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Abstract
When scriptsin untyped languagesgrow into largeprograms, main-
taining them becomes difficult. A lack of types in typical script-
ing languages means that programmers must (re)discover criti cal
pieces of design informationevery time they wish to change apro-
gram. Thisanalysis step both slows down the maintenanceprocess
and may even introducemistakes due to the violation of undiscov-
ered invariants.

This paper presents Typed Scheme, an explicitl y typed exten-
sion of an untyped scripting language. Its type system is based on
thenovel notion of occurrencetyping, which weformalize andme-
chanically prove sound. The implementation of Typed Scheme ad-
ditionally borrows elements from a range of approaches, includ-
ing recursive types, true unions andsubtyping, plus polymorphism
combined with a modicum of local inference. Initial experiments
with the implementation suggest that Typed Scheme naturally ac-
commodatestheprogrammingstyleof theunderlyingscriptinglan-
guage, at least for the first few thousand lines of ported code.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Language Con-
structsandFeatures]: Modules, Packages; D.3.m[Miscellaneous]:
Cartesian Closed

General Terms Languages, Design

Keywords Type Systems, Scheme

1. TypeRefactor ing: From Scripts to Programs
Recently, under the heading of “scripting languages” , a variety of
new languages have become popular, and even pervasive, in web-
and systems-related fields. Due to their popularity, programmers
often create scripts that then grow into large applications.

Most scriptinglanguagesareuntyped and have aflexibleseman-
tics that makes programs concise. Many programmers find these
attributes appealing and use scripting languages for these reasons.
Programmers are also beginning to notice, however, that untyped
scriptsare difficult to maintain over the longrun. The lack of types
means a lossof design information that programmers must recover
every time they wish to change existing code. Both the Perl com-
munity (Tang 2007) and the JavaScript community (ECMA Inter-
national 2007) are implicitl y acknowledging this problem with the
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addition of Common Lisp-style (Steele Jr. 1984) typing constructs
to the upcoming releases of their respective languages.

In the meantime, industry faces the problem of porting existing
application systems from untyped scripting languages to the typed
world. Based on our own experience, we have proposed a theoret-
ical model for this conversion processand have shown that partial
conversions can benefit from type-safety properties to the desired
extent (Tobin-Hochstadt and Felleisen 2006). The key assumption
behind our work is the existence of an explicitl y typed version of
thescripting language, with thesamesemanticsas theoriginal lan-
guage, so that values can freely flow back and forth between typed
and untyped modules. In other words, we imagine that program-
mers can simply add type annotations to a module and thus intro-
duce a certain amount of type-safety into the program.

At first glance, such an assumptionseems unrealistic. Program-
mers in untyped languages often loosely mix and match reasoning
from various type disciplines when they write scripts. Worse, an
inspection of code suggests they also includeflow-oriented reason-
ing, distinguishing types for variables depending on prior opera-
tions. In short, untyped scripting languages permit programs that
appear difficult to type-check with existing type systems.

To demonstrate the feasibilit y of our approach, we have de-
signed and implemented Typed Scheme, an explicitl y typed ver-
sion of PLT Scheme. We have chosen PLT Scheme for two rea-
sons. On one hand, PLT Scheme is used as a scripting language
by a large number of users. It also comes with a large body of
code, with contributions ranging from scripts to libraries to large
operating-system like programs. On the other hand, the language
comes with macros, a powerful extension mechanism (Flatt 2002).
Macros place asignificant constraint on the design and implemen-
tation of Typed Scheme, since supporting macros requires type-
checking a language with a user-defined set of syntactic forms.
We are able to overcome this difficulty by integrating the type
checker with the macro expander. Indeed, this approach ends up
greatly facilit ating the integration of typed and untyped modules.
As envisioned (Tobin-Hochstadt and Felleisen 2006), this integra-
tion makes it easy to turn portions of a multi -module program into
a partially typed yet still executable program.

Here we report on the novel type system, which combines the
idea of occurrence typing with subtyping, recursive types, poly-
morphism and a modicum of inference. We first present a formal
model of the key aspects of occurrence typing and prove it to be
type-sound. Later wedescribehow to scale thiscalculus into afull -
fledged, typed version of PLT Scheme and how to implement it.
Finally, we give an account of our preliminary experience, adding
types to thousands of lines of untyped Scheme code. Our experi-
ments seem promising and suggest that converting untyped scripts
into well -typed programs is feasible.
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2. Overview of Typed Scheme
Thegoal of theTyped Schemeproject is to developan explicit type
system that easily accommodates a conventional Schemeprogram-
mingstyle. Ideally, programming in Typed Schemeshould feel li ke
programming in PLT Scheme, except for typed function and struc-
ture signatures plus type definitions. Few other changes should be
required when going from a Scheme program to a Typed Scheme
program. Furthermore, the addition of types should require arela-
tively small effort, compared to theoriginal program. This requires
that macros, both thoseused and defined in thetyped program, must
be supported as much as possible.

Supporting this style of programming demands a significant re-
thinking of type systems. Scheme programmers reason about their
programs, but not with any conventional typesystem in mind. They
superimpose on their untyped syntax whatever type (or analysis)
discipline isconvenient. No existing typesystem could cover all of
these varieties of reasoning.

Consider the following function defintion:1

;; data definition: a Complex iseither
;; - a Number or
;; - (cons Number Number)

;; Complex → Number
(define (creal x)

(cond [(number? x) x]
[else (car x)]))

As the informal data definition states, complex numbers are repre-
sented as either a single number, or a pair of numbers (cons).

The definition ill ustrates several key elements of the way that
Scheme programmers reason about their programs: ad-hoc type
specifications, true union types, and predicates for type testing.
No datatype specification is needed to introduce asum type on
which thefunction operates. Instead thereis just an “ informal” data
definition and contract (Felleisen et al. 2001), which gives a name
to a set of pre-existing data, without introducing new constructors.
Further, the function does not use pattern matching to dispatch on
the union type. All it uses is a predicate that distinguishes the two
cases: thefirst cond clause, which dealswith x asanumber and the
second one, which treats it as a pair.

Here is the corresponding Typed Scheme code:2

(define-type-aliasCplx (
S

Number (cons Number Number)))

(define: (creal [x : Cplx]) : Number
(cond [(number? x) x]

[else (car x)]))

Thisversionexplicatesboth aspectsof our informal reasoning. The
type Cplx isan abbreviation for the trueunion intended by thepro-
grammer; naturally, it i s unnecessary to introduce type abbrevia-
tions like this one. Furthermore, the body of creal is not modified
at all; Typed Scheme type-checks each branch of the conditional
appropriately. In short, only minimal type annotations are required
to obtain atyped version of theoriginal code, inwhich theinformal,
unchecked comments become statically-checked design elements.

More complex reasoning about the flow of values in Scheme
programs isalso accomodated in our design:

(foldl scene+rectangle empty-scene
(filter rectangle? list-of-shapes))

1 Standards-conforming Scheme implementations provide a complex num-
ber datatype directly. This example serves only expository purposes.
2 In this paper, we typeset Typed Scheme code in a manner that differs
slightly from what programmers enter into an editor.

This code selects all the rectangles from a list of shapes, and then
adds them one by one to an initially-empty scene, perhaps being
prepared for rendering to the screen. Even thoughthe initial li st-
of-shapes may contain shapes that are not rectangles, those are
removed by the filter function. The resulting list contains only
rectangles, and is an appropriate argument to scene+rectangle.

This example demonstrates a different mode of reasoning than
thefirst; here, theSchemeprogrammer usespolymorphism andthe
argument-dependent invariants of filter to ensure correctness.

No changesto thiscode arerequired for it to typecheck in Typed
Scheme. The type system is able to accommodate both modes of
reasoning the programmer uses with polymorphic functions and
occurrence typing. In contrast, a more conventional type system
would require the use of an intermediate data structure, such as an
option type, to ensure conformance.

2.1 Other Type System Features

In order to support Schemeidioms and programming styles, Typed
Scheme supports a number of type system features that have been
studied previously, but rarely found in a single, full -fledged im-
plementation. Specifically, Typed Scheme supports true union
types (Pierce1991), as seen above. It also provides first-classpoly-
morphic functions, known as impredicative polymorphism, a fea-
ture of the Glasgow Haskell Compiler (Vytiniotis et al. 2006). In
addition, Typed Scheme allows programmers to explicitl y specify
recursive types, as well as constructors and accessors that manage
the recursive types automatically. Finally, Typed Scheme provides
a rich set of base types to match those of PLT Scheme.

2.2 S-expressions

One of the primary Scheme data structures is the S-expression.
We have already seen an example of this in the foregoing section,
where we used pairs of numbers to represent complex numbers.
Other usesof S-expressionsaboundin real Scheme code, including
usinglistsastuples, records, trees, etc. Typed Schemehandlesthese
features by representing lists explicitl y as sequences of cons cells.
Therefore, we can give an S-expressionasprecise atype asdesired.
For example, the expression (li st 1 2 3) is given the type (cons
Number (cons Number (cons Number ’()))) , which is a subtype
of (Listof Number).

Sometimes, however, Scheme programmers rely on invariants
too subtle to be captured in our type system. For example, S-
expressions are often used to represent XML data, without first
imposing any structure on that data. In these cases, Typed Scheme
allows programmers to leave the module dealing with XML in
the untyped world, communicating with the typed portions of the
program just as other untyped librariesdo.

2.3 Other Important Scheme Features

Scheme programmers also use numerous programming-language
features that are not present in typical typed languages. Examples
of these include the apply function, which applies a function to a
heterogeneous list of arguments; the multiple value return mecha-
nism in Scheme; the use of variable-arity and multiple-arity func-
tions; and many others. All of these features are widely used in
existingPLT Scheme programs, and supported by Typed Scheme.

2.4 Macros

Handling macros well i s key for any system that claims to allow
typical Scheme practice. This involves handling macros defined
in libraries or by the base language as well as macros defined in
modules that are converted to Typed Scheme. Further, sincemacros
can be imported from arbitrary libraries, we cannot specify thetyp-
ing rules for all macros ahead of time. Therefore, we must expand
macros before typechecking. This allows us to handle the majority
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d, e, . . . ::= x | (e1 e2) | (if e1 e2 e3) | v Expressions
v ::= c | b | n | λx : τ.e Values
c ::= add1 | number? | boolean? | procedure? | not PrimitiveOperations

E ::= [] | (E e) | (v E) | (if E e2 e3) Evaluation Contexts

φ ::= τ | • Latent Predicates
ψ ::= τx | x | true | false | • VisiblePredicate

σ, τ ::= ⊤ | Number | true | false | (σ
φ
→ τ) | (

S

τ . . . ) Types

Figure 1. Syntax

T-VAR
Γ ⊢ x : Γ(x);x

T-NUM
Γ ⊢ n : Number; true

T-CONST
Γ ⊢ c : δτ (c); true

T-TRUE
Γ ⊢ true: Boolean; true

T-FALSE
Γ ⊢ false: Boolean; false

T-ABS
Γ, x : σ ⊢ e : τ;ψ

Γ ⊢ λx : σ.e : (σ
•
→ τ); true

T-ABSPRED

Γ, x : σ ⊢ e : τ;σ′

x

Γ ⊢ λx : σ.e : (σ
σ′

→ τ); true

T-APP

Γ ⊢ e1 : τ ′;ψ
Γ ⊢ e2 : τ;ψ′

⊢ τ <: τ0

⊢ τ ′ <: (τ0
φ
→ τ1)

Γ ⊢ (e1 e2) : τ1; •

T-APPPRED

Γ ⊢ e1 : τ ′;ψ
Γ ⊢ e2 : τ;x
⊢ τ <: τ0

⊢ τ ′ <: (τ0
σ
→ τ1)

Γ ⊢ (e1 e2) : τ1;σx

T-IF
Γ ⊢ e1 : τ1;ψ1

Γ + ψ1 ⊢ e2 : τ2;ψ2

Γ − ψ1 ⊢ e3 : τ3;ψ3

⊢ τ2 <: τ ⊢ τ3 <: τ
ψ = combpred(ψ1, ψ2, ψ3)

Γ ⊢ (if e1 e2 e3) : τ;ψ

Figure 2. Primary TypingRules

combpred(ψ′, ψ, ψ) = ψ
combpred(τx , true, σx) = (

S

τ σ)x

combpred(true, ψ1, ψ2) = ψ1

combpred(false, ψ1, ψ2) = ψ2

combpred(ψ, true, false) = ψ
combpred(ψ1, ψ2, ψ3) = •

δτ (add1 ) = (Number •
→ Number)

δτ (not) = (⊤
•
→ Boolean)

δτ (procedure?) = (⊤
(⊥

•
→⊤)
→ Boolean)

δτ (number?) = (⊤
Number

→ Boolean)

δτ (boolean?) = (⊤
Boolean

→ Boolean)

Figure 3. Auxili ary Operations

of existing macros without change, i.e., those for which we can in-
fer the types of the generated variables. Further, macros defined in
typed code require no changes. Unfortunately, this approach does
not scale to the largest and most complex macros, such as those
defining a class system (Flatt et al. 2006), which rely on and en-
force their own invariants that are not understood bythe type sys-
tem. Handling such macros remains future work.

3. A Formal Model of Typed Scheme
Following precedent, we have distill ed the novelty of our type
system into a typed lambda calculus, λTS . While Typed Scheme
incorporates many aspects of modern type systems, the calculus
serves only as a model of occurrence typing, the novel aspect of
thetypesystem, trueunion types, andsubtyping. Thelatter directly
interact with the former; other features of the type system are
mostly orthogonal to occurrence typing. This section first presents
the syntax and dynamic semantics of the calculus, followed by the
typing rules anda (mechanically verified) soundnessresult.

Γ + τx = Γ[x : restrict(Γ(x), τ) ]
Γ + x = Γ[x : remove(Γ(x), false) ]
Γ + • = Γ
Γ - τx = Γ[x : remove(Γ(x), τ) ]
Γ - x = Γ[x : false ]
Γ - • = Γ

restrict(σ, τ) = σ when ⊢ σ <: τ
restrict(σ, (

S

τ . . .)) = (
S

restrict(σ, τ) . . .)
restrict(σ, τ) = τ otherwise
remove(σ, τ) = ⊥ when ⊢ σ <: τ
remove(σ, (

S

τ . . .)) = (
S

remove(σ, τ) . . .)
remove(σ, τ) = σ otherwise

Figure 4. Environment Operations

3.1 Syntax and Operational Semantics

Figure 1 specifies the syntax of λTS programs. An expression
is either a value, a variable, an application or a conditional. The
set of values consists of abstractions, numbers, booleans and con-
stants. Binding occurrences of variables are explicitl y annotated
with types. Typesare either ⊤, functiontypes, basetypes, or unions
of some finite collection of types. We refer to the decorations on
function types as latent predicates and explain them, along with
visible predicates, below in conjunction with the typing rules. For
brevity, we abbreviate (

S

truefalse) as Boolean and (
S

) as⊥.
The operational semantics is standard: seefigure 7. Following

Scheme and Lisp tradition, any non-false value is treated as true.

3.2 Typing Rules

The key feature of λTS is its support for assigning distinct types
to distinct occurrences of a variable based oncontrol flow criteria.
For example, to type the expression

(λ (x : (
S

Number Boolean))
(if (number? x) (= x 1) (not x)))
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the type system must use Number for x in the then branch of the
conditional and Boolean in the else branch. If it can distinguish
these occurrences and project out the proper component of the
declared type (

S

Number Boolean), then the computed type of
the function isconfirmed as

((
[

Number Boolean) → Boolean).

The type system for λTS accomplishes this; its presentation
consists of two parts. The first are those rules that the program-
mer must know and that are used in the implementation of Typed
Scheme. The secondset of rules are needed only to establish type
soundness; indeed, we can prove that those rules are unnecessary
outside of the proof of the main theorem.

Visible Predicates Judgments of λTS involve both types and
visiblepredicates(seetheproduction for ψ in figure1). Theformer
arestandard and need littl e explanation. Thelatter areused to accu-
mulate informationabout expressions that affect theflow of control
and thus demand a split for different branches of a conditional. Of
course, asyntactic match would help littl e, becauseprogrammersof
scripts tend to write their own predicates and compose logical ex-
pressions with combinators. Also, programmer-defined datatypes
extend the set of predicates.

Latent Predicates In order to accommodate programmer-
defined functions that are used as predicates, the type system of
λTS uses latent predicate (seeφ in figure 1) to annotate function
types. Syntactically speaking, a latent predicate is a single type
φ atop the arrow-type constructor that identifies the function as a
predicate for φ. This latent predicate-annotation allows a uniform
treatment of built -in and user-defined predicates. For example,

number? : (Number Number
→ Boolean)

says that number? is adiscriminator for numbers.
An eta-expansion preserves this property:

(λ (x: Number) (number? x)) : (Number Number
→ Boolean).

Thus far, higher-order latent predicates are useful in just one
case: procedure?. For uniformity, the syntax accommodates the
general case. We intend to study an integration of latent predicates
with higher-order contracts(Findler andFelleisen 2002) andexpect
to findadditional uses.

The λTS calculus also accommodates logical combinations of
predicates. Thus, if a program contains a test expression such as:

(or (number? x) (boolean?x))

then Typed Scheme computes the appropriate visible predicate for
this union, which is (

S

Number Boolean)x . This information is
propagated so that aprogrammer-defined functionreceivesa corre-
sponding latent predicate. That is, the bool-or-number function:

(λ (x : Any) (if (number? x) #t (boolean?x)))

acts like apredicate of type (Any
(
S

Number Boolean)
→ Boolean)

and isused to split types in different branches of a conditional.
Typing Rules Equipped with types and predicates, we turn to

the typing rules. They derive judgements of the form

Γ ⊢ e : τ;ψ.

It states that in type environment Γ, expression e has type τ and
visible predicate ψ. The latter is used to change the type environ-
ment in conjunction with if expressions.3 The type system proper
comprises the ten rules in figure 2.

3 Other control flow constructs in Scheme are almost always macros that
expand into if.

S-REFL
⊢ τ <: τ

S-FUN
⊢ σ1 <: τ1 ⊢ τ2 <: σ2

φ = φ′ or φ′ = •

⊢ (τ1
φ
→ τ2) <: (σ1

φ′

→ σ2)

S-UNIONSUPER
⊢ τ <: σi 1 ≤ i ≤ n

⊢ τ <: (
[

σ1 · · ·σn)

S-UNIONSUB
⊢ τi <: σ for all 1 ≤ i ≤ n

⊢ (
[

τ1 · · · τn) <: σ

Figure 5. Subtyping Relation

The rule T-IF is the key part of the system, and shows how
visible predicates are treated. To accommodate Scheme style, we
allow expressions with any type as tests. Most importantly, though,
the rule uses the visible predicate of the test to modify the type
environment for the verification of the types in the two conditional
branches. When avariableisused asthetest, weknow that it cannot
be false in the then branch, andmust be in the else branch.

Whilemany of thetype-checkingrulesappear famili ar, thepres-
enceof visible predicate distinguishes them from ordinary rules:

• T-VAR assigns a variable its type from the type environment
and names the variable itself as the visible predicate.

• Boolean constants have Boolean type and a visible predicate
that depends on their truth value. Since numbers are always
treated as truevalues, they have visible predicate true.

• When we abstract over a predicate, the abstraction should re-
flect the test being performed. This is accomplished with the
T-ABSPRED rule, which gives an abstraction a latent predicate
if thebody of the abstraction hasavisiblepredicate referring to
the abstracted variable, as in the bool-or-number example.

Otherwise, abstractions have their usual type; the visible pred-
icate of their body is ignored. The visible predicate of an ab-
straction is true, since abstractions are treated that way by if.

• Checking the application of an expression to another expres-
sion that is not a variable proceeds as normal. The antecedents
include latent predicates and visiblepredicates but those are ig-
nored in the consequent.

• TheT-APPPRED ruleshowshow thetypesystem exploitslatent
predicates. The application of a function with latent predicate
to a variable turns the latent predicate into a visible predicate
on the variable (σx ). The proper interpretation of this visible
predicate is that the application produces true if and only if x
has a value of typeσ.
Figure 3 defines a number of auxili ary typing operations.

The mapping from constants to types is standard. The ternary
COMBPRED metafunction combines the effects of the test, then
and else branches of an if expression. The most interesting case is
the second, which handles expressions such as this:

(if (number? x) #t (boolean?x))

This is (roughly) the expansion of an or expression. The combined
effect is (

S

Number Boolean)x , as expected.
The environment operations, specified in figure 4, combine a

visible predicate with a type environment, updating the type of the
appropriate variable. Here, restrict(σ, τ) is σ restricted to be a
subtype of τ, and remove(σ, τ) is σ without the portions that are
subtypes of τ. The only non-trivial cases are for union types.

For the motivating example from the beginning of this section,

(λ (x : (
S

Number Boolean))
(if (number? x) (= x 1) (not x)))
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T-APPPREDTRUE

Γ ⊢ e1 : τ ′;ψ Γ ⊢ e2 : τ;ψ′

⊢ τ <: τ0 ⊢ τ <: σ ⊢ τ ′ <: (τ0
σ
→ τ1)

Γ ⊢ (e1 e2) : τ1; true

T-APPPREDFALSE

Γ ⊢ e1 : τ ′;ψ Γ ⊢ v : τ;ψ′

⊢ τ <: τ0 ⊢ τ 6<: σ v closed

⊢ τ ′ <: (τ0
σ
→ τ1)

Γ ⊢ (e1 v) : τ1; false

T-IFTRUE
Γ ⊢ e1 : τ1; true Γ ⊢ e2 : τ2;ψ2

⊢ τ2 <: τ

Γ ⊢ (if e1 e2 e3) : τ; •

T-IFFALSE
Γ ⊢ e1 : τ1; false Γ ⊢ e3 : τ3;ψ3

⊢ τ3 <: τ

Γ ⊢ (if e1 e2 e3) : τ; •

SE-REFL
⊢ ψ <:? ψ

SE-NONE
⊢ ψ <:? •

SE-TRUE
ψ 6= false

⊢ true<:? ψ

SE-FALSE
ψ 6= true

⊢ false<:? ψ

Figure 6. Auxili ary TypingRules

E-DELTA

δ(c, v) = v′

(c v) →֒ v′
E-BETA

(λx : τ.e v) →֒ e[x/v]

E-IFFALSE
(if false e2 e3) →֒ e3

E-IFTRUE
v 6= false

(if v e2 e3) →֒ e2

L →֒ R

E[L] → E[R]

δ(add1 , n) = n + 1

δ(not , false) = true δ(not , v) = false v 6= false

δ(number?, n) = true δ(number?, v) = false

δ(boolean?, b) = true δ(boolean?, v) = false

δ(procedure?, λx : τ.e) = true δ(procedure?, c) = true

δ(procedure?, v) = false otherwise

Figure 7. Operational Semantics

we can now seethat the test of the if expression has type Boolean
and visible predicate Numberx . Thus, the then branch is type-
checked in an environment where x has type Number; in the else
branch x is assigned Boolean.

Subtyping The definition of subtyping is given in figure 5. The
rules are for the most part standard. The rules for union types are
adapted from Pierce’s (Pierce 1991). One important consequence
of these rules is that ⊥ isbelow all other types. This type is useful
for typing functions that do not return to their continuation, aswell
as for defininga supertype of all function types.

We do not include atransitivity rule for the subtyping relation,
but instead prove that the subtyping relation as given is transitive.
This choicesimplifies the proof in a few key places.

The rules for subtyping allow function types with latent predi-
cates, to be used in a context that expects a function that is not a
predicate. This is especially important for procedure?, which han-
dles functions regardlessof latent predicate.

3.3 Proof-Theoretic Typing Rules

The typing rules in figure 2 do not sufficefor the soundnessproof.
To seewhy, consider the function from above, applied to the argu-
ment #f. By the E-BETA rule, this reduces to

(if (number? #f)
(= #f 1)
(not #f))

Unfortunately, this program is not well -typed according the pri-
mary typing rules, since= requires numeric arguments. Of course,
thisprogram reducesin just afew stepsto#t, which isan appropri-
atevalue for theoriginal type. To prove type soundnessin thestyle
of Wright and Felleisen (Wright and Felleisen 1994), however, ev-
ery intermediate term must be typeable. So our types system must
know to ignore the then branch of our reduced term.

To thisend, we extendthetypesystem with therules in figure6.
This extension assigns the desired type to our reduced expression,

because (number? #f) has visible predicate false. Put differently,
we can disregard the then branch, using rule T-IFFALSE.4

In order to properly state the subject reduction lemma, we need
to relate the visible predicates of terms in a reduction sequence.
Therefore, we define asub-predicate relation, written ⊢ ψ <:? ψ

′,
for this purpose. The relation is defined in figure 5. This relation is
not used in the subtyping or typing rules, and is only necessary for
the soundnessproof.

We can now prove the traditional lemmas.

Lemma 1 (Preservation). If Γ ⊢ e : τ;ψ, e is closed, ande → e′,
then Γ ⊢ e′ : τ ′;ψ′ where⊢ τ ′ <: τ and⊢ ψ′ <:? ψ.

Lemma 2 (Progress). If Γ ⊢ e : τ;ψ ande isclosed, then either e
isa value or e → e′ for somee′.

From these, soundnessfor the extended type system follows.
Programs with untypable subexpressions, however, are not use-

ful in real programs. We only needed to consider them, as well as
our additional rules, for our proof of soundness. Fortunately, we can
also show that the additional, proof-theoretic, rulesareneeded only
for the type soundnessproof, not the result. Therefore, we obtain
the desired type soundnessresult.

Theorem 1 (Soundness). If Γ ⊢ e : τ;ψ, with e closed, using only
therules in figure2, andτ isa base type, oneof thefollowing holds

1. e reduces forever, or
2. e →∗ v where ⊢ v : σ;ψ′ and⊢ σ <: τ and⊢ ψ′ <:? ψ.

3.4 Mechanized Suppor t

We employed two mechanical systems for the exploration of the
model and theproof of thesoundnesstheorem: Isabelle/HOL (Nip-
kow et al. 2002) and PLT Redex (Matthews et al. 2004). Indeed,

4 The rules in figure 6 are similar to rules used for the same purpose in
systems with atypecase construct, such as Crary et al. (1998).
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we freely moved back and forth between the two, and without do-
ing so, we would not have been able to formalize the type system
and verify its soundnessin an adequate and timely manner.

For theproof of typesoundness, weused Isabelle/HOL together
with the nominal-isabelle package (Urban and Tasson 2005). Ex-
pressingatypesystem in Isabelle/HOL isalmost aseasy aswriting
down the typing rules of figures 2 and 6(our formalization runs to
5000 lines). To represent the reduction semantics (from figure 7)
we turn evaluation contexts into functions from expressions to ex-
pressions, which makes it relatively straightforward to state and
prove lemmas about the connection between the type system and
the semantics. Unfortunately, this design choice prevents us from
evaluating sample programs in Isabelle/HOL, which is especially
important when a proof attempt fails.

Sincewe experienced such failures, we also used thePLT Redex
system (Matthewset al. 2004) to explorethesemanticsandthetype
system of Typed Scheme. PLT Redex “programmers” can write
down areductionsemanticsaseasily asIsabelle/HOL programmers
can write down typing rules. That is, each line in figures 1 and 7
corresponds to one line in aRedex model. Our entireRedex model,
with examples, is lessthan 500lines. Redex comes with visualiza-
tion tools for exploring the reduction of individual programs in the
object language. In support of subject reduction proofs, language
designers can request the execution of a predicate for each “node”
in the reduction sequences (or graphs). Nodes and transitions that
violate asubject reduction property are painted in distinct colors,
facilit atingexample-based exploration of type soundnessproofs.

Every timewewerestuck in our Isabelle/HOL proof, wewould
turn to Redex to develop more intuition about the type system and
semantics. We would then change the type system of the Redex
model until the violations of subject reduction disappeared. At
that point, we would translate the changes in the Redex model
into changes in our Isabelle/HOL model and restart our proof
attempt. Switching back andforth in thismanner helped usimprove
the primary typing rules and determine the shape of the auxili ary
typing rules in figure 6. Once we had those, pushing the proof
throughIsabelle/HOL was a labor-intensive mechanization of the
standard proof technique for type soundness. 5

4. From λTS To Typed Scheme
In this day and age, it i s easy to design a type system and it is rea-
sonably straightforward to validate some theoretical property. The
true proof of a type system is a pragmatic evaluation, however. To
this end, it i s imperative to integrate the novel ideas with an exist-
ing programming language. Otherwise it isdifficult to demonstrate
that the type system accommodates the kind of programming style
that people find natural and that it serves its intended purpose.

To evaluateoccurrencetypingrigorously, wehaveimplemented
Typed Scheme. Naturally, occurrence typing in the spirit of λTS

makes upthe coreof this language, but wehave also supplemented
it with anumber of important ingredients, both at the level of types
and at the level of large-structure programming.

4.1 Type System Extensions

Asargued in theintroduction, Schemeprogrammersborrow anum-
ber of ideas from type systems to reason about their programs.
Chief among them is parametric polymorphism. Typed Scheme
therefore allowsprogrammersto define and use explicitl y polymor-
phic functions. For example, themap functionisdefined asfollows:

(define: (a b) (map [f : (a→ b)] [ l : (Listof a)]) : (Listof B)
(if (null? l) l

(cons (f (car l)) (map f (cdr l)))))

5 Themechanised calculus does not currently handle or .

The definition explicitl y quantifies over type variables a and b
and then uses these variables in the type signature. The body of
the definition, however, is identical to the one for untyped map; in
particular, no type application is required for the recursive call to
map. Instead, the type system infers appropriate instantiations for
a andb for the recursive call .

In addition to parametric polymorphism, Scheme programmers
also exploit recursive subtypes of S-expressions to encode awide
range of information as data. To support arbitrary regular types
over S-expressions as well as more conventional structures, Typed
Scheme provides explicit recursive types thoughthe programmer
need not manually fold and unfold instances of these types.

For example, here is the type of a binary treeover cons cells:

(define-type-aliasSTree(µ t (
S

Number (cons t t))))

A functionfor summingtheleavesof such atreeis straightforward:

(define: (sum-tree[s : STree]) : Number
(cond [(number? s) s]

[else (+ (sum-tree(car s)) (sum-tree(cdr s)))]))

In this function, occurrence typing allows us to discriminate be-
tween the different branches of the union, and the (un)folding of
the recursive (tree) type happens automatically.

Finally, Typed Scheme supports arich set of base types, includ-
ing vectors, boxes, parameters, ports, and many others. It also pro-
vides type aliasing, which greatly facilit ates type readabilit y.

4.2 Type Inference

In order to further relieve the annotation burden on programmers,
Typed Scheme provides two simple forms what has been called
“ local” type inference (Pierce and Turner 2000).6 First, local non-
recursive bindings do not require annotation. For example, the
following fragment typechecks without annotations on the local
bindings:

(define: (m [z : Number]) : Number
(let∗ ([x z]

[y (∗ x x)])
(− y 1)))

sinceby examiningtheright-handsidesof the let∗, thetypechecker
can determine that both x and y should have type Number. Note
that the inferencemechanism doesnot take into account theusesof
these variables, only their initializingexpressions.

The use of internal definitions can complicate this inference
process. For example, the above code could be written as follows:

(define: (m [z : Number]) : Number
(definex 3)
(definey (∗ x x))
(− y 1))

This fragment is macro-expanded into a letrec; however, recur-
sive binding is not required for typechecking this code. Therefore,
the typechecker analyzes the letrec expression and determines if
any of the bindings can be treated non-recursively. If so, the above
inferencemethodis applied.

The second form of inference allows the type arguments to
polymorphic functions to be omitted. For example, the following
use of mapdoes not require explicit annotation.

(map (lambda: ([x : Number]) (+ x 1)) ’(1 2 3))

To accommodate this form of inference, the typechecker first
determines the type of the argument expressions, in this case

6 This modicum of inference is similar to that in recent releases of
Java (Gosling et al. 2005).
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(Number → Number) and (Listof Number), as well as the op-
erator, here (All (a b) ((a → b) (Listof a) → (Listof b))). Then it
matches the argument types against the body of the operator type,
generating a substitution. Finally, the substitution is applied to the
function result type to determine the type of the entire expression.

For cases such as the above, this isquite straightforward. When
subtyping is involved, however, the process is complex. Consider
this, seemingly similar, example.

(map (lambda: ([x : Any]) x) ’(1 2 3))

Again, the second operand has type (Listof Number), suggest-
ingthat map’s typevariableb should substituted with Number, the
first operand has type (Any → Any), suggesting that both a and
b should be Any. The solution is to find a common supertype of
Number and Any, and use that to substitute for a.

Unfortunately, thisprocessdoesnot always succeed. Therefore,
the programmer must sometimes annotate the arguments or the
function to enable the typechecker to find the correct substitution.
For example, thisannotation instantiates foldl at Number andAny:

#{foldl @ Number Any}

In practice, we have rarely needed these annotations.

4.3 Adapting SchemeFeatures

Scheme in general, and PLT Scheme in particular, comes with nu-
merous constructs that need explicit support from the type system:

• The most important one is the structure system. A define-
struct definition is the fundamental method for constructing
new varieties of data in PLT Scheme. This form of definitions
introduces constructors, predicates, field selectors, and field
mutators. Typed Scheme includes a matching define-typed-
struct form. Thus the untyped definition

(define-struct A (x y))

which defines a structure A, with fields x and y, becomes the
following in Typed Scheme:

(define-typed-struct A ([x : Number] [y : Str ing]))

Unsurprisingly, all fields have type annotations.

The define-typed-struct form, like define-struct, introduces
thepredicateA?. Schemeprogrammersusethispredicateto dis-
criminate instances of A from other values, and the occurrence
typingsystem must therefore be aware of it. Thedefine-typed-
struct definitionfacilit y can also automatically introducerecur-
sive types, similar to those introduced via ML’s datatype con-
struct.

The PLT Scheme system also allows programmers to define
structures as extensions of an existing structure, similar to ex-
tensions of classes in object-oriented languages. An extended
structure inherits all the fields of its parent strucuture. Further-
more, its parent predicate cannot discriminate instances of the
parent structure from instances of the child structure. Hence, it
is imperative to integrate structures with the type system at a
fundamental level.

• Variable-arity functions also demand special attention from the
type perspective. PLT Scheme supports two forms of variable-
arity functions: rest parameters, which bundle up extra argu-
ments into a list; and case-lambda (Dybvig and Hieb 1990),
which is roughly speaking numeric and dynamic overloading.
Fortunately, these constructs do not present new challenges to
typesystem designers. A careful adaptation of thesolutionsem-
ployed for mainstream languages such as Java andC# suffices.

• Dually, Schemesupportsmultiple-valuereturns, meaningapro-
cedure may return multiple values simultaneously without first
bundling them up in atuple (or other compound values). Multi -
plevalues requirespecial treatment in the type checker because
the construct for returning multiple values is a primitive func-
tion (values), which can be used in higher-order contexts.

• Finally, Schemeprogrammersusetheapply function, especially
in conjunctionwith variable-arity functions. Theapply function
consumes a function, a number of values, plus a list of addi-
tional values; it then applies the function to all these values.

Because of its use in conjunction with variable-arity functions,
we type-check the application of apply specially and allow its
use with variable argument functions of the appropriate type.

For example, the common Scheme idiom of applying the func-
tion+ to alist of numbersto sum them worksin Typed Scheme:
(apply + (li st 1 2 3 4)).

4.4 Special SchemeFunctions

A number of Scheme functions, either because of their special se-
manticsor their particular roles in thereasoning processof Scheme
programmers, are assigned types that demand some explanation.
Here we cover just two interesting examples: filter andcall/cc.

An important Scheme function, as we saw in section 2, is filter.
When filter is used, the programmer knows that every element of
the resulting list answers true to the supplied predicate. The type
system should have this knowledge as well , and in Typed Scheme
it does:

filter : (All (a b) ((a
b
→ Boolean) (Listof a) → (Listof b))

Here we write (a
b
→ Boolean) for the type of functions from a to

Boolean that arepredicates for typeb. Notehow its latent predicate
becomesthetypeof theresultingelements. In the conventional type
world, thiseffect can only be achieved with dependent types.

For an example, consider the following expression:

(define: the-numbers (Listof Number)
(let ([lst (li st ’a 1 ’b 2 ’c 3)])

(map add1(filter number? lst))))

Here the-numbers has type (Listof Number) even thoughit is the
result of filtering numbers from a list that contains both symbols
and numbers. Using Typed Scheme’s type for filter, type-checking
this expression is now straightforward. The example again demon-
strates type inferencefor local non-recursive bindings.

The type of call/ccmust reflect the fact that invokinga continu-
ationaborts the local computation in progress:

call/cc : (All (a) (((a→⊥) → a) → a))

where ⊥ is the empty type, expressing the fact that the function
cannot producevalues. Thistypehasthesamelogical interpretation
as Peirce’s law, the conventional type for call/cc (Griffin 1990) but
works better with our type inferencesystem.

4.5 Programming in the Large

PLT Scheme has a first-order module system (Flatt 2002) that al-
lows us to support multi -module typed programs with noextra ef-
fort. In untyped PLT Schemeprograms, amodule consistsof defini-
tions and expressions, alongwith declarations of dependencies on
other modules, and of export specificationsfor identifiers. In Typed
Scheme, the same module system is available, without changes.
Both defined values and types can be imported or provided from
other Typed Scheme modules, with nosyntactic overhead. No dec-
laration of the types of provided identifiers is required. In the ex-
ample in figure 8, the type LoN and the function sum are provided
by module m1 and can therefore be used in module m2.
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(modulem1 typed-scheme
(provide LoN sum)
(define-type-aliasLoN (Listof Number))
(define: (sum [l : LoN]) : Number

(if (null? l) 0 (+ (car l) (sum (cdr l))))))

(modulem2 typed-scheme
(require m1)
(define: l : LoN (li st 1 2 3 4 5))
(display (sum l)))

Figure 8. A Multi -Module Typed Scheme Program

Additionally, aTyped Schememodule, li ke aPLT Schememod-
ule, may contain and export macro definitions that refer to identi-
fiersor types defined in the typed module.

4.6 Interoperating with Untyped Code

Importing from the Untyped Wor ld When a typed module must
import functions from an untyped module—say PLT Scheme’s ex-
tensive standard library—Typed Scheme requires dynamic checks
at themoduleboundary. Those checksarethemeansto enforcetype
soundness(Tobin-Hochstadt andFelleisen 2006). In order to deter-
mine the correct checks and in keeping with our decision that only
binding positions in typed modulescomewith type annotations, we
have designed a typed import facilit y. For example,

(require/typed mzscheme add1(Number → Number))

imports the add1 function from the mzscheme library, with the
given type. The require/typed facilit y expands into contracts,
which are enforced as values cross module boundaries (Findler
and Felleisen 2002).

An additional complication arises when an untyped module
provides an opaque data structure, i.e., when a module exports
constructors and operators on data without exporting the structure
definition. In these cases, we do not wish to expose the structure
merely for the purposes of type checking. Still , we must have a
way to dynamically check this type at the boundary between the
typed and the untyped code and to check the typed module.

In support of such situations, Typed Scheme includes support
for opaque types, in which only the predicate for testing member-
ship is specified. This predicate can be trivially turned into a con-
tract, but no operations on the type are allowed, other than those
imported with the appropriate type from theuntyped portion of the
program. Of course, thepredicateisnaturally integrated into theoc-
currence type system, allowing modules to discriminate precisely
the elements of the opaque type.

Here is a sample usage of the special form for importing a
predicate and thus defining an opaque type:

(require/opaque-type (lib "xml.ss" "xml") Doc document?)

It imports the document? function from the (lib "xml.ss" "xml")
library and uses it to define the Doc type. The rest of the module
can now import functions with require/typed that refer to Doc.

Exporting to the Untyped Wor ld When a typed module is
required by untyped code, other considerations come into play.
Again, the typed code must be protected (Tobin-Hochstadt and
Felleisen 2006), but we already know the necessary types. There-
fore, in untyped contexts, typed exports are automatically guarded
by contracts, without additional effort or annotation by the pro-
grammer. Unfortunately, because macros allow unchecked access
to the internalsof amodule, macrosdefined in atyped module can-
not currently be imported into an untyped context.

5. Implementation
Wehaveimplemented Typed Scheme asalanguagefor theDrScheme
programmingenvironment (Findler et al. 2002). It isavailablefrom
the PLaneT software repository (Matthews 2006). 7

SinceTyped Schemeis intended for useby programmers devel-
oping real applications, a toy implementation was not an option.
Fortunately, we were able to implement all of Typed Scheme as
a layer on top of PLT Scheme, giving us a full -featured language
and standard library. In order to integrate with PLT Scheme, all of
Typed Scheme is implemented using the PLT Scheme macro sys-
tem (Culpepper et al. 2007). When the macro expander finishes
sucessfully, the program has been typechecked, and all t races of
Typed Scheme have been compiled away, leaving only executable
PLT Scheme code remaining. The module can then be run just as
any other Scheme program, or linked with existing modules.

5.1 Changing theLanguage

Our chosen implementation strategy requires an integration of the
type checking andmacro expansion processes.

The PLT Scheme macro system allows language designers to
control the macro expansion processfrom the top-most AST node.
Every PLT Scheme module takes the following form:

(modulem language
. . .)

where language can specify any library. The library is then used
to provide all of the core Scheme forms. For our purposes, the key
form is#%module-begin, which iswrapped aroundthe entire con-
tents of the module, and expanded before any other expansion or
evaluation occurs. Redefining this form gives us complete control
over the expansion of a Typed Scheme program. At this point, we
can type-check theprogram andsignal an error at macro-expansion
time if it i s ill -typed.

5.2 Handling Macros

One consequenceof PLT Scheme’spowerful macro system isthat a
large number of constructs that might be part of the core language
are instead implemented as macros. This includes pattern match-
ing (Wright and Duba 1995), class systems (Flatt et al. 2006) and
component systems(Flatt andFelleisen 1998), aswell asnumerous
varieties of conditionals and even boolean operations such as and.
Faced with this bewildering array of syntactic forms, we could not
hope to addeach one to our type system, especially sincenew ones
can be added by programmers in librariesor applicationcode. Fur-
ther, we cannot abandonmacros—they are used in virtually every
PLT Schemeprogram, andwedo not want to requiresuch changes.
Instead, we transform them into simpler code.

In support of such situations, the PLT Scheme macro system
provides the local-expandprimitive, which expands a form in the
current syntactic environment. This allows us to fully expand the
original program in our macro implementation of Typed Scheme,
prior to type checking. We are then left with only the MzScheme
core forms, of which there are approximately a dozen.

5.3 Cross-ModuleTyping

In PLT Scheme programs are divided up into first-order modules.
Each module explicitl y specifies the other modules it imports, and
the bindings it exports. In order for Typed Scheme to work with
actual PLT Scheme programs, it must be possible for programmers
to split up their Typed Scheme programs into multiple modules.

Our type-checking strategy requires that all type-checking take
placeduring the expansion of a particular module. Therefore, the

7 The implementation consists of approximately 6000 lines of code and
2800lines of tests.
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type environment constructed during thetypechecking of onemod-
ule disappears before any other module is considered.

Instead, we turn the type environments into persistent code
using Flatt’s reification strategy (Flatt 2002). After typechecking
each module, the type environment is reified in the code of the
module as instructions for recreating that type environment when
that module is expanded. Since every dependency of a module is
visited during the expansion of that module, the appropriate type
environment is recreated for each module that is typechecked. This
implementationtechniquehasthesignificant benefit that it provides
separate compilation and typechecking of modules for free.

Further, our type environments are keyed byMzScheme identi-
fiers, which maintain information onwhich module they were de-
fined in. Therefore, no special effort is required to use one typed
module from another and standard DrScheme (Findler et al. 2002)
tools for presenting binding structure work properly.

5.4 L imitations

Our implementation hastwo significant limitationsat present. First,
we are unable to dynamically enforce polymorphic types using
the PLT contract system. Therefore, programmers cannot require
polymorphically-typed functions from untyped libraries as such
(only in instantiated form). We plan to address this difficulty by
providing a comprehensive standard library of typed functions,
based uponthe PLT Scheme standard library.

The second major limitation is that we cannot typecheck code
that uses the most complex PLT Scheme macros, such as the unit
and classsystems. These macros radically alter the binding struc-
ture of the program. In order to typecheck them, our system would
need to be extended to either infer this type structure from the re-
sults of macro expansion, or to understand units and classes na-
tively. Since these macros are widely used by PLT Scheme pro-
grammers, we plan to investigate both possibiliti es.

6. Practical Experience
To determine whether Typed Scheme is practical and whether con-
vertingPLT Schemeprograms is feasible, we conducted aseriesof
experiments in porting existing Scheme programs of varying com-
plexity to Typed Scheme.

Educational CodeFor smaller programs, which we expected to
be written in a disciplined style that would be easy to type-check,
we turned to educational code. Our preliminary investigations and
type system design indicated that programs in the style of How to
DesignPrograms (Felleisen et al. 2001) would type-check success-
fully with our system, with only type annotations required.

To see how more traditional educational Scheme code would
fare, we rewrote most programs from The Little Schemer (Fried-
man and Felleisen 1997) and The Seasoned Schemer (Friedman
and Felleisen 1996) in Typed Scheme. Converting these 500 lines
of code usually required nothing but the declaration of types for
function headers. The only difficulty encountered was an inabilit y
to expressin our typesystem someinvariantsonS-expressionsthat
the code relied on.

Second, we ported 1,000 lines of educational code, which con-
sisted of the solutions to a number of exercises for an undergradu-
ate programming languages course. Again, handing S-expressions
proved the greatest challenge, sincethe code used tests of the form
(pair? (car x)), which does not provide useful information to the
typesystem (formally, thevisiblepredicateof thisexpression is•).
Typing such tests required adding new local bindings. This code
also made use of a non-standard datatype definition facilit y, which
required adaptation to work with Typed Scheme.

Librar ies We ported 500lines of code implementing a variety
of datastructuresfrom Søgaard ’sgalore.plt library package. While
thesedatastructureswereoriginally designed for atyped functional

(define: (play-one-turn [player : Player]
[deck: Cards]
[stck : Cards]
[fst:discs : Hand])

: (values Boolean RCard HandAttacksFrom)
(define trn (create-turn (player-name player) deckstck fst:discs))
;; — go play
(define res (player-take-turn player trn))
;; the-return-card could be false
(define-values (the-end the-return-card)

(cond
[(ret? res) (values#f (ret-card res))]
[(end?res) (values#t (end-card res))]))

(definediscards:squadrons (done-discards res))
(defineattacks (done-attacks res))
(defineet (turn-end trn))
(values the-end the-return-card discards:squadrons attacks et))

Figure 9. A Excerpt from the Squadron Scramble Game

language, the implementations were not written with typing in
mind. Two sorts of changes were required for typing this library.
First, in several places the library failed to check for erroneous
input, resulting in potentially surprising behavior. Correcting this
required adding tests for the erroneous cases. Second, in about a
dozen places throughout the code, polymorphic functions needed
to be explicitl y instantiated in order for typechecking to proceed.
These changes were, again, in addition to the annotation of bound
variables.

Applications Finally, a student ported two sizable applications
under the direction of the first author. The first was a 2,700 line
implementation of a game, written in 2007, and the second was a
500line checkbookmanaging script, maintained for 12 years.

The game is a version of the multi -player card game Squadron
Scramble.8 Theoriginal implementationconsistsof 10PLT Scheme
modules, totaling 2,700 lines of implementation code, including
500linesof unit tests.

A representative function definition from the game is given in
figure 9. This function creates a turn object, and hands it to the
appropriate player. It then checks whether the game is over and if
necessary, constructs the new stateof the game and returns it.

The changes to this complex function are confined to the func-
tion header. We have converted the original define to define: and
provided type annotationsfor each of theformal parametersaswell
as the return type. This function returns multiple values, as is in-
dicated by the return type. Other than the header, no changes are
required. The types of all the locally bound variables are inferred
from their body of the individual definitions.

Structure types areused extensively in thisexample, as they are
in the entire implementation. In the definition of the variables the-
end and the-return-card, occurrence typing is used to distinguish
between the res andend structures.

Some portions of the implementation required more effort to
port to Typed Scheme. For example, portions of the data used for
thegameis stored inexternal XML fileswithafixed format, andthe
program relies uponthe details of that format. However, sincethis
invariant is neither checked nor specified in the program, the type
system cannot verify it. Therefore, wemoved the codehandling the
XML file into a separate, untyped module that the typed portion
uses via require/typed.

8 Squadron Scramble resembles Rummy; it is available from US Game
Systems.
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Scripts The second application ported required similarly few
changes. This script maintained financial records recorded in an S-
expression stored in a file. The major change made to the program
wasthe addition of checks to ensurethat dataread from thefilewas
in the correct format before using it to create the relevant internal
data structures. This was similar to the issue encountered with the
SquadronScramblegame, but sincetheproblem concerned asingle
function, we added thenecessary checks rather than creatinganew
module. Theother semantic change to theprogram wasto maintain
a typing invariant of a data structure by construction, rather than
after-the-fact mutation. As in the case of the Galore library, we
consider this typechecker-mandated change an improvement to the
original program, even thoughit hasalready been used successfully
for many years.

7. Related Work
The history of programming languages knows many attempts to
add or to use type information in conjunction with untyped lan-
guages. Starting with LISP(Steele Jr. 1984), language designers
have tried to include type declarations in such languages, often to
help compilers, sometimes to assist programmers. From the late
1980s until recently, people have studied soft typing (Cartwright
and Fagan 1991; Aiken et al. 1994; Wright and Cartwright 1997;
Henglein and Rehof 1995; Flanagan and Felleisen 1999; Meunier
et al. 2006), a form of type inferenceto assist programmers debug
their programs statically. This work has mainly been in the con-
text of Scheme but has also been applied to Python (Salib 2004).
Recently, the slogan of “gradual typing” has resurrected the LISP-
style annotation mechanisms and has had a first impact with its
tentative inclusion in Perl6 (Tang 2007).

In this section, we survey this body of work, starting with
the soft-typing strand, because it is the closest relative of Typed
Scheme.

7.1 Types for Scheme

Thegoal of thesoft typingresearch agendaisto provide an optional
type checker for programs in untyped languages. One key premise
is that programmers shouldn’ t have to write down type definitions
or type declarations. Soft typing should work via type inference
only, just li keML. Another premiseisthat soft typesystems should
never prevent programmers from running any program. If the type
checker encounters such an ill -typed program, it should insert run-
time checks that restore typabilit y and ensure that the type system
remains sound. Naturally, asoft typesystem should minimizethese
insertions of run-time checks. Furthermore, since these insertions
represent potential failures of type invariants, a good soft type
system must allow programmer to inspect the sites of these run-
time checks to determine whether they represent genuine errors or
weaknesses of the type system.

Based on the experiences of the second author, soft systems
are complex and brittle. On one hand, these systems may infer ex-
tremely large types for seemingly simple expressions, greatly con-
fusing the original programmer or the programmer who has taken
on old code. On the other hand, a small syntactic change to a pro-
gram without semantic consequences can introduce vast changes
into the types of both nearby and remote expressions. Experiments
with undergraduates—representative of average programmers—
suggest that only the very best understood the tools well enough
to make sense of the inferred types and to exploit them for the as-
signed tasks. For the others, these tools turned into time sinks with
littl ebenefit.

Roughly speakingsoft typesystems fall i nto oneof two classes,
depending onthekind of underlying inferencesystem. Thefirst soft
type systems (Cartwright and Fagan 1991; Wright and Cartwright
1997; Henglein and Rehof 1995) used inference engines based on

Hindley-Milner thoughwithextensiblerecord types. Thesesystems
are able to type many actual Scheme programs, including those
using outlandish-looking recursive datatypes. Unfortunately, these
systems severely suffer from the general Hindley-Milner error-
recovery problem. That is, when the type system signals a type
error, it i s extremely difficult—often impossible—to decipher its
meaning and to fix it.

In response to this error-recovery problem, others built i n-
ference systems based on Shiver’s control-flow analyses (1991)
and Aiken’s and Heintze’s set-based analyses (Aiken et al. 1994;
Heintze1994). Roughly speaking, these soft typing systems intro-
duce sets-of-values constraints for atomic expressions and propa-
gate them via ageneralized transitive-closure propagation (Aiken
et al. 1994; Flanagan andFelleisen 1999). In thisworld, it i seasy to
communicate to a programmer how a values might flow into a par-
ticular operation and violate atype invariant, thus eliminating one
of the major problems of Hindley-Milner based soft typing (Flana-
gan et al. 1996).

Our experience and evaluation suggest that Typed Scheme
works well when compared to soft typing systems. First, program-
mers can easily convert entire modules with just a few type dec-
larations and annotations to function headers. Second, assigning
explicit types and rejecting programs actually pinpoints errors bet-
ter than soft typingsystems, whereprogrammersmust alwayskeep
in mind that the type inference system is conservative. Third, soft
typing systems simply do not support type abstractions. Starting
from an explicit, static type system for an untyped language should
help introducethese features and deploy them as needed.

The Rice University soft typing research inspired occurrence
typing. These systems employed if-splitti ng rules that performed
a case analysis for types based on the syntactic predicates in the
test expression. This idea was derived from Cartwright (1976)’s
typecase construct (also seebelow) and—due to itsusefulness—
inspired our generalization. The major advantage of soft typing
over an explicitl y typed Scheme is that it does not require any
assistancefrom theprogrammer. In thefuture, we expect to borrow
techniques from soft typing for automating some of the conversion
processfrom untyped modules to typed modules.

Shivers (1991) presented 0CFA, which also uses flow analy-
sis for Scheme programs, and extended it to account for the use
of predicates and to distinguish different occurences of variables
based onthese predicates, as occurrencetyping does.

7.2 Gradual Typing

Recently, proposals for what is called “gradual typing” have be-
come popular (Siek and Taha 2006; Herman et al. 2007). This
work also intends to integrate typed and untyped programs, but at
amuch finer granularity than we present. So far, this has prevented
the proof of a type soundness theorem for such calculi that prop-
erly assign blame for failures to the typed and untyped pieces of
a system.9 In contrast, our earlier work on Typed Scheme (Tobin-
Hochstadt andFelleisen 2006) provides such asoundnesstheorem,
which we believe scales to full Typed Scheme andPLT Scheme.

The gradual typing proposals have also failed describe the em-
bedding of such systems into realistic type systems that are suit-
able for writing significant applications, whereas Typed Scheme
has been used for the porting of thousands of lines of code.

Bracha (2004) suggests pluggable typing systems, in which a
programmer can choose from a variety of type systems for each
pieceof code. AlthoughTyped Scheme requires some annotation,
it can be thought of as a step toward such a pluggable system, in
which programmers can choose between the standard PLT Scheme
type system and Typed Scheme ona module-by-module basis.

9 Wadler and Findler (2007)’s formulation eliminates this objection.
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7.3 Type System Features

Many of the type system features we have incorporated into Typed
Scheme have been extensively studied. Polymorphism in type sys-
tems dates to Reynolds (1983). Recursive types were studied by
Amadio and Cardelli (1993), and union types by Pierce (1991),
among many others. Intensional polymorphism appears in calculi
by Harper and Morrisett (1995), among others. Our use of visible
predicates and especially latent predicates was inspired by prior
work on effect systems (Gifford et al. 1987). Typing variables dif-
ferently in different portions of a program was discussed by Crary
et al. (1998). However, occurrencetypingaspresented herehasnot
been previously considered.

7.4 Dependent Types

Some features similar to those we describe have appeared in the
dependent type literature. Cartwright (1976) describes Typed Lisp,
which includestypecase expression that refinesthetypeof avari-
able in thevariouscases; Crary et al. (1998) re-invent thisconstruct
in the context of a typed lambda calculus with intensional poly-
morphism. The typecase statement specified the variable to be
refined, and that variable was typed differently on the right-hand
sides of the typecase expression. While this system is superfi-
cially similar to our typesystem, theuseof latent and visiblepredi-
catesallowsusto handle casesother than simpleusesof typecase.
This is important in type-checking existing Scheme code, which is
not written with typecase constructs.

Visiblepredicates can also be seen as a kind of dependent type,
in that (number? e) could be thought of having type true when e
has a value that is a number. In a system with singleton types, this
relationship could be expressed as a dependent type. This kind of
combination typingwould not cover theuseof if to refinethe types
of variables in the branches, however.

7.5 Type Systems for Untyped Languages

Multiplepreviouseffortshave attempted to typecheck Schemepro-
grams. Wand(1984), Haynes (1995), and Leavenset al. (2005) de-
veloped typecheckers for an ML-style type system, each of which
handlepolymorphism, structuredefinitionandanumber of Scheme
features. Wand’s system integrated with untyped Scheme code via
unchecked assertions. Haynes’ system also handles variable-arity
functions (Dzeng and Haynes 1994). However, none attempts to
accommodate atraditional Scheme programming style.

Bracha and Griswold’s Strongtalk (1993), li ke Typed Scheme,
presents a type system designed for the needs of an untyped lan-
guage, in their case Smalltalk. Reflecting the differing underlying
languages, the Strongtalk type system differs from ours, and does
not describe amechanism for integrating with untyped code.

8. Conclusion
Migrating programs from untyped language to typed ones isan im-
portant problem. In thispaper wehavedemonstrated onesuccessful
approach, based on the development of a type system that accom-
modates the idioms and programming styles of our scripting lan-
guage of choice.

Our type system combines a simple new idea, occurrence typ-
ing, with a range of previously studied type system features, some
used widely, somejust studied in theory. Occurrencetypingassigns
distinct subtypes of a parameter to distinct occurrences, depending
on the control flow of the program. We introduced occurrencetyp-
ing becauseour past experiencesuggeststhat Schemeprogrammers
combine flow-oriented reasoning with typed-based reasoning.

Building uponthisdesign, wehaveimplemented and distributed
Typed Scheme as a package for the PLT Scheme system. This
implementation supports the key type system features discussed

here, as well as integration features necessary for interoperation
with the rest of the PLT Scheme system.

Using Typed Scheme, we have evaluated our type system. We
consider the experiments of section 6 ill ustrative of existing code
and believe that their successis a good predictor for future experi-
ments. We plan on porting PLT Scheme libraries to Typed Scheme
and onexploring the theory of occurrencetyping in more depth.

For a closelookat Typed Scheme, including documentationand
sources for its Isabelle/HOL and PLT Redex models, are available
from the Typed Scheme web page:

http://www.ccs.neu.edu/~samth/typed-scheme
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