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Abstract

When scriptsin urtyped languages grow into large programs, main-
taining them beames difficult. A ladk of types in typicd script-
ing languages means that programmers must (re)discover criticd
pieces of design information every time they wish to change apro-
gram. Thisanalysis gep bah slows down the maintenance process
and may even introduce mistakes due to the violation o undscov-
ered invariants.

This paper presents Typed Scheme, an explicitly typed exten-
sion o an urtyped scripting language. Its type system is based on
thenowel nation o occurrencetyping, which we formalize and me-
chanicdly prove sound The implementation o Typed Scheme ad-
ditionally borrows elements from a range of approacdhes, includ-
ing reaursive types, true unions and subtyping, plus poymorphism
combined with a modicum of locd inference Initial experiments
with the implementation suggest that Typed Scheme naturally ac
commodates the programming style of the underlying scriptinglan-
guage, at least for the first few thousand lines of ported code.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Forma Definitions and Theory; D.3.3 [Languag Con-
structsandFeatures]: Modues, Packages; D.3.m[Miscdlaneous]:
Cartesian Closed

General Terms Langueges, Design
Keywords Type Systems, Scheme

1. TypeRefactoring: From Scriptsto Programs

Recently, under the heading o “scripting langueges’, a variety of
new langueges have become popuar, and even pervasive, in web-
and systems-related fields. Due to their popuarity, programmers
often crede scripts that then grow into large goplications.

Most scriptinglanguages are untyped and have afl exible seman-
tics that makes programs concise. Many programmers find these
attributes appeding and use scripting languages for these reasons.
Programmers are dso beginning to natice, however, that untyped
scripts are difficult to maintain over the longrun. The lad of types
means alossof design information that programmers must recover
every time they wish to change existing code. Both the Perl com-
munity (Tang 2007 and the JavaScript community (ECMA Inter-
national 2007 are implicitly adknowledging this problem with the
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addition o Common Lisp-style (Stede Jr. 1984 typing constructs
to the upcoming releases of their respedive languages.

In the meantime, industry faces the problem of porting existing
application systems from untyped scripting languages to the typed
world. Based on ou own experience, we have proposed a theoret-
icd model for this conversion processand have shown that partial
conwersions can henefit from type-safety properties to the desired
extent (Tobin-Hochstadt and Fell eisen 200§. The key assumption
behind ou work is the existence of an explicitly typed version o
the scripting language, with the same semantics as the original | an-
guage, so that values can fredy flow bad and forth between typed
and urtyped modues. In other words, we imagine that program-
mers can simply add type anndations to a modue and thus intro-
duce a cetain amourt of type-safety into the program.

At first glance such an assumption seams unredistic. Program-
mers in urtyped languages often loosely mix and match reasoning
from various type disciplines when they write scripts. Worse, an
inspedion o code suggests they also include flow-oriented reason
ing, distinguishing types for variables depending on pior opera-
tions. In short, untyped scripting languages permit programs that
appea difficult to type-chedk with existing type systems.

To demonstrate the feasibility of our approach, we have de-
signed and implemented Typed Scheme, an explicitly typed ver-
sion o PLT Scheme. We have chasen PLT Scheme for two rea
sons. On ore hand, PLT Scheme is used as a scripting language
by a large number of users. It also comes with a large body d
code, with contributions ranging from scripts to libraries to large
operating-system like programs. On the other hand, the language
comes with maaos, a powerful extension mechanism (Flatt 2002.
Maaos place asignificant constraint on the design and implemen-
tation o Typed Scheme, since suppating maaos requires type-
cheding a language with a user-defined set of syntadic forms.
We ae ale to overcome this difficulty by integrating the type
chedker with the maao expander. Inded, this approach ends up
gredly fadlit ating the integration o typed and urtyped modues.
As envisioned (Tobin-Hochstadt and Felleisen 20089, this integra-
tion makes it easy to turn partions of a multi-modue program into
apartidly typed yet still exeautable program.

Here we report on the novel type system, which combines the
idea of occurrence typing with subtyping, reaursive types, pay-
morphism and a modicum of inference We first present a formal
model of the key aspeds of occurrence typing and prove it to be
type-sound L ater we describe how to scdethiscdculusinto afull -
fledged, typed version d PLT Scheme and hav to implement it.
Finaly, we give an acourt of our preliminary experience adding
types to thousands of lines of untyped Scheme ade. Our experi-
ments eam promising and suggest that converting urtyped scripts
into well -typed programs isfeasible.



2. Overview of Typed Scheme

The goal of the Typed Scheme projed isto develop an explicit type
system that easily acoommodates a mnventional Scheme program-
ming style. Idedly, programmingin Typed Scheme shoud fed like
programming in PLT Scheme, except for typed function and struc-
ture signatures plus type definitions. Few other changes houd be
reguired when gang from a Scheme program to a Typed Scheme
program. Furthermore, the aldition o types shoud require arela-
tively small eff ort, compared to the original program. Thisrequires
that maaos, both those used and cefined in the typed program, must
be suppated as much as possble.

Suppating this dyle of programming demands a significant re-
thinking d type systems. Scheme programmers reason about their
programs, but not with any conventional type systemin mind. They
superimpose on their untyped syntax whatever type (or analysis)
discipline is convenient. No existing type system could cover al of
these varieties of reasoning.

Consider the foll owing function defintion:

;; data definition: a Complex is either
;; - aNumber or
;1 - (cons Number Number)

;; Complex — Number
(define (creal x)
(cond [(number? x) X]
[else (car X)]))

Astheinformal data definition states, complex numbers are repre-
sented as either a single number, or a pair of numbers (cons).

The definition ill ustrates svera key elements of the way that
Scheme programmers reason abou their programs. ad-hoc type
spedfications, true union types, and predicaes for type testing.
No datatype spedficaion is needed to introduce asum type on
which thefunction operates. Instead thereisjust an “informal” data
definition and contract (Felleisen et al. 2001), which gives a name
to a set of pre-existing data, without introducing new constructors.
Further, the function dces nat use pattern matching to dispatch on
the union type. All it usesis a predicae that distingu shes the two
cases. thefirst cond clause, which deds with x as anumber and the
seoond ore, which treasit as a pair.

Hereisthe crrespondng Typed Scheme mde:?

(define-type-alias Cplx (| Number (cons Number Number)))

(define: (creal [x: Cplx]) : Number
(cond [(number? x) X]
[else (car X)]))

Thisversion explicaes bath aspeds of our informal reasoning. The
type Cplx is an abbreviation for the true union intended by the pro-
grammer; naturaly, it is unrecessary to introduce type ebhbrevia-
tions like this one. Furthermore, the body d creal is not modified
at all; Typed Scheme type-chedks ead branch of the condtional
appropriately. In short, only minimal type anndations are required
to oltain atyped version o the origina code, inwhichtheinformal,
unchedked comments beame statical y-chedked design elements.

More complex reasoning about the flow of values in Scheme
programs is also acomodated in our design:

(foldl scenetredande empty-scene
(filter redande? li st-of-shapes))

1 standards-conforming Scheme implementations provide a @mplex num-
ber datatype diredly. This example serves only expaository purposes.

2|n this paper, we typeset Typed Scheme @de in a manner that differs
slightly from what programmers enter into an editor.
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This code seleds al the redandes from alist of shapes, and then
adds them one by ore to an initialy-empty scene, perhaps being
prepared for rendering to the screen. Even thoughthe initial list-
of-shapes may contain shapes that are nat redanges, those ae
removed by the filter function. The resulting list contains only
redandes, andis an appropriate agument to scene+redande.

This example demonstrates a diff erent mode of reasoning than
thefirst; here, the Scheme programmer uses paymorphism and the
argument-dependent invariants of filter to ensure corredness

No changesto thiscode aerequired for it to typedhedk in Typed
Scheme. The type system is able to acoommodate bath modes of
ressoning the programmer uses with pdymorphic functions and
occurrence typing. In contrast, @ more conventional type system
would require the use of an intermediate data structure, such as an
option type, to ensure conformance

2.1 Other Type System Features

In order to suppat Schemeidioms and programming styles, Typed
Scheme suppats a number of type system feaures that have been
studied previoudly, but rarely foundin a singe, full-fledged im-
plementation. Spedficdly, Typed Scheme suppats true union
types (Pierce1991), as ®en abowe. It also provides first-classpaly-
morphic functions, known as impredicative paymorphism, a fea
ture of the Glasgow Haskell Compiler (Vytinictis et a. 2006. In
addition, Typed Scheme dlows programmers to explicitly spedfy
reaursive types, as well as constructors and accesors that manage
the reaursive types automaticdly. Finaly, Typed Scheme provides
arich set of base types to match those of PLT Scheme.

2.2 S-expressons

One of the primary Scheme data structures is the S-expresson.
We have drealy seen an example of this in the foregoing sedion,
where we used pairs of numbers to represent complex numbers.
Other uses of S-expressons aboundin red Scheme mde, including
usinglistsastuples, records, trees, etc. Typed Scheme hand es these
feaures by representing li sts explicitly as ssquences of cons cdls.
Therefore, we can give an S-expresson as predse atype asdesired.
For example, the expresson (list 1 2 3) is given the type (cons
Number (cons Number (cons Number ’()))), which is a subtype
of (Listof Number).

Sometimes, however, Scheme programmers rely on invariants
too subtle to be captured in ou type system. For example, S
expressons are often used to represent XML data, withou first
impaosing any structure on that data. In these cases, Typed Scheme
allows programmers to leave the modue deding with XML in
the untyped world, communicaing with the typed pations of the
program just as other untyped libraries do.

2.3 Other Important Scheme Features

Scheme programmers also use numerous programming-language
feaures that are nat present in typicd typed langueges. Examples
of these include the apdy function, which applies a function to a
heterogeneous list of arguments; the multi ple value return mecha-
nism in Scheme; the use of variable-arity and multi ple-arity func-
tions; and many cothers. All of these feaures are widely used in
existing PLT Scheme programs, and suppated by Typed Scheme.

24 Macros

Handing maaos well is key for any system that claims to al ow
typicd Scheme pradice This invaves handing maaos defined
in libraries or by the base language & well as maaos defined in
moduesthat are converted to Typed Scheme. Further, sincemaaos
can be imported from arbitrary libraries, we cana spedfy thetyp-
ing rules for al maaos ahead of time. Therefore, we must expand
maaos before typechedking. This allows us to handl e the majority



d,e, =z | (e1e2) | (if erezes) | v Expressons
v =c|b|n|X:Te Values
c = addl | number? | boolean? | procedure? | not Primitive Operations
E =[] (Ee)| wWE) | (if Eezes) Evaluation Contexts
1) =T e Latent Predicates
P =7z | « | true | false | e Visible Predicae
o,7 u=T | Number | true | false | (¢ >7) | (Ur...) Types
Figure 1. Syntax
T-VAR T-Num T-CONST T-TRUE T-FALSE
F'kz:T(x);x T+ n : Number;true L'k c:d:(c);true T F true: Bodean;true I' + false: Bodean; false
T-ABS T-1F
Tx:oke:mv T_Afpi 7 T-APPPRED I'ker:m;in
TEMe:oe: (o0 7)t F|_el‘.T.7/ he:rsy L+ ez
:r.a.e.(a—w-), rue I762.‘7',’(12} F"SQIT;IIJ F_wl}_eg:,rg;wg
T-ABSPRED T< Tg Fr<:mo by <7 b <7
I,z:0ke:T;00 Fr'<: (02 m) Fr'<:(ro>7) % = combpred(ti, o, )s)
TFAz:oe: (02 7);true 'k (ere2):11i;0 Ik (e1e2): 71504 Ik (if erezes): e
Figure 2. Primary Typing Rules
combpred (v, 1, 1) =1 I + 71, =[x : restrict(T'(z), 7) ]
combpred(7z,true,o,) = (I 70)a I'+z =T[x:remove(I'(x),false) ]
combpred(true, v1,2) =1 T'+e=T
combpred(false, 1, 12) =2 T -7 =T'[z : remove(I'(z), 7) ]
combpred(y, true, false) = T'-z=T[z:fase]
combpred (i1, 12, 13) = @ T'-e=T
6, (add1) = (Number = Number) ]res‘c]rict(a’7 T)=o0 whentk o <: 7
8, (not) = (T % Boolean) restrict(o, (J 7...)) = (U restrict(o, 7) ...)
e restrict(o, 7) =7 otherwise
0- (procedure?) = (T 3 Bodean) remove(o,7) = L whentk o <: 7
Number remove(a, (J 7...)) =(J remove(o,7) ...)
&r (number?) = (T B 0|—> Bodean) remove(o, T) = o - otherwise
07 (boolean?) = (T ogean Bodlean)

Figure 3. Auxili ary Operations

of existing maaos withou change, i.e., those for which we canin-
fer the types of the generated variables. Further, maaos defined in
typed code require no changes. Unfortunately, this approach does
not scde to the largest and most complex maaos, such as those
defining a dass ystem (Flatt et a. 2006, which rely on and en-
forcetheir own invariants that are not understood bythe type sys-
tem. Handli ng such maaos remains future work.

3. A Formal Model of Typed Scheme

Following precedent, we have distilled the nowelty of our type
system into a typed lambda cdculus, Ars. While Typed Scheme
incorporates many aspeds of modern type systems, the cdculus
serves only as a model of occurrence typing, the nowel asped of
the type system, true union types, and subtyping. Thelatter direaly
interad with the former; other feaures of the type system are
mostly orthogoral to occurrence typing. This edion first presents
the syntax and dyramic semantics of the cdculus, followed by the
typing rules and a (mechanicaly verified) soundressresult.
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Figure 4. Environment Operations

3.1 Syntax and Operational Semantics

Figure 1 spedfies the syntax of Ars programs. An expresson
is either a value, a variable, an application a a mndtiona. The
set of values consists of abstradions, numbers, bodeans and con-
stants. Binding occurrences of variables are explicitly annaated
withtypes. Typesare @ther T, functiontypes, base types, or unions
of some finite clledion o types. We refer to the decorations on
function types as latent predicates and explain them, along with
visible predicates, below in conjunction with the typing rules. For
brevity, we ebreviate (| truefalse) asBodean and (| J) as L.
The operational semantics is gandard: seefigure 7. Following
Scheme and Lisp tradition, any nonfalse value istreaed astrue.

3.2 TypingRules

The key feaure of Args isits suppat for asdgning dstinct types
to distinct occurrences of a variable based on control flow criteria
For example, to type the expresson

(A (x: (U Number Bodean))
(if (number? x) (= x 1) (nat x)))



the type system must use Number for x in the then branch of the
condtional and Bodean in the else branch. If it can distinguish
these occurrences and projed out the proper comporent of the
dedared type (L Number Bodean), then the computed type of
the functionis confirmed as

((J Number Boolean) — Bodlean).

The type system for Ars acomplishes this; its presentation
consists of two parts. The first are those rules that the program-
mer must know and that are used in the implementation o Typed
Scheme. The second set of rules are needed only to establish type
soundress indeed, we can prove that those rules are unrecessary
outside of the proof of the main theorem.

Visible Predicates Judgments of Ars invave bath types and
visible predicates (seethe productionfor ¢ infigure 1). Theformer
are standard and red littl e explanation. Thelatter are used to aca-
mulate information about expressons that aff edt the flow of control
and thus demand a split for different branches of a condtional. Of
course, asyntadic match would help littl e, becaise programmers of
scripts tend to write their own predicaes and compaose logicd ex-
pressons with combinators. Also, programmer-defined datatypes
extend the set of predicaes.

Latent Predicates In order to acommodate programmer-
defined functions that are used as predicaes, the type system of
Ars uses latent predicae (see ¢ in figure 1) to annaate function
types. Syntadicdly speing, a latent predicate is a single type
¢ atop the arow-type mnstructor that identifies the function as a
predicae for ¢. This latent predicate-annaation allows a uniform
treament of built-in and user-defined predicaes. For example,

Number
—

number? : (Number Bodlean)

saysthat number? isadiscriminator for numbers.
An eta-expansion preserves this property:
(A (z: Number) (number? x)) : (Number Number Boolean).
Thus far, higher-order latent predicates are useful in just one
case: procedure?. For uniformity, the syntax acommodates the
general case. We intend to study an integration o latent predicates
with higher-order contrads (Finder and Fell eisen 2002 and exped
to find additi onal uses.
The Ars cdculus also acommodates logicd combinations of
predicaes. Thus, if aprogram contains atest expresson such as:

(or (number? x) (bodean?Xx))

then Typed Scheme computes the gopropriate visible predicae for
this union, which is (| Number Bodean),. This information is
propagated so that a programmer-defined function receves a corre-
spondng latent predicate. That is, the bod-or-number function:

(A (x: Any) (if (number? x) #t (bodean?x)))

Number Bod
adslike apredicate of type (Any (U Num S[ oolean) Boolean)
and is used to split typesin diff erent branches of a condtional.

Typing Rules Equipped with types and predicaes, we turn to
the typing rules. They derive judgements of the form

T'ke:m.

It states that in type ewironment T', expresson e has type 7 and
visible predicate +. The latter is used to change the type environ-
ment in conjunction with if expressons.® The type system proper
comprisestheten rulesinfigure 2.

3 Other cortrol flow constructs in Scheme ae dmost dways maaos that
expand into if.

398

S-FUN
Foi<imi F 1y < o2

p=¢' ord' =e

F (11 2, T2) <: (01 ?, 02)

S-REFL
Fr<iT

S-UNIONSUB
Frn<ofordll<i<n

F(U TL o Tp) <i O

S-UNIONSUPER
Fr<io; 1<i<n

Fr<: (U 01+ 0n)

Figure 5. Subtyping Relation

The rule T-IF is the key part of the system, and shows how
visible predicates are treaed. To acommodate Scheme style, we
allow expressons with any type as tests. Most importantly, though
the rule uses the visible predicate of the test to modify the type
environment for the verification o the typesin the two condtional
branches. When avariableisused asthetest, we know that it cannat
be false in the then branch, and must be in the el se branch.

Whil e many of the type-chedking rules appea famili ar, the pres-
enceof visible predicate distinguishes them from ordinary rules:

e T-VAR asdgns a variable its type from the type environment
and names the variable itself asthe visible predicate.

Bodean constants have Bodean type and a visible predicae
that depends on their truth value. Since numbers are dways
treaed as true values, they have visible predicae true.

When we abstrad over a predicate, the astradion shoud re-
fled the test being performed. This is acomplished with the
T-ABSPRED rule, which gives an abstradion a latent predicate
if thebody d the abstradion hes avisible predicate referring to
the abstraded variable, asin the bod-or-number example.

Otherwise, abstradions have their usual type; the visible pred-
icate of their bodyis ignared. The visible predicae of an ab-
stradionistrue, since dstradions are treaed that way by if.

Cheding the gplicaion o an expresson to ancther expres-
sionthat is nat a variable proceeds as normal. The antecalents
include latent predicates and visible predicates but those aeig-
nored in the consequent.

The T-APPPRED rule shows how the type system exploitslatent
predicaes. The gplicaion d afunction with latent predicate
to a variable turns the latent predicae into a visible predicae
on the variable (o). The proper interpretation o this visible
predicae is that the goplicaion prodwees trueif and orly if «
has avalue of type o.

Figure 3 defines a number of auxiliary typing operations.
The mapping from constants to types is dandard. The ternary
COMBPRED metafunction combines the efeds of the test, then
and else branches of an if expresgon. The most interesting cese is
the second which handes expressons auch asthis:

(if (number? x) #t (bodean?Xx))

Thisis (rougHy) the expansion o an or expresson. The combined
effed is (| Number Bodean)., as expeded.

The environment operations, spedfied in figure 4, combine a
visible predicae with atype environment, updkting the type of the
appropriate variable. Here, restrict(o, ) is o restricted to be a
subtype of 7, and remove(o, 7) is o without the portions that are
subtypes of 7. The only nontrivial cases are for union types.

For the motivating example from the beginning d this sdion,

(A (x: (U Number Bodean))
(if (number? x) (= x 1) (nat x)))



T-APPPREDTRUE
ke 759 T'Feg:me)
Fr<iTo Fr<io Frlo<: (T()ng)

L't (e1 e2): 11;true

T-1FTRUE
T'Fep:mi;true T'Fes:mo;te
Fr<iT

FF(If (] 6263):7’;.

T-APPPREDFALSE
ke :7'4 F'Fo:r
Fr<:7o Frdio v closed SE-REFL SE-NONE
Frlo<: (7'037'1) FY <29 Y <ize
Tk (e1v):7i;false
SE-TRUE SE-FALSE
T-IFFALSE ¢ # false P # true
T'kep:m;false T'Fes:Ts;es 7I—true<:7w 7}—false<:7w
Fm<iT
I+ (If €1 €2 63):7’;.

Figure 6. Auxiliary Typing Rules

E-DELTA
e, v) = v E-BETA §(addl,n) =n+1
/
Az : T
(cv) = (Az : T.e v) — e[z /v] S(not,false) = true  d(not,v) = false v # false
E-IFTRUE §(number?, n) = true §(number?,v) = false
E-IFFALSE v # false

if fal : : _
(I Se eo 63)<—>63 (If v es 63) P——

L—R
E[L] — E[R]

0(procedure?, Az : T.€) = true

d(boolean?,b) = true d(boolean?,v) = false
0(procedure?, c) = true

d(procedure?, v) = false otherwise

Figure 7. Operational Semantics

we can now seethat the test of the if expresson has type Bodean
and \isible predicae Number,. Thus, the then branch is type-
chedked in an environment where z has type Number; in the else
branch x is assgned Bodean.

Subtyping The definition o subtyping is given in figure 5. The
rules are for the most part standard. The rules for union types are
adapted from Pierce€s (Pierce 1991). One important consequence
of theserulesisthat 1 isbelow all other types. Thistypeisuseful
for typing functions that do nd return to their continuation, as well
as for defining a supertype of al functiontypes.

We do na include atransitivity rule for the subtyping relation,
but instead prove that the subtyping relation as given is transitive.
This chaicesimplifies the proof in afew key places.

The rules for subtyping al ow function types with latent predi-
cates, to be used in a context that expeds a function that is nat a
predicae. Thisis espedally important for procedure?, which han-
dles functions regardlessof latent predicate.

3.3 Prodf-Theoretic Typing Rules

Thetypingrulesin figure 2 do na sufficefor the soundress proof.
To seewhy, consider the function from abowe, applied to the agu-
ment #f. By the E-BETA rule, thisreduces to

(if (number? #f)
(=#f1)
(nat #£))

Unfortunately, this program is not well-typed acwording the pri-
mary typing rules, since = requires numeric aguments. Of course,
thisprogram reducesin just afew stepsto #t, which isan appropri-
ate value for the original type. To prove type soundressin the style
of Wright and Felleisen (Wright and Fell eisen 1999, however, ev-
ery intermediate term must be typeable. So ou types g/stem must
know to ignare the then branch of our reduced term.

Tothisend, we extend the type system with therulesinfigure 6.
This extension assgns the desired type to our reduced expresson,
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becaise (number? #f) has visible predicate false. Put differently,
we can disregard the then branch, using rule T-1FFaLsE.*

In order to properly state the subjed reduction lemma, we need
to relate the visible predicates of terms in a reduction sequence
Therefore, we define asub-predicate relation, written - ¢ <:7 9,
for this purpose. Therelationis defined in figure 5. Thisrelationis
not used in the subtyping a typing rules, andis only necessary for
the soundressproof.

We can naw prove the traditional |emmas.

Lemma 1 (Preservation). If ' e : 734, e isclosed, ande — ¢/,
thenT e’ : 759 wherel- 7/ <: randF ¢’ <:7 9.

Lemma 2 (Progresg. IfT' - e : 754 ande isclosed, then either e
isavalueor e — ¢’ for somee’.

From these, soundressfor the extended type system foll ows.

Programs with urtypable subexpressons, however, are nat use-
ful in red programs. We only needed to consider them, as well as
our additional rules, for our proof of soundress Fortunately, we can
also show that the additional, proof-theoretic, rules are needed orly
for the type soundress proof, not the result. Therefore, we obtain
the desired type soundressresult.

Theorem 1 (Soundresy. If Tt e : 754, with e closed, using orly
therulesin figure 2, andr isa base type, one of the following hdds

1. e reduces foreve, or
2. e =" vwhere - v:o;¢ and- o <: Tandk- ¢’ <:7 1.

3.4 Medanized Support

We employed two mecdhanicd systems for the exploration o the
model and the proof of the soundresstheorem: Isabelle/HOL (Nip-
kow et a. 2002 and PLT Redex (Matthews et a. 2004). Indeed,

4The rules in figure 6 are similar to rules used for the same purpose in
systems with a typecase construct, such as Crary et al. (1998.



we fredy moved bad and forth between the two, and without do-
ing so, we would na have been able to formali ze the type system
and werify its oundressin an adequate and timely manner.

For the proof of type soundress we used | sabell /HOL together
with the nominal-isabell e padkage (Urban and Tasson 2005. Ex-
pressng atype system in Isabelle/HOL isamost as easy aswriting
down the typing rules of figures 2 and 6 (our formali zation runs to
50001lines). To represent the reduction semantics (from figure 7)
we turn evaluation contexts into functions from expressons to ex-
pressons, which makes it relatively straightforward to state and
prove lemmas abou the conredion hketween the type system and
the semantics. Unfortunately, this design choice prevents us from
evaluating sample programs in Isabelle/HOL, which is espedaly
important when a proof attempt fail s.

Sincewe experienced such fail ures, we dso used the PLT Redex
system (Matthews et a. 2009 to explore the semantics and the type
system of Typed Scheme. PLT Redex “programmers’ can write
down areduction semantics aseasily as|sabell e/HOL programmers
can write down typing rules. That is, ead linein figures 1 and 7
corresponds to ore linein a Redex model. Our entire Redex model,
with examples, islessthan 500lines. Redex comes with visualiza
tiontods for exploring the reduction o individual programsin the
objed language. In suppat of subjed reduction prodfs, language
designers can request the exeaution o a predicate for ead “node”
in the reduction sequences (or graphs). Nodes and transiti ons that
violate asubjed reduction property are painted in distinct colors,
fadlit ating example-based exploration o type soundressproafs.

Every time we were stuck in our Isabell e/HOL proof, we would
turn to Redex to develop more intuition about the type system and
semantics. We would then change the type system of the Redex
mode urtil the violations of subjed reduction dsappeaed. At
that point, we would translate the dchanges in the Redex moddl
into changes in ou Isabelle/HOL model and restart our proof
attempt. Switching badk andforth in thismanner helped usimprove
the primary typing rules and determine the shape of the auxili ary
typing rules in figure 6. Once we had those, pushing the proof
through Isabell e/HOL was a labor-intensive mechanizaion o the
standard proof technique for type soundress ®

4. From A\rg To Typed Scheme

Inthisday and age, it is easy to design atype system and it isrea
sonably straightforward to vali date some theoreticd property. The
true proaof of atype system is a pragmatic evaluation, however. To
this end, it is imperative to integrate the novel ideas with an exist-
ing programming language. Otherwiseit i s difficult to demonstrate
that the type system acoommodates the kind o programming style
that people find retural and that it serves itsintended purpose.

To evaluate occurrencetyping rigorously, we have implemented
Typed Scheme. Naturally, occurrence typing in the spirit of Args
makes up the core of thislanguage, but we have dso supdemented
it with anumber of important ingredients, bath at the level of types
and at the level of large-structure programming.

4.1 Type System Extensions

Asargued intheintroduction, Scheme programmers borrow anum-
ber of idea from type systems to reason about their programs.
Chief among them is parametric pdymorphism. Typed Scheme
therefore dl ows programmersto define and use explicitly polymor-
phic functions. For example, the map functionis defined asfoll ows:

(define: (ab) (map[f : (a— b)][I : (Listof a)]) : (Listof B)

(if (nuil?1) |
(cons (f (car 1)) (mapf (cdr 1)))))

5The mechanised caculus does nat currently hande or.
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The definition explicitly quantifies over type variables a and b
and then uses these variables in the type signature. The body d
the definition, however, isidenticd to the one for untyped map; in
particular, no type goplicaion is required for the reaursive cdl to
map. Instea, the type system infers appropriate instantiations for
aandb for thereaursive cdl.

In addition to parametric pdymorphism, Scheme programmers
also exploit reaursive subtypes of S-expressons to encode awide
range of information as data. To suppat arbitrary regular types
over S-expressons as well as more conwventional structures, Typed
Scheme provides explicit reaursive types thoughthe programmer
nead na manually fold and urfold instances of these types.

For example, hereis the type of abinary treeover conscdls:

(define-type-alias STree(u t ( Number (const t))))
A functionfor summingthe leaves of such atreeis draightforward:

(define: (sum-tree[s: STred) : Number
(cond [(number? s) g
[else (4 (sum-tree(car s)) (sumtree(cdr s)))]))

In this function, occurrence typing alows us to discriminate be-
tween the different branches of the union, and the (un)folding of
thereaursive (tre€ type happens automaticaly.

Finally, Typed Scheme suppats arich set of base types, includ-
ing vedors, boxes, parameters, ports, and many cthers. It also pro-
vides type diasing, which grealy fadlit ates type readabilit y.

4.2 Typelnference

In order to further relieve the annatation buden on programmers,
Typed Scheme provides two simple forms what has been cdled
“locd” type inference (Pierce and Turner 2000.° First, locd non
reaursive bindings do nd require aanaation. For example, the
following fragment typechecks withou annaations on the locd
bindings:

(define: (m[z: Number]) : Number
(letx ([x 7]
[y (x xX)])
(=y1)

sinceby examining the right-hand sides of the | et«, the typechedker
can determine that bath x and y shoud have type Number. Note
that the inference mechanism does not take into acaurt the uses of
these variables, only their initiali zing expressons.

The use of internal definitions can complicate this inference
process For example, the ehove code could be written as foll ows:

(define: (m[z: Number]) : Number
(definex 3)
(definey (x x X))
(=y1)

This fragment is maao-expanded into aletrec; however, reaur-
sive binding is nat required for typechedking this code. Therefore,
the typechedker analyzes the letrec expresson and cetermines if
any of the bindings can be tregted nonreaursively. If so, the ebove
inference methodis applied.

The second form of inference dlows the type aguments to
paymorphic functions to be omitted. For example, the foll owing
use of map does nat reguire explicit annaation.

(map (lambda ([x : Number]) (+ x 1)) ’(1 2 3))

To acommodate this form of inference the typedhedker first
determines the type of the agument expressons, in this case

6This modicum of inference is smilar to that in recet releases of
Java (Gosling et a. 20095.



(Number — Number) and (Listof Number), as well as the op-
erator, here (All (a b) ((a — b) (Listof a) — (Listof b))). Then it
matches the agument types against the body d the operator type,
generating a substitution. Finaly, the substitutionis applied to the
function result type to determine the type of the entire expresson.

For cases auch asthe @owe, thisis guite straightforward. When
subtyping is invaved, however, the processis complex. Consider
this, seemingly simil ar, example.

(map (lambda ([x : Any]) X) '(1 2 3))

Again, the second operand hes type (Listof Number), suggest-
ingthat map'stype variable b shoud substituted with Number, the
first operand hes type (Any — Any), suggesting that both a and
b shoud be Any. The solution is to find a common supertype of
Number and Any, and wse that to substitute for a.

Unfortunately, this processdoes nat always succeel. Therefore,
the programmer must sometimes anndate the aguments or the
function to enable the typechedker to find the corred substitution.
For example, thisannaationinstantiates foldl at Number and Any:

#{fold @ Number Any}

In pradice we have rarely nealed these annaations.

4.3 Adapting Scheme Features

Scheme in general, and PLT Scheme in particular, comes with nu
merous constructs that need explicit suppat from the type system:

e The most important one is the structure system. A define-
struct definition is the fundamental method for constructing
new varieties of datain PLT Scheme. This form of definitions
introduces constructors, predicaes, field seledors, and field
mutators. Typed Scheme includes a matching define-typed-
struct form. Thus the untyped definition

(define-struct A (x y))

which defines a structure A, with fields x and y, becomes the
followingin Typed Scheme:

(define-typed-struct A ([x : Number] [y : String]))

Unsurprisingly, all fields have type anndations.

The define-typed-struct form, like define-struct, introduces
the predicae A?. Scheme programmers usethis predicaeto dis-
criminate instances of A from other values, and the occurrence
typing system must therefore be avare of it. The define-typed-
struct definitionfadlity can also automaticdly introducereaur-
sive types, similar to those introdweed via ML's datatype con-
struct.

The PLT Scheme system aso alows programmers to define
structures as extensions of an existing structure, similar to ex-
tensions of classes in ohjed-oriented languages. An extended
structure inherits all the fields of its parent strucuture. Further-
more, its parent predicate caana discriminate instances of the
parent structure from instances of the child structure. Hence, it
is imperative to integrate structures with the type system at a
fundamental level.

Variable-arity functions also demand spedal attention from the
type perspedive. PLT Scheme suppats two forms of variable-
arity functions: rest parameters, which bunde up extra agu-
ments into a list; and case-lambda (Dybvig and Hieb 1990,
which is rougHy speaing numeric and dyramic overloading.
Fortunately, these constructs do nd present new chall enges to
type system designers. A careful adaptation o the solutionsem-
ployed for mainstrean languages auch as Jva and C# suffices.
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e Dually, Scheme suppats multi ple-val ue returns, meaning apro-
cedure may return multi ple values smultaneously without first
bundingthem upin atuple (or other compound \alues). Multi-
plevalues require speda treament in the type checker becaise
the construct for returning multiple values is a primitive func-
tion (values), which can be used in higher-order contexts.

Finaly, Scheme programmersusethe apdy function, espedally
in conjunctionwith variable-arity functions. The apdy function
consumes a function, a number of values, plus a list of addi-
tional values; it then applies the function to all these values.

Because of its use in conjunction with variable-arity functions,
we type-ched the gplicaion o apdy spedally and alow its
use with variable agument functions of the gppropriate type.

For example, the common Scheme idiom of apdying the func-
tion+ to ali st of numbersto sum them worksin Typed Scheme:
(apgy + (list1 2 3 4)).

4.4 Spedal Scheme Functions

A number of Scheme functions, either because of their spedal se-
mantics or their particular rolesin the reasoning processof Scheme
programmers, are assgned types that demand some explanation.
Here we mver just two interesting examples: filter and call/ cc.

An important Scheme function, aswe saw in sedion 2, isfilter.
When filter is used, the programmer knows that every element of
the resulting list answers true to the supgied predicae. The type
system shoud have this knowvledge & well, and in Typed Scheme
it does:

filter : (All (ab) ((a > Bodlean) (Listof @) — (Listof b))

Here we write (a 2 Boad ean) for the type of functions from a to
Bodlean that are predicates for type b. Note how itslatent predicate
becmes the type of the resulting elements. In the conventional type
world, thiseffea can ony be adieved with dependent types.

For an example, consider the foll owing expresson:

(define: the-numbers (Listof Number)
(let ([Ist (list’al'b2’c3)])
(map addi(filter number? Ist))))

Here the-numbers has type (Listof Number) even thoughit is the
result of filtering numbers from a list that contains bath symbals
and numbers. Using Typed Scheme's type for filter, type-cheding
this expressonis now straightforward. The example again demor-
strates type inferencefor locd nonreaursive bindings.

Thetype of call/ cc must reflea the fad that invoking a continu-
ation aborts the locd computationin progress

call/cc: (All (@) ((a— L) —a) — a))

where L isthe enpty type, expressng the fad that the function
canna producevalues. Thistype hasthe same logicd interpretation
as Peircées law, the conventional type for call/ cc (Griffin 1990 but
works better with our type inference system.

45 Programminginthelarge

PLT Scheme has a first-order modue system (Flatt 2002 that al-
lows us to suppat multi-modue typed programs with no extra d-
fort. In urtyped PLT Scheme programs, amodue consists of defini-
tions and expressons, aongwith dedarations of dependencies on
other modues, and o export spedficaionsfor identifiers. In Typed
Scheme, the same modue system is available, withou changes.
Both defined values and types can be imported or provided from
other Typed Scheme modues, with nosyntadic overhead. No dec
laration o the types of provided identifiers is required. In the ex-
amplein figure 8, the type LoN and the function sum are provided
by modue ml and can therefore be used in modue m2.



(module ml typed-scheme
(provide LoN sum)
(define-type-alias LoN (Listof Number))
(define: (sum [l : LoN]) : Number
(if (null21) 0 (4 (car I) (sum (cdr 1))))))

(module m2 typed-scheme
(require m1)
(define: | : LoN (list1 2 3 4 5))
(display (suml)))

Figure 8. A Multi-Modue Typed Scheme Program

Additi onally, a Typed Scheme modue, like aPLT Scheme mod-
ule, may contain and export maao definitions that refer to identi-
fiers or types defined in the typed modue.

4.6

Importing from the Untyped World When a typed modue must
import functions from an urtyped modue—say PLT Scheme's ex-
tensive standard library—Typed Scheme requires dynamic chedks
at themodueboundxry. Those chedks arethe meansto enforcetype
soundress(Tobin-Hochstadt and Fell eisen 2008. In order to deter-
mine the crred chedks andin kegoing with our dedsion that only
binding pasiti onsin typed modu es come with type annatations, we
have designed a typed import fadlity. For example,

Interoperating with Untyped Code

(require/typed mzscheme add1(Number — Number))

imports the add1 function from the mzsheme library, with the
given type. The require/typed fadlity expands into contrads,
which are enforced as values cross modue boundxries (Finder
and Fell eisen 2002).

An additional complicaion arises when an urtyped modue
provides an opaque data structure, i.e., when a modue exports
constructors and operators on ceta without exporting the structure
definition. In these cases, we do nd wish to expose the structure
merely for the purposes of type chedking. Still, we must have a
way to dyramicdly ched this type & the boundry between the
typed and the untyped code and to chedk the typed modue.

In suppat of such situations, Typed Scheme includes uppat
for opaque types, in which orly the predicate for testing member-
ship is gedfied. This predicae can be trividly turned into a con-
trad, but no operations on the type ae dlowed, other than those
imported with the gopropriate type from the untyped partion o the
program. Of course, the predicateisnaturally integrated into the oc-
currence type system, allowing modues to discriminate predsely
the dements of the opaque type.

Here is a sample usage of the speda form for importing a
predicae and thus defining an opaque type:

(require/opaque-type (lib "xml.ss" "xml") Doc document?)

It imports the document? function from the (lib "xml.ss" "xml")
library and wses it to define the Doc type. The rest of the modue
can now import functions with require/typed that refer to Doc.

Exporting to the Untyped World When a typed modue is
reguired by urtyped code, other considerations come into play.
Again, the typed code must be proteded (Tobin-Hochstadt and
Felleisen 2006, but we dready knaw the necessary types. There-
fore, in urtyped contexts, typed exports are automaticaly guarded
by contrads, withou additional effort or annaation by the pro-
grammer. Unfortunately, becaise maaos allow uncheded access
to theinternals of amodue, maaos defined in atyped modue car-
not currently be imported into an urtyped context.
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5. Implementation

We haveimplemented Typed Scheme as alanguege for the DrScheme
programming environment (Findler et al. 2003). It isavail able from
the PLaneT software repasitory (Matthews 2008). *

Since Typed Schemeisintended for use by programmers devel-
oping red applicaions, a toy implementation was nat an option.
Fortunately, we were ale to implement al of Typed Scheme &
alayer ontop o PLT Scheme, giving us a full-feaured language
and standard library. In order to integrate with PLT Scheme, all of
Typed Scheme is implemented using the PLT Scheme maao sys-
tem (Culpepper et a. 2007). When the maao expander finishes
sucessully, the program has been typechedked, and all traces of
Typed Scheme have been compiled away, learing orly exeautable
PLT Scheme aode remaining. The modue can then be run just as
any other Scheme program, or linked with existing modues.

5.1 ChangingthelLanguage

Our chosen implementation strategy requires an integration o the
type chedking and maao expansion rocesss.

The PLT Scheme maao system alows languege designers to
control the maao expansion processfrom the top-most AST noce.
Every PLT Scheme modue takes the foll owing form:

(module mlanguag

)

where langua@ can spedfy any library. The library is then used
to provide dl of the core Scheme forms. For our purpases, the key
formis#% module-begin, which iswrapped aroundthe entire con-
tents of the modue, and expanded before any ather expansion o
evaluation acaurs. Redefining this form gives us complete control
over the expansion o a Typed Scheme program. At this paint, we
can type-ched the program and signal an error at maao-expansion
timeif itisill -typed.

5.2 Handling Macros

One ansequenceof PLT Scheme's powerful macao systemisthat a
large number of constructs that might be part of the core language
are instead implemented as maaos. This includes pattern match-
ing (Wright and Duba 1995, class ystems (Flatt et a. 2006 and
comporent systems (Flatt and Fell eisen 1999, aswell as numerous
varieties of condtionals and even bodean operations such as and.
Facal with this bewil dering array of syntadic forms, we could na
hope to add eat oreto ou type system, espedally since new ones
can be alded by programmers in libraries or appli caion code. Fur-
ther, we caana abandonmaaos—they are used in virtually every
PLT Scheme program, andwe do nd want to require such changes.
Instead, we transform them into simpler code.

In suppat of such situations, the PLT Scheme maao system
provides the local-expand primitive, which expands a form in the
current syntadic environment. This allows us to fully expand the
original program in ou maao implementation o Typed Scheme,
prior to type dheding. We ae then left with orly the MzScheme
core forms, of which there ae gpproximately a dozen.

5.3 CrossModule Typing

In PLT Scheme programs are divided upinto first-order modues.
Each modue explicitly spedfies the other modues it imports, and
the bindings it exports. In order for Typed Scheme to work with
adua PLT Scheme programs, it must be possble for programmers
to split up their Typed Scheme programs into multi ple modues.
Our type-cheding strategy requires that al type-cheding take
placeduring the expansion o a particular modue. Therefore, the

7The implementation consists of approximately 6000 lines of code and
2800lines of tests.



type environment constructed during the typechedking o one mod-
ule disappeas before any other modue is considered.

Instead, we turn the type environments into persistent code
using Flatt's reificaion strategy (Flatt 2002. After typecheding
ead modue, the type environment is reified in the ade of the
modue & instructions for reaeding that type environment when
that modue is expanded. Since every dependency of a modue is
visited duing the expansion o that modue, the gpropriate type
environment isreaeaed for eath modue that istypechedked. This
implementationtechnique hasthe significant benefit that it provides
separate compil ation and typechedking of modues for free

Further, our type environments are keyed by MzScheme identi-
fiers, which maintain information onwhich modue they were de-
fined in. Therefore, no speda effort is required to use one typed
modue from ancther and standard DrScheme (Findler et a. 2002
todsfor presenting kinding structure work properly.

5.4 Limitations

Our implementation hastwo significant limitations at present. First,
we ae unable to dyramicdly enforce poymorphic types using
the PLT contrad system. Therefore, programmers canna require
poymorphicdly-typed functions from untyped libraries as aich
(only in instantiated form). We plan to address this difficulty by
providing a comprehensive standard library of typed functions,
based uponthe PLT Scheme standard library.

The second major limitation is that we caanat typedhedk code
that uses the most complex PLT Scheme maaos, such as the unit
and classsystems. These maaos radicdly alter the binding struc-
ture of the program. In order to typechedk them, our system would
neal to be extended to either infer this type structure from the re-
sults of maao expansion, or to understand urits and classes na-
tively. Since these maaos are widely used by PLT Scheme pro-
grammers, we plan to investigate both posshiliti es.

6. Practical Experience

To determine whether Typed Schemeis pradicd and whether con-
verting PLT Scheme programs isfeasible, we condicted a series of
experiments in parting existing Scheme programs of varying com-
plexity to Typed Scheme.

Educational Code For small er programs, which we expeded to
be written in a disciplined style that would be eay to type-ched,
we turned to educaional code. Our preliminary investigations and
type system design indicated that programs in the style of How to
Design Programs (Felleisen et a. 2001) would type-ched success
fully with our system, with orly type aandations required.

To see how more traditional educational Scheme code would
fare, we rewrote most programs from The Little Schemer (Fried-
man and Felleisen 1997 and The Seasoned Schemer (Friedman
and Felleisen 1999 in Typed Scheme. Converting these 500 lines
of code usudly reguired nahing bu the dedaration o types for
function headers. The only difficulty encourtered was an inability
to expressin our type system some invariants on S-expressons that
the code relied on

Semnd we ported 1,000 lines of educational code, which con-
sisted of the solutions to a number of exercises for an undergradu-
ate programming languages course. Again, handing S-expressons
proved the greaest chall enge, sincethe mde used tests of the form
(pair? (car X)), which does nat provide useful information to the
type system (formally, the visible predicate of thisexpressonisee).
Typing such tests required adding new locd bindings. This code
also made use of a nonstandard datatype definiti on fadlity, which
required adaptation to work with Typed Scheme.

Libraries We ported 500lines of code implementing a variety
of data structuresfrom Sggaad’'sgalore.plt library package. While
these data structures were originally designed for atyped functiond
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(define: (play-one-turn [player : Player]
[deck: Cards]
[stck: Cards]
[fst:discs: Hand])
: (values Bodlean RCard Hand Attacks From)
(definetrn (create-turn (player-name player) deckstck fst: discs))
5 — go pay
(defineres (player-take-turn player trn))
;; the-return-card could be false
(define-values (the-end the-return-card)
(cond
[(ret? res) (values #f (ret-card res))]
[(end?res) (values #t (end-card res))]))
(define discards: squadons (done-discards res))
(define attacks (dorne-attacks res))
(define et (turn-end trn))
(values the-end the-return-card discards: squadons attacks et))

Figure 9. A Excerpt from the Squadron Scramble Game

languege, the implementations were nat written with typing in
mind. Two sorts of changes were required for typing this library.
First, in severa places the library failed to ched for erroneous
inpu, resulting in paentialy surprising behavior. Correding this
required adding tests for the eroneous cases. Secnd in abou a
dozen places throughou the ade, paymorphic functions needed
to be eplicitly instantiated in order for typechedking to procee.
These changes were, again, in addition to the annaation o bound
variables.

Applications Finally, a student ported two sizable gpplications
under the diredion o the first author. The first was a 2,700 line
implementation of a game, written in 2007 and the seamnd was a
500line chedbook managing script, maintained for 12 yeas.

The game isaversion o the multi-player card game Squadron
Scramble.® Theoriginal i mplementation consists of 10PLT Scheme
modues, totaling 2700 lines of implementation code, including
500lines of unit tests.

A representative function definition from the game is given in
figure 9. This function creaes a turn objed, and hands it to the
appropriate player. It then chedks whether the game is over and if
necessary, constructs the new state of the game and returnsiit.

The changes to this complex function are confined to the func-
tion header. We have conwerted the original define to define: and
provided type annaations for ead of the formal parameters aswell
as the return type. This function returns multiple values, as isin-
dicated by the return type. Other than the healer, no changes are
reguired. The types of al the locdly bound \ariables are inferred
from their body d the individual definiti ons.

Structure types are used extensively in this example, asthey are
in the entire implementation. In the definition o the variables the-
end and the-return-card, occurrence typing is used to distinguish
between the res and end structures.

Some portions of the implementation required more dfort to
port to Typed Scheme. For example, portions of the data used for
thegameis dored in external XML fileswith afixed format, andthe
program relies uponthe detail s of that format. However, sincethis
invariant is neither chedked nar spedfied in the program, the type
system canna verify it. Therefore, we moved the code handingthe
XML file into a separate, untyped modue that the typed pation
uses viarequire/typed.

8 Squadron Scramble resembles Rummy; it is available from US Game
Systems.



Scripts The second application pated required similarly few
changes. This cript maintained financial records recorded inan S-
expresson stored in afile. The major change made to the program
was the addition of chedks to ensure that dataread from thefilewas
in the corred format before using it to creae the relevant internal
data structures. Thiswas dmilar to the isaie encourtered with the
Squadron Scramble game, but sincethe problem concerned asingle
function, we added the necessary chedks rather than creaing a new
modue. The other semantic change to the program was to maintain
atyping invariant of a data structure by construction, rather than
after-the-fad mutation. As in the cae of the Galore library, we
consider this typedhedker-mandated change an improvement to the
original program, even thoughit has already been used succes<ully
for many yeas.

7. Related Work

The history of programming languages knows many attempts to
add o to use type information in conjunction with urtyped lan-
guages. Starting with LISP (Stede Jr. 1984, language designers
have tried to include type dedarations in such languages, often to
help compilers, sometimes to assst programmers. From the late
198Gs urtil recently, people have studied soft typing (Cartwright
and Fagan 1991 Aiken et al. 1994 Wright and Cartwright 1997,
Hengdlein and Rehof 1995 Flanagan and Fell eisen 1999 Meunier
et al. 2006, aform of type inferenceto assst programmers debug
their programs daticdly. This work has mainly been in the con-
text of Scheme but has aso been applied to Python (Salib 2004.
Recently, the slogan of “gradual typing’ has resurreced the LISP
style anndation mechanisms and hes had a first impad with its
tentative inclusion in Perl6 (Tang 2007.

In this ®dion, we survey this body d work, starting with
the soft-typing strand, becaise it is the dosest relative of Typed
Scheme.

7.1 Typesfor Scheme

Thegoal of the soft typing reseach agendaisto provide an optiond
type checker for programs in urtyped languages. One key premise
isthat programmers shoudn't have to write down type definitions
or type dedarations. Soft typing shoud work via type inference
only, just like ML. Ancther premiseisthat soft type systems shoud
never prevent programmers from runrning any program. If the type
chedker encourters such an ill -typed program, it shoud insert run-
time dhedks that restore typahility and ensure that the type system
remains ound Naturally, a soft type system shoud minimizethese
insertions of run-time chedks. Furthermore, since these insertions
represent potential failures of type invariants, a good soft type
system must allow programmer to insped the sites of these run-
time dhedks to determine whether they represent genuine arors or
weaknesss of the type system.

Based on the experiences of the second author, soft systems
are oomplex and trittle. On ore hand, these systems may infer ex-
tremely large types for seemingly simple expressons, gredly con-
fusing the original programmer or the programmer who hes taken
on dd code. On the other hand, a small syntadic change to a pro-
gram withou semantic consequences can introduce vast changes
into the types of bath nearby and remote expressons. Experiments
with uncdergraduates—representative of average programmers—
suggest that only the very best understood the tods well enough
to make sense of the inferred types and to exploit them for the &-
signed tasks. For the others, these todls turned into time sinks with
littl e benefit.

RougHy spe&king soft type systems fall i nto ore of two classs,
depending onthekind of underlyinginferencesystem. Thefirst soft
type systems (Cartwright and Fagan 1991 Wright and Cartwright
1997 Hengein and Rehof 1995 used inference engines based on
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Hind ey-Mil ner thoughwith extensible record types. These systems
are ale to type many adua Scheme programs, including those
using outlandish-looking reaursive datatypes. Unfortunately, these
systems sverely suffer from the general Hindey-Milner error-
recvery problem. That is, when the type system signas a type
error, it is extremely difficult—often imposdble—to dedpher its
meaning and to fix it.

In resporse to this error-recovery problem, others built in-
ference systems based on Shiver's control-flow analyses (1991
and Aiken's and Heintze's st-based analyses (Aiken et al. 1994
Heintze 1994). RougHy spe&ing, these soft typing systems intro-
duce sets-of-values constraints for atomic expressons and propa-
gate them via ageneralized transitive-closure propagation (Aiken
et a. 1994 Flanagan and Fell eisen 1999. Inthisworld, itiseasy to
communicae to aprogrammer how a values might flow into a par-
ticular operation and violate atype invariant, thus eliminating ore
of the mgjor problems of Hindey-Milner based soft typing (Flana-
ganet a. 1996.

Our experience and evaluation suggest that Typed Scheme
works well when compared to soft typing systems. First, program-
mers can easily convert entire modues with just a few type dec
larations and anndations to function healers. Second, assgning
explicit types and rgjeding programs acually pinpants errors bet-
ter than soft typing systems, where programmers must always keep
in mind that the type inference system is conservative. Third, soft
typing systems dmply do nd suppat type ebstradions. Starting
from an explicit, static type system for an urtyped language shoud
help introduce these feaures and deploy them as needed.

The Rice University soft typing research inspired occurrence
typing. These systems employed if-splitti ng rules that performed
a cae anaysis for types based on the syntadic predicates in the
test expresson. This idea was derived from Cartwright (1979's
typecase construct (also seebelow) and—due to its usefulness—
inspired our generdizaion. The major advantage of soft typing
over an explicitly typed Scheme is that it does nat require any
asdstancefrom the programmer. In the future, we exped to barrow
techniques from soft typing for automating some of the conversion
processfrom untyped modues to typed modues.

Shivers (1997 presented OCFA, which also uses flow analy-
sis for Scheme programs, and extended it to acourt for the use
of predicates and to distinguish different occurences of variables
based onthese predicates, as occurrence typing daes.

7.2 Gradual Typing

Recently, proposals for what is cdled “gradua typing’ have be-
come popuar (Siek and Taha 2006 Herman et al. 2007). This
work also intends to integrate typed and urtyped programs, but at
amuch finer granularity than we present. So far, this has prevented
the proof of a type soundresstheorem for such cdculi that prop-
erly assgn Hame for fail ures to the typed and urtyped pieces of
asystem.’ In contrast, our ealier work on Typed Scheme (Tobin-
Hochstadt and Fell eisen 2006 provides such a soundresstheorem,
which we believe scdes to full Typed Scheme and PLT Scheme.

The gradual typing proposals have dso fail ed describe the em-
bedding o such systems into redistic type systems that are suit-
able for writing significant applicaions, whereas Typed Scheme
has been used for the porting d thousands of lines of code.

Bradcha (2004 suggests pluggable typing systems, in which a
programmer can chocse from a variety of type systems for eah
pieceof code. AlthoughTyped Scheme requires some aandation,
it can be though of as a step toward such a pluggeble system, in
which programmers can chocse between the standard PLT Scheme
type system and Typed Scheme on a modue-by-modue basis.

9Wadler and Finder (2007)’s formulation eli minates this objedion.



7.3 Type System Features

Many of the type system feaures we have incorporated into Typed
Scheme have been extensively studied. Polymorphism in type sys-
tems dates to Reyndlds (1983. Reaursive types were studied by
Amadio and Cardelli (1993, and urion types by Pierce (1997,
among many cthers. Intensional polymorphism appeas in cdculi
by Harper and Morrisett (1995, among ahers. Our use of visible
predicaes and espedally latent predicaes was inspired by prior
work on effed systems (Gifford et al. 1987). Typing variables dif-
ferently in different portions of a program was discussd by Crary
et al. (1998. However, occurrencetyping as presented here has not
been previously considered.

7.4 Dependent Types

Some feaures smilar to those we describe have gpeaed in the
dependent type literature. Cartwright (1976 describes Typed Lisp,
which includes typecase expresson that refines the type of avari-
ableinthe various cases; Crary et a. (1998 re-invent this construct
in the context of a typed lambda cdculus with intensional pay-
morphism. The typecase statement spedfied the variable to be
refined, and that variable was typed differently on the right-hand
sides of the typecase expresson. While this system is auperfi-
cialy similar to ou type system, the use of latent and visible predi-
caesallowsusto hande cases other than simple uses of typecase.
Thisisimportant in type-cheding existing Scheme ade, which is
not written with typecase constructs.

Visible predicates can also be seen as akind o dependent type,
in that (number? e) could be though of having type true when e
has a value that is a number. In a system with singleton types, this
relationship could be expressed as a dependent type. This kind o
combination typingwould na cover the use of if to refine the types
of variables in the branches, however.

7.5 Type Systemsfor Untyped Languages

Multi ple previous eff orts have atempted to typedhedk Scheme pro-
grams. Wand (1984, Haynes (1995, and Leavens et a. (2005 de-
veloped typedhedkers for an ML-style type system, ead of which
hand e pdymorphism, structure definiti on and a number of Scheme
feaures. Wand's gystem integrated with urtyped Scheme aode via
unchedked assrtions. Haynes' system also handes variable-arity
functions (Dzeng and Haynes 1994. However, nore dtempts to
acommodate atraditional Scheme programming style.

Bradcha and Griswold's Strongalk (1993, like Typed Scheme,
presents a type system designed for the needs of an urtyped lan-
guage, in their case Smalltalk. Refleding the differing underlying
langueges, the Strongalk type system differs from ours, and daes
nat describe amechanism for integrating with urtyped code.

8. Conclusion

Migrating programs from untyped languege to typed oresisanim-
portant problem. In this paper we have demonstrated ore succes<ul
approach, based onthe development of a type system that acoom-
modates the idioms and programming styles of our scripting lan-
guage of choice

Our type system combines a simple new idea occurrence typ-
ing, with arange of previously studied type system feaures, some
used widely, some just studied in theory. Occurrencetyping assgns
distinct subtypes of a parameter to distinct occurrences, depending
onthe control flow of the program. We introduced occurrence typ-
ing because our past experience suggests that Scheme programmers
combine flow-oriented reasoning with typed-based reasoning.

Building uponthis design, we have implemented and d stributed
Typed Scheme @ a padage for the PLT Scheme system. This
implementation suppats the key type system feaures discussd
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here, as well as integration feaures necessary for interoperation
with the rest of the PLT Scheme system.

Using Typed Scheme, we have evaluated ou type system. We
consider the experiments of sedion 6ill ustrative of existing code
and beli eve that their successis agood pedictor for future experi-
ments. We plan on pating PLT Scheme librariesto Typed Scheme
and onexploring the theory of occurrence typingin more depth.

For a doselook at Typed Scheme, including daumentation and
sources for its Isabelle/HOL and PLT Redex models, are avail able
from the Typed Scheme web page:

http://www.ccs.neu.edu/ samth/typed-scheme
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