Predicting Accurate and Actionable
Static Analysis Warnings: An Experimental Approach

Joseph R. Ruthruff*, John Penix’, J. David Morgenthalerf,
Sebastian Elbaum*, and Gregg Rothermel*

*University of Nebraska—Lincoln
Lincoln, NE, U.S.A.

{ruthruff, elbaum, grother}@cse.unl.edu

ABSTRACT

Static analysis tools report software defeds that may or may not be
detected by ather verificaion methods. Two challenges complicat-
ing the adoption of these tools are spurious false positive warnings
and legitimate warnings that are not aded on This paper reports
automated suppat to help addressthese challenges using logistic
regresson models that predict the foregoing types of warnings from
signals in the warnings and implicated code. Becaise examining
many paential signaling fadtorsin large software development set-
tings can be expensive, we use ascreening methoddogy to quickly
discard fadors with low predictive power and cost-eff ectively build
predictive models. Our empirical evaluation indicates that these
models can achieve high acaragy in predicting acarate and ac
tionable static analysis warnings, and suggests that the models are
competitive with alternative models built without screening.

Categoriesand Subjed Descriptors

D.2.4 [Software/Program Verification]: Reliability, Statistical
methods; F.3.2 [Semantics of Programming Languages|: Pro-
gram anaysis; G.3 [Probability and Statistics]: Correlation and
regresson analysis

General Terms
Experimentation, Reliability

Keywords

static analysis tools, screaning, logistic regresson analysis, experi-
mental program analysis, software quality

1. INTRODUCTION

Static analysis tools detect software defeds by analyzing a sys-
tem without adually exeauting it. These tools utiliz e information
from fixed program representations such as source @de, generated
or compiled code, and abstradions or models of the system. Even
relatively simple analyses, such as detecting panter dereferences
after null chedks, can find many defeds in red software [5, 9].

Permisson to make digital or hard copies of al or part of this work for
personal or clasgoom use is granted withou fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bea thisnatice and the full citation onthefirst page. To copy aherwise, to
repubish, to post on servers or to redistribute to li sts, requires prior spedfic
permisson andior afee

ICSE’'08, May 10-18 2008 Leipzig, Germany.

Copyright 2008ACM 9781-60558079-1/08/05 ...$5.00.

TGoogIe Inc.
Mountain View, CA, U.S.A.

{ipenix, jdm}@google.com

There aewell- known challenges regarding the use of static anal-
ysis tools. One challenge involves the acairagy of reported warn-
ings. Because the software under analysis is not exeauted, static
analysis tools must speaulate on what the adual program behav-
ior will be. They often over-estimate passble program behaviors,
leading to spurious warnings (“false positives’) that do nd corre-
spondto true defeds. For example, Kremenek et al. [13] report
that at least 30% of the warnings reported by sophisticated tools
are false positives. At Goode, we have observed that tools can be
more acarate for certain types of warnings. Our experience with
FindBugs [1] showed that focusing onselected, high priority warn-
ings resulted in a 17% false positive rate [3].

A second challenge recaving lessattention is that warnings are
not always aded on by developers even if they reved true defeds.
In the same study at Goode, only 55% of the legitimate FindBugs
warnings were aded on by dvelopers after being entered into a
bug traking system [3]. Reasons for defeds being ignored in-
clude warnings implicating obsolete code, “trivial” defedswith no
impad on the user, and red defeds requiring significant effort to
fix with little perceived benefit. Low criticality warnings such as
“style” warnings, for example, can be unlik ely to result in fixes.

We ae investigating automated tools to help address both of
these dhallenges by identifying legitimate warnings that will be
acted on by devdopers, reducing the dfort required to triage tens
of thousands of warnings that can be reported in enterprise-wide
settings. Our reasons for focusing onlegitimate warnings are dear.
We further focus onwarningsthat will be aded on by dvelopers—
not becauseignored warnings are unimportant, but becaise we seek
to maximize the return on investment from using static analysis
tools. The mre dements of our approach are statistical models
generating hinary clasdficaions of static analysis warnings. One
unique asped of these models isthat they are built using screening,
an incremental statistical processto quickly discard fadors with
low predictive power and avoid the cature of expensive data.

Sampling from a base of tens of thousands of static analysis
warnings from Goode, we have built models that predict whether
FindBugs warnings are false positives and, if they reved red de-
feds, whether these defeds would be ated on by developers (“ac-
tionable warnings’) or ignored despite their legitimagy (“trivial
warnings’). The generated models were over 85% acarrate in pre-
dicting false positives, and over 70% acasrate in identifying adion-
able warnings, in a case study performed at Goode. Both represent
anatable improvement over previous pradices at Googde for Find-
Bugs, where 24% of triaged warning reports had been false posi-
tives and 56% had been aded on The results from this study aso
indicate that screening can yield large savings in the time required
to generate models, while saaificing little predictive power.

The primary contributions of this paper are:

1. amethoddogy for screening fadors related to static analysis
warnings that provides an eacnamical means of generating
acarate predictive models;

2. aset of measurable fadors for static analysis warnings and
programs, and the results of screening these fadors in this
context; and

3. logistic regresson models for predicting bah false positives
and adionable warnings.

After introducing FindBugs and logistic regresson techniques,
we present the set of fadtors and describe their screening. We then
present an empirical evaluation of the acwragy of the resulting lo-
gistic regresson models using threebaseline cntrols.

2. BACKGROUND

2.1 FindBugsat Goode

FindBugs [9] is an open-source static analysis tool for Java pro-
grams. The tool analyzes Java bytecode to issue reports for 286
bug ptterns [1]. These patterns are organized into seven cae-
gories: Bad Pradice (questionable coding pradices), Corredness
(suspeded defeds), Internationalization, Malicious Code Vulnera-
bility, Multithreaded Corredness Performance, and Dodgy (con
fusing or anomalous code). FindBugs assgns reported warnings a
priority of “High,” “Medium,” or “Low” based onead warning's
estimated severity and the tool’s confidencein its acairacy.

Evaluations of FindBugs on commercial software suggest that
bug mtterns have different false positives rates, and are of varying
importance to developers when the warnings are acarate [3]. For
example, warnings abou null dereferences are generally suscep-
tible to false positives becaise atool canna statically determine
infeasible control flow paths between nul assgnments and deref-
erences. However, in some cases, anull dereferenceis asaured be-
cause there is a single path between a null assgnment and a deref-
erence This latter classof warnings is assgned a higher priority
by FindBugs and hes a low false positive rate. Regarding fixes,
developers generdly find ndl dereference defeds important. But
when the null dereference occurs while constructing an Exception,
the observed fault is that the wrongexception is thrown. This may
impad only exception logs and may nat be given ahigh fix priority.

At Goode, we have deployed FindBugs using an enterprise-wide
service model [15]; this involves automatically collecting, building,
andanalyzing various portions of the code base onarepeded basis.
The resulting warnings are triaged by a dedicated team and, when
appropriate, reported to developers. We performed a cost/benefits
analysis identifying this as a cst-effedive goproach for determin-
ing sufficiently interesting defeds to report to developers. This
analysis also indicated that, on average, eight minutes were re-
quired to manually triage eab static analysis warning.

Thescde of enterprise-wide deployment is challengingin alarge,
fast moving organization. Because static analysis tools perform
“whole program” analysis, the need to re-analyze large parts of a
software system could arise from small changes. Failure to do so
may result in missed warnings or, if thetool is conservative, an in-
crease in false positives. Runring FindBugs frequently on a large,
evolving code base generates numerous warnings. Over the nine-
month period described in this paper, many tens of thousands of
unique warnings were generated by FindBugs.! Because large num-
bers of new warnings arelik ely to be a @mmon accurrencein large
development settings, we believe that it is desirable that suppat for
these tools, such as methoddogies to build predictive models for
incoming warnings, be alaptable, flexible, and scdable.

2.2 Logistic Regresson Analysis

Logistic regresson analysis is atype of caegorical data analy-
sis for predicting dependent variable values that follow binomial
distributions [8]. Logistic regresson models predict the value of
a dependent variable y for a unit ¢ based on the sum of a series
of coefficients multiplied by the levels of particular independent
(i.e., design) variables. To mathematically charaderize this, let
X; = (X, ..., Xin) be avedor of independent variable values
for unit 7. Let 8 = (o, (1,. .., Bn be efficients that are esti-
mated by fitting the model to an existing “model building” data set,
where (3, is termed the model “intercept.” Logistic regresson mod-
els predict the binary value Y; for ¢ by cdculating the probability
that Y; = 1 given X;. This probability is:

ePot+B1Xi1+P2Xio++Pn Xin

P(Yi|X:) = 1 4 eBotB1Xi+P2Xiz+ - +BnXin @

For details onlogistic regresson and hawv Equation 1is derived, we
refer readers elsewhere 8, 10].

3. LOGISTIC REGRESSION MODELS

Triaging static analysis warnings in an organization as large &
Goode is an expensive task. We dm to build statistical models that
classfy incoming static analysis warnings to reducethe st of this
process We initially considered a number of potential fadors to
build these models, which are presented in Sedion 3.1. To increase
the adaptability and scdability of our models and the processused
to creae them, we systematically screen these fadors acarding to
the proceduresin Sedion 3.2 to incrementally filter out factors with
low predictive power.

3.1 Logistic Regresson Model Factors

311 SHedingFactors

We chose our fadors and associated metrics by drawing from our
own experiences with static analysis warnings at Goode, as well
as the experiences of other researchers who have built regresson
models in other software engineeing damains. We draw primarily
from threerelated areas of application. First, we cgture some code
complexity metrics as does the work of Nagappan et a. [16] for
predicting post-release defeds. However, in this work, we dedded
to focus oncomplexity measuresthat are more light-weight and can
be very quickly computed onlarge ade bases.

Similarly, we utilize work by Bell et a. [4, 18, 19] in building
regresson models for predicting fault courts within individual files
in software releases. Their work considered fadors relating to the
size of the program, the recent change history of files, the recent
fault history of files, files' age since the previous release, the pro-
gramming language, and the release number. Because we consider
only Java amde here, and because we ae interested in defeds for
code irrespedive of release, we do nd consider programming lan-
guages and releases as fadors. Many of our selections are related
to thefirst four aforementioned fadors, however.

Finally, Kremenek et al. [13] consider fadors related to the fault
history of files in an adaptive probabilistic technique for ranking
warnings, in addition to the files and dredories themselves that
contain warnings. We do nd consider fadors diredly related to
file and dredory locdity in this work, though many of our fac
tors estimate other attributes of files and dredories. Kremenek et

1The warnings are unique in that we used the FindBugs instance-
hash methodto tradk warnings aaossfile changes[21]. This serves
to identify previously-reported and dugicate warnings, however, it
would not identify cases where asingle defed triggers multiple
unique warnings, which we aurrently must detect manually.

| Factor | Description
FindBugs warning descriptors

Pattern Bug pettern of warning
Category Category of warning
Priority FindBugs warning priority

Googde warning descriptors
BugRank Googde metric of warning's priority
BugRank Range | Category (range) of warning’s BugRank

File characteristics

File age Number of days that file has existed
File extension Extension of Javafile

History of warningsin code
File warnings Number of warnings reported for file
File staleness Days dncewarning report for file
Padkage staleness | Days sncewarning report for padkage

Project warnings
Project staleness

Number of warnings reported for project
Days sncewarning report for project

Souce mde factors

Depth How far down (%) in file is warning
File length Number of lines of codein file
Indentation Spaces indenting warned line

Churn factors: files, packages, and projects (6 x 3 factors)

Added Number of lines added
Changed Number of lines changed
Deleted Number of lines deleted
Growth Number of lines of growth

Total Total number of lines changed
Percentage Percentage of lines changed

Table 1: Factorsfor static analysis warnings and programs.

al. [13] also discussthe use of churn fadors smilar to our own; in
our work, we investigate churn fadors in detail.

3.1.2 Origina Factors

We selected 33 fadors to incorporate into the experimental
screaening methoddogy for generating our required models (Table
1), described in more detail below.

FindBugs War ning Descriptors. For agiven static analysis warn-
ing, the FindBugswarning descriptor fadorsaretaken diredly from
the FindBugstool. Asdiscussedin Sedion 2.1, therewere 286 pc-
sible warning patterns, seven caegories, and threepriorities.

Goode Warning Descriptors. To help triage warnings, we devel-
oped aprioritization scheme that we cdl BugRank. BugRank ranks
warnings based on pevious triage and bugfix statistics. Spedfi-
cdly, it usesthe empirica history of how often warningsonagiven
pattern have been false pasitive and haw often they have been aded
on by cevelopers as a probability of ead event happening. This in-
formation is blended with a default probability based onthe Find-
Bugs caegory and priority. Aswarnings are triaged and aded on,
theweighting of the observed dataincreases. In this paper, we used
the BugRank associated with warnings at the end o May 2007,

BugRank is represented as a range from 0-100, where 0 indi-
caesalikely defed that will be fixed, and 100indicates an incon
sequential or spurious warning. BugRank categories are ranges of
BugRank values, where 0-10is Very High, 11-20is High, 21-50is
Medium, 51-90is Low and 91-100is Very Low.

File Characteristics. We consider two fadors related to charader-
istics of files generating static analysis warnings. Our first fador

was inspired by Bell et a. [4, 18]: the age of files. Becaise we
do nd use software releases here, we consider the number of days
sincethe file’s creaion. Our secondfador is related to Goode de-
velopment pradices: file extension. We use FindBugs to analyze
both standard and generated Java amde, and many generated files
can be differentiated from standard Java files by file extension.

History of Warningsin Code. We mnsider five fadors designed
to capture the history of static analysis warnings at threegranulari-
ties of code: files, Java padkages, and projects. The types of fadors
we consider for these granularities are “number of warnings’” and
“staleness” The two number of warnings fadors concern the to-
tal number of warnings that have been historically reported for the
filesand projectsin question at the time of screening. This fador is
in part inspired by those in related work [4, 13, 18] concerning the
history of prior defeds. The stalenessfadors cgpture the number
of days that have passed since the most recent warning was first
reported for the file, padage, or project at the time of screening.

Source Code Factors. We mnsidered threesimple factorsthat aim
to provide insight into the code generating static analysis warnings.
The first considers the depth of the implicated code in the file, in
terms of percentage of linesof code. Our secondfador analyzesthe
program to measure the number of spaces indenting the implicated
line of code. The nation behind this fador is that deeply nested
code is more complex than code in outer scopes. The third factor
considersfile sizein terms of total lines of code, which was ancother
fador considered in related work [4, 18].

Our source mde fadors are inspired by code complexity; how-
ever, they are purposefully not as ophisticated as traditional com-
plexity measures. In addition to the inconsistent predictive power
displayed in other work by sometraditional complexity factors[1€],
due to the frequency at which static analysis warnings can be re-
ported and ou desire to make predictions abou incoming warnings
quickly, we wanted to determine whether afew inexpensive fadors
could provide sufficient predictive power in models.

Churn Factors. Code churn is a general measure for the amourt
of changing code, and how the mde has changed. We mnsider 18
churnfadorsat threelevels of granularity; these threelevels arethe
file, padkage (including sub-padkages), and project levels.

For ead level of granularity, we consider six churn fadors. The
“added” fador considers the number of lines that have been added
to the file, padkages, and project in the three months prior to the
date onwhich the warning was reported. We selected threemonths
because we did not want too short awindow (e.g., one week) that
might not consider enoughchurn; this is espedally relevant for the
file granularity, as many files are not modified frequently. How-
ever, too longawindow (e.g., one yea) might be too nasy to have
predictive power. The “changed” fador considers the number of
changed (edited) lines in the prior three months for the threelev-
els of churn granularity. The “deleted” fador considers the number
of lines that have been deleted. The “growth” fador considers the
code'sgrowth in terms of lines of code; this can be dther apaositive
or negative number. “Total” considers the total number of churned
lines, and“ percentage” considers the percentage of churned lines.

3.2 Experimental Screening Process

Screening experiments are designed to quickly yet systemati-
cdly narrow down large groups of independent variables, or inde-
pendent variable levels (treaments), into smaller subsets to further
investigate. They are often used as formative, exploratory work to
focusthe diredion of reseach, andin settings where large numbers
of treament combinations and interadions are of interest.

We have used the experimental program analysis framework [20]
to creae a screening methoddogy for selecting, from many po
tentially expensive fadors, a subset that could be used as inde-
pendent variables in logistic regresson models for static analysis
warnings and programs. The goal of the screening methoddogy is
to converge onindependent variablesfor logistic regresson models
that acarrately predict false positives and adionable static analysis
warningsin a wmst-eff edive manner.

One reason to seek a cost-effedive goproadh is that it may be
desirable to re-build predictive regresson models at various points
in time such as when a signifi cant number of new warnings have
been reported, the codebase of interest has experienced substantial
change, or it is of interest to investigate new fadors. The frequency
in which it may be desirable to re-build models due to such changes
would likely vary in different software development settings. How-
ever, we exped that many settings would use existing models to
predict static analysis warnings for at least a moderate length of
time before updated models are built.

In this work, we consider a screening methoddogy with up to
four stagesthat attemptsto identify at least six predictive fadorsfor
apredictive model. We selected four stagesto acoommodate ranges
of 5%, 25%, 50%, and 10®% of the total warnings, the reasons and
gaals of which are presented in the upcoming discusson. We chose
a aut-off of six fadors becaise we wanted to ensure that we were
left with at least some fadorsfor model building. Six fadorsis also
close to the number of fadors considered in the models developed
by Nagappan et al. [16] and Bell et . [4, 18].

The first stage of the screening methoddogy considers 5% of
static analysis warnings and source @de. The goal of this stage is
to consider a small subset of warnings and eliminate fadors that
appea to have little of the predictive power needed to build aca-
rate models. After gathering data for this small subset of warnings,
we build a logistic regresson model from the resulting data and
perform an Analysis of Deviancefor generalized linea models [6]
to individually evaluate ead fador.

Because statistical models are designed to closely model the data
onwhich they were built, Analysis of Deviance mnsiders how well
ead fador in the model reduces the fitted model’s deviance from
thefitted data. Asalogistic regresson model, we exped our model
to fit data with a binomial dispersion, so Chi-squared tests are -
propriate for generating test statistics to evaluate ead fador’s re-
duction in deviance [6]. We used these tests to evaluate ead fac
tor at ead screening stage. In this first stage, we diminated fac
tors with effed sizes © small that the test statistics p-values were
greaer than 0.80. These fadors were judged to contribute little to
the model’ s goodressof-fit to the model building data.

If performing this elimination left six or fewer fadors, we halted
screaning, and gathered data using the remaining 9% of warnings
acording to the remaining fadors. Otherwise, we considered an
additional 20% of the static analysis warnings in a second stage,
bringing the total number of considered warnings to 25%. (We
chose 25% so that one-quarter of the total warnings would be con-
sidered after this stage.) An Analysis of Devianceis then used to
eliminate fadors whose test statistics p-values were greder than
0.50. Because this stage considers alarger amourt of datathan pre-
vious dages, we chose an elimination criterion that was more strict
than in the first stage, but was dill lenient enoughto allow fadors
to recover when more data is available in subsequent screening.

Thethird stage of our screening methoddogy considers the next
25% of warnings, for atotal of half of all warnings. The dimination
criterion here is more strict: p-values greder than 0.20. This was
chosen because, by this point, a sizable amourt of data has been
gathered with which to make informed judgments.

If more than six fadors remain, then these fadors are used to
gather data for the last 50% of the data. After this fourth and final
stage, fadors with non-significant p-values gredaer than 0.10 are
eliminated. The logistic regresson model is then fit in R using the
remaining fadors as independent variables.

3.3 Building Models From Screening Factors

We used the screening methoddogy described in Sedion 3.2 to
filter out fadors listed in Sedion 3.1 with insufficient predictive
power. For aset of static analysis warningsto use for collecting the
necessary data during screening, we chose asample of 1,652 static
analysis warnings reported by FindBugs for Java code & Goode.
(This sample is also the subject of our case study; see Sedion 4.)
We present the resulting model for predicting false positive warn-
ings, built using the R statistical padage [2], followed by the mod-
els for predicting adionable warnings.

3.3.1 Modd for Predicting Fal se Positives

Examining just 5% of the static analysis warnings in the first
stage of the screening experiment eliminated 15 d the 33 fadors
initially considered. The 15 eliminated fadors were (1-6) all six
project churn fadors, (7—10 the growth and total churn fadtors for
bath files and padkages, (11) the churn percentage fador for files,
(12) the churn fador for changed linesin files, (13-14 the staleness
fadorsfor projects and files, and (15) the file extension. This stage
took 29 minutes and 57 sends, with 62% of the time required to
screen the six project churn fadors, 32% of the time required to
screan the six padkage churn fadors, and 6% of the time for the
remaining 21fadors.

Five fadors were diminated in the second stage of screening:
(16-17 the churn fadors for lines deleted in files and padkages,
(18) the churn fador for lines added in padkages, (19) the churn
percentage in padkages, and (20) the number of warnings in the
project. Because an additional 20% of the sampled warnings were
considered, this stage required 45 minutes and 26secnds to com-
plete, even though orly 18 fadors were screened. This amourt of
time was largely due to the four remaining package churn fadors,
which required 84% of this time to screen and happened to be dim-
inated in this stage.

The factors for (21) the file’s age and (22) number of warnings
in the file were diminated in the third stage, which took nine min-
utes and seven seands to complete In the fourth and final stage,
the fadorsfor (23) the FindBugs category and (24) thefile churnin
terms of changed lines were diminated. Although oty 11 fadors
remained in this stage, it took 14 minutes and 53secnds to com-
pletesincethe last 50% of the sampled warnings were processed.

The nine fadors slected by screening, as well as the intercept
(i.e., the By coefficient) of the regresson model, are summarized in
Table 2. The significance of ead fador on the model’s deviance
from the fitted data, as well as the oefficients of the fitted model
for eat fador, are shown. The cdegorical variables uch as the
BugRank range have ooefficients for al but one level, which is
folded into the intercept.? In Tables 2—4, the labels for the prior-
ity and BugRank range fadors are asfollows: VL standsfor “Very
Low,” L for “Low,” M for “Medium,” and VH for “Very High.”

The adjusted R? for this model, which describes the amourt
of variation in the dependent variable that the model captures, is
0.3548 Althoughthis might seem low, it is adtually quite reason-
able given the complexity of what the models are predicting. It
also indicates that there may be room for improvement in the form
of additional fadorsthat cgpture more variation. However, we dso

2R aphabetically foldsthefirst level of categorical fadorsinto the
intercept, which is “High” for priority and BugRank ranges.

Factor P(>x) Coefficients
Intercept -2.29064
FindBugs pattern < 0.01 (not shown)
FindBugs priority < 0.01 M: 1.67002 L: 0.83176
Padkage staleness 0.07 -0.00227
BugRank < 0.01 0.23924
BugRank range < 0.01 | VL:-9.0223Q M: -8.24013
L:-1512205 VH: 2.83218
File churn: Added 0.03 0.00088
Code: Warning depth 0.04 -0.00678
Code: Indentation 0.10 -0.02704
Code: File length 0.03 -0.00032

Table 2: Factors slected through screening for false positive
prediction models. Coefficientsfor pattern are not shown.

note that there is some inherit variation in the setting we ae ob-
serving (e.g., triaging enginea's may not always agree on whether
awarning identifiesared problem), whichiis lik ely to keep R low.

The wefficients indicate how ead fador aff eds the predictions
made by the model. (For the value predicted in Equation 1, values
close to 0.0 correspondto false positive predictions, while values
close to 1.0 correspondto true defeds.) For example, the coef-
ficient of the padkage stalenessfador is negative. As more time
passes dncethe previous datic analysis warning in the padage or
sub-padkages, the model is more likely to predict that the warning
is afalse positive. In contrast, the mefficient for the churn fador
for lines of code added to files is positive; thus, the model is more
likely to predict that the warning is legitim ate as the number of lines
recently added to filesincreases.

3.3.2 Modelsfor Actionalde Warnings

We aonsider two types of models to predict adionable warnings.
Our first model is built using orly those warnings identified astrue
defeds. For building this model, 12 facors were diminated after
the first screening stage: (1-6) all six project churn fadors, (7—
10) the growth and total churn fadors for both files and padages,
(11) file extension, and (12) BugRank. The second stage saw the
elimination of (13) file length complexity and (14) the number of
warnings in the project. The third stage diminated (15) line in-
dentation and (16) the churn fador for changed lines in padages.
Four factors were diminated in the fourth and final stage: (17-19
the stalenessof the padages and projects, (19) the churn fador for
changed linesin files, and (20) the FindBugs priority.

The 13 fadors remaining after screening are summarized in Ta-
ble 3. For the caegory fador, C stands for “Corredness” | for
“Internationalization,” MC stands for “Malicious Code,” MTC for
“Multi-Threaded Correaness” P for “Performance” and S for
“Style.” The ajusted R? for this model is 0.2477.

Our seaondmodel is designed to predict adionable defeds from
all warnings (i.e., both false positives and legitimate warnings).
Screening eliminated 18 fadors: the six fadors for project churn;
the dchanged lines, growth, and total lines churn fadors for files
and padkages; the padkage churn fador for added lines; indentation
complexity; file length; padage and project staleness and file ex-
tension. The 15 fadors remaining after screening are summarized
in Table 4. The adjusted R? for this model is 0.2611

3.3.3 Discusdon

It is interesting to observe trends in the fadors that were con-
sistently selected and eliminated during screening. For example,
the project churn fadors were consistently eliminated after the first
screaning stage. Becaise many Goode projects undergo a large

Factor P(>x) Coefficients
Intercept -1.69250
FindBugs pattern < 0.01 (not shown)
FindBugs caegory < 0.01 | C:0.1355Q MTC: 0.29493
I: 13.41806 P: -0.44291,
MC: -1352201 S: 0.29889
File age < 0.01 -0.00096
Warningsin file < 0.01 0.08125
File staleness < 0.01 0.00764
BugRank range < 0.01 | VL:16.44913L:-0.35007
M: -1.19761 VH: 1.16869
File churn: Added <001 -0.00078
File churn: Deleted <001 0.00083
File churn: Perc. < 0.01 0.00608
Dir churn: Added 0.02 0.00009
Dir churn: Deleted 0.01 -0.00013
Dir churn: Perc. <0.01 0.01024
Code: Warning depth 0.03 -0.00623

Table 3: Factors =lected for actionable prediction models con-
sidering only true defeds. Coefficients for pattern are not
shown.

Factor P(> x) Coefficients
Intercept -24.76222
Pattern < 0.01 (not shown)
Priority < 0.01 L:1.17921 M: 1.87402
Category < 0.01 C: 158666 S: -0.21193
Warningsin file < 0.01 0.067965
File age < 0.01 -0.00107
File staleness < 0.01 0.00588
Project staleness 0.01 0.00488
BugRank 0.03 0.08894
BugRank range < 0.01 | VL:5.10045 M: -4.55509
L:-6.98454 VH: 2.66199
File churn: Added < 0.01 -0.00025
File churn: Deleted 0.01 0.00027
File churn: Perc. < 0.01 0.00408
Dir. churn: Perc. < 0.01 0.00894
Code: Warning depth 0.01 -0.00739

Table 4: Factors ®lected for actionable prediction models con-
sidering al warnings. Coefficientsfor pattern are not shown.

amournt of churn, and because project churn operates at ahigh gran-
ularity, this facor may be too nasy to be useful in regresson mod-
els for static analysis warnings, at least for threemonth windows
of time. On the other hand, other fadors such as bug pettern and
BugRank range were ansistently selected by screening.

We dso saw trends within particular models. For example, the
adionable warnings model for true defeds included the added,
deleted, and percentage churn fadors at both the file and padkage
level, and excluded the changed, growth, and total fadors for the
same levels. All of these trends suggest arees for future work re-
garding additional fadors that, we believe, could further improve
the predsion of our models.

There could be benefit in investigating certain factorsfurther, and
in considering new fadors. For example, we considered a three
month window for the churn fadors, but larger or smaller windows
could be mnsidered. Also, some fadors, such as the number of
warnings and stalenessfadors, are measured at the point of screen-
ing rather than the time of the warning report. We measured at

this point primarily with adionable warnings in mind; such afluid
fador allows usto measure whether warnings are adionable at par-
ticular paints in time. (As time passes, for example, code may
become obsolete and dder warnings may become lessadionable.
On the other hand, a sequence of recent warning reports may spur
interest in a previously neglected file.) However, there is merit to
other approaches, which future work could investigate.

Some of our fadors are llinea, and models fit with such fac
tors can suffer from reduced predsion due to increases in standard
errors. We investigated collinea fadors in this work becaise, at
this ealy stagein the work, we wished to consider many fadors to
determine those that are most preferable and shoud be pursued fur-
ther. Finally, some fadors were cgtured through noncontinuous
variables. For example, “bug pettern” is a cdegorical variable of
the nomina type. This type of variable requires sme manipula-
tion beforeinclusion in aregresson model. Throughou this study;,
we used the default mechanism provided by R to mark and encode
this type of variable for usage in the regresson models.

4. CASE STUDY

In this sedion we evaluate the models generated in Section 3for
predicting false positive and adionable static analysis warnings. In
addition to evaluating the acaragy of these models, we dso eval-
uate the time taken to collect the data acarding to the screened
fadors, andto build the models in a statistical pad<age. This evalu-
ation took place & a case study using alarge set of FindBugs gatic
analysis warnings at Goode. We compared the models generated
from our screening methoddogy against three “cortrols.”

4.1 Design

4.1.1 Setting andWarning Samples

Our case study was performed using static analysis warnings re-
ported against Goode’s Jva mdebase. The data set consists of
1,652 urique warnings <lected from a popuation of tens of thou-
sands of warnings sen over a nine-month period from August 31,
2006to May 31, 2007. The warnings in the data set were manu-
ally examined and classfied as either false paositives or true defeds
by two Goode enginee's from the triage team described in Sedion
2.1. The warnings deemed true defeds were incorporated into bug
reports and assgned to developers judged resporsible for the aode.

These enginee's generaly focused on Hgher-priority warnings
becaise finding important bugs was the primary goal [3]. Some-
times, BugRank was used to prioritize warnings to be examined.
Other times, warnings were prioritized by project. Warning pat-
ternswith only one or two total warnings were generally examined.
Our sample of warningsincluded 157 d the 286 FindBugs bug pt-
terns and al seven FindBugs caegories. The distribution by Find-
Bugs priority was: 38% High, 60% Medium, and 26 Low. The
distribution by BugRank Range was: 27% Very High, 32% High,
28% Medium, 12% L ow, and lessthan 1% Very Low priority.

We stopped considering warningsonMay 31, 2007to alow over
threemonths for the most recently reported warningsto be resolved
by developers; this step wastaken to help prevent awarning’sreport
date from influencing whether it was aded onwithin the context of
this study. The mean time to resolve defeds reported by warnings
during this period was 34 days, with amedian of 10 days.

4.1.2 Independent Variables

The independent variable evaluated in this case study was the
model used to make predictions abou warnings. A conjoined fac
tor is the methoddogy used to generate the models, as the method-
ology determines the data available for model building.

Screening models. Astreament variables, we considered the three
models for classfying warnings that were built from our screen-
ing methoddogy; we refer to these models as Scr eeni ng. For
control variables, we compared ead treagment model against three
baseline models and their acampanying design methoddogies.

All-Data models. Asour first control, we atempted to collect data
for every fador listed in Sedion 3.1 for every sampled warning.
This baseline helps us asessthe gains in cost, as well as any loss
in predsion, from screening fadors. However, it is generaly ill-
advised to build regresson models using every fador without some
form of filtering. While many fadors may be useful for predict-
ing false pasitives and adionable warnings, others will have little
predictive power due to little correlation to the sampled warnings.
Variable selection methods are often used to select the most predic-
tivefadorsthat best estimate the dependent variable, or to eliminate
the least predictive factors[10].2 We selected badkward elimination
for this first baseline, which we label Al | - Dat a.

Some fadors were too expensive to collect data for even within
this study's sample of warnings. Spedficdly, the project churn
metricstake an inordinate amourt of timeto collect dueto thelarge
amourt of code in some projects. Because mllecting datafor these
metrics would be asignifi cant drain onthe limited number of avail-
able shared resources used by many Goode engineea's, we dedded
not to consider project churn in Al | - Dat a. (However, we nate
that these fadors were quickly eliminated in screening due to their
apparent noise and lack of predictive power.)

BOW models. Ascontrols, we wished to consider regresson mod-
els used by aher reseachers. Althoughwe ae not aware of pub-
lished models built for predicting charaderistics of static analysis
warnings, they have been used in other software engineaing do
mains. Our next two cortrols are based on the work of Bell et
al. [4, 18], which we considered when designing our own fadors.

Table 5 compares fadors from [4, 18] with related fadors from
Sedion 3.1. Our second control builds models using the fadors
represented in the right-most column in Table 5. To buld these
models, we mllect data acording to these six fadors for the sam-
pled static analysis warnings. We refer to these models and their
data collection methoddogy as the BONmodels.

Our third cortrol is an extension of the BOWmodels. While the
fadors in BOWare based on yeas of reseach and development,
they were considered in a different context: predicting fault courts
in released software systems. Because we ae mnsidering models
for predicting static analysis warnings, the BOWmodels may lack
the necessary context to provide acarrate predictionsin this setting.
To provide this context and set up a potentially more fair compar-
ison ketween BOWand Scr eeni ng, we extended the BOVmod-
els in our third control by adding the “bug ettern” and “priority”
fadors. We selected these becaise they are two standard fadors
describing static analysis warnings that are provided diredly by
FindBugs, and they are fine-grained, which may reduce the noise
in thefadors' data as compared to more marse-grained fadorslike
“category.” We refer to these models as the BOM- models.

4.1.3 Dependent Variables

We formulated two constructs to evaluate our models: the ac
curagy of the logistic regresson models’ predictions, and the cost
of building the models. We measure the time taken to build eah
model as a dependent variable. This variable considers the sum of

3Such “post-mortem” elimination is actually the oppasite of our
screening approach, which seeks to eliminate useless fadors as
ealy aspossble, rather than after all data has been collected.

Factor Ostrand et al. 2004[18] Bell et al. 2006[4] Thiswork (Sedion 3.1)
Codesize Lines of code Lines of code Lines of codein file
Change History | File changes (new, changed, unchanged) Recent change history | Churned lines (file: added, changed, deleted)
File age Number of releases file has appeaed File agein agiven month File age (# daysfile has existed)
Faults Number of faults in previous release Recent history of faults Number of previous warningsin file

Table 5: Relating factorsfrom Bell et al. to similar factorsin this work.

the time required to gather the needed data from the warnings and
Java programs, and to generate the models in R.

Our dependent variable for measuring acarragy compares the
predicted status of ead warning to its known, triaged status, and
divides the number of corredly predicted warnings by the total
number of warnings. For false-positive-predicting models, we mn-
sider the predicted and knavn false positive status of ead warning.
For models predicting adionable warnings, we cmnsider whether
ead legitimate warning led to developer adions resulting in a de-
fea fix, and compare this status with the models’ predictions. In
Sedion 4.2.2, we examine the incorred predictions made by the
models, and compare the R? values of the Al | - Dat a models to
the Scr eeni ng models.

414 Procedures

It is difficult to measure the acaracgy of regresson models in an
unhbiased manner, and there ae many designs for measuring model
predsion. One common strategy is the “resubstitution” strategy,
where the models are used to classfy the same data on which they
were fit. This design allows models to be evaluated using all avail-
able data, which would generally increase model predsion, and
suppats the evaluation of more representative models becaise the
models used in pradice ae generaly built from the largest possble
sample of data. A disadvantage of this design is that it suffersfrom
bias, as it generally overestimates the probability of corred clas-
sifications; however, Johnson [10] says that this bias is relatively
low for large data sets. Given these trade-off s, we use resubstitu-
tion as our first design, and consider a seacond cesign to provide an
additional view of our study’s data.

Our second aesign uses holdout data, which is another common
strategy for evaluating regresson models [17]. In hddout designs,
a percentage of the data set is withheld as a “validation” set, while
the remainder is used as a “model building” set. This approach
does nat suffer from the bias of resubstitution; however, becaise it
does nat maximize the anourt of model-building data, intuitively,
it may underestimate model predsion. There is also the issue of
howv much data to withhadd for validation. Withhalding a small
amourt of data alows the model to be built with more information;
however, a validation set that is too small increases the likelihood
of anomalous prediction measurements, and makes it more difficult
to draw meaningful conclusions abou the acairagy of the models
in general cases. To find belancein the presenceof these trade-off s,
we oonsider threeratios of model building data to validation data
in our holdout designs: 70% model building data to 30% valida-
tion data, 80% model building to 20% validation, and 90% model
building to 10% validation. Furthermore, to limit the possbility
of anomalous results from one particular data set, we randamly se-
lect threesets for ead of our data ratios, and separately build and
evaluate models for ead set of data within ead ratio.

To collect the timing information regarding the aost of building
the prediction models for ead independent variable, we measure
the time taken to gather the data acwrding to the selected fac
tors (or, in the case of screening, to screen the fadors acwording
to the procedures in Sedion 3.2), and the time taken to build the
models in R. For the Scr eeni ng models, the data gathering step

includes the periodic statistical analysis performed to analyze the
signifi cance of the measured facors on the false positive or adion-
able warning effed being measured. For the Al | - Dat a models,
this latter eff ort includes the time required to perform the badkward
elimination to filter out factors with low predictive power.

Becaise the acaragy of the Al | - Dat a predictions are mea
sured without the project churn fadors, we consider both the time
required to build these models without the project churn data, and
the estimated time with project churn. Similarly, becaise we want
to compare Scr eeni ng with Al | - Dat a to gauge the st sav-
ings from screening fadors, we measure the time required to build
the Scr eeni ng models bath with and without project churn.
(Project churn is not considered in the BOWVmodels, so we mea
sure time only oncefor these models.)

415 Threatsto Validity

We oonsider three types of threds to the validity of this case
study’s results [22]: external validity, internal validity, and con-
struct validity. We took various measures to mitigate our study’s
external validity threds. In terms of our sample of warnings, we
sampled over 1,600warnings over a nine-month period to help en-
sure that our study was representative of the setting at Goode. This
sample considered 157 FindBugs bug petterns, and all seven Find-
Bugs categories. FindBugs is also ore of the more sophisticated
and widely adopted static analysis tools available for Java.

We used the warnings examined by two engineasto help control
for variation in triaging dedsions amongsimilar warnings because
we wanted to isolate the dfed of the models’ predictive power in
this study. In pradice, we would exped greder variation in these
dedsions due to triaging by additional enginees. Finaly, different
results may be experienced in different software development set-
tings, with alternative factors for building logistic regresson mod-
els, and with different static analysis tools other than FindBugs.
This threa can be addressed only by further empirical studies.

The bias in resubstitution designs is an internal validity threa
to the results from this methoddogy, thoughthis concern is miti-
gated due to this study’'s large sample of warnings. Ancther inter-
nal validity threa to the holdout designs is the particular validation
set used, as different validation sets may contribute to different re-
sults. This latter threa is stronger for the smaller validation sets.
For these reasons, we cnsidered threeratios of model-building to
validation data, and three randamly selected assgnments of data
within ead ratio. Also, using two validation approaches reduces
the threds of drawing conclusions from just one gproach.

Becaise enginee's may classfy warnings differently, to help en-
sure consistent classfi cations, we selected orly warnings examined
by ore of two engineeas; however, this came & the cost of exter-
nal validity. The statistical generation of these logistic regresson
models asaumes that the occurrence of false positive and adionable
warnings are binomially distributed. If these asumptions are not
met in our data, then the power and predsion of the models may
deaease. Finally, athoughFindBugs offers auppat to tradk du-
plicate warnings, a single defed could be resporsible for multiple
unique warnings reported by the tool. We dlowed for this possble
bias because this scenario is likely to aso facered praditioners.

Mode Type Data Gathering Model Building
False Pos. | Actionable: Defects | Actionale: All | False Pos. | Actionable: Defects | Actionalde: All
Screeni ng | 0:01:39:23 0:06:48:10 0:06:57:11 < 00:01 < 00:01 < 00:01
(0:00:42:36) (0:03:42:55) (0:03:55:02)
Al| - Dat a 5:05:50:06 03:38 00:22 00:39
(0:04:21:01)
BOW 0:00:39:00 < 00:.01 < 0001 < 00:01
BOWM 0:00:39:05 < 00:.01 < 00:.01 < 00:01

Table 6: Cost of building the four types of models. For “data gahering,” the top row for Scr eeni ng and Al | - Dat a is the time
with projed churn; the second result is without projed churn. The format of Data Gathering timesis Days:Hours:Minutes: Seconds.

Theformat of Model Building timesis Minutes: Seconds.

While we believe our constructs are reasonable, threas to con-
struct validity primarily derive from the legitimagy of the compar-
isons of our screening-based models to our cortrols. With regard
to the Al | - Dat a models, as described ealier, it was not feasi-
ble for us to gather the entirety of the datafor every static analysis
warning for every fador; in fad, this scdability issue wasamotiva-
tion for using screening in the first place. Excluding some fadors
from Al | - Dat a was the most feasible way to design this cortrol
to evaluate the mst-eff edivenessof screening.

With resped to the BONmodels, these models were designed
using fadors dmilar, but not identical, to those used in related
work [4, 18]. Furthermore, the BOW models are used in a dif-
ferent context than the one they were aeaed for. We atempted to
mitigate this concern by also evaluating the BOM model, which
considers gatic analysis fadors to give the models context with re-
sped to the environment in which they are used in this study.

4.2 Resultsand Discusson

Wefirst discussresults pertaining to the st of building the mod-
els. We then discussthe acaragy of the models’ predictions and
the st considerations required for this acaragy.

421 Cost

Table 6 summarizes the time taken to generate the logistic re-
gresson models, which consists of both data gathering and model
fitting. Data gathering is performed orce acording to the models’
data collection methoddogies. The model building times hown
are the times taken to build the models using the entire sample of
data, as was dore in Sedion 3.3. Recdl from this sedion that
Scr eeni ng selected more fadors for the models predicting ac
tionable warnings than did the model predicting false positives, ac
courting for theincreased data gathering timefor these two models.

It can take alarge amourt of time to collect the data needed to
build the Al | - Dat a regresson models when expensive metrics
like project churn are cnsidered. In this case, Scr eeni ng was
effedive & reducing the aost of collecting data acording to these
fadors by filtering ou fadors auch as project churn and file age
that, according to the screening, did nat have the predictive power
to be considered further. By doing so, Scr eeni ng took only a
fradion of the time for data gathering as did Al | - Dat a. Even
when the expensive project churn metrics were not considered, the
savings experienced through screening was notable; for example,
screaning 28fadorsrequired only 42 minutesfor the false-pasitive-
predicting models.

The BOAMmModels required areasonable 39 minutesto collect data
acording to their six to eight fixed factors. It was more expensive
to build the Scr eeni ng models than the BONVmodels—not sur-
prising considering the number of fadorsinitially considered at the
beginning of screening, and the expense of many of those fadtors.
However, when the most expensive project churn metrics were not

considered in Scr eeni ng, the time required to build the regres-
sion models, particularly the models predicting false positives, was
closer to that for the BOWmodels. Of course, Scr eeni ng and
BOWreflea two different types of scenarios. The BONmodels re-
flea asituation where there ae fixed fadors, known beforehand, to
beinvestigated. Screening fadors, onthe other hand, will generally
be more expensive than collecting data for the foregoing scenario,
depending onthe st of the fadors being screened.

Finally, it is important to note that generating models is unlik ely
to be aone-time aost. Asnew tools are added, existing tools are up-
dated with new bug pettern detectors, and fadors for model build-
ing are added or updated. It can become necessary to gather dataon
at least a subset of new warnings if updated models are to be built.
Our results indicate that Scr eeni ng coud be a ost-effedive
means of collecting data in these types of scenarios.

4.2.2 Prediction Accuracy

Tables 7 and 8summarize the acaracgy of the logistic regresson
models in predicting false positives and adionable static analysis
warnings. Ascan be seen, the Scr eeni ng models were generally
the most acairate in predicting false positives and adionable warn-
ings based on true defeds (Table 7 and the top of Table 8). The
results indicate that Scr eeni ng did not lose predictive power as
compared to the Al | - Dat a models for these types of predictions,
even dang better than the Al | - Dat a models. The R? values for
the Al | - Dat a models also indicate that the Scr eeni ng mod-
els captured approximately the same amourt of variation as the
Al | - Dat a models. The R? values for the Al | - Dat a models
predicting false paositives and adionable warnings from true de-
feds were 0.3586 and 02812 respedively, compared to 0.3548
and 0.2477for the Scr eeni ng models.

These results were surprising. We had expeded the Al | - Dat a
models to be the most acarate due to their ability to leverage the
most available datawhen bulding models. It may bethat incremen-
tally screening fadors is preferable to performing stepwise dimi-
nation procedures following data collection. It may also be that
collecting too much data at once in this type of setting is not de-
sirable because it inherently leaves a greaer amourt of noise in
the data that procedures such as gepwise dimination must try to
reduce Performing this elimination in a systematic manner while
data is being collected, as does Scr eeni ng, may be the prefer-
able method for selecting design variables for logistic regresson
models for static analysis warnings.

Scr eeni ng was nat as predse, as compared to Al | - Dat a,
for predicting adionable warnings based on bah false positivesand
true defeds (bottom of Table 8). However, as discussed in Sedion
4.2.1, this minor lossof predsion came with a substantial reduction
of cost in terms of building the models. Also, the R? values indi-
cate that the Scr eeni ng models adually captured slightly more
variation (0.2611) than the Al | - Dat a models (0.2511).

Model Type | Resubstitution Holdout Data
7030 | 80/20 | 90/10
Scr eeni ng 85.29% 87.48% | 87.09% | 86.54%
Al'l - Dat a 85.71% 8348% | 84.74% | 8547%
BOW 76.51% 77.96% | 7873% | 79.32%
BOW 84.62% 82.24% | 83.81% | 83.06%

Table 7: Predicting false positivewar nings. Holdout data shows
the average precision of themodels from thethree observations.

Mode Type | Resubstitution Holdout Data

7030 | 80/20 | 90/10

True Defects
Scr eeni ng 77.32% 7182% | 71.68% | 71.95%
Al'l - Dat a 7137% 7142% | 69.95% | 70.97%
BOW 60.19% 61.30% | 6347% | 62.74%
BOWM 70.90% 67.04% | 67.41% | 69.7%

All Warnings
Scr eeni ng 77.42% 7202% | 71.36% | 71.94%
Al'l - Dat a 7373% 7290% | 75.26% | 75.68%
BOW 62.23% 59.35% | 60.77% | 61.12%
BOWM 7391% 67.76% | 69.50% | 69.26%

Table 8: Predicting actionable warnings.

The Scr eeni ng models were dso more predse than the BOV
and BOM models as shown in Tables 7 and 8 These two models
performed relatively well for having been built using fadorsfroma
different software engineeing damain. While they were not as pre-
cise asthe Scr eeni ng models, they were somewhat lessexpen-
siveto build. Although ow areaof interest was one where we have
many fadors to investigate for static analysis models, this finding
suggests that praditioners who are nat interested in investigating
many fadors, and wish instead to use afixed number of known
fadors, may find some successif those fadors are well selected.

In terms of the deployment of FindBugs a Goode, the
Scr eeni ng models represent animprovement with resped to pre-
vious pradices. We observed that 24% of examined warnings in
our sample, for al FindBugs bug petterns, were false pasitives. For
adionable warnings, only 56% of the static analysis warnings indi-
caing true defeds were aded on by dvelopers; the percentage of
adionable warnings drops to 42% when considering all static anal-
ysis warnings—nat just those indicating true defedas. However, our
results indicate that the deployment of the logistic regresson mod-
els could deaease the number of false positives examined by en-
gineas from 24% to as low as 12.5%, and could ensure that over
70% of thewarnings examined by developerswould be aded upon

Had these models been used within our sample of 1,652 warn-
ings, triaging engineas would have examined hundeds of fewer
spurious and noradionable warnings—nat an insignificant sav-
ings when the st of triaging is estimated at eight minutes per
warning (as discussed in Sedion 2.1). However, this comes at a
cost due to the incorrea predictions made by the models.

Not shown in Tables 7 and 8is a bre&kdown of where the mod-
els went wrongwhen incorredly predicting warnings. For the false
positive models in the 70/30 hddout design in Table 7, 33% of the
incorredly predicted warnings were predicted to be false positive
when the warnings were adually legitimate, while 67% of incor-
redly predicted warnings were predicted to be legitimate when the
warnings were false paositive. For the adionable models based on
true defeds in the same design (top of Table 8), 40.3% of theincor-

redly predicted warnings were predicted to be trivial warnings, but
were adualy aded on by davelopers, while 59.7% of the warnings
were predicted to be adionable, but were not aded on

Though nao by intent, the models tended to be mnservative. Be-
cause there were more false paositives predicted to be legitimate
warnings, and more non-adionable warnings predicted to be ac
tionable, triaging enginee's would seemore of the types of warn-
ingsthey wished to avoid (e.g., false pasitives) thanimportant warn-
ings that shoud naot be missed (e.g., warnings identifying true de-
feds). Generaly spe&king, the msts of examining more false posi-
tives versus missing legitimate warnings (and, similarly, non
adionable versus adionable warnings) neelsto be evaluated in the
context of the software being analyzed with static analysis, and the
development organization asawhole. In future work, improvement
in the aeas where the models gowrongin terms of incorredly pre-
dicted warningsis likely to come throughmore sophisticated static
analysis tools, additional fadors with improved predictive power,
and a larger sample of warnings onwhich to build models.

5. RELATED WORK

To ou knowledge, we ae the first to look closely at predicting
developer resporse to static analysis warnings. There ae severa
threads of related work, however, that use statistical models to fil-
ter or prioritize static analysis warnings. Hedkman [7] has recently
propased the use of adaptive models that utiliz e feedbadk from de-
velopersto rank warningsin order to identify false positives. These
rankings are derived from models using factors whase coefficients
change dter developer feedbadk, and were dfedive in favorably
ranking and identifying false positive warnings[7].

Kremenek and Engler developed aranking algorithm (z-ranking)
to prioritize warnings for a single warning type (i.e., a single
“checker”) [14]. The dgorithm is based ontheir observation that
clusters of warnings are usually either all false positives due to
tool limitations, or al true defeds due to developer confusion. Z-
ranking was eff edive & prioritizing legitimate warnings abowve false
positives [14]. A generalization of this work produced an adaptive
ranking scheme cdled Feedback Rank [13]. This work used code
locdity (function, file, and dredory) to identify clusters of fase
positives and legitimate warnings. The adaptive asped of the dgo-
rithm updates warning priorities as nearby warnings are dassfied.

Becaise we triaged priority warnings acossan entire adebase
rather than focusing onall thewarnings for particular files, our data
set appeas to be too sparse to diredly suppat correlation by file
locdity : 85% of legitimate warnings and 80% of false paositives ap-
pea as the only warning from afile. We do have anumber of file,
padkage, and project fadors that would be the same for warnings
reported at the sametime, for the samefile. If thesefadorsacourt
for some of the file locdity correlation observed by Kremenek et
al., our models shoud correlate warnings for different files that
have similar values, as measured by fador metrics. We dso in-
clude the general nation of warning clustering by including warn-
ing courts for files; this fador was slected by screening for bath
of our models predicting adionable defeds. While our logistic re-
gresson models are not adaptive, our BugRank fador is because it
incorporates observed, evolving data regarding false paositives and
resolved warnings.

Kim and Ernst [11, 12] use fixed information mined from soft-
ware change historiesto estimate the importance of warnings. They
use this information to improve the default priorities assgned by
the tools. For our data set, we have adual “fix data” from our
bugtradking system that shoud be more acarate than data mining
change histories. However, our datais then limited to the warnings
filed as defeds against developers. In theory, we could expand our

data set to also include warnings that disappeared during changes.
However, the cost of mining version histories would be similar to
the cost of computing code churn, which is prohibitively expensive
in our setting. There were dso naable differences in our obser-
vations that indicate the need for further study in this area For
example, “equals used to compare unrelated types’ is one of our
most frequently fixed warnings. However, Kim and Ernst observe
long delaysin fixing these warning patterns andrank them low [11].
This is an interesting areafor further study.

The models presented in this paper operate by clasdfying eah
warning rather than ranking all warnings. It would be interesting to
seehow classficaion and ranking models compare in pradice.

6. CONCLUSIONS

The return oninvestment for static analysis tools like FindBugs
is limited by the cost of cheding whether reported warnings corre-
spondto faults and, as important, of assesgng whether such warn-
ings are worth further effort. The magnitude of this limitation is
evident bath in prior work and in our study of 1,652 triaged warn-
ings, where gpproximately 24% of warnings were false positives,
and orly 56% identifying true defedswere aded on by developers.

In this paper we dmed to maximize static analysis tools’ return
oninvestment by developing models that predict whether reported
warnings constitute adionable faults. Given that our setting is char-
aderized by the possble need to regularly re-build and adjust mod-
els, and by constraints on large-scae metric collection, it was also
important to devise an approach that would enable efficient model
building. The proposed screening approach for model building ac
complishes this by quickly discarding metrics with low predictive
power—avoiding their collection throughou alarge code base.

In our empirical study we found that the predictive power of
the models built on screened data was, in general, at least as good
as that of the models utilizing the whole warning data sets, while
incurring significantly less data collection effort. The screening-
based models were e to acarrately predict false positive warn-
ings over 85% of thetime on average, and adionable warnings over
70% of the time. Furthermore, the screening models consistently
performed better than existing predictive models that we alapted
from adlightly different software engineering context. Asexpeded,
however, such improvement required additional data collection.

Based onthis experience, and more generally, we mnjecture that
screening will be particularly useful at ealy stages of model build-
ing, when there ae an abundhnce of fadors considered to have an
effed onthe target dependent variable, and espedally appeding in
the presence of fadors whose associated metrics are expensive to
collect. This work also indicates that regresson models may be
effedive in settings involving static analysis warnings, and shows
promise for future work in this area

We have worked to deploy these models aaossour development
pradices at Goode in order to reduce the number of neellesdy
examined warnings by triaging enginees. When generalized to
the tens of thousands of warnings that have been reported in our
software development environment, the savings from using these
models could be substantial.

7. ACKNOWLEDGMENTS

Joseph Ruthruff was an intern at Googde Inc. when this work was
performed. YuQian Zhou, Simon Quellen Field, and Larry Zhou
contributed to the static analysis infrastructure & Googde. William
Pugh gedly asdsted in our use of FindBugs and suggested fadors
to consider for our regresson models.

10

8. REFERENCES

[1] FindBugs. http://findbugs.sourceforge.net/.

[2] TheR project for statistical computing. http://r-project.org/.

[3] N.Ayewah, W. Pugh J. D. Morgenthaler, J. Penix, and
Y. Zhou Evauating static analysis defed warnings on
production software. In Proc. 7:" ACM Workshop onProg.
Analysis for Sdtw. Tods and Eng., pages 168—179 2007.

[4] R. M. Bell, T. J. Ostrand, and E. J. Weyuker. Looking for
bugsin all theright places. In Proc. ACM Int’l Symp. on
Sdtw. Testing andAnalysis, pages 61-71 2006

[5] D. Engler, B. Chelf, A. Chou, and S. Hallem. Bugs as deviant
behavior: A general approach to inferring errorsin systems
code. In Proc. 18" ACM Symp. on OSPrinciples, 2001

[6] T.J. Hastie and D. Pregibon. Statistical Models in S
Wadsworth & Brooks/Cole, 1992

[7] S. S. Hedkman. Adaptively ranking alerts generated from
automated static analysis. ACM Crossioads, 14(1), 2007.

[8] D.W. Hosmer and S. Lemeshow. Applied Logistic
Regresson. JohnWiley & Sons, 2" ed., 200Q

[9] D. Hovemeyer and W. Pugh Finding bugsis easy. In
Comparion to Proc. OOPSLA, pages 132—-1362004

[10] D. E. Johrson. Applied Multivariate Methods for Data
Analysis. Duxbuy Press 1998
[11]] S Kim and M. D. Erngt. Prioritizing warning caegories by
analyzing software history. In Proc. Int’| Workshop on
Mining Sdtw. Repasitories, 2007.
S. Kim and M. D. Ernst. Which warnings shoud | fix first?
In Proc. 6" Joint ESEC/SIGSOFT Foundaions of Sditw.
Eng., pages 45-54 2007.
T. Kremenek, K. Ashcraft, J. Yang, and D. Engdler.
Correlation exploitation in error ranking. In Proc. 128" ACM
Int’| Symp. Founddions of Sdtw. Eng., pages 83—93 2004
T. Kremenek and D. Engler. Z-Ranking: Using statistical
analysis to courter the impad of static analysis
approximations. In Proc. 10*" Static Analysis Symp., 2003
L. Z. Markosian, O. O'Malley, J. Penix, and W. Brew. Hosted
services for advanced V&V techndogies: An approach to
adhieving adoption without the woes of usage. In Proc. ICSE
Workshop onAdoption-Centric Sdtw. Eng., 2003
N. Nagappan, T. Ball, and A. Zéeller. Mining metrics to
predict comporent failures. In Proc. 28" Int’l Conf. on
Sdtw. Eng., pages 452-461 2006
[17] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman.
Applied Linear Satistical Models. Irwin, 4** edition, 1996
[18] T.J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs
are. In Proc. ACM SIGSOFT Int’| Symp. on Sdtw. Testing
andAnalysis, pages 86—-96 2004
T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Automating
algorithms for the identifi cation of fault-pronefiles. In Proc.
ACM SIGSOFT Int'| Symp. on Sdtw. Testing andAnalysis,
pages 219-2272007.
J. R. Ruthruff, S. Elbaum, and G. Rothermel. Experimental
program analysis: A new program analysis paradigm. In
Proc. ACM SSGSOFT Int’| Symp. on Sdtw. Testing and
Analysis, pages 49-59 2006
J. Spacm, D. Hovemeyer, and W. Pugh Tradking defed
warnings aaossversions. In Proc. Int’| Workshop onMining
Sdtw. Repositories, pages 133—-136 ACM Press 2006
C. Wohlin, P. Runeson, M. Host, B. Regnell, and A. Wesden.
Experimentation in Sdtware Engineeing. Kluwer Academic
Publishers, 200Q

(12

[13]

(14

[15)

[16]

[19]

[20]

[21]

(22

