the output will go to a fixed location. Even if these directories are
given as relative paths (as is the default), --absolute specifies that they should always be taken as
relative to the directory that was the working directory when dfepl was run.

--no-absolute specifies the opposite, causing the output paths to be interpreted relative to the
current working directory each time the instrumented program is invoked. The default, when neither
option is specified, is for .types files to use an absolute path, but all others to use relative path, so
that the .types files will always be in the same place as the instrumented source files that generated
them, but the daikon-output directory will be created in the current directory when the program
runs.

--accessor-depth=num
Controls the number of nested invocations of object accessor methods to examine. For instance,
suppose that the Person class has a method mother() that returns another person (and has been
specified to dfepl as an accessor), and that $me is an instrumented variable. If the accessor depth is
1, only $me->mother() will be examined. If the depth is 2, $me->mother()->mother() will also be
examined. Specifying large accessor depths is generally not advisable, especially with many accessor
methods, as the number of variables examined can be too many for Daikon to process efficiently.

By default, the Daikon Perl trace runtime will examine at most a single level of accessors.

-A
--accessors-dir=directory

Look for files containing accessor lists in directory, or the current directory if directory is omitted.
For a class Acme::Foo, accessors are methods that return information about an object but do not
modify it. dfepl cannot determine on its own which methods are accessors, but when a list of them
is provided, it can call an object’s accessors when examining a variable of that class to obtain more
information about the object. To tell dfepl about the accessors for Acme::Foo, make a file listing the
names of each accessor method, one per line with no other punctuation, named Acme/Foo.accessors
in the same directory as Acme/Foo.pm.

--decls-dir=directory
Put generated declaration files in directory and its subdirectories. The default is daikon-output.

--decls-style=style
style should be one of combined, flat, or tree. A style of combined specifies that the declarations
for all packages should be merged, in a file named prog-combined.decls where prog is the name
of the program. A style of flat specifies that the declarations for each package should be in a
separate file named after the package, but that these files should go in a single directory; for in-
stance, the declarations for Acme::Trampoline and Acme::Skates::Rocket would go in files named

Chapter 7: Front ends and instrumentation 107

Acme::Trampoline.decls and Acme::Skates::Rocket.decls. A style of tree specifies that each
package should have its own declarations file, and that those files should be arranged in directories
whose structure matches the structure of their package names; in the example above, the files would
be Acme/Trampoline.decls and Acme/Skates/Rocket.decls.

The default is tree. Note that --decls-style and --types-style are currently constrained to be
the same; if one is specified, the other will use the same value.

--dtrace-append
--no-dtrace-append

When --dtrace-append is specified, the instrumented program will append trace information to the
appropriate .dtrace file each time it runs. When --no-dtrace-append is specified, it will overwrite
the file instead.

The default behavior is to overwrite. This choice can also be overridden, when the program is run,
to always append by setting the environment variable DTRACEAPPEND to 1.

When appending to a .dtrace file, no declaration information is ever produced, because it would be
redundant to do so and Daikon does not permit re-declarations of program points.

--dtrace-dir=directory
Put generated trace files in directory and its subdirectories. The default is daikon-output.

--dtrace-style=style
style should be one of combined, flat, or tree. A style of combined specifies that the traces for all
packages should be merged, in a file named prog-combined.dtrace, where prog is the name of the
program. A style of flat specifies that the traces for each package should be in a separate file named
after the package, but that these files should go in a single directory; for instance, the declarations for
Acme::Trampoline and Acme::Skates::Rocket would go in files named Acme::Trampoline.dtrace
and Acme::Skates::Rocket.dtrace. A style of tree specifies that each package should have its
own trace file, and that those files should be arranged in directories whose structure matches the
structure of their package names; in the example above, the files would be Acme/Trampoline.dtrace
and Acme/Skates/Rocket.dtrace.

The default is combined.

--help
Print a short options summary.

--instr-dir=directory
--instrsourcedir=directory

Put instrumented source files in directory and its subdirectories. The default is daikon-untyped, or
daikon-instrumented if type information is available.

--list-depth=DEPTH
Consider as many as DEPTH of the first elements of a list to be distinct entities, for the purpose
of guessing their types. When subroutines return a list of values, each value may have a distinct
meaning, or the list may be homogeneous. When trying to assign types to the elements of a list, the
Daikon Perl trace runtime will try making separate guesses about the types of the elements of a short
list, but it would be inefficient to make retain this distinction for many elements. This parameter
controls how many elements of a list will be examined individually; all the others will be treated
uniformly.

The default is 3.

--output-dir=directory
Put all of the files that are the output of the tracing process (and therefore input to the Daikon
invariant detection engine) in directory and its subdirectories. This option is a shorthand equivalent
to setting both --decls-dir and --dtrace-dir to the same value.

Chapter 7: Front ends and instrumentation 108

The default behavior is as if --output-dir=daikon-output had been specified.

--perl=path
Use path as the location of Perl when calling the annotation back end (a module named
B::DeparseDaikon), rather than the version of Perl under which dfepl itself is running, which is
probably the first perl that occurs on your path. For instance, if the first version of perl on your
path isn’t version 5.8 or later, you should this option to specify another perl program that is.

--nesting-depth=num
When examining nested data structures, traverse as many as num nested references. For instance,
suppose that @a is the array

@a = ({1 => [2, 3]}, {5 => [4, 2]})

If the depth is 0, then when examining @a, Daikon’s Perl trace runtime will consider it to be an array
whose elements are references, but it won’t examine what those references point to. If the depth is 1,
it will consider it to be an array of references to hashes whose keys are integers and whose values are
references, but it won’t examine what those references point to. Finally, if the depth is 2 or more, it
will consider @a to be an array of references to hashes whose keys are integers and whose values are
references to arrays of integers.

The default nesting depth is 3.

When referenced objects have accessor methods, or when accessors return references, the
--accessor-depth and --nesting-depth options interact. Specifically, if these depths are A and
R, the behavior is as if the runtime has a budget of 1 unit, which it can use either on accessors
which cost 1/A or references which cost 1/R. It may thus sometimes be useful to specify fractional
values for --accessor-depth and --nesting-depth; in fact, the default accessor depth is 1.5.

--types-append
--no-types-append

When --types-append is specified, the instrumented program will append type information to the
appropriate .types file each time it runs. When --no-types-append is specified, it will overwrite
the file instead.

The default behavior is to append. If --no-types-append is specified, however, this choice can also
be overridden, when the program is run, to append by setting the environment variable TYPESAPPEND
to 1. There is no way to use environment variables to force the runtime to overwrite a types file, but
an equivalent effect can be obtained by simply removing the previous types file before each run.

-T
--types-dir=directory

Look for .types files in directory, or daikon-instrumented if directory is omitted. When instru-
menting a module Acme::Trampoline, used in a program coyote.pl, dfepl will look for files named
coyote-combined.types, Acme::Trampoline.types, and Acme/Trampoline.types, corresponding
to the possible choices of --types-style. Once discovered, the files are used in the same way as for
-t.

--types-file=file
-t file

Include type information from file when instrumenting programs or modules. Since Daikon needs
to know the types of variables when they are declared, useful .decls and .dtrace files can only be
produced by source code instrumented with type information. Since Perl programs don’t include this
information to begin with, and it would be cumbersome to produce by hand, type information must
usually be produced by running a version of the program that has itself been annotated, but without
type information. The Daikon Perl trace runtime will automatically decide whether to output types,
or declarations and traces, depending on whether the source was instrumented without or with types.
This option may occur multiple times, to read information from multiple types files (irrelevant type
information will be ignored).

Chapter 7: Front ends and instrumentation 109

--types-basedir=directory
Put files containing type information in directory and its subdirectories. By default, this is whatever
--instr-dir is, usually daikon-instrumented.

--types-style=style
style should be one of combined, flat, or tree. A style of combined specifies that the types for all
packages should be merged, in a file named prog-combined.types, where prog is the name of the
program. A style of flat specifies that the types for each package should be in a separate file named
after the package, but that these files should go in a single directory; for instance, the declarations for
Acme::Trampoline and Acme::Skates::Rocket would go in files named Acme::Trampoline.types
and Acme::Skates::Rocket.types. A style of tree specifies that each package should have its
own trace file, and that those files should be arranged in directories whose structure matches the
structure of their package names; in the example above, the files would be Acme/Trampoline.types
and Acme/Skates/Rocket.types.

The default is tree. Note that --types-style and --decls-style are currently constrained to be
the same; if one is specified, the other will use the same value.

--verbose
-v Print additional information about what dfepl is doing, including external commands invoked.

7.6 Comma-separated-value front end convertcsv.pl
Daikon can process data from spreadsheets such as Excel. In order to use such files, first save them in

comma-separated-value format, also known as csv or comma-delimited or comma-separated-list, format.
Then, convert the .csv file into a .dtrace file (and a .decls file) to be used by Daikon by running the
convertcsv.pl program found in the $DAIKONDIR/scripts directory. For example,

convertcsv.pl myfile.csv

produces files myfile.decls and myfile.dtrace.

Important: run convertcsv.pl without any arguments in order to see a usage message.

In order to ensure all data is processed, use Daikon with the --nohierarchy option, as follows:

java -cp $DAIKONDIR/daikon.jar daikon.Daikon --nohierarchy myfile.decls myfile.dtrace

In a future release, the --nohierarchy option may not be necessary, but it should always be safe to use
this option.

Before running convertcsv.pl, you may need to install Text::CSV, a Perl package that convertcsv.pl
uses. You also need the checkargs.pm file, which is part of the html-tools library (https://github.com/
plume-lib/html-tools).

7.7 Other front ends
It is relatively easy to create a Daikon front end for another language or run-time system. For example,

people have done this without any help at all from the Daikon developers. For more information about
building a new front end, see Section “New front ends” in Daikon Developer Manual.

A front end for OpenAPI, Beet, is distributed separately; see https://github.com/isa-group/Beet.
Beet converts any OpenAPI specification and a collection of API requests (and responses) into input for
Daikon. Beet is part of AGORA, which generates test oracles for REST APIs.

A front end for LLVM, named Udon, is distributed separately; see https: / / github . com /
markus-kusano/udon. It can be used on any programming language that can be compiled to LLVM.

A front end for WS-BPEL process definitions, named Takuan, is distributed separately; see http://web.
archive.org/web/20160528161316/https://neptuno.uca.es/redmine/projects/takuan-website.

https://en.wikipedia.org/wiki/Comma-separated_values
https://raw.githubusercontent.com/plume-lib/html-tools/master/checkargs.pm
https://github.com/plume-lib/html-tools
https://github.com/plume-lib/html-tools
https://github.com/isa-group/Beet
https://github.com/markus-kusano/udon
https://github.com/markus-kusano/udon
http://web.archive.org/web/20160528161316/https://neptuno.uca.es/redmine/projects/takuan-website
http://web.archive.org/web/20160528161316/https://neptuno.uca.es/redmine/projects/takuan-website

Chapter 7: Front ends and instrumentation 110

A front end for the Eiffel programming language, named CITADEL, is distributed separately; see
https://se.inf.ethz.ch/people/polikarpova/citadel/.

A front end for the Simulink/Stateflow (SLSF) programming language, named Hynger, is distributed
separately; see https://github.com/verivital/hynger.

A front end for the IOA (Input/Output Automata) programming language is distributed separately; see
http://groups.csail.mit.edu/tds/ioa.html.

An earlier version of Daikon included a Lisp front end, but it is no longer supported.

An earlier version of Daikon provided a source-based front end for Java named dfej. It has been
superseded by Chicory (see Section 7.1 [Chicory], page 72).

An earlier version of Daikon provided a source-based front end for C named dfec. It has been superseded
by Kvasir (binary-based, for Linux/x86-64; see Section 7.3 [Kvasir], page 84).

https://se.inf.ethz.ch/people/polikarpova/citadel/
https://github.com/verivital/hynger
http://groups.csail.mit.edu/tds/ioa.html

Chapter 8: Tools for use with Daikon 111

8 Tools for use with Daikon

This chapter describes various tools that are included with the Daikon distribution.

8.1 Tools for manipulating invariants
This section gives information about tools that manipulate invariants (in the form of .inv files).

8.1.1 Printing invariants

Daikon provides many options for controlling how invariants are printed. Often, you may want to print
the same set of invariants several different ways. However, you only want to run Daikon once, since it may
be very time consuming. The PrintInvariants utility prints a set of invariants from a .inv file.

PrintInvariants is invoked as follows:

java -cp $DAIKONDIR/daikon.jar daikon.PrintInvariants [flags] inv-file

PrintInvariants shares many flags with Daikon. These flags are only briefly summarized here. For
more information about these flags, see Section 6.1 [Configuration options], page 43.

In particular, see the configuration options whose names start with daikon.PrintInvariants; see
Section 6.1.1.9 [General configuration options], page 61.

--help
Print usage message.

--format name
Produce output in the given format. See Section 5.1 [Invariant syntax], page 18.

--output filename
Send output to the specified file rather than stdout.

--output_num_samples
Output numbers of values and samples for invariants and program points; for debugging.

--ppt-select-pattern
Only outputs program points that match the specified regular expression

--config filename
Load the configuration settings specified in the given file. See Section 6.1 [Configuration options],
page 43, for details.

--config_option name=value
Specify a single configuration setting. See Section 6.1 [Configuration options], page 43, for details.

--dbg category
--debug

Enable debug loggers.

--track class<var1,var2,var3>@ppt
Track information on specified invariant class, variables and program point. For more information,
see Section “Track logging” in Daikon Developer Manual.

--wrap_xml
Print extra info about invariants, and wrap in XML tags. This is primarily for programmatic
use and for debugging. To add just the Java class of each invariant, use --config_option
daikon.PrintInvariants.print_inv_class=true.

Chapter 8: Tools for use with Daikon 112

8.1.2 MergeInvariants

The MergeInvariants utility merges multiple serialized invariant files to create a single serialized in-
variant file that contains the invariants that are true across each of the input files. The results of merging
N serialized invariant files should be the same as running Daikon on the N original .dtrace files.

MergeInvariants is invoked as follows:

java -cp $DAIKONDIR/daikon.jar daikon.MergeInvariants [flags]... file1 file2...

file1 and file2 are files containing serialized invariants produced by running Daikon. At least two invariant
files must be specified.

MergeInvariants shares many flags with Daikon. These flags are only briefly summarized here. For
more information about these flags, see Section 4.4 [Daikon configuration options], page 16.

-h --help
Print usage message.

-o inv_file
Output serialized invariants to the specified file; they can later be postprocessed, compared, etc. If
not specified, the results are written to standard out.

--config_option name=value
Specify a single configuration setting. See Section 6.1 [Configuration options], page 43, for details.

--dbg category
Enable debug loggers.

--track class<var1,var2,var3>@ppt
Track information on specified invariant class, variables and program point. For more information,
see Section “Track logging” in Daikon Developer Manual.

8.1.3 Invariant Diff

The invariant diff utility is designed to output the differences between two sets of invariants. Invariant
diff compares invariants at program points with the same name.

Invariant diff lets you compare the invariants generated by two versions of the same program, or compare
the invariants generated by different runs of one program.

Invariant diff is invoked as follows:

java -cp $DAIKONDIR/daikon.jar daikon.diff.Diff [flags]... file1 [file2]

file1 and file2 are files containing serialized invariants produced by running Daikon or Diff with the -o
flag. If file2 is not specified, file1 is compared with the empty set of invariants.

This section describes the optional flags.

--help
Print usage message.

-d Display the tree of differing invariants (default). Invariants that are the same in file1 and file2 are not
printed. At least one of the invariants must be justified. Does not print “uninteresting” invariants
(currently some ‘OneOf’ and ‘Bound’ invariants).

-a Display the tree of all invariants. Includes invariants that are the same in file1 and file2, and
unjustified invariants.

-u Include “uninteresting” invariants in the tree of differing invariants.

-y
--ignore_unjustified

Include (statistically) unjustified invariants.

Chapter 8: Tools for use with Daikon 113

-m Compute (file1 - file2). This is all the invariants that appear in file1 but not file2. Unjustified invari-
ants are treated as if they don’t exist. Output is written as a serialized ‘InvMap’ to the file specified
with the -o option. To view the contents of the serialized ‘InvMap’, run java daikon.diff.Diff
file.

-x Compute (file1 XOR file2). This is all the invariants that appear in one file but not the other.
Unjustified invariants are treated as if they don’t exist. Output is written as a serialized ‘InvMap’
to the file specified with the -o option. To view the contents of the serialized ‘InvMap’, run java
daikon.diff.Diff file.

-n Compute (file1 UNION file2). This is all the invariants that appear in either file. If the same
invariant appears in both files, the one with the better justification is chosen. Output is written as
a serialized ‘InvMap’ to the file specified with the -o option. To view the contents of the serialized
‘InvMap’, run java daikon.diff.Diff file.

-o inv_file
Used in combination with the -m or -x option. Writes the output as a serialized ‘InvMap’ to the
specified file.

-p Examine all program points. By default, only procedure entries and combined procedure exits are
examined. This option also causes conditional program points to be examined.

-e Print empty program points. By default, program points are not printed if they contain no differences.

--invSortComparator1 classname
--invSortComparator2 classname
--invPairComparator classname

Use the specified class as a custom comparator. A custom comparator can be used for any of 3
operations: sorting the first set of invariants, sorting the second set of invariants, and combining the
two sets into the pair tree. The specified class must implement the Comparator interface, and accept
objects of type Invariant.

-v Verbose output. Invariants are printed using the repr() method, instead of the format() method.

-s For internal use only. Display the statistics between two sets of invariants. The pairs of invariants
are placed in bins according to the type of the invariant and the type of the difference.

-t For internal use only. Display the same statistics as -s, but as a tab-separated list.

-j For internal use only. Treat justification as a continuous value when gathering statistics. By default,
justification is treated as a binary value — an invariant is either justified or it is not. For example,
assume invariant ‘I1’ has a probability of .01, and ‘I2’ has a probability of .5. By default, this will
be a difference of 1, since ‘I1’ is justified but ‘I2’ is not. With this option, this will be a difference
of .49, the difference in the probabilities. This only applies when one invariant is justified, and the
other is unjustified.

-l For debugging use only. Prints logging information describing the state of the program as it runs.

8.1.4 Annotate

The Annotate program inserts Daikon-generated invariants into Java source code as annotations in DBC,
ESC, Java or JML format. These annotations are comments that can be automatically verified or otherwise
manipulated by other tools. The Daikon website has an example of code after invariant insertion: http://
plse.cs.washington.edu/daikon/StackAr.html.

Invoke Annotate like this:

java -cp $DAIKONDIR/daikon.jar daikon.tools.jtb.Annotate Myprog.inv Myprog.java Myprog2.java ...

The first argument is a Daikon .inv or .inv.gz file produced by running Daikon with the -o command-
line argument. All subsequent arguments are .java files. The original .java files are left unmodified, but

http://plse.cs.washington.edu/daikon/StackAr.html
http://plse.cs.washington.edu/daikon/StackAr.html

Chapter 8: Tools for use with Daikon 114

Annotate produces new versions of the .java files (with names suffixed as -escannotated, -jmlannotated,
or -dbcannotated) that include the Daikon invariants as comments.

The options are:

--format name
Produce output in the given format. See Section 5.1 [Invariant syntax], page 18.

--no_reflection
Do not use reflection to find information about the classes being instrumented. This allows Annotate
to run without having access to the class files. Since the class files are necessary to generate ‘also’
tags, those tags will be left out when this option is chosen.

--max_invariants_pp count
Output at most count invariants per program point (which ones are chosen is not specified).

--wrap_xml
Each invariant is printed using the given format (ESC, JML or DBC), but the invariant expression is
wrapped inside XML tags, along with other information about the invariant.

For example, if this switch is set, the output format is ESC, and an invariant for method foo(int x)
normally prints as

/* requires x != 0; */

Then the resulting output will look something like this (all in one line; we break it up here for
clarity):

/* requires <INVINFO>
<INV> x != 0 </INV>
<SAMPLES> 100 </SAMPLES>
<DAIKON> x != 0 </DAIKON>
<DAIKONCLASS> daikon.inv.unary.scalar.NonZero </DAIKONCLASS>
<METHOD> foo() </METHOD>
</INVINFO> ; */

Note that the comment will no longer be a legal ESC/JML/DBC comment. To make it legal again, you
must replace the XML tags with the string between the ‘<INV>’ tag.

Also note the extra information printed with the invariant: the number of samples from which the
invariant was inferred, the Daikon representation (i.e., the Daikon output format), the Java class
that the invariant corresponds to, and the method that the invariant belongs to (null for object
invariants).

If Annotate issues a warning message of the form

Warning: Annotate: Daikon knows nothing about field ...

then the Annotate tool found a variable in the source code that was computed by Daikon. This can happen
if Daikon was run omitting the variable, for instance due to --std-visibility. It can also happen due
to a bug in Annotate or Daikon; if that is the case, please report it to the Daikon developers.

8.1.5 AnnotateNullable

By using the AnnotateNullable program, you can insert @Nullable annotations into your source code.

The purpose of AnnotateNullable is to make it easier to annotate programs for the Nullness Checker
that is part of the Checker Framework. As background, the Nullness Checker warns the programmer
about possible null dereference errors. This is useful, but it requires the programmer to write a @Nullable
annotation anywhere that a variable might contain null. (An unannotated reference is assumed to never
be null at run time.)

https://checkerframework.org/manual/#nullness-checker
https://checkerframework.org/

Chapter 8: Tools for use with Daikon 115

The AnnotateNullable tool automatically and soundly determines a subset of the proper @Nullable
annotations, reducing the programmer’s burden. Each annotation that AnnotateNullable infers is correct.
The programmer may need to write some additional @Nullable annotations, but that is much easier than
writing them all.

To insert @Nullable annotations in your program, follow these steps:

1. Run your application one or more times to create a trace file. (It is not necessary to run DynComp.)
The more thorough your test runs, the larger number of @Nullable annotations AnnotateNullable
will produce.

java -cp $DAIKONDIR/daikon.jar daikon.Chicory \

--dtrace-file=an.dtrace.gz mypackage.MyClass arg1 arg2 ...

2. Run Daikon on the resulting .dtrace file:

java -cp $DAIKONDIR/daikon.jar daikon.Daikon an.dtrace.gz --no_text_output \

--config daikondir/java/daikon/annotate_nullable.config

3. Run the AnnotateNullable tool to create an annotation index file. AnnotateNullable writes its
output to standard out, so you should redirect its output to a .jaif file.

java -cp $DAIKONDIR/daikon.jar daikon.AnnotateNullable an.inv.gz > nullable-annotations.jaif

4. Use the Annotation File Utilities to insert the annotations in your .class or .java file.

To insert in class files:

insert-annotations mypackage.MyClass nullable-annotations.jaif

To insert in source files:

insert-annotations-to-source nullable-annotations.jaif \

mypackage/MyClass.java annotated/mypackage/MyClass.java

AnnotateNullable is invoked as follows:

java -cp $DAIKONDIR/daikon.jar daikon.AnnotateNullable [flags] inv-file

The flags are:

-n --nonnull-annotations
Adds ‘NonNull’ annotations as well as ‘Nullable’ annotations. Unlike ‘Nullable’ annotations,
‘NonNull’ annotations are not guaranteed to be correct.

8.1.6 Runtime-check instrumenter (runtimechecker)

The runtimechecker instrumenter inserts, into a Java file, instrumentation code that checks invariants
as the program executes. For a full list of options, run:

java -cp $DAIKONDIR/daikon.jar daikon.tools.runtimechecker.Main help

The instrument command to runtimechecker creates a new directory instrumented-classes containing
a new version of the user-specified Java files, instrumented to check invariants at run time and to record a
list of invariant violations in a Java data structure. You can compile and run the instrumented version of
your program.

Here is an example of using the runtime-check instrumenter to create a version of file
ubs/BoundedStack.java that checks the invariants in invariant file BoundedStack.inv.gz:

java daikon.tools.runtimechecker.Main instrument BoundedStack.inv.gz \
ubs/BoundedStack.java

The instrumented Java code references classes in the daikon.tools.runtimechecker package, so those
classes must be present in the classpath when the instrumented classes are compiled and executed.

Invariants are evaluated at the program points at which they should hold. Three things can happen
when evaluating an invariant:

• It evaluates to true, which means that the invariant holds. Program execution continues normally.

https://checkerframework.org/annotation-file-utilities/

Chapter 8: Tools for use with Daikon 116

• It evaluates to false, which means that the invariant doesn’t hold. In this case the corresponding
daikon.tools.runtimechecker.Property is added to a list in the class daikon.tools.
runtimechecker.Runtime. A programmer can obtain the growing list of violated invariants through
the method daikon.tools.runtimechecker.Runtime.getViolations(). (See that class for other
useful methods.)

• A Throwable (exception) is thrown when evaluating the invariant. In this case, the throwable is
added to the list daikon.tools.runtimechecker.Runtime.internalInvariantEvaluationErrors.
The throwable is not rethrown.

Note that the instrumented program does not do anything with the list of violations; it merely creates
the list. You will need to write your own code to process that list; see Section 8.1.6.1 [How to access
violations], page 116.

8.1.6.1 How to access violations

The instrumented class handles violations silently: it simply adds them to a list in the class
daikon.tools.runtimechecker.Runtime. No “invariant violation” exceptions are thrown, and the
violated invariants can only be obtained dynamically (while the program is running) by calling
daikon.tools.runtimechecker.Runtime.getViolations().

To obtain a file of all the violations for a program execution, you can use program daikon.tools.
runtimechecker.WriteViolationFile. For example, if you usually run

java MyProg arg1 arg2

then instead you would run

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.tools.runtimechecker.WriteViolationFile MyProg arg1 arg2

This will create a file called violations.txt in the current directory, immediately before the program
exits normally. If the program under test calls System.exit, then no violations.txt file is created.
(JUnit is an example of a program that calls System.exit.)

The following code snippet contains a method callMethod() which presumably calls one of the methods
in the instrumented class. The code detects if any violations occurred, and if so, prints a message.

daikon.tools.runtimechecker.Runtime.resetViolations();
daikon.tools.runtimechecker.Runtime.resetErrors();

callMethod();

List<Violation> vs = daikon.tools.runtimechecker.Runtime.getViolations();

if (!vs.isEmpty())
System.out.println("Violations occurred.");

In addition, the instrumenter adds the following two methods to the instrumented class:

• isDaikonInstrumented(). Returns true (you could calling this method to see if the class has been
instrumented).

• getDaikonInvariants(). Returns the array of properties being checked.

8.1.6.2 Problems compiling instrumented code

When compiling the instrumented code, the Java compiler might emit an error such as:

error: longitude has private access in GeoPoint

If you receive the error above, then a variable in an invariant (longitude in this case) has been declared
private.

Chapter 8: Tools for use with Daikon 117

There are two ways to fix this. To check invariants that mention private variables, supply the --make_
all_fields_public command-line option when running ‘java daikon.tools.runtimechecker.Main
instrument ...’. To ignore invariants that mention private variables, rebuild the .dtrace file by
rerunning Chicory using the --std-visibility command-line option.

Another error the Java compiler might emit is:

error: code too large for try statement

You get the above error if the combined size of the original source code, plus the instrumentation code,
is larger than the JVM’s limit of 65536 bytes of bytecode per method.

You can correct the problem by using a smaller number of invariants when instrumenting. See
Section 9.1.4 [Too much output], page 123.

(Eventually, it might be nice for the instrumenter to place its code in one or more separate methods so
that no one of them is too large.)

8.1.7 InvariantChecker

The InvariantChecker program takes a set of invariants found by Daikon and a set of data trace files.
It checks each sample in the data trace files against each of the invariants. Any sample that violates an
invariant is noted, via a message printed to standard output or to a specified output file.

InvariantChecker is invoked as follows:

java -cp $DAIKONDIR/daikon.jar daikon.tools.InvariantChecker [options] invariant-file dtrace-
files

The invariant-files are invariant files (.inv) created by running Daikon. The dtrace-files are data trace
(.dtrace) files created by running the instrumented program. The files may appear in any order; the file
type is determined by whether the file name contains .dtrace, or .inv.

The options are:

--help
Print usage message.

--output output-file
Write any violations to the specified file.

--conf
Checks only invariants that are above the default confidence level.

--filter
Checks only invariants that are not filtered by the default filters.

--verbose
Print all samples that violate an invariant. By default only the totals are printed.

--dir directory-name
Processes all invariant files in the given directory and reports the number of invariants that failed on
any of the .dtrace files in that directory. We only process invariants above the default confidence
level and invariants that have not been filtered out by the default filters.

--config_option name=value
--dbg category
--track class<var1,var2,var3>@ppt

These switches are the same as for Daikon. They are described in Chapter 4 [Running Daikon],
page 13.

Chapter 8: Tools for use with Daikon 118

8.1.8 LogicalCompare

Suppose you have two sets of invariants describing the operation of a software module or describing two
implementations of a module with the same interface. Roughly, one set of invariants is “stronger” than
another if in any situation where the “stronger” invariants hold, the “weaker” invariants also hold. The
LogicalCompare tool checks whether two sets of invariants satisfy this relationship.

In order to use LogicalCompare, Simplify must be installed (see Section 9.1.11.1 [Installing Simplify],
page 126).

An invocation of LogicalCompare has the following form:

java -cp $DAIKONDIR/daikon.jar daikon.tools.compare.LogicalCompare [options] \
weak-invs strong-invs [enter-ppt [exit-ppt]]

The LogicalCompare program takes two mandatory arguments, which are .inv files containing invari-
ants. LogicalCompare checks whether the invariants in the first file are weaker (implied by) the invariants
in the second file. LogicalCompare prints any exceptions to this implication, preceded by the text “In-
valid:”.

To be precise, for each pair of program points representing a single method or function, LogicalCompare
will check that each precondition (:::ENTER point invariant) in the “stronger” invariant set is implied by
some combination of invariants in the “weaker” invariant set, and that each postcondition (:::EXIT point
invariant) in the “weaker” invariant set is implied by some combination of postconditions in the “stronger”
set and preconditions in the “weaker” set.

If no other regular arguments besides the two .inv files are supplied, all the method or function program
points that exist in both files will be compared, with a exception message reported for each method that
exists in the “weaker” set but not the “stronger”. Alternatively, one or two additional arguments may be
supplied, which name an :::ENTER program point and an :::EXIT program point to examine (if only an
:::ENTER program point is supplied, the corresponding combined :::EXIT point is selected automatically).

LogicalCompare accepts the following options:

--assume file
Read additional assumptions about the behavior of compared routines from the file file. The as-
sumptions file should consist of lines starting with ‘PPT_NAME’, followed by the complete name of an
:::ENTER program point, followed by lines each consisting of a Simplify formula, optionally followed
by a # and a human-readable annotation. Blank lines and lines beginning with a # are ignored. The
assumption properties will be used as if they were invariants true at the strong :::EXIT point when
checking weak :::EXIT point invariants.

--config_option option=value
Specify a single configuration setting. The available settings are the same as can be passed to Daikon’s
--config_option option, though because the invariants have already been generated, some will have
no effect. For a list of available options, see Section 6.1 [Configuration options], page 43.

--config-file=file
Read configuration options from the file file. This file should have the same format as one passed
to Daikon’s --config option, though because the invariants have already been generated, some will
have no effect.

--debug
--dbg category

These options have the same effect as the --debug and --dbg options to Daikon, causing debugging
logs to be printed.

--filters=[bBoOmjpi]
Control which invariants are removed from consideration before implications are checked. Note that
except as controlled by this option, LogicalCompare does not perform any of the filters that normally

Chapter 8: Tools for use with Daikon 119

control whether invariants are printed by Daikon. Also, invariants that cannot be formatted for the
Simplify automatic theorem prover will be discarded in any case, as there would be no other way to
process them. Each letter controls a filter: an invariant is rejected if it is rejected by any filter (or,
equivalently, kept only if it passes through every filter).

b Discard upper-bound and lower-bound invariants (such as ‘x <= c’ and ‘x >= c’ for a constant
c), when Daikon considers the constant to be uninteresting. Currently, Daikon has a config-
urable range of interesting constant: by default, -1, 0, 1, and 2 are interesting, and no other
numbers are.

B Discard all bound invariants, whether or not the constants in them are considered interesting.

o Discard ‘one-of’ invariants (which signify that a variable always had one of a small set of
values at run time), when the values that the variable took are considered uninteresting by
Daikon.

O Discard all ‘one-of’ invariants, whether or not the values involved are interesting.

m Discard invariants for which it was never the case that all the variables involved in the invariant
were present at the same time.

j Discard invariants that Daikon determines to be statistically unjustified, according to its tests.

p Discard invariants that refer to the values of pass-by-value parameters in the postcondition,
or to the values of objects pointed to by parameters in postconditions, when the pointer is not
necessarily the same as at the entrance to the method or function. Usually such invariants
reflect implementation details that would not be visible to the caller of a method.

i Discard implication invariants when they appear in :::ENTER program points.

The default set of filters corresponds to the letters ijmp.

--help
Print a brief summary of available command-line options.

--no-post-after-pre-failure
If implication is not verified between two invariant sets after examining the preconditions, do not
continue to check the implication involving postconditions. Because the postconditions aren’t for-
mally meaningful outside the domain specified by the preconditions, this is the safest behavior,
but in practice trivial precondition mismatches may prevent an otherwise meaningful postcondition
comparison. See also --post-after-pre-failure.

--proofs
For each implication among invariants that is verified, print a minimal set of conditions that establish
the truth of the conclusion. The set is minimal, in the sense that if any condition were removed,
the conclusion would no longer logically follow according to Simplify, but it is not the least such set:
there may exist a smaller set of conditions that establish the conclusion, if that set is not a subset of
the set printed. Beware that because this option uses a naive search technique, it may significantly
slow down output.

--post-after-pre-failure
Even if implication is not verified between two invariant sets after examining the preconditions,
continue to check the implication involving postconditions. This is somewhat dangerous, in that if
the implication does not hold between the preconditions, the invariant sets may be inconsistent, in
which case reasoning about the postconditions is formally nonsensical, but the tool will attempt to
ignore the contradiction and carry on in this case. This is now the default behavior, so the option has
no effect, but it is retained for backward compatibility. See also --no-post-after-pre-failure.

Chapter 8: Tools for use with Daikon 120

--show-count
Print a count of the number of invariants checked for implication.

--show-formulas
For each invariant, show how it is represented as a logical formula passed to Simplify.

--show-sets
Rather than testing implications among invariants, simply print the sets of weak and strong :::ENTER
and :::EXIT point invariants that would normally be compared. The invariants are selected and
filtered as implied by other options.

--show-valid
Print invariants that are verified to be implied (“valid”), as well as those for which the implication
could not be verified (“invalid” invariants, which are always printed).

--timing
For each set of invariants checked, print the total time required for the check. This time includes
both processing done by LogicalCompare directly, and time spent waiting for processing done by
Simplify, but does not include time spent deserializing the .inv input files.

8.2 DtraceDiff utility
DtraceDiff is a utility for comparing data trace (.dtrace) files. It checks that the same program points

are visited in the same order in both files, and that the number, names, types, and values of variables at
each program point are the same. The differences are found using a content-based, rather than text-based,
comparison of the two files.

DtraceDiff stops by signaling an error when it finds a difference between the two data trace files. (Once
execution paths have diverged, continuing to emit record-by-record differences is likely to produce output
that is far too voluminous to be useful.) It also signals an error when it detects incompatible program
point declarations or when one file is shorter than the other.

DtraceDiff is invoked as follows:

java -cp $DAIKONDIR/daikon.jar daikon.tools.DtraceDiff [flags] \
[declsfiles1] dtracefile1 [declsfiles2] dtracefile2

Corresponding declarations (.decls) files can optionally be specified on the command line before each
of the two .dtrace files. Multiple .decls files can be specified. If no .decls file is specified, DtraceDiff
assumes that the declarations are included in the .dtrace file instead.

DtraceDiff supports the following Daikon command-line flags:

--help
Print usage message.

--config filename
Load the configuration settings specified in the given file. See Section 6.1 [Configuration options],
page 43, for details.

--config_option name=value
Specify a single configuration setting. See Section 6.1 [Configuration options], page 43, for details.

--ppt-select-pattern=ppt_regexp
Only process program points whose names match the regular expression.

--ppt-omit-pattern=ppt_regexp
Do not process program points whose names match the regular expression. This takes priority over
the --ppt-select-pattern argument.

Chapter 8: Tools for use with Daikon 121

--var-select-pattern=ppt_regexp
Only process variables (whether in the trace file or derived) whose names match the regular expres-
sion.

--var-omit-pattern=var_regexp
Ignore variables (whether in the trace file or derived) whose names match the regular expression,
which uses Perl syntax. This takes priority over the --var-select-pattern argument.

DtraceDiff uses appropriate comparisons for the type of the variables in each program point being
compared. In particular:

• Hashcode (pointer or address) values may differ from one run of the same program to the next, and
there may not be a one-to-one mapping of hashcode values between different program executions, so
the comparison function only looks for null versus non-null pointer values.

• Floating-point values are subject to roundoff error from printing and reading, so they are compared
with a “fuzzy” rather than exact equality test.

8.3 Reading dtrace files
If you wish to write a program that manipulates .dtrace files, then see See Section “Reading dtrace

files” in Daikon Developer Manual.

Chapter 9: Troubleshooting 122

9 Troubleshooting

This chapter gives solutions for certain problems you might have with Daikon. It also tells you how to
report bugs in a useful manner.

If, after reading this section and other parts of the manual, you are unable to solve your problem, you
may wish to send mail to one of the mailing lists (see Section 10.3 [Mailing lists], page 136).

9.1 Problems running Daikon
You may find the debugging flags --debug and --dbg category useful if you wish to track down bugs or

better understand Daikon’s operation; see Section 4.5 [Daikon debugging options], page 17. See Section 6.1
[Configuration options], page 43, for another way to adjust Daikon’s output.

9.1.1 Can’t run Daikon: could not find or load main class, or
NoClassDefFoundError

Either of these errors:

Error: Could not find or load main class daikon.Chicory
Exception in thread "main" java.lang.NoClassDefFoundError: daikon/Chicory

means that you have not put daikon.jar on the classpath.

More generally, an error such as one of these:

Error: Could not find or load main class mypackage.MyClass
Exception in thread "main" java.lang.NoClassDefFoundError: mypackage/MyClass

means that Java did not find the class mypackage.MyClass on the classpath. To correct the problem, you
need to make sure that the directory or jar file that contains file mypackage/MyClass.class is on your
classpath. The classpath is passed as a command-line argument such as -cp or -classpath.

When investigating such a problem, you should verify that you can run your program when not
using Daikon; for example, if you are trying to run java -cp myclasspath:$DAIKONDIR/daikon.jar
daikon.Chicory mypackage.MyClass arg1 arg2 arg3, then make sure that the identical command
without daikon.Chicory works, in this case java -cp myclasspath:$DAIKONDIR/daikon.jar
mypackage.MyClass arg1 arg2 arg3. If both commands issue the same error, then the problem is
unrelated to Daikon. If the two commands behave differently, that is a bug in Daikon.

9.1.2 File input errors

If Daikon terminates with an error such as

Error at line 530 in file test.dtrace

and inspection of the indicated file at the indicated line number does not help you to discern what is wrong,
you may wish to re-run Daikon with the show_stack_trace option. The exact syntax for this is:

--config_option daikon.Debug.show_stack_trace=true

The additional information in the resulting exception stack trace should indicate where the problem is
occurring.

9.1.3 decl format errors

If Daikon terminates with an error such as
decl format ’2.0’ does not match previous setting at line 4 in file test.dtrace

it means you are using multiple .dtrace and/or .decls files and they are not all in the same format. (See
Section “Declaration version” in Daikon Developer Manual for information about how to determine a data
file’s format.)

Chapter 9: Troubleshooting 123

The most probable cause is you are using at least one version 1 .decls file or .dtrace file generated by
an older version of Chicory/DynComp and at least one current .decls file or .dtrace file (which defaults
to version 2) as input to Daikon. (Note that the C/C++ front end Kvasir generates a version 2 file .decls.)
The way to avoid this problem is to use your Java-DynComp-generated .decls files as input to Chicory.
The resulting .dtrace file will contain the comparability values from the .decls file(s) and can then be
used as input to Daikon. Passing a .decls file to Chicory is described in Section 3.1 [Detecting invariants
in Java programs], page 4, for example:

java -cp $DAIKONDIR/daikon.jar daikon.Chicory \
--comparability-file=MyClass.decls-DynComp \
mypackage.MyClass arg1 arg2 arg3

9.1.4 Too much output

Sometimes, Daikon may produce a very large number of seemingly irrelevant properties that obscure the
facts that you were hoping to see. Which properties are irrelevant depends on your current task, so Daikon
provides ways for you to customize its output. See Daikon’s command-line options (see Chapter 4 [Running
Daikon], page 13), and the techniques for enhancing its output (see Chapter 6 [Enhancing Daikon output],
page 43), including its configuration options (see Section 6.1 [Configuration options], page 43). The options
for the front ends — such as DynComp (see Section 7.2.2 [DynComp for Java options], page 82), Chicory
(see Section 7.1.1 [Chicory options], page 72) and Kvasir (see Section 7.3.2 [Kvasir options], page 85) —
give additional control.

Some irrelevant properties are over unrelated variables, like comparing an array index to elements of the
array. You should always use the DynComp tool (see Section 7.2 [DynComp for Java], page 77, Section 7.3.3
[DynComp for C/C++], page 90) to avoid producing such properties.

Some irrelevant properties are not relevant to the domain (e.g., bitwise operations). You can exclude
whole classes of unhelpful invariants from Daikon’s output (see Section 6.1.1.2 [Options to enable/disable
specific invariants], page 44).

Some irrelevant properties are over variables you do not care about, or are in parts of the program
that you do not care about. You can exclude certain variables or procedures from Daikon’s output (see
Section 4.3 [Processing only part of the trace file], page 16 and Section 6.1.1.4 [Options to enable/disable
derived variables], page 55).

Some irrelevant properties are logically redundant — multiple properties express the same facts in
different ways. You can eliminate such properties from Daikon’s output (see Section 4.2 [Options to
control invariant detection], page 15).

Some irrelevant output indicates a deficiency in your test suite: your test suite is so small that many
arbitrary properties hold over it. This happens when the test suite does not execute the code with a broad
distribution of values, but only executes the code with a few specific values. This problem disappears if
you augment your test suite so that it exercises the code with more different values.

More generally, each property that Daikon produces is a true fact about how the target program behaved.
However, some of these facts would be true for any execution of the target program, and others are accidents
of the particular executions that Daikon observed. Both types of facts may be useful, but for different
reasons: the former tell you about your program, and the latter tell you about your test suite (and how to
improve it!).

9.1.5 Missing output invariants

Daikon may sometimes fail to output invariants that you expect it to output. Here are some reasons
why this may happen:

• There is a sample that violates the invariant

• The invariant is true, but does not pass one of the output filters (see Section 9.1.6 [True invariants are
not reported due to output filters], page 124).

Chapter 9: Troubleshooting 124

• One or more of the variables in the invariant always has the same value as another variable. Daikon
only prints invariants over one variable (the leader) from the set of equal variables (see Section 5.4.2
[Equal variables], page 23).

• The program point had no samples (see Section 9.1.7 [No samples], page 124).

There are two command-line options (--disc_reason and --track) that will display information about
invariants that are not printed. The --disc_reason option will indicate why a particular invariant was
discarded in most cases. If it does not provide enough information, try the --track option which traces
the invariant through all of Daikon’s processing steps. See Section 4.5 [Daikon debugging options], page 17
for more information.

Note that in each case the description (class, variables, program point) of the invariant must be entered
carefully. It may be helpful to try the option on a similar invariant that is printed to make sure that each
is specified correctly.

9.1.6 True invariants are not reported due to output filters

Sometimes, Daikon does not report an invariant, even though Daikon has computed that the invariant
is true throughout the sample data. Daikon only reports invariants that satisfy all the output filters (see
Section 5.6 [Invariant filters], page 41).

Here, we discuss two common reasons for filtering: statistical justification, and implication.

Daikon only reports a property if it is statistically justified, and Daikon needs to see enough samples for
the statistical test to work. So, there may be a property that is true, but if too few samples were seen, then
Daikon will not report it. In a longer trace, Daikon would report the property. You can adjust Daikon’s
confidence limit so that the property is reported even in the short executions; see the command-line option
--conf_limit. For instance, supplying --conf_limit 0 causes all properties that have not been falsified
to be printed.

Daikon does not report redundant, or implied, invariants (see Section 5.4.1 [Redundant invariants],
page 23). The purpose of this is to avoid cluttering the output with facts that add no new information.
Here are a few examples:

• Suppose that both i < j and i <= j are true. Daikon would report only i < j; Daikon would not report
i <= j, which is implied by what Daikon has reported. Further suppose that a longer execution had a
sample containing i=22, j=22. Only i <= j would be true in the second execution, and Daikon would
report it. (The invariant i < j is an example of a false positive or overfitting in the first execution.)

• If two or more variables are found to be equal, then Daikon chooses one of them (the leader) and only
prints invariants over the leader, not the other variables (see Section 5.4.2 [Equal variables], page 23).

9.1.7 No samples and no output

When Daikon produces no output, that is usually a result of it having no samples from which to gener-
alize. Use the --output_num_samples flag to Daikon to find out how many samples it is observing. This
section tells you how to debug your problem if the answer is 0, but you believe that there are samples in
the file you are feeding to Daikon.

Using the normal dataflow hierarchy, Daikon explicitly processes :::EXIT program points only. Other
program points, such as :::ENTER program points, are processed indirectly when their corresponding
:::EXIT points are encountered. (You can disable this behavior with the --nohierarchy switch to Daikon;
see Section 4.2 [Options to control invariant detection], page 15.) If no :::EXIT program points are present
(perhaps every execution threw an exception, you filtered out all the :::EXIT program points, or the data
trace is obtained from spreadsheet data instead of from a program execution), then Daikon will not process
any of the other program points, such as the :::ENTER program points. You can make Daikon print informa-
tion about unmatched procedure entries via the ‘daikon.FileIO.unmatched_procedure_entries_quiet’
configuration option (see Section 6.1.1.9 [General configuration options], page 61).

Chapter 9: Troubleshooting 125

Another way to increase the number of invariants printed out is to lower the confidence bound cutoff.
Daikon only prints invariants whose confidence level is greater than the bound specified by the --conf_
limit option (see Section 4.2 [Options to control invariant detection], page 15). In order to maximize the
number of invariants printed, use --conf_limit 0 to see all invariants Daikon is considering printing.

To try to determine why an invariant is not printed, use the --track to determine why Daikon does not
print an invariant (see Section 4.5 [Daikon debugging options], page 17).

9.1.8 No return from procedure

Daikon sometimes issues a warning that a procedure in the target program was entered but never exited
(that is, the target program abnormally terminated). In other words, the .dtrace file contains more entry
records than exit records for the given procedure. Some procedures that were entered were never recorded
to have exited: either they threw an exception, skipping the instrumentation code that would have recorded
normal termination, or the target program’s run was interrupted. When this happens, the entry sample is
ignored; the rationale is that the particular values seen led to exception exit, were probably illegal, and so
should not be factored into the method preconditions.

In some cases, exceptional exit from a procedure can cause procedure entries and exits (in the trace file)
to be incorrectly matched up; if they are incorrectly matched, then the orig(x) values may be incorrect.
Daikon has two techniques for associate procedure exits with entries — the nonce technique and the stack
technique. If a .dtrace file uses the nonce technique, orig(x) values are guaranteed to be correct. If
a .dtrace file uses the stack technique, then incorrect orig(x) values are likely to occur. You can tell
which technique Daikon will use by examining the .dtrace file. If the second line of each entry in the
.dtrace file is ‘this_invocation_nonce’, then Daikon uses the nonce technique. Otherwise, it uses the
stack technique. Which technique is used is determined by the front end, which creates the .dtrace file,
and typically cannot be controlled by the user.

9.1.9 Unsupported class version

Daikon requires a Java 8 (or newer) JVM (see Section 2.1 [Requirements], page 2). An error such as

Exception in thread "main" java.lang.UnsupportedClassVersionError:
daikon/Daikon (Unsupported major.minor version 52.0)

indicates that you are trying to run Daikon on an older JVM. You need to install a newer version of Java
in order to run Daikon.

9.1.10 Out of memory

If Daikon runs out of memory, generating a message like

Exception in thread "main" java.lang.OutOfMemoryError
<<no stack trace available>>

then it is likely that it has created more invariants than will fit in memory. The number of invariants
created depends on the number of program points and the number of variables at each program point.
In addition to the solutions discussed in Section 9.2.5.1 [Reducing program points], page 129, you can
try increasing the amount of memory available to Java with the -Xmx argument to java. (This flag is
JVM-specific; see your JVM documentation for details. For instance, its name in JDK versions 1.2 and
earlier is -mx.) However, the value you use should be less than your system’s total amount of physical
memory. Some implementations of Java use a surprisingly small default, such as 64 megabytes; to permit
use of up to 2048 megabytes, you would run Java like so:

java -Xmx3600m ...

though you can use much more depending on the limitations of your JVM.

If you are using Chicory’s --daikon command-line argument to run Daikon, then you must separately
indicate the amount of memory available to Chicory and to Daikon (the latter with Chicory’s --heap-size
command-line argument). For example:

Chapter 9: Troubleshooting 126

java -Xmx3600m daikon.Chicory --comparability-file=MyClass.decls-DynComp \
--heap-size=2600m --daikon mypackage.MyClass arg1 arg2 arg3

When using the Java HotSpot JVM, an additional parameter may need to be increased. HotSpot uses a
separately-limited memory region, called the permanent generation, for several special kinds of allocation,
one of which (interned strings) Daikon sometimes uses heavily. It may be necessary to increase this limit
as well, with the -XX:MaxPermSize= option. For instance, to use 512 megabytes, of which at most 256 can
be used for the permanent generation, you would run Java like so:

java -Xmx3600m -XX:MaxPermSize=256m

Another possible problem is the creation of too many derived variables. If you supply the --output_
num_samples option to Daikon (see Section 4.1 [Options to control Daikon output], page 13), then it will
list all variables at each program point. If some of these are of no interest, you may wish to suppress
their creation. For information on how to do that, see Section 6.1.1.4 [Options to enable/disable derived
variables], page 55. Also see Section 9.2.5.2 [Reducing variables], page 130 for other techniques.

Any output generated before the out-of-memory error is perfectly valid.

9.1.11 Simplify errors

The warning ‘Could not utilize Simplify’ and/or ‘Couldn’t start Simplify’ indicates that the Sim-
plify theorem-prover could not be run; this usually indicates that the Simplify binary was not found on
the user’s path.

If Simplify is not used, certain redundant (logically implied) invariants may appear in Daikon’s output.
The output is correct, but more verbose than it would be if you used Simplify.

9.1.11.1 Installing Simplify

Obtain Simplify from https://web.archive.org/web/20170201034825/https://www.kindsoftware.
com/products/opensource/archives/Simplify-1.5.5-13-06-07-binary.zip, and unzip the zip file.

Either place the appropriate binary on your path, named Simplify, or set set the simplify.path
property to its absolute pathname.

Note: Older versions of the Z3 theorem prover (https://github.com/Z3Prover/z3) can replace
Simplify, but more recent versions do not support the Simplify syntax. In the future, it would be nice
to rewrite Daikon’s theorem-prover interface to use the SMT-LIB2 language, so that a compatible solver
like Z3 or CVC4 could be used. The main challenge to this is writing the boilerplate code to output each
different kind of invariant in SMT-LIB2 format.

9.1.12 Contradictory invariants

The invariants Daikon produces are all true statements about the supplied program executions, so
they should be mutually consistent. Sometimes, however, because of a bug or a limitation in Daikon,
contradictory invariants are produced.

One known problem involves object invariants. Daikon infers object invariants by observing the state
of an object when its public methods are called. However, if an object has publicly accessible fields that
are changed by code outside the class, after which no public methods are called, invariants about the state
of the object as seen by other code can contradict the class’s object invariants. A workaround is to allow
changes to an object’s state from outside the class only by way of public methods.

Besides confusing the user, contradictory invariants also cause trouble for the Simplify theorem prover
that implements the --suppress_redundant option. When the invariants at a particular program point
contradict each other or background information (such as the types of objects), Simplify becomes unable
to distinguish redundant invariants from non-redundant ones.

The best solution in such cases is to fix the underlying cause of the contradictory invariants, but since
that is sometimes not possible, Daikon will try to work around the problem by avoiding the invariants that

https://web.archive.org/web/20170201034825/https://www.kindsoftware.com/products/opensource/archives/Simplify-1.5.5-13-06-07-binary.zip
https://web.archive.org/web/20170201034825/https://www.kindsoftware.com/products/opensource/archives/Simplify-1.5.5-13-06-07-binary.zip
https://github.com/Z3Prover/z3

Chapter 9: Troubleshooting 127

cause a contradiction. Daikon will attempt to find a small subset of the invariants that aren’t mutually
consistent, and remove one, repeating this process until the remaining invariants are consistent. (Note that
the invariants are removed only for the purposes of processing by Simplify; this does not affect whether they
will be printed in the final output). While this technique can allow redundant invariants to be found when
they otherwise wouldn’t be, it has some drawbacks: the choice of which invariant to remove is somewhat
arbitrary, and the process of finding contradictory subsets can be time consuming. The removal process
can be disabled with the daikon.simplify.LemmaStack.remove_contradictions configuration option.

9.1.13 Method needs to be implemented

Daikon may produce output like the following (but all on one line):

method daikon.inv.binary.twoSequence.SubSequence.format_esc()
needs to be implemented:
this.theArray[0..this.topOfStack] is a subsequence of
orig(this.theArray[0..this.topOfStack])

This indicates that a particular invariant (shown on the last two lines above) cannot be formatted using
the current formatting. In this example, the invariant can be formatted using Daikon’s default formatting
(which is how it is shown above), but (as of April 2002) Daikon cannot output it in ESC format, so
Daikon prints the above message instead. The message also shows exactly what Java method needs to
be implemented to correct the problem. You can ignore such messages, or else use an output formatting
that can handle those invariants. Annotate (see Section 8.1.4 [Annotate], page 113) automatically ignores
unformattable invariants.

9.1.14 Daikon runs slowly

If Daikon runs slowly, there are three general possible reasons:

• You did not use the DynComp tool (see Section 6.4 [Dynamic abstract type inference (DynComp)],
page 70) to generate comparability sets. Without DynComp, Daikon typically runs more than an
order of magnitude slower.

• The front end, such as DynComp or Chicory, took a long time to collect, then output, large amounts
of data about your program execution.

• It took a long time to analyze that data trace and infer invariants over it.

To understand which part is the bottleneck, you might want to separate the creation and analysis of the
trace file, so you can compare the time of each part. The next two sections address each of these issues.

You may find command-line arguments like the following useful when debugging Daikon’s performance:

--config_option daikon.Daikon.progress_delay=100
--show_progress --dbg daikon.init

For additional details on improving Daikon’s performance, see Section 9.1.10 [Out of memory], page 125.

9.1.14.1 Slow creation of large trace files

Creating a trace can take a long time, because of the time to traverse and print the values of many
variables. Reducing the number of program points or variables can speed up both creation and analysis of
trace files. For instance, you might configure your front end to skip certain procedures (helper procedures,
libraries) or not to output certain variables (large arrays or static variables), or you might split a trace file
into multiple parts and process them separately. For details, see Section 9.2 [Large dtrace files], page 128.

9.1.14.2 Slow inference of invariants

Daikon’s run time and space depend on the particular data that it analyzes. Informally, invariant
detection time can be characterized as

Chapter 9: Troubleshooting 128

O((vars^3 * falsetime + trueinvs * testsuite) * procedures)

where vars is the number of variables at a program point, falsetime is the (small constant) time to falsify
a potential invariant, trueinvs is the (small) number of true invariants at a program point, testsuite is the
size of the test suite, and procedures is the number of instrumented program points. The first two products
multiply a number of invariants by the time to test each invariant.

If there are many true invariants over an input, then Daikon continues to check them all over the entire
input. By contrast, if not many invariants are true, then Daikon need no longer check them once they are
falsified (which in practice happens quickly). Daikon processes each procedure independently.

Another important factor affecting Daikon’s run time is the number of variables. Because invariants
involve up to three variables each, the number of invariants to check is cubic in the number of
variables at a single program point. Derived variables (such as a[i], introduced whenever there
is both an array a and an integer i) can increase the number of variables substantially. The
daikon.derive.Derivation.disable_derived_variables and individual daikon.derive.*.*.enabled
configuration variables (see Section 6.1.1.4 [Options to enable/disable derived variables], page 55) may
be used to disable derived variables altogether or selectively, at the cost of detecting fewer invariants,
especially over sequences.

As noted earlier, using a comparability analysis (see Section 6.4 [Dynamic abstract type inference (Dyn-
Comp)], page 70) also reduces the number of invariants that Daikon checks, and thereby speeds up Daikon.

9.1.15 Bigger traces cause invariants to appear

Suppose that you run Daikon twice. The first time, you supply Daikon with traces T. The second time,
you supply Daikon with more traces T+T’ for the same program points. The second Daikon execution
may report the same invariants, fewer invariants, more invariants, or a mix.

The second execution may report the same invariants if the additional samples in T’ do not add any
more information than those in T,

The second execution may report fewer invariants, because the additional data has eliminated overfitting
(false positives). There may have been some accidental property of the shorter executions that is not true
in the longer ones.

The second execution may report more invariants, because the first execution did not report some
invariants that were true. Section 9.1.6 [True invariants are not reported due to output filters], page 124
describes reasons that Daikon might not report this invariants that are true — for example, because they
were not statistically justified.

Another reason that the second execution might report more invariants is if T+T’ contains samples for
program points that were not in T. The first execution will not report any facts about program points that
were not executed.

9.2 Large data trace (.dtrace) files
Running instrumented code can create very large .dtrace files. This can be a problem because writing

the large files can slow the target programs substantially, or because the large files may fill up your disk.

This section describes ways to work around this problem.

9.2.1 Compressed .dtrace files

You can reduce file size by specifying a trace file name that includes .gz at the end. See the --dtrace-
file=FILENAME argument to Chicory or Kvasir, or the DTRACEFILE environment variable. (Compression
is the default if you don’t specify a filename.)

Chapter 9: Troubleshooting 129

9.2.2 Save large files in a scratch directory

Sometimes, the problem is just filling up your user account with large files. You can instead create
.dtrace files in a temporary directory. Under Linux, this is often called /scratch. Typically you should
create a subdirectory called /scratch/$USER/.

9.2.3 Run Daikon online

The term online execution refers to running Daikon at the same time as the target program. The front
end supplies information to Daikon directly over a socket or pipe, without writing any information to a
file. This can avoid some I/O overhead, and it prevents filling up your disk with files.

The Chicory front end supports online execution via use of the --daikon-online option (see
Section 7.1.1.3 [Chicory miscellaneous options], page 76). The Kvasir front end supports online execution
via use of (normal or named) Linux pipes (see Section 7.3.7 [Online execution], page 101).

In the future, Daikon may be able to output partial results as the target program is executing.

9.2.4 Create multiple smaller data trace files

It is usually possible to create an .inv file equivalent to the one that Daikon would have computed, had
Daikon been able to process your entire program over its full test suite. First, use the techniques below (see
Section 9.2.5.1 [Reducing program points], page 129) to split your .dtrace file into parts. Next, run Daikon
on each resulting .dtrace file. Finally, use the MergeInvariants tool (see Section 8.1.2 [MergeInvariants],
page 112) to combine the resulting .inv files into one.

9.2.5 Record or read less information in the data trace file

You can record less information from each program execution, or you can make Daikon read less infor-
mation from the trace files. It’s usually most efficient to do the pruning as early in the process as possible.
For example, it is better to have the front end output less information, rather than have Daikon ignore
some of the information.

9.2.5.1 Reducing program points (functions)

Here are ways to compute invariants over a subset of the program points (functions) in your program.

1. Make your front end instrument fewer files. This is often most applicable if you are using a source-based
front end.

2. You can instrument fewer procedures.

• With Chicory, use the --ppt-omit-pattern or --ppt-select-pattern options (see Section 4.3
[Processing only part of the trace file], page 16, or Section 7.1.1 [Chicory options], page 72) to
restrict which program points are traced. Running the instrumented program will result in a
smaller .dtrace file that contains fewer records.

• With Kvasir, use the --ppt-list-file option to specify a list of program points that should be
traced (see Section 7.3.4 [Tracing only part of a program], page 92 section for more details).

• You can remove some program points (functions) from your .dtrace file. The trace-purge-
fns.pl script takes as arguments a (Perl) regular expression and a list of files. It modifies each
file in place, removing every program point (function) whose name matches the regular expression.
The -v flag means to retain rather than discard matching program points. For instance, to create
two subparts of a .dtrace file — one containing the getters and setters, and the other containing
all other functions — use the following commands:

cp myprog.dtrace myprog-setters.dtrace
trace-purge-fns.pl -v ’set|get’ myprog-setters.dtrace
cp myprog.dtrace myprog-non-setters.dtrace
trace-purge-fns.pl ’set|get’ myprog-non-setters.dtrace

Chapter 9: Troubleshooting 130

• You can make Daikon ignore some program points. With the --ppt-select-pattern=ppt_
regexp flag (see Section 4.3 [Processing only part of the trace file], page 16), only program points
matching the regular expression are processed. Likewise, the --ppt-omit-pattern=ppt_omit_
regexp option causes program points matching the regular expression to be ignored.

Also, the configuration variable daikon.Daikon.ppt_perc allows a percentage of the program
points to be processed. See Section 6.1.1.9 [General configuration options], page 61, for details.

9.2.5.2 Reducing variables

Here are ways to compute invariants over a subset of the variables in your program. This changes the
resulting invariants, because invariants over the missing variables (including any relationship between a
missing variable and a retained variable) are not detected or reported. For instance, you might remove
uninteresting variables (or ones that shouldn’t be compared to certain others) or variables that use a lot
of memory (such as some arrays).

1. You can reduce the number of variables that are output by instrumented code — for instance, output
‘a’ and ‘a.b’ but not ‘a.b.c’. Do this by reducing the class/structure instrumentation depth.

• With Chicory, use the --nesting-depth=N option.

• With Kvasir, use the --struct-depth=N or the --nesting-depth=N option.

2. With Kvasir, you can either ignore all global and/or static variables with the --ignore-globals and
--ignore-static-vars options or manually specify a subset of variables to trace using the --var-
list-file option (see Section 7.3.4 [Tracing only part of a program], page 92 for details)

3. You can pare down an existing .dtrace file using the trace-purge-vars.pl script. Analogously to
the trace-purge-fns.pl script, it removes certain variables from all program points in a function (or
retains them, with the -v flag). After running this command, you will need to edit the corresponding
.decls file by hand to remove the same variables.

4. You can make Daikon ignore certain variables rather than modifying the .dtrace file directly. Analo-
gously with the --ppt-select-pattern and --ppt-omit-pattern flags, the --var-select-pattern
and --var-omit-pattern flags restrict which variables Daikon processes. (See Section 4.3 [Processing
only part of the trace file], page 16, and Section 7.1.1 [Chicory options], page 72).

9.2.5.3 Reducing executions

Here are ways to run Daikon over fewer executions of each program point. (You cannot combine the
resulting invariants in order to obtain the same result as running Daikon over all the executions.)

1. If you have multiple .dtrace files (perhaps resulting from multiple program runs), you can run Daikon
on just some of them.

2. You can terminate the instrumented program when it has created a sufficiently large .dtrace file.
If you interrupt the program while it is in the middle of writing a record to the .dtrace file, the
last record may be only partially written. Use the daikon/scripts/trace-untruncate program to
remove the last, possibly partial, record from the file:

trace-untruncate myfile.dtrace

modifies myfile.dtrace in place to remove the last record.

Alternately, you can use the daikon/scripts/trace-untruncate-fast program. It operates much
faster on very large files. In order to use trace-untruncate-fast, you must have already compiled
it (see Chapter 2 [Installing Daikon], page 2).

3. You can cause the front end to record only a subset of executions of a given procedure, rather than every
execution. For example, Chicory’s --sample-start command-line option does this (see Section 7.1.1.3
[Chicory miscellaneous options], page 76).

Chapter 9: Troubleshooting 131

9.3 Problems with Chicory
Before reporting or investigating a problem with Chicory, always check that the program executes prop-

erly when not being run under Chicory’s control.

For example, if a command such as

java -cp myclasspath:$DAIKONDIR/daikon.jar daikon.Chicory \
DataStructures.StackArTester args...

fails with an error, then first try

java -cp myclasspath:$DAIKONDIR/daikon.jar DataStructures.StackArTester args...

• If the latter command also fails, the problem is not with Chicory. First solve your Java problem, then
once again attempt to use Chicory.

• If the latter command does not fail, then you have likely found a bug in Chicory; please report it if it
is not already explained in this manual.

9.3.1 BCEL must be in the classpath, or couldn’t find or load main class

If Chicory throws one of the following errors:

BCEL must be in the classpath. Normally it is found in daikon.jar.

couldn’t find or load main class

then the problem is most likely that the classpath does not contain daikon.jar.

9.3.2 ClassFormatError LVTT entry does not match

If Chicory throws an error such as the following:

Exception in thread "main" java.lang.ClassFormatError:

LVTT entry for ’v’ in class file javautil/ArrayList17 does not match any LVT entry

then the problem is most likely that the classpath contains a version of the BCEL library that is newer
than the 6.0 release. A modification was made to Apache BCEL after the 6.0 release that causes this
problem. The incompatible version might appear in bcel.jar, in Java’s rt.jar, or elsewhere. You
should either remove that version of BCEL from the classpath, or you should ensure that it appears after
daikon.jar, which contains the correct version of BCEL. (If you are running Daikon from sources rather
than from daikon.jar, then ensure that $DAIKONDIR/java/lib/bcel.jar is the first version of BCEL on
the classpath.)

9.3.3 Attempted duplicate class definition error

If Chicory throws an error such as the following:

Exception in thread "main" java.lang.LinkageError:

java.lang.LinkageError: loader (instance of sun/misc/Launcher$AppClassLoader):

attempted duplicate class definition for name: "SquarePanel"

then the problem is most likely that some method in your program uses Java runtime services
to set up an additional thread that can get invoked asynchronously. One example is using the
java.lang.SecurityManager class to set up a SecurityManager via System.setSecurityManager. The
easiest way to work around this is to use the --ppt-omit-pattern option to Chicory. After you have
located the problem method, rerun Chicory with the additional option:

--ppt-omitpattern=MyPackage.MyProblemMethod

Chapter 9: Troubleshooting 132

9.4 Reporting problems
If you find a bug, want to request a new feature, or have a suggestion to improve Daikon or its docu-

mentation, open an issue at https://github.com/codespecs/daikon/issues. (If you can’t figure out
how to do something or do not understand why Daikon works the way it does, that is a bug, too — in
the Daikon documentation. Please report those as well.) We will try to assist you and to correct any
problems, so please don’t hesitate to ask for help or report difficulties. Additionally, if you can contribute
enhancements or bug fixes, those will be gratefully accepted. If you have a question about the source code
of Daikon or Kvasir, send email to daikon-developers@googlegroups.com.

In order for us to assist you, please provide a complete and useful bug report. Your bug report must
provide all the information that is required in order to replicate the bug and verify that our fix corrects
the problem. If you do not provide complete information, we will not be able to assist you.

Your bug report should include:

• how you obtained Daikon (did you download its distribution or build it from source?), and the version
of Daikon, which appears in the file daikon/README.txt and is also printed when you run Daikon.
If you are not using the most recent version, download a newer version from http://plse.cs.
washington.edu/daikon/ to see whether your problem has already been corrected. If you are using
a modified version of Daikon, you should verify that the problem exists in Daikon as distributed.

• a description of exactly what you did (in sufficient detail for others to reproduce the problem), exactly
what happened, and what you expected to happen instead. One good way to describe what you did is
a list of commands that, if executed, reproduces your error. A good way to show what happened is a
transcript of execution of all of the commands. (A list of commands and a transcript are much more
useful than a vague description; please don’t give vague English when you can supply a more precise
specification instead. Also, please don’t give screenshots of a command terminal, which are hard to
read and reproduce; instead, cut and paste the contents.) It is crucial that you not omit steps in your
report. For example, include instructions for installing your software and all customizations to the
software or your environment, including all relevant environment variables. Please do not force the
developers to speculate about what you did; that would be a waste of their time, since you already
have the knowledge.

• input files that permit the problem to be replicated (by following the detailed steps in your bug
report). The most important thing is the original, uninstrumented source files (e.g., .java), and any
inputs/tests used when you ran the program. It is also helpful to include instrumented source files,
.decl files, and .dtrace files. You may include .inv files, but as an adjunct rather than a replacement
for other files: .inv files are binary in format, hard to inspect, and the format may change from one
version of Daikon to another.

• the JDK or JRE version (e.g., the complete output of ‘java -version’), and operating system and
revision you are using (e.g., Ubuntu 18.04).

• any other information that you consider relevant.

When users provide an inadequate bug report, it is frequently more difficult for us to reproduce an error
than to correct it. If you make it easy for us to reproduce and verify the problem, then it is much more
likely to be corrected. Thanks for helping us to help you!

You may also wish to take advantage of the Daikon mailing lists (see Section 10.3 [Mailing lists],
page 136).

9.5 Further reading
More information on Daikon can be found in the Daikon Developer Manual (see Section “Introduction”

in Daikon Developer Manual). For instance, the Daikon Developer Manual indicates how to extend Daikon
with new invariants, new derived variables, and front ends for new languages. It also contains information
about the implementation and about how to debug.

https://github.com/codespecs/daikon/issues
mailto:daikon-developers@googlegroups.com
http://plse.cs.washington.edu/daikon/
http://plse.cs.washington.edu/daikon/

Chapter 9: Troubleshooting 133

You may find discussions on the mailing lists (see Section 10.3 [Mailing lists], page 136) helpful. The
mailing list archives may contain helpful information, but we strive to incorporate that information in this
manual so that you don’t have to search the archives as well.

For further reading, see the list of publications at the Daikon homepage, http://plse.cs.washington.
edu/daikon/pubs/.

http://plse.cs.washington.edu/daikon/pubs/
http://plse.cs.washington.edu/daikon/pubs/

Chapter 10: Details 134

10 Details

The Daikon invariant detector is named after an Asian radish. “Daikon” is pronounced like the combi-
nation of the two one-syllable English words “die-con”.

More information on Daikon can be found in the Daikon Developer Manual (see Section “Introduction”
in Daikon Developer Manual). For instance, the Daikon Developer Manual indicates how to extend Daikon
with new invariants, new derived variables, and front ends for new languages. It also contains information
about the implementation and about debugging flags.

10.1 History
This manual describes Daikon version 5.8.20, released May 14, 2024. A more detailed list of revisions

since mid-2001 can be found in file doc/CHANGELOG.md in the distribution; this section gives a high-level
view of the package’s history.

There have been four major releases of Daikon, with different features and capabilities. User experiences
and technical papers should be judged based on the version of Daikon current at the time of use.

Daikon 1 was written in the Python programming language in 1998. It included front ends for C, Java,
and Lisp. The C front end was extremely limited and failed to operate correctly on all C programs:
sometimes it suffered a segmentation fault while instrumenting a target program, and even when that did
not happen, sometimes the instrumented program segmentation-faulted while running. The Lisp front
end operated correctly on all Lisp programs, but only instrumented certain common constructs, leaving
other language features uninstrumented. The Java front end was reasonably reliable. The Lisp front end
instrumented procedure entries, exits, and loop heads; the C front ends instrumented only procedure entries
and exits; and the Java front end instrumented program points for object invariants as well as procedure
entries and exits. Daikon 1 and its Lisp front end were only removed from Daikon version control repository
in November 2010, though they had long been obsolete.

Daikon 2 was a complete rewrite in the Java programming language and was the first version to contain
a substantive manual. Daikon 2 uses the same source-based Java front end as did Daikon 1, though with
certain enhancements. Its C front end was rewritten from scratch; it instruments only procedure entries
and exits. A front end also exists for the Input Output Automaton programming language, but is not
included in the Daikon distribution.

Daikon 3 is a redesign of the invariant detection engine to work incrementally — that is, to examine
each sample (execution of a program point) once, then discard it. By contrast, Daikon 1 and Daikon 2
made multiple passes over the data. This simplified their algorithms but required storing all the data in
memory at once, which was prohibitive, particularly since data trace files may be gigabytes in size. Daikon
3 also introduces the idea of a dataflow hierarchy, a way to relate and connect program points based on
their variables.

Daikon 4 includes new binary front ends for Java and for C. These front ends make Daikon much easier
to use. Daikon 4 makes .decls files optional; program point declarations are permitted to appear in
.dtrace files. Daikon 4 is released under more liberal licensing conditions that place no restrictions on
use.

Daikon 5 adds a new front end (Celeriac) for .NET languages (C#, F#, and Visual Basic). The
underlying Valgrind was updated and much work done to ensure Daikon works properly on the latest
versions of Linux. The Chicory front end for Java was modified to support Java 7. Daikon releases were
moved from MIT to the University of Washington. The bug tracker was moved to Google Code, and
mailing lists moved to Google Groups.

CHANGELOG.md

Chapter 10: Details 135

10.2 License
Copyright c© 1998-2022

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

The names and trademarks of copyright holders may not be used in advertising or publicity pertaining
to the software without specific prior permission. Title to copyright in this software and any associated
documentation will at all times remain with the copyright holders.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON INFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

10.2.1 Library licenses

10.2.1.1 getopt license

Daikon uses the Java port of the GNU getopt library, which is copyright 1998 Aaron M. Renn. The
getopt library is free software, and may be redistributed or modified under the terms of the GNU Library
General Public License version 2. A copy of this license is included with the Daikon distribution as the file
doc/gnu-gpl-2.txt.

10.2.1.2 JUnit license

Daikon’s unit tests use the JUnit testing framework, which is governed by the Common Public License,
version 1.0. JUnit is provided on an “as is” basis, without warranties or conditions of any kind, either
express or implied including, without limitation, any warranties or conditions of title, non-infringement,
merchantability or fitness for a particular purpose. Neither the Daikon developers nor the authors of
the JUnit framework shall have any liability for any direct, indirect, incidental, special, exemplary, or
consequential damages (including without limitation lost profits), however caused and on any theory of
liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way
out of the use or distribution of JUnit or the exercise of any rights granted in the Common Public License,
even if advised of the possibility of such damages. Those portions of JUnit that appear in the Daikon
distribution may be redistributed under the same terms as Daikon itself; this offer is made by the Daikon
developers exclusively and not by any other party. The Common Public License is included with the
Daikon distribution as the file java/junit/cpl-v10.html.

10.2.2 Front end licenses

Note that the front ends discussed in this manual are separate programs, and some are made available
under different licenses. Because the front ends are separate programs not derived from the Daikon invariant
detection tool, you are neither required nor entitled to use the Daikon invariant detector itself under these
other licenses.

Chapter 10: Details 136

10.2.2.1 dfepl license

The Daikon Perl front end dfepl may be used and distributed under the regular Daikon license or, at
your option, either the GNU General Public License or the Perl Artistic License (that is, under the same
terms as Perl itself).

10.2.2.2 Kvasir license

The Daikon C/C++ front end Kvasir is based in part on the Valgrind dynamic program supervision frame-
work, copyright 2000-2004 Julian Seward, the Sparrow Valgrind tool, copyright 2002 Nicholas Nethercote,
the MemCheck Valgrind tool, copyright 2000-2004 Julian Seward, the readelf program of the GNU Binutils,
copyright 1998-2003 the Free Software Foundation, Inc., the GNU C Library, copyright 1995, 1996, 1997,
2000 the Free Software Foundation, Inc., and the Diet libc, copyright Felix von Leitner et al. Kvasir is
free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any
later version. Kvasir is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License along with Kvasir, in the file kvasir/COPYING; if not, write to the Free Software
Foundation, Inc., 51 Franklin St., Fifth Floor, Boston, MA 02110-1301, USA.

10.2.2.3 Celeriac license

The Daikon .NET front end Celeriac is Copyright (c) 2012 by Kellen Donohue. Portions of Celeriac
are covered by the Microsoft Public License, this is at the top of every such file. Otherwise the following
license is in effect:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

10.3 Mailing lists
The following mailing lists (and their archives) are available:

‘daikon-announce@googlegroups.com’
A low-volume, announcement-only list. For example, announcements of new releases are sent to this
list. To subscribe, visit https://groups.google.com/forum/#!forum/daikon-announce.

‘daikon-discuss@googlegroups.com’
A moderated list for the community of Daikon users. Use it to share tips and successes, and to get
help with questions or problems (after checking the documentation). To subscribe, visit https://
groups.google.com/forum/#!forum/daikon-discuss.

https://groups.google.com/forum/#!forum/daikon-announce
https://groups.google.com/forum/#!forum/daikon-discuss
https://groups.google.com/forum/#!forum/daikon-discuss

Chapter 10: Details 137

‘daikon-developers@googlegroups.com’
This list goes to the Daikon maintainers. Use it for questions about the Daikon and Kvasir source
code. Use the issue tracker (https://github.com/codespecs/daikon/issues) for bug reports and
feature requests. If you are an active contributor to Daikon, you may send mail to the list asking to
be added to the list.

Do not send the same message to multiple mailing lists. Doing so is antisocial: it causes confusion and
extra work. If you do so, your question will not be answered.

10.4 Credits
The following individuals have contributed to Daikon:

Craig Kaplan carved the Daikon logo.

The feedback of Daikon users has been very valuable. We are particularly grateful to B. Thomas
Adler, Rich Angros, Tadashi Araragi, Seung Mo Cho, Christoph Csallner, Dorothy Curtis, Juan Pablo
Galeotti, Diego Garbervetsky, Mangala Gowri, Madeline Hardojo, Engelbert Hubbers, Nadya Kuzmina,
Scott McMaster, Charles O’Donnell, Alex Orso, Rodric Rabbah, Manos Renieris, Rosie Wacha. Many
others have also been generous with their feedback, for which we are also grateful.

If your name has been inadvertently omitted from this section, please let us know so we can correct the
oversight.

Financial support has been provided by: National Science Foundation (NSF), Defense Advanced
Research Projects Agency (DARPA), ABB, Edison Design Group, IBM, NTT, MIT Oxygen Project,
Raytheon, Toshiba.

10.5 Citing Daikon
If you wish to cite Daikon in a publication, we recommend that you reference one of the scholarly

papers listed at http://plse.cs.washington.edu/daikon/pubs/#invariant-detection in lieu of, or in
addition to, referencing this manual and the Daikon website (http://plse.cs.washington.edu/daikon/
).

https://github.com/codespecs/daikon/issues
http://plse.cs.washington.edu/daikon/pubs/#invariant-detection
http://plse.cs.washington.edu/daikon/
http://plse.cs.washington.edu/daikon/

General Index 138

General Index

-
-1 array index (counts from end of array) 20

.

.getClass() variable . 20

.inv files, tools for manipulating . 111

.length variable name . 20

.NET front end . 103

.spinfo file . 65

.toString variable . 20

/
/ variable (C global or file-static) . 21

:
:::CLASS program point . 19
:::ENTER program point . 19
:::EXIT program point . 19
:::OBJECT program point . 19

@
@ variable (C function-scoped static) 21
@NonNull type inference . 114
@Nullable type inference . 114

[
[] variable name (array contents) . 20

6
64-bit AMD64 architecture, and Kvasir 103

A
abstract types, for C/C++ . 90
abstract types, for Java . 77
AMD64 architecture, and Kvasir . 103
Annotate tool . 113
Annotate warning: Daikon knows nothing about field . . 114
AnnotateNullable tool . 114
array type disambiguation . 95
attempted duplicate class definition error, when running

Chicory . 131

B
Basic front end . 103
BCEL error, when running Chicory 131

Beet front end for OpenAPI . 109
bugs, reporting . 132

C
C# front end . 103
C/C++ front end . 84
call-site-dependent invariant . 64
category, for debugging . 17
Celeriac (front end for .NET) . 103
Chicory (front end for Java) . 72
CITADEL front end for Eiffel . 109
class invariants . 19
CLASS program point . 19
ClassFormatError, when running Chicory 131
cluster analysis for splitters . 69
comma-delimited files . 109
comma-separated-value files . 109
command line options for Daikon . 13
comparability, for C/C++ . 90
comparability, for Java . 77
comparing invariants . 112
comparison tool, logical . 118
conditional invariant . 64
confidence limit . 15
configuration options . 43
context-sensitive invariant . 64
contradictory invariants . 126
contributors to Daikon . 137
CreateSpinfo . 68
CreateSpinfoC . 68
CSharpContract output format . 19
csv files . 109

D
Daikon knows nothing about field: warning from Annotate

. 114
Daikon output format . 18
Daikon version 5.8.20 . 134
daikon-announce mailing list . 136
daikon-developers mailing list . 136
daikon-discuss mailing list . 136
data trace files, too large . 128
DBC output format . 18
dcomp rt.jar file for DynComp . 81
debugging flags . 17
decl format errors . 122
derived variables, enabling/disabling 55
derived variables, explanation of . 20
DerivedParameterFilter . 41
dfepl (front end for Perl) . 104
diff, over invariants . 112
disambiguation of array types . 95
disambiguation of pointer types . 95

General Index 139

disjunction . 64
disjunctive invariant . 64
dkconfig variables . 43
dtrace file name . 76
DTRACEAPPEND environment variable 76
DTRACEFILE environment variable 76
dummy invariant . 65
dynamic comparability, for C/C++ . 90
dynamic comparability, for Java . 77
DynComp, for C/C++ . 90
DynComp, for Java . 77

E
Eiffel front end . 109
EM64T architecture, and Kvasir . 103
ENTER program point . 19
environment variable DTRACEAPPEND 76
environment variable DTRACEFILE 76
error messages . 122
ESC/Java output format . 18
Excel files . 109
EXIT program point . 19
‘Exiting’, in Daikon output . 22

F
F# front end . 103
FIFO, as data trace file . 101
file input errors . 122
file name, for dtrace file . 76
filters . 41
filters, enabling/disabling . 43
flags for Daikon . 13
front end . 72
front end for .NET . 103
front end for Basic . 103
front end for C# . 103
front end for C/C++ . 84
front end for Eiffel . 109
front end for F# . 103
front end for Input/Output Automata 110
front end for IOA . 110
front end for Java . 72
front end for Lisp . 110, 134
front end for LLVM . 109
front end for OpenAPI . 109
front end for Perl . 104
front end for Simulink/Stateflow (SLSF) block diagrams

. 110
front end for Visual Basic . 103
front end for WS-BPEL . 109

H
has only one value, in invariant output 23
hashcode type, for variables . 23
hierarchical cluster analysis . 69

hierarchy of program points . 19
hierarchy, disabling . 15
history of Daikon . 134
HotSpot JVM . 125
Hynger front end for Simulink/Stateflow (SLSF) block

diagrams . 110

I
IA-32e architecture, and Kvasir . 103
implication checking tool . 118
implication invariant . 64
implied invariant . 42
inconsistent invariants . 126
inference, of Nullable type . 114
Input/Output Automata front end . 110
installing Daikon . 2
installing Kvasir . 102
instrumentation . 72
instrumentation, of .NET programs 103
instrumentation, of Basic programs . 103
instrumentation, of C# programs . 103
instrumentation, of C/C++ programs 84
instrumentation, of Eiffel programs . 109
instrumentation, of F# programs . 103
instrumentation, of Input/Output Automata programs

. 110
instrumentation, of IOA programs . 110
instrumentation, of Java programs . 72
instrumentation, of Lisp programs . 110
instrumentation, of LLVM programs 109
instrumentation, of OpenAPI . 109
instrumentation, of Perl programs . 104
instrumentation, of Simulink/Stateflow (SLSF) block

diagrams . 110
instrumentation, of Visual Basic programs 103
instrumentation, of WS-BPEL process definitions 109
instrumented JDK, for DynComp . 81
Intel 64 architecture, and Kvasir . 103
inv files, tools for manipulating . 111
invariant diff . 112
invariant filters . 41
invariant list . 23
invariant merge . 112
invariant output format . 18
invariant, conditional . 64
invariant, disjunctive . 64
invariant, dummy . 65
invariant, implication . 64
InvariantChecker tool . 117
invariants, configuring . 52
invariants, contradictory . 126
invariants, enabling/disabling . 44
invariants, inconsistent . 126
invariants, list of all . 23
invocation nonce . 125
IOA front end . 110
irrelevant output from Daikon . 123

General Index 140

J
Java front end . 72
Java output format . 18
java.lang.ClassFormatError, when running Chicory 131
java.lang.LinkageError, when running Chicory 131
java.lang.OutOfMemoryError . 125
java.lang.UnsupportedClassVersionError 125
JDK, instrumented for DynComp . 81
JML output format . 18
Jtest DBC output format . 18
JVM memory management . 125

K
kmeans cluster analysis . 69
Kvasir (binary front end for C) . 84
Kvasir installation . 102

L
large data trace files . 128
large trace files, creating . 127
license . 135
LinkageError, when running Chicory 131
Lisp front end . 110, 134
LLVM front end . 109
local variables . 21, 70
Logger . 17
logging, for debugging Daikon . 17
LogicalCompare tool . 118
loop invariants . 70
LVTT entry does not match . 131

M
mailing lists . 136
major.minor version error . 125
memory exhaustion . 125
merge invariants . 112
MergeESC tool, see Annotate tool . 113
method needs to be implemented warning 127
mux output . 14

N
named pipe, as data trace file . 101
needs to be implemented warning . 127
negative array index (counts from end of array) 20
no output from Daikon . 124
no return from procedure, warning . 125
nonce, invocation . 125
NonNull type inference . 114
nonsensical values for variables . 20
nonsensical values for variables, guarding. 60
nonsensical values, ignored when computing invariants . . 22
Nullable type inference . 114

O
object invariants . 19
OBJECT program point . 19
observer methods, as synonym for pure methods 75
ObviousFilter . 42
on-the-fly execution, for C programs 101
online execution, for C programs . 101
OnlyConstantVariablesFilter . 42
OpenAPI front end . 109
orig() variable (pre-state value) . 21
out of memory error . 125
output format, CSharpContract . 19
output format, Daikon . 18
output format, DBC . 18
output format, ESC/Java . 18
output format, for invariants . 18
output format, Java . 18
output format, JML . 18
output format, Jtest DBC . 18
output format, Simplify . 19
Output, quantity of . 60

P
ParentFilter . 42
Perl front end . 104
permanent generation (in HotSpot JVM) 125
pipe, as data trace file . 101
pointer type disambiguation . 95
post() variable (post-state value) . 21
post-state variables . 21
postcondition . 19
pre-state variables . 21
precondition . 19
printing invariants . 111
PrintInvariants program . 111
private methods . 19
private variables . 74
problems, reporting . 132
program point . 19
program point hierarchy . 19
pure methods . 75
Python implementation of Daikon . 134

R
random selection for splitters . 69
redundant invariant . 42
reporting bugs . 132
reporting problems . 132
representation invariants . 19
return from procedure, warning . 125
run time, of Daikon . 127
runcluster.pl program . 69
runtime-check instrumenter . 115
runtimechecker instrumenter . 115

General Index 141

S
samples breakdown output . 14
sampling of program point executions 73
Simplify output format . 19
Simplify theorem prover, configuring 57
Simplify, could not utilize . 126
Simplify, couldn’t start . 126
Simplify, installing . 126
SimplifyFilter . 42
Simulink/Stateflow (SLSF) front end 110
slow operation, of Daikon . 127
spinfo file . 65
splitter info file . 65
Splitters, configuring . 59
splitting . 64
splitting condition . 64
splitting conditions, cluster analysis . 69
splitting conditions, random selection 69
splitting conditions, static analysis . 68
spreadsheet files . 109
static analysis for splitters . 68
Static fields (global variables) in Java programs 77

T
tab-separated files . 109
Takuan front end for WS-BPEL . 109
temporary (local) variables . 21
this invocation nonce . 125
too much output from Daikon . 123
trace file name . 76

trace-purge-fns.pl script . 129
trace-untruncate program . 130
TraceSelect tool . 69
troubleshooting . 122
type inference, Nullable . 114

U
Udon front end for LLVM . 109
UnjustifiedFilter . 42
unmatched entries, not ignoring . 15
UnmodifiedVariableEqualityFilter . 42
UnsupportedClassVersionError . 125
useless output from Daikon . 123

V
variables, local . 21
variables, omit . 74
variables, private . 74
variables, temporary (local) . 21
Visual Basic front end . 103

W
warning messages . 122
WriteViolationFile tool . 116
WS-BPEL front end . 109

X
xm cluster analysis . 69

	Introduction
	Installing Daikon
	Requirements for running Daikon
	Installation

	Example usage for Java, C/C++, C#/F#/Visual Basic, Perl, and Eiffel
	Detecting invariants in Java programs
	StackAr example
	Detecting invariants when running a Java program from a jar file
	Understanding the invariants
	A second Java example

	Detecting invariants in C/C++ programs
	C examples
	Dealing with large examples

	Detecting invariants in C#, F#, and Visual Basic programs
	Detecting invariants in Perl programs
	Instrumenting Perl programs
	Perl examples

	Detecting invariants in Eiffel programs
	Detecting invariants in Simulink/Stateflow programs

	Running Daikon
	Options to control Daikon output
	Options to control invariant detection
	Processing only part of the trace file
	Daikon configuration options
	Daikon debugging options

	Daikon output
	Invariant syntax
	Program points
	OBJECT and CLASS program points

	Variable names
	orig() variable example

	Interpreting Daikon output
	Redundant invariants
	Equal variables
	Has only one value variables
	Object inequality

	Invariant list
	Invariant filters

	Enhancing Daikon output
	Configuration options
	List of configuration options
	Options to enable/disable filters
	Options to enable/disable specific invariants
	Other invariant configuration parameters
	Options to enable/disable derived variables
	Simplify interface configuration options
	Splitter options
	Debugging options
	Quantity of output
	General configuration options

	Conditional invariants (disjunctions) and implications
	Splitter info file format
	Program point sections
	Replacement sections

	Indiscriminate splitting
	Example splitter info file
	Example class
	Resulting .spinfo file

	Enhancing conditional invariant detection
	Static analysis for splitters
	Static analysis of Java for splitters
	Static analysis of C for splitters

	Cluster analysis for splitters
	Random selection for splitters

	Dynamic abstract type inference (DynComp)
	Loop invariants

	Front ends and instrumentation
	Java front end Chicory
	Chicory options
	Program points in Chicory output
	Variables in Chicory output
	Chicory miscellaneous options

	Static fields (global variables)
	Troubleshooting Chicory

	DynComp dynamic comparability (abstract type) analysis for Java
	Instrumenting the JDK with DynComp
	DynComp options
	Instrumentation of Object methods
	Troubleshooting DynComp for Java
	Known bugs and limitations

	C/C++ front end Kvasir
	Using Kvasir
	Kvasir options
	DynComp dynamic comparability (abstract type) analysis for C/C++
	Tracing only part of a program
	Pointer type disambiguation
	Pointer type coercion
	Pointer type disambiguation example
	Using pointer type disambiguation with partial program tracing

	C++ support
	Online execution
	Online execution with DynComp for C/C++

	Installing Kvasir
	Kvasir implementation and limitations

	.NET (C#) front end Celeriac
	Perl front end dfepl
	dfepl options

	Comma-separated-value front end convertcsv.pl
	Other front ends

	Tools for use with Daikon
	Tools for manipulating invariants
	Printing invariants
	MergeInvariants
	Invariant Diff
	Annotate
	AnnotateNullable
	Runtime-check instrumenter (runtimechecker)
	How to access violations
	Problems compiling instrumented code

	InvariantChecker
	LogicalCompare

	DtraceDiff utility
	Reading dtrace files

	Troubleshooting
	Problems running Daikon
	Can't run Daikon: could not find or load main class, or NoClassDefFoundError
	File input errors
	decl format errors
	Too much output
	Missing output invariants
	True invariants are not reported due to output filters
	No samples and no output
	No return from procedure
	Unsupported class version
	Out of memory
	Simplify errors
	Installing Simplify

	Contradictory invariants
	Method needs to be implemented
	Daikon runs slowly
	Slow creation of large trace files
	Slow inference of invariants

	Bigger traces cause invariants to appear

	Large data trace (.dtrace) files
	Compressed .dtrace files
	Save large files in a scratch directory
	Run Daikon online
	Create multiple smaller data trace files
	Record or read less information in the data trace file
	Reducing program points (functions)
	Reducing variables
	Reducing executions

	Problems with Chicory
	BCEL must be in the classpath, or couldn't find or load main class
	ClassFormatError LVTT entry does not match
	Attempted duplicate class definition error

	Reporting problems
	Further reading

	Details
	History
	License
	Library licenses
	getopt license
	JUnit license

	Front end licenses
	dfepl license
	Kvasir license
	Celeriac license

	Mailing lists
	Credits
	Citing Daikon

	General Index

