
Y-Branches: When You Come to a Fork in the Road, Take It
�

Nicholas Wang Michael Fertig Sanjay Patel
Center for Reliable and High-Performance Computing
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign�
nwang,fertig,sjp � @crhc.uiuc.edu

Abstract

In this paper, we study the effects of manipulating the
architected direction of conditional branches. Through the
use of statistical sampling, we find that about 40% of all dy-
namic branches and about 50% of mispredicted branches
do not affect correct program behavior when forced down
the incorrect path. We call such branches Y-branches.

To further examine this unexpected phenomenon, we
provide a characterization of the coding constructs that
give rise to such branches. Examples of such coding con-
structs include short-circuits and ineffectual loop itera-
tions. We provide a statistical breakdown of the frequency
of these branches and their constructs. Finally, we suggest
some techniques for exploiting this behavior, particularly
when it results from short-circuit constructs.

1. Introduction

Control speculation enables high-performance pro-
cessing for control intensive applications. Ultimately,
though, predictability becomes a limiting factor in improv-
ing processor performance: at some level, improving the
performance of a single thread of execution can be tied to
improving the processor’s ability to accurately predict and
rapidly evaluate branches.

In this paper, we investigate a surprising property of
certain dynamic branches. Using fault injection, we find
that about 40% of all dynamic conditional branches are
outcome-tolerant. That is, the behavior of the application
is unaffected by whether the particular branch instance is
taken or not. Dynamic branches that are mispredicted ex-
hibit a larger degree of outcome-tolerance—about half of
all mispredicted branches can proceed down an incorrect
architectural path and result in correct execution.

�
Attributed to the baseball great Yogi Berra [2]

Before we proceed, however, we must carefully de-
fine correct execution: an execution path leads to correct
execution if it arrives at a correct architectural state (PC,
registers, and memory state) without generating software-
visible exceptions and before the program performs any ex-
ternal communication. When we say that half of all mispre-
dicted branches are outcome-tolerant, we are stating that
such branches can proceed down an incorrect architectural
path only to converge on a correct architectural state be-
fore the program reaches a system call (which are the only
external communications performed by our benchmarks).
Often, as we will demonstrate, outcome-tolerant branches
reconverge on correct state within a handful of instructions.

In this paper, we perform a characterization of
outcome-tolerant branch instances. We call such branches
Y-branches. We investigate the types of coding constructs
that give rise to the outcome-tolerance phenomenon and de-
termine the relative frequency of Y-branches from the var-
ious constructs. We also provide characteristics on the ar-
chitectural state reconvergence latency of a Y-branch.

While the outcome-tolerance phenomenon is far more
pervasive than one would at first estimate, it may be
difficult to capitalize on this phenomenon. We pro-
vide a simulation-based approximation of how exploiting
outcome-tolerance might affect a Pentium 4 R

�
-like deeply

pipelined, dynamically scheduled processor. We sketch
some possible architectural extensions that can be used
to exploit a subclass of Y-branches associated with short-
circuit-like logical expressions.

The remaining sections are organized as follows. Sec-
tion 2 describes our fault-injection methodology for statis-
tically determining how often the Y-branch phenomenon
occurs. Section 3 contains the bulk of our analysis on the
various characteristics of Y-branches, including code con-
structs and reconvergence properties. Section 4 provides
discussion on the implication of outcome-tolerance on per-
formance. Related work is presented in Section 5 and our
conclusions in Section 6.

2. Methodology

In order to characterize Y-branches, a method for dis-
covering them is necessary. To find all Y-branches for our
input sets would require testing all instances of every static
branch executed in each benchmark. Since it is computa-
tionally expensive to perform this complete analysis, we
use statistical sampling. This section describes our experi-
mental setup as well as the applications and infrastructure
used to perform the identification process.

2.1. Performing Injection

For each experiment, we randomly sample 1000 con-
ditional branches1. To determine whether a branch is
outcome-tolerant, we first choose a single conditional
branch instance. Then, when the chosen branch is encoun-
tered at runtime, the execution of the program is forced
down the alternate path. That is, if the conditional branch
was resolved to be taken, then the execution of the pro-
gram is forced down the fall-through path and vice versa.
Exactly one injection is made per benchmark execution, so
the effects of each of the injections are isolated from one
another. Each of these benchmark executions constitute
a single trial, and each experiment is composed of 1000
trials for each benchmark. Only conditional branches are
targeted in our study—all other control instructions are ex-
ecuted as defined by architectural state.

After each injection is performed, the execution of
the program is monitored. We call the execution of the
manipulated program the injected simulation. To determine
the effects of the injection, we compare the injected simu-
lation with a reference simulation of the program that is
generated without injection. All of architectural state (PC,
registers, and memory) is frequently compared against the
reference simulation to identify if a reconvergence point
exists. The discovery of this point guarantees identical ex-
ecution thereafter as well as confirming the chosen branch
is outcome-tolerant.

Most applications do not execute in isolation, so it
is important that all external communication is equivalent
with that of the reference simulation. The executed applica-
tions perform all external communication via system calls.
While system calls contain a finite set of inputs, we treat
them as barriers for verification. That is, the injected pro-
gram must reconverge to the original program’s architected
state prior to the execution of any system call. This re-
striction reduces reconvergence likelihood, however, it also
reduces simulation time and complexity.

1A random sample of this size yields a confidence interval of approx-
imately � 3.1% with a 95% confidence level. We observed consistent re-
sults with repeated experiments of 1000 trials.

Manipulating the control flow occasionally introduces
faults that would not have occurred otherwise. Examples
include segmentation faults, alignment errors for mem-
ory operations, and divide by zero. There are no faults
present in the reference executions of each benchmark, so
any faults generated in the injected simulations must result
from the injections. If we observe any faults in an injected
simulation, it is automatically labeled as non-reconvergent.

2.2. Simulation and Benchmarks

Our simulation infrastructure is built upon the Sim-
pleScalar 3.0 tool set [3]. More specifically, the instruction-
level functional model is the core of our injection and tim-
ing simulators. This section describes the process of deter-
mining outcome-tolerant branches using the injection sim-
ulator. The timing simulation is discussed in Section 4.

The SPECINT 2000 Benchmark suite is used to iden-
tify and analyze outcome-tolerant branches. Table 1 pro-
vides a list of the benchmarks and their respective char-
acteristics. The dynamic instruction count as well as the
static footprint, which represents the number of unique PCs
executed, serves as a metric for gauging application size.
Given that branch instructions are the focus of this paper,
conditional branch instruction statistics are also included
to facilitate later discussions. Since system calls are barri-
ers to reconvergence in our experiment, we provide data on
these as well. All benchmarks were compiled at optimiza-
tion level 4 with the Compaq Alpha compiler.

3. Analysis

In this section, we provide a measurement and char-
acterization of the Y-branch phenomenon. Specifically,
we find outcome-tolerance rates for various benchmarks,
measure state reconvergence latency after an injection, and
quantify and characterize the types of coding constructs
that lead to outcome-tolerance.

3.1. Outcome Tolerance

Using the methodology described in the previous sec-
tion, we initially provide a measurement of outcome-
tolerance of branches on three bases: by static branch, dy-
namic branch, and mispredicted branch.

For determining the outcome-tolerance of static
branches, we randomly select, before starting a trial, a
static conditional branch as the target of the injection.
Then, for this static branch, we randomly select a dynamic
instance. With this selection method, each static branch is
equally likely to be injected.

For dynamic conditional branches, the selection is
more straightforward. We randomly select a branch to in-

Benchmark Inst. Dynamic Dynamic Static Footprint Static Branch Footprint
Count Branch Count System Calls (instructions) (instructions)

bzip2 289M 28.4M 29 8543 840
crafty 625M 27.8M 108 32752 2318

eon 132M 10.4M 186 49268 1776
gap 501M 40.0M 2525 32239 2397
gcc 284M 33.6M 1922 164167 17097

gzip 869M 58.6M 32 9476 828
mcf 411M 53.9M 49 8198 854

parser 513M 71.4M 1070 23402 2390
perlbmk 145M 11.8M 46 34472 2888

twolf 595M 57.7M 403 38463 2896
vortex 272M 24.0M 10562 82037 6297

vpr 534M 46.9M 102 30293 2116

Table 1. Benchmark statistics.

ject out of the set of all dynamic branches. The random
selection is done before the trial begins by generating a
pseudo-random number between one and the number of dy-
namic conditional branches in the particular execution of a
benchmark.

Outcome-tolerant mispredicted branches are deter-
mined by restricting the set of dynamic branches to those
that are mispredicted by an 18-bit gshare conditional
branch predictor [9]. Again, the random determination is
done before the trial begins.

Figure 1 plots the outcome-tolerance rates of the three
experiments. Averaged across all benchmarks, approxi-
mately 30% of the instances of an individual static branch
are outcome-tolerant2. Approximately 40% of all dynamic
branches are outcome-tolerant, indicating that dynamically
frequent branches tend to exhibit more tolerance than infre-
quent branches. Finally, 50% of dynamically mispredicted
branches exhibit outcome-tolerance, indicating that half of
all mispredicted conditional branches might be resilient to
being mispredicted.

The significant rise in Y-branches in the case of
mispredicted branches is particularly pronounced for the
benchmarks bzip2 and gzip. The benchmark bzip2 contains
an unrolled loop that accounts for a small portion of the
dynamically executed instructions. However, the loop end-
ing branches of the unrolled iterations also account for a
large portion of mispredictions. These branches can safely
perform early exits since the clean-up loop will perform
the remaining loop operations. Similarly, the increase in
outcome-tolerance in the benchmark gzip is due to three
branches that also account for a small portion of the pro-
gram execution, but represent approximately half of all
mispredictions and are highly outcome-tolerant. The loop

2Because of the statistical nature of our analysis, our averaged results
are � 0.9% with a 95% confidence level

0%

10%

20%

30%

40%

50%

60%

70%

80%

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

av
er

ag
e

Static Branches
All Dynamic Branches
Mispredicted Branches

Figure 1. The percentage of branches that are
outcome-tolerant Y-branches.

from bzip and one of the three branches from gzip are dis-
cussed further in Section 3.4.

3.2. Reconvergence Latency

In order for a conditional branch instance to be
outcome-tolerant, two conditions must be satisfied: (1) the
program reaches an architecturally valid program state in-
dependent of the branch’s outcome, and (2) neither the cor-
rect nor incorrect path(s) can see any exceptional situations
prior to the reconvergence of state.

This raises an interesting question: how long does it
take for a Y-branch to reach equivalent state with that of the
reference execution? Figure 2 presents a pictorial represen-
tation of the injection of a Y-branch. In this figure, the ref-
erence execution represents the stream of instructions exe-
cuted by the correct architectural execution, whereas the in-
jected execution represents the execution where a particular
branch instance is forced down its alternate path. After the
point of injection, the two executions execute different in-

structions. Eventually, if the injected branch is a Y-branch,
the two streams converge and execute the same instructions
for the remainder of the program—we term this control re-
convergence. The span in instructions between the point
of injection and the control reconvergence point in the in-
jected execution is what we call the control reconvergence
latency, which is labeled � in the figure. This same pa-
rameter with respect to the reference execution is labeled
� . Zero or more instructions later, if the injected branch is
a Y-branch, both executions arrive at the same architectural
state, or full state reconvergence. The full state reconver-
gence latency is labeled

�
in the figure.

There is actually another interesting point: live state
reconvergence, that is some of the full state of the running
process is actually dead and therefore not required to be
equivalent between the two executions. Live state recon-
vergence will always occur at or before the two executions
reach full state reconvergence. In addition, live state recon-
vergence is possible in the absence of full state reconver-
gence. Thus, the set of branches that are outcome-tolerant
with respect to live state is a superset of the set of branches
that are outcome-tolerant with respect to complete state.
Unfortunately, live state reconvergence is difficult and ex-
pensive to measure precisely, so we do not investigate it
here.

Injected Execution

Injection Point

Control Convergence
Full State Convergence

r
ts

Reference Execution

Figure 2. Comparison of reference versus in-
jected executions.

We provide data on the span (in instructions) between
the injection of a Y-branch and the subsequent control re-
convergence (with respect to the injected simulation), in
Figure 3. Because the distributions of the data are very
wide, we have only plotted the middle 80% of the distribu-
tion, i.e., we exclude the upper and lower 10th percentiles.
For example, 80% of Y-branches in bzip2 tend to control
converge between approximately 10 to 100 instructions.
The median Y-branch in bzip2 reconverges on control in 41
instructions, as indicated by the diamond along the vertical
line. In our graphs with medians, the average bar repre-
sents an averaging across all other percentile bars. With
this in mind, the average benchmark reaches control recon-
vergence in approximately 18 instructions.

Eon differs slightly from the other benchmarks in that
many of its Y-branches reconverge on control immediately

after the injection. The reason for this is that about a
third of the Y-branches are from a single loop-controlling
branch. Injecting this branch usually results in an early
loop exit which then in turn often results in immediate
control reconvergence. Despite the short control reconver-
gence latency, eon’s full state reconvergence latency is rel-
atively slow. We believe this occurs because the early loop
exits skip a number of dead stores, where the dead values
they would have written have a relatively long lifetime.

1

10

100

1000

10000

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb
m
k

tw
ol
f

vo
rte
x

vp
r

av
er
ag
e

Figure 3. Control reconvergence latency in
instructions.

Figure 4 plots the full state reconvergence spans in
instructions for the middle 80% of Y-branches for every
benchmark. Notice that full state reconvergence spans are
much wider ranges than for control reconvergence, ranging
from 1 instruction for a Y-branch in perlbmk to over 3M
instructions on the benchmark vpr. Across all benchmarks,
the median Y-branch reaches full state reconvergence after
approximately 1300 instructions.

1

10

100

1000

10000

100000

1000000

10000000

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb
m
k

tw
ol
f

vo
rte
x

vp
r

av
er
ag
e

Figure 4. Full state reconvergence latency in
instructions.

Figure 5 presents the difference in the number of in-
structions executed between the two executions, i.e., the
value of ��� � in Figure 2. Because of the nature of the
branch being injected, sometimes the injected execution
runs for fewer instructions than the reference execution,

sometimes longer (we explain this in Section 3.3). The
ranges are provided in this figure (positive numbers indi-
cate that the injected execution ran for fewer instructions).
In the median case for the average benchmark, the injected
execution ran for nearly the same number of instructions as
the reference trace. Somewhat interesting is the fact that
in roughly half the cases, the injected execution required
fewer instructions than the reference execution to arrive at
the same result. This hints at a higher than expected degree
of redundancy in dynamic code streams, indicating that ad-
ditional optimization opportunities exist.

405 357

-606
-200

-160

-120

-80

-40

0

40

80

120

160

200

bz
ip
2

cr
af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs
er

pe
rlb
m
k

tw
ol
f

vo
rte
x

vp
r

av
er
ag
e

Figure 5. Difference in instructions executed
between reference and injected streams.

3.3. Sources of Outcome Tolerance

Outcome-tolerant branches are ultimately due to re-
dundancies introduced by the programmer or compiler.
These redundancies occur in various forms, such as super-
fluous loop iterations, performance-related branches, short-
circuits, and the occasional irrelevant decision. Most of
these Y-branches are a result of partially dead control,
meaning that the branches are outcome-tolerant subject to
some but not necessarily all initial states. In this section,
we perform a careful dissection of a sampling of outcome-
tolerant branches in order to find the underlying reasons
behind this phenomena.

What we desire is an ability to examine the control
flow graph and possibly the source code of a detected Y-
branch in order to characterize the coding constructs that
give rise to its outcome-tolerance. To do this automatically,
we examine the differences in execution between the ref-
erence execution and the injected execution. That is, re-
ferring to Figure 2, we examine the differences in PCs ex-
ecuted between the shaded regions of each execution, up
until the point of control reconvergence.

Two basic situations arise when we examine the differ-
ence between the injected and reference executions, as rep-
resented in Figure 6. The leftmost subfigure represents the

Disjoint case. Here, the injected execution and the refer-
ence execution execute completely different static instruc-
tions. This situation is primarily due to the Y-branch being
an if-else construct, where the decision made by the
particular dynamic instance of the branch is irrelevant (we
provide a specific example of this at the end of this section).
Sometimes the reference execution executes more instruc-
tions; sometimes the injected execution does.

Execution A Execution B

Injection Point

Control Convergence

Execution A Execution B

Injection Point

Control Convergence

Disjoint Case Skip Case

Figure 6. General structure for difference
analysis.

The other basic situation is represented in the right
subfigure. Here, one of the executions skips over instruc-
tions executed by the other starting immediately after the
injection point. That is, Execution A might execute blocks
X, Y, Z before hitting the control reconvergence point
whereas Execution B flows directly to the reconvergence
point immediately after injection. For example, if the injec-
tion targets a Y-branch that is a loop-ending branch causing
the loop to either terminate early or execute additional iter-
ations, then the Y-branch is of the Skip category.

X

Y;
B

A

Y

if (A || B) {
 X;
}

Figure 7. The branch at the end of block A is
potentially a Y-branch of the Skip variety.

Skip-type Y-branches can be further classified based
on whether loops are involved. If looping is not involved
(i.e., none of the branches in the shaded region are back-
wards branches), the code construct responsible for the
outcome-tolerance is most probably of the short-circuit va-
riety. For example, Figure 7 demonstrates the control flow
that results from a simple short-circuit expression in C. The
branch at the end of block A is an early jump to block X

0%

10%

20%

30%

40%

50%

60%

70%

80%

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

av
er

ag
e

[Other] Trace Too Big
[Other] Unclassified
[Disjoint] + Slop
[Disjoint]
[Skip] Complex + Slop
[Skip] Complex
[Skip] Loop + Slop
[Skip] Loop
[Skip] Simple + Slop
[Skip] Simple

Figure 8. Categorization of Y-branches for mispredicted branches.

if it is determined that A is true. This branch is potentially
a Y-branch of the Skip variety when condition B is true
and B has no side-effects during evaluation. We call Y-
branches of this category Skip/Simple branches. Note that
some nested if constructs that are not short-circuits also
fall into this category.

If the Skip-type Y-branch involves a backwards
branch, then we classify the branch as either a Skip/Loop
or Skip/Complex branch. Skip/Loop branches are cases
where we are confident that the Y-branch is a loop-terminal
conditional branch, whereas the Skip/Complex situation is
indeterminate: a backwards branch is encountered, so a
loop potentially exists in the extra instructions executed.
Unfortunately, it is not clear from our analysis whether the
Y-branch itself was the loop-terminal branch.

But not all cases are so clean as the categorizations
of Skip/Simple, Skip/Loop, Skip/Complex, and Disjoint.
Occasionally, the region between the injection and full
state reconvergence is too large for our tools to analyze.
For cases where this region is over 1M instructions, we
categorize it as Trace Too Big. Furthermore, cases arise
where the Y-branch injection has lingering effects on pro-
gram state, causing control to randomly waver before fi-
nally converging. When this occurs, we sever the traces at
the first common instruction and attempt to classify it as
described above. These cases are called Skip/Loop+Slop,
Skip/Simple+Slop, etc. In certain cases it is difficult to find
a point at which to truncate so we give up (Unclassified).

Figure 8 provides a detailed classification of Y-
branches that arise from mispredicted branches. From
this figure, it is possible to identify the approximate con-
tribution to Y-branches of each coding construct. On
average, the contributions to the various coding con-
structs is about equal based on our categorization. Ap-
proximately 10% of mispredicted branches are outcome-
tolerant and due to short-circuit like code constructs

(Skip/Simple and Skip/Simple+Slop). Approximately
20% of mispredictions are Y-branches that involve loops
(Skip/Loop, Skip/Complex, ...). Approximately 15% of
them involve if-else-type constructs (Skip/Disjoint,
Skip/Disjoint+Slop).

3.4. Specific examples

To further illustrate the nature of the outcome-
tolerance phenomenon, we examine specific examples,
taken from SPEC, of three coding constructs that lead to
instances of outcome-tolerance.

3.4.1. Short-circuit example. An example of a short-
circuit code construct from gzip is shown in Figure 9. The
if statement is within a do-while loop, and it tests four
conditions. If any of them evaluate to true, the rest of the
current iteration of the loop is skipped by the continue
statement. In the binary, the compiler implements this if
statement as four conditional branches, each of which tests
one of the conditions and, if true, branches to the bottom
of the loop. We observe that the first branch accounts for
about 15% of all mispredictions in gzip and about 90% of
these are outcome-tolerant. In general, the full state and
control reconvergence latencies tend to be short for short-
circuit like code constructs, and the difference in numbers
of instructions executed tends to be small.

3.4.2. Early loop exit examples. Bzip2 is a file compres-
sion program that employs move-to-front coding after ap-
plying a transformation on the data to be compressed [4].
When an element is used during encoding or decoding, it
is moved to the front of a list, shifting all previous ele-
ments down by one entry. The shifting of elements is im-
plemented in a tight loop, which is unrolled four times in
the source code. The source code is shown in Figure 10.

 ...
 if (match[best_len] != scan_end ||
 match[best_len−1] != scan_end1 ||

do {

 *match != *scan ||

} while (...);

 *++match != scan[1])
 continue;
 ...

Figure 9. Gzip short-circuit example.

The compiler has further unrolled each of these two loops
four times, resulting in a 16x unrolled loop, two 4x unrolled
loops, and the original loop.

The use of a clean-up loop allows for an early exit
of any of the unrolled loops without loss of correctness.
Any operations not performed by the unrolled loops will
be completed by subsequent clean-up code, at the cost of
executing extra iterations of smaller loops. Interestingly,
the loop unrolling introduces more mispredictions. For our
input set, the number of elements that need to be shifted
(and thus the number of original loop iterations required) is
highly variable. Unrolling this loop exacerbates this prob-
lem by adding more static branches, all of which are highly
mispredicted. The branches associated with this source
code account for about half of all mispredictions in bzip2.

for (; j > 3; j −= 4) {
 yy[j] = yy[j−1];
 yy[j−1] = yy[j−2];

 yy[j−3] = yy[j−4];

j = nextSym − 1;

}

yy[0] = tmp;

for (; j > 0; j−−)
 yy[j] = yy[j−1];

 yy[j−2] = yy[j−3];

tmp == yy[nextSym−1];

Figure 10. Bzip2 early loop exit example.

Another early loop exit example can be found in parser
and is shown in Figure 11. This loop is from a function that
deallocates a hash by iterating through the hash table look-
ing for hash entries to deallocate. Note that for each loop it-
eration, if the currently examined hash table entry is NULL,
then no operation is performed before the loop iterates to
the next hash table entry. If the remainder of the hash table
entries are empty, then the outside loop (the loop iterating
through the hash table) can safely exit early, thus yielding
a Y-branch. This branch accounts for approximately 6%
of the executed conditional branches in parser, and about
one-fifth of these are Y-branches.

In general, early loop exit Y-branches yield short state
and control reconvergence latencies. This is a result of
skipping ineffectual instructions by leaving the loop early.
Also, the difference in instructions executed is usually

for (i=0; i<table_size; i++) {
 for (t = table[i]; t != NULL; t=x) {
 x = t−>next;
 xfree(t, sizeof(Table_connector));
 }
}

Figure 11. Parser early loop exit example.

moderate to high, relative to the other main types of Y-
branches.

3.4.3. If-else example. Perlbmk has a function to copy
blocks of memory. The function first determines the rel-
ative positioning of the source and destination blocks in
memory. Based on the relative positioning of these blocks,
it executes one of two loops: one copies memory start-
ing from the lowest address to the highest, while the other
does the opposite. The function thus guards against the
case where the memory blocks overlap. The corresponding
source code is shown in Figure 12.

When the segments of memory to be copied do not
overlap (which is commonly the case for our input set),
the branch that determines which loop is executed is a Y-
branch. In addition, the branch is often mispredicted—
likely due to lack of a strong pattern in the relative order-
ing of the memory blocks presented to this function. This
branch alone accounts for approximately 16% of all mis-
predictions in parser. On a side note, by identifying this
Y-branch, we were able to modify the source code to only
execute the poorly predicted branch when necessary. After
the modifications were made, most of the mispredictions
attributed to this Y-branch were removed. In general, this
type of transformation can be used to exploit poorly pre-
dicted Y-branches when sufficient conditions for outcome-
tolerance can be easily determined.

 while (len−−)
 *to++ = *from++;
} else {

if (from − to >= 0) {

 to += len;

}

 from += len;
 while (len−−)
 *(−−to) = *(−−from);

Figure 12. Perlbmk if-else example.

We have seen that if-else type constructs show a
wide distribution of reconvergence latencies and instruction
count differences. They can vary from short statements to
relatively long loops.

4. Exploiting Outcome Tolerance

Despite the surprising frequency of outcome-tolerant
dynamic branches, capitalizing on Y-branches for higher
performance is not a straightforward endeavor. Partly due
to the broad variety of coding constructs that give rise to
the phenomenon, and partly due to the trade-offs associ-
ated with exploiting them, design and code optimizations
that result from this phenomenon are likely to be broad and
varied. In this section, we discuss possibilities on lever-
aging outcome-tolerance to improve program performance
and execution efficiency.

Because of the heavy reliance on control speculation
(broadly encompassing branch prediction, speculative code
motion, and thread-level speculation) for achieving high
performance on control-intensive applications, the cost of
a misspeculation can be quite high, easily averaging 30-40
cycles on a modern high-frequency pipeline. For thread-
parallel processors [10, 12] and other machines that more
aggressively evaluate a program’s control flow graph, there
are likely to be additional costs due to re-execution, re-
rename, and re-distribution of computed values. Exploiting
outcome-tolerance in some fashion might be an interesting
new angle to reduce the overall cost of misspeculation, or
to tolerate some misspeculations outright.

Reducing the phenomenon to the three basic code con-
structs discussed in the previous section (loop exits, if-else
branches, and short circuits), we identify ways that specific
Y-branches can be exploited.

4.1. Exploiting Loop Exits

Recall the example from Section 3.4 involving the un-
rolled loop from bzip2. Here the loop terminal branches
from the unrolled iterations were safely guarded by the
clean-up loop (for early loop exits), creating outcome-
tolerant branches. In this particular situation, if the cost
of mispredicting the loop-ending branch is greater than
the sub-par execution resulting from executing the non-
unrolled loop, tolerating the misprediction would be worth-
while.

In another vein, some loop-ending Y-branches are
weakly specified, meaning that a specific instance of the
loop can iterate for a fewer or greater number of iterations
without affecting program output. Examples of this include
the loop from eon that was mentioned in Section 3.2 and the
hash deallocating loop in parser detailed in Section 3.4.
For these types of branches, an injection that causes an
early loop exit may result in significantly fewer instruc-
tions executed than in the reference execution, indicating
the potential for an interesting class of static and dynamic
optimizations.

Exploiting outcome-tolerant loop exits in a meaning-
ful manner might be accomplished by the programmer,
provided the programmer can be informed of meaningful
cases of such Y-branches. Likewise, compiler optimiza-
tions might be able to more tightly bound loop iterations
and perhaps reformulate the iteration bounds for a loop
based on dynamic instance, as accomplished by dynamic
code specialization techniques [5]. Threading approaches
that use a separate thread or specialized hardware to val-
idate the architectural state of an approximate execution
thread [13, 14] might also be able to exploit loop-based
outcome-tolerance.

4.2. Exploiting If-Else

Nearly a third of outcome-tolerant branches are based
on if-else constructs (the Disjoint and Disjoint+Slop
categories in Figure 8). A particular Y-branch of the if-
else variety typically performs an unnecessary control
between two acceptable options, such as the case high-
lighted in the memcopy loop for the benchmark perlbmk
in Figure 12.

As was the case for perlbmk, knowing the branch is
highly mispredicted and outcome-tolerant enabled a simple
programming transformation to remove the mispredictions.
The programmer or compiler, once aware of an outcome-
tolerant if-else branch, can restructure the branch ex-
pression to remove the mispredictions.

4.3. Exploiting Short Circuits

One very promising area of exploiting outcome-
tolerance deals with Y-branches of the short-circuit variety.
These branches arise from the use of short-circuiting opera-
tors (i.e. logical AND and OR) in C and C++, and also due
to the use of nested-if constructs. Due to the semantics of
these operators, a compiler will insert early exit branches in
the evaluation of such expressions when a term in a logical
condition implicates the entire expression, such as the case
of (A || B) where A is true. The compiler can elimi-
nate this branch in cases where no side effects are possible
in evaluating B, but only when any variable references in B
are guaranteed to not generate software-visible exceptions.

Predication techniques and conditional move instruc-
tions can be used to handle short forms of this control flow
but at the cost of always fetching and evaluating some un-
necessary expressions. What outcome-tolerance indicates
is that for such Y-branches, the value of the predicate was
not important. In particular, consider the code and picto-
rial example in Figure 7. If the compiler cannot safely per-
form B without side effects, then it will insert a short-circuit
branch to X after evaluating A. The branch at the end of A

is a Y-branch if B is true and evaluating B generates no
side-effects.

Based on the data presented in Figure 8, about 10% of
mispredicted branches (nearly 20% in benchmarks crafty,
gcc, and gzip) are Skip/Simple variety Y-branches, which
are likely to be short-circuit style branches.

We suggest an architectural mechanism in which mis-
predicted short-circuit branches can be tolerated through
the use of a skewed branch. In a skewed branch, a mispre-
diction does not cause a misspeculation recovery provided
that the incorrect branch path ultimately reaches its correct
target.

We demonstrate via an example. The essential con-
trol flow for a short-circuit style construct is provided in
Figure 13. The code construct corresponding to this struc-
ture might be, for example, (A || B || C). Suppose
branch A is mispredicted to fall through to B despite the
expression A being true. If B is true and the control eventu-
ally reaches X, then the instance of A is outcome-tolerant.
We do not need to act on the misprediction of A because
control has correctly converged at the right point of execu-
tion.

Y

A

B

C

X

Figure 13. Skewed branches can be used as
the internal branches of a short-circuit like
region.

For such short-circuit branches, the compiler can use
a skewed branch. With skewed branches, a misspeculation
is triggered only if the eventual end target of X or Y is in-
correct. That is, mispredicting A (or B) to be fall-through
is irrelevant provided that control eventually ends up at X.
In other words, for conditional structures where (A || B
|| C) is likely to be true, but any one of A or B are hard
to predict, the skewed branch approach can mask mispre-
diction penalty. Because of the short-circuiting restrictions,
if A is true, no side-effects in B or C should be visible. The
use of control speculation-like masking in EPIC [1] and de-
layed error reporting can be used to mask out side-effects
of unintended architectural paths.

It is interesting to note that the difference between us-
ing skewed branches in a region such as the one in Fig-

ure 13 versus predication is that with skewed branches, not
all blocks are fetched and evaluated, which saves on band-
width when the predictor is able to make a correct taken
prediction. Predication on the other hand will always re-
quire all conditions be fetched and possibly evaluated.

Lastly we note that compiler transformations (partic-
ularly in the compiler we used) attempt to remove short-
circuiting branches by establishing that evaluations of sub-
sequent conditions will not generate side-effects (in ef-
fect mirroring the predication approach). With the use of
skewed branches, the cost of mispredicting a branch is re-
duced, and it may actually be less costly to reintroduce the
branch.

4.4. Performance Approximation

In this section we provide a cursory performance anal-
ysis in order to frame the impact on performance of exploit-
ing Y-branches. There are two main methods by which Y-
branches can increase program efficiency: by removing the
branch misspeculation penalty and by shortening program
execution paths. If an outcome-tolerant branch is mispre-
dicted, flushing the pipeline and restarting fetch at the cor-
rect address is not necessary, since executing down both
paths is equivalent. Also, if the new set of instructions
executed can be completed faster than the original “cor-
rect” set, the execution time of the program can be reduced
via the new execution path. In this section, we use a set
of heuristics to identify and target Y-branch mispredictions
during a program’s execution in order to estimate their im-
pact on program performance.

It is important to keep in mind that this analysis pro-
vides neither an upper nor lower bound to all mechanisms
which exploit Y-branches. Rather, it serves as a perfor-
mance approximation for a simple microarchitectural tech-
nique for exploiting Y-branches. The importance of this
analysis is two-fold. Firstly, it offers a framing of perfor-
mance potential with which to compare and contrast other
mechanisms. Secondly, techniques to exploit Y-branches
may have significant (possibly negative) impact on other
microarchitectural components, such as branch predictors.
This study offers some insight on the relative impact of
these positive and negative factors.

4.4.1. Methodology. There are many mispredicted condi-
tional branches in the execution of a program, and deter-
mining whether or not each branch is outcome-tolerant is
computationally expensive. So in order to get a reason-
able approximation on performance, we employ a simple
heuristic filter to find candidate Y-branches. In order for
a mispredicted branch to be identified as outcome-tolerant
in this experiment, it must (A) achieve full state conver-
gence within 1000 instructions and (B) reduce the number
of instructions executed over the correct architectural path.

Furthermore, pertaining to condition (B), we allow the al-
ternative path an additional budget of 40 instructions in or-
der to compensate for the cost of a misprediction recovery.
We’ve observed that 40 instructions is a good estimate of
the branch misprediction penalty on our timing model.

It is important to note that even though we do not ex-
plicitly select which Y-branch categories to take advan-
tage of, our identification and selection mechanisms are
biased towards certain types. For example, Skip/Simple
Y-branches usually exhibit shorter reconvergence laten-
cies, which fall before our 1000 instruction reconvergence
limit. On the other hand, other types of Y-branches such
as Skip/Loop may have their reconvergence point after our
limit, which subjects them to filtering.

After a decision has been made to follow a non-
architected path, it is possible to encounter another mis-
predicted branch prior to reaching the reconvergence point.
If this occurs, the newly mispredicted branch can be ana-
lyzed for outcome-tolerance in the same way as any other
branch. This is true because the new branch, although not
in the original instruction stream, can be treated as such
since it has already been identified as part of an equivalent
path of execution.

This process of finding and selectively choosing Y-
branches is repeated until the end of the program is reached.
At this point, a new and valid path has been defined through
the program, and this path can be followed by a timing
model to simulate how a real microprocessor would react.
The timing model uses the branch predictions laid out by
the functional simulator and does not recover from mis-
predicted branches when the predicted direction is along
the predefined (and guaranteed to be equivalent) path. The
model simulates a modern 8-wide dynamically scheduled
15-stage pipeline microprocessor with significant branch
misprediction penalties (due to the deep pipeline).

4.4.2. Results. Figure 14 shows the percentage of mispre-
dicted branches that we capture in our experiment. On aver-
age, 26% of mispredictions in the new path are Y-branches
and have fewer instructions along the predicted path. Un-
fortunately, sometimes mispredictions are introduced into
the new path by not recovering from previous mispredic-
tions. For example, in gcc the number of mispredictions
encountered along the new path is more than doubled. Even
after identifying 34% of these as Y-branches (and thus re-
moving the associated misprediction penalty), there are still
more mispredictions than in the original execution.

Figure 15 shows the speedup obtained. On average,
6% speedup is seen over the baseline execution that has no
manipulated Y-branches. Gzip sees 38% speedup, which
is a culmination of a few main factors: fewer mispredic-
tions along the new path, the removal of 40% of these fewer
mispredictions, and a reduction in instruction count by 5%.
On the other hand, gcc suffers a -6% speedup, mainly due

to the effect discussed in the previous paragraph. These
results indicate that our heuristic for choosing whether to
recover from a branch misprediction or to simply follow
the predicted path requires retooling—there are many more
factors in play than instruction count differences. However,
gzip and mcf show promise that significant speedups can
be obtained from taking advantage of the Y-branch phe-
nomenon, despite all of the restrictions we have imposed.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

av
er

ag
e

Figure 14. Percentage of mispredictions re-
moved along the new execution path.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

av
er

ag
e

Figure 15. Speedup obtained along new path.

5. Related Work

This section covers the set of work related to outcome-
tolerant branches. The related work falls into the following
categories: (i) analysis of fault injection on the control path
of the program, (ii) studies on redundant code, and (iii) the
use of control flow information to detect faults.

Czeck and Siewiorek [6] performed fault injections at
the gate-level to provide a basis for fault models at the ap-
plication level. During their analysis, they described sce-
narios where control flow could diverge to incorrect, yet
valid instruction addresses. However, they did not explore
the effects of these, possibly outcome-tolerant, branches.

Gu et al. [8] analyzed the effect of introducing faults into
the Linux kernel to understand its response to transient er-
rors. Three fault injection campaigns were run that targeted
specific components of the kernel. One of these campaigns,
reversing the direction of conditional branches, specifically
targets potential outcome-tolerant branches. The authors
found that 33% of these types of injections did not mani-
fest as errors. An example of source-level redundancy is
given that offers an explanation for this phenomenon, how-
ever, further characterization is not done.

Rotenberg [11] explored the effects of removing inef-
fectual code from a program’s execution. Ineffectual code
is defined as dead or silent instructions as well as correctly
predicted branches. The paper focuses on transformations
to the original, architected path that do not alter the pro-
gram’s original traversal of the control flow graph. Our
work differs in that we focus on modifying the original path
to obtain an alternate, yet correct path of execution.

There has been extensive research on detecting faults
using control flow paths. More specifically, Eifert and
Shen [7] proposed a method for identifying faults by en-
coding the instruction bit patterns for instruction regions
ending in multiple target branches. A watchdog type pro-
cessor utilizes these encodings to detect runtime faults.

6. Conclusion

This paper explored the concept of outcome-tolerant
branches: conditional branches which, irrespective of out-
come, still enable correct execution. To better understand
this phenomenon, an investigation into the coding con-
structs that gave rise to these effects was performed. We
found that constructs such as short-circuit like logical ex-
pressions and ineffectual loop iterations were responsible.

An approximation of the benefits obtained on a deeply
pipelined processor was performed. Furthermore, possi-
ble extensions to predication were proposed to harness the
outcome-tolerant branches that fall into the short-circuit
like logical expression category.

7 Acknowledgments

We thank the other members of the Advanced Comput-
ing Systems group as well as Steve Lumetta, Scott Mahlke,
and the anonymous referees for providing feedback during
various stages of this work. This material is based upon
work supported by the National Science Foundation under
Grant No. 0092740 and the C2S2 Marco Center, with sup-
port from AMD, Intel, and Sun Microsystems.

References

[1] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias,
K. M. Crozier, B.-C. Cheng, P. R. Eaton, Q. B. Olaniran,
and W. W. Hwu. Integrated predicated and speculative ex-
ecution in the impact epic architecture. In Proceedings of
the 25th Annual International Symposium on Computer Ar-
chitecture, 1998.

[2] Y. Berra and D. Kaplan. When you Come to a Fork in the
Road, Take It! Inspiration and Wisdom from One of Base-
ball’s Greatest Heroes. Hyperion, 2001.

[3] D. Burger, T. Austin, and S. Bennett. Evaluating future mi-
croprocessors: The simplescalar tool set. Technical Report
1308, University of Wisconsin - Madison Technical Report,
July 1996.

[4] M. Burrows and D. J. Wheeler. A block-sorting lossless
data compression algorithm. Technical Report 124, Digital
Equipment Corporation, 1994.

[5] C. Consel and F. Noel. A general approach for run-time
specialization and its application to c. In Proceedings of the
23rd ACM SIGPLAN/SIGACT Symposium on the Principles
of Programming Languages, 1996.

[6] E. W. Czeck and D. P. Siewiorek. Effects of transient gate-
level faults on program behavior. In 20th International
Symposium on Fault Tolerant Computing, Digest of Papers,
pages 236–243, June 1990.

[7] J. B. Eifert and J. P. Shen. Processor monitoring using asyn-
chronous signatured instruction streams. In 14th Interna-
tional Symposium on Fault Tolerant Computing, Digest of
Papers, pages 394–399, 1984.

[8] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z. Yang. Charac-
terization of linux kernel behavior under errors. In Interna-
tional Conference on Dependable Systems and Networks,
2003.

[9] S. McFarling. Combining branch predictors. Technical
Report TN-36, Digital Western Research Laboratory, June
1993.

[10] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and
K. Chang. The case for a single-chip multiprocessor. In
Proceedings of the 7th International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems, 1996.

[11] E. Rotenberg. Exploiting Large Ineffectual Instruction Se-
quences. Technical report, North Carolina State University,
November 1999.

[12] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, 1992.

[13] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slip-
stream processors: Improving both performance and fault
tolerance. In Proceedings of the 9th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, 2000.

[14] C. Zilles and G. Sohi. Master/slave speculative parallelism.
In Proceedings of the 35th Annual International Symposium
on Microarchitecture, 2002.

