
1

Static and Dynamic Analysis of Call Chains in Java

Atanas Rountev Scott Kagan Michael Gibas
Department of Computer Science and Engineering

Ohio State University

{rountev,kagan,gibas}@cis.ohio-state.edu

ABSTRACT
This work presents a parameterized framework for static
and dynamic analysis of call chains in Java components.
Such analyses have a wide range of uses in tools for software
understanding and testing. We also describe a test coverage
tool built with these analyses and the use of the tool on a
real-world test suite. Our experiments evaluate the exact
precision of several instances of the framework and provide
a novel approach for estimating the limits of class analysis
technology for computing precise call chains.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program analysis

General Terms
Measurement, Algorithms

Keywords
Static analysis, dynamic analysis, call graph, call chains

1. INTRODUCTION
A call (multi)graph is a widely used representation of call-

ing relationships among methods. For example, an edge
from method mi to method mj may represent the fact that
some call site inside mi potentially invokes mj . In object-
oriented software, call graph construction requires taking
into account the effects of virtual dispatch. To achieve this,
some form of class analysis is necessary to determine the
classes of the objects to which reference variables may point.
Since this information is fundamental for various analyses
and optimizations for object-oriented languages, there is a
large body of work on class analysis; summaries of most of
this work are available in [11, 22].

A call chain is a sequence of call graph edges e1, . . . , ek

such that the target of ei is the same as the source of ei+1 for

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists, requiresprior specific
permissionand/ora fee.
ISSTA’04, July 11–14,2004,Boston,Massachusetts,USA.
Copyright 2004ACM 1-58113-820-2/04/0007...$5.00.

1 ≤ i < k. Such a chain may be thought of as an abstraction
of the top of the run-time call stack. For example, chain
e1 =(m,n); e2 =(n, p) represents a call stack configuration in
which the top element on the stack is method p, with n and
m under it. A call chain is feasible if there exists a run-time
execution during which the corresponding configuration of
the call stack occurs at least once.

Static analysis of call chains computes a set of chains that
is a conservative estimate of the actual chains that may be
observed at run time. Dynamic analysis of call chains con-
structs the set of chains observed during a particular execu-
tion. As discussed in Section 2, both categories of analyses
provide valuable information for program understanding and
software testing.

1.1 Static and Dynamic Analysis of Call Chains
In this paper we consider static call chain analyses that

take as input a call graph computed by some class analysis
algorithm. The designers of a call chain analysis have to
address several important issues. First, how to ensure that
the analysis reports few (if any) infeasible chains? In the
simplest case, the analysis could just construct all edge se-
quences in the given call graph. However, some sequences
may be infeasible due to infeasible call graph edges. Even
if all call edges are feasible, certain sequences may still be
infeasible; an example of this situation is presented in Sec-
tion 3. Existing work does not provide direct evaluations
of the degree of call chain imprecision and the sources of
this imprecision. In software tools, such imprecision leads
to wasted time and effort for tool users. For example, in
software maintenance, an infeasible chain reported by the
tool may require time-consuming manual investigation of
the code. Similarly, as part of test coverage requirements, an
infeasible chain “pollutes” the coverage metrics and wastes
valuable tester time.

Analysis designers need to address various other issues:
• The results should represent the set of call chains in a

compact manner. The representation should be linear
in the number of chains, and should be easy to use in
a subsequent dynamic analysis.

• The analysis should employ mechanisms for control-
ling the number of reported chains (e.g., by filtering
out chains that are too long), and should be able to
handle the infinite number of chains in the presence of
recursion.

• Different levels of call edge granularity should be sup-
ported—for example, an edge may either represent a
relationship “mi invokes mj”, or a finer-grain relation-
ship “call site ck inside mi invokes mj”.

2

For the purposes of this paper, a dynamic call chain anal-
ysis takes as input a set of call chains computed by some
static call chain analysis, and reports the run-time cover-
age of these chains. The analysis uses code instrumentation
that triggers certain run-time events. A dynamic call chain
analysis should have several desirable properties:

• It should instrument only the component of interest,
and not other components that interact with it. This
reduces the intrusiveness of the approach and the run-
time instrumentation overhead.

• It should identify and ignore run-time events that are
not relevant to the given static call chains.

• It should handle correctly the potential interactions
between the instrumented and the non-instrumented
parts of the program. For example, the analysis should
take into account the possibility of callbacks to the
instrumented component, and should keep track of the
level of reentrance with respect to these callbacks.

1.2 Analysis Framework
To address these issues, we have defined a framework for

performing static and dynamic analysis of call chains in Java
software. The approach is based on a data structure that
is a generalized form of a calling context tree [2]. This tree
encodes a set of static call chains, and allows subsequent
dynamic analyses to track the execution of these chains.
The static analysis for tree construction is parameterized
by the (1) call graph construction algorithm, (2) granularity
of call graph edges, (3) mechanism for choosing “interesting”
chains, and (4) handling of recursion. This parameterization
allows various uses of the approach in software tools.

We have performed a set of experiments that evaluate
the imprecision for several instances of the framework. To
the best of our knowledge, these are the first available em-
pirical results that directly measure call chain imprecision.
This empirical study addresses two key questions. First,
what exactly is the imprecision in the chains computed using
popular class analyses such as Rapid Type Analysis [4] and
Andersen-style points-to analysis [3, 27, 15, 19, 14]? Second,
what are the limits of call chain precision for all class analy-
ses—that is, how much call chain infeasibility would remain
even if the “most powerful” class analysis were available?
The answers to these questions provide valuable insights for
analysis designers and tool builders. Our results lead to
some surprising conclusions and directions for future work.

1.3 Test Coverage Tool
Using the analysis framework, we have built a coverage

tool for testing of Java software. The tool uses a set of cov-
erage criteria that can be defined as instances of the frame-
work. The criteria are related to several testing approaches
proposed in previous work, as discussed in Section 5. Us-
ing the dynamic analysis, the tool keeps track of run-time
chain coverage achieved during test execution, and reports
coverage metrics for the different criteria.

We present a study of applying the tool to the Mauve
test suite (sources.redhat.com/mauve). Mauve is an open-
source suite of tests for the standard Java libraries. We
used the coverage tool to evaluate and improve Mauve. In
our experience, the tool can expose serious weaknesses in the
tests, and can provide valuable guidance for creating more
comprehensive test cases.

1.4 Contributions
The contributions of this work are:

• a parameterized framework for static and dynamic anal-
ysis of call chains in Java components

• a call-chain-based test coverage tool, and a study of
applying the tool to a real-world test suite

• a precise evaluation of the imprecision of static call
chains in the context of the study, and insights about
the inherent precision limits of all class analyses

1.5 Outline
The rest of the paper is organized as follows. Section 2

discusses the use of call chains for software understanding
and testing. Section 3 defines the static analysis framework.
The dynamic analysis is described in Section 4. Section 5
presents the design of the coverage tool, and Section 6 de-
fines our approach for precision evaluation. The empirical
study is described in Section 7. Section 8 discusses related
work, and Section 9 presents conclusions and directions for
future work.

2. USES OF CALL CHAIN INFORMATION

2.1 Software Understanding
Call graphs provide a natural representation of the calling

relationships among methods. Tools for code browsing and
understanding can provide graphical interfaces for display-
ing and navigating such graphs. This functionality can be
strengthened by static call chain analysis that identifies and
labels some of the infeasible call chains. For example, a call
chain analysis can provide more precise answers for ques-
tions such as “given some component, how can a particular
internal private method be reached from the component’s in-
terface?”. Furthermore, information about static call chains
is also necessary as part of other analyses. For example,
reverse engineering of UML interaction diagrams [21] re-
quires precise identification of feasible call chains. Similarly,
the exploration of transitive dependencies in concern graphs
[17] can benefit from more precise call chain information.
Certain forms of interprocedural def-use analysis [26] also
depend on good-quality call chain information. Dynamic
analysis of call chains can also be used in software tools to
enhance program comprehension. By determining the set of
hot chains (i.e., chains that are most frequently executed),
the analysis can provide profiling information that allows a
programmer to understand better the behavior of her code.

2.2 Software Testing
Call chains can serve as basis for integration testing of

both procedural software [16] and object-oriented software
[5]. Object-oriented style of design and programming results
in many small methods, with a large number of messages
exchanged between objects. Various authors have argued
that in this context it is important to perform comprehen-
sive testing of calling relationships. Jorgenson and Erickson
[13] propose object integration testing that requires cover-
age of all relevant call chains (referred to as method-message
paths). Binder [5] discusses integration testing (e.g., top-
down integration and collaboration integration) that requires
lower-level modules to be exercised by tests written for a

3

top-level module. In this case, the necessary coverage can
be achieved by choosing and exercising call chains that ex-
tend from the top-level modules to the lower-level modules.
A similar approach is proposed for testing of layered archi-
tectures, where a test driver exercises the interface of the
top layer [5]. Several authors [5, 1, 7, 8, 30] have pro-
posed testing approaches based on UML interaction dia-
grams [21]. For example, coverage may be required for all
possible beginning-to-end message sequences in a diagram.
To achieve such coverage, a necessary condition is to cover
all corresponding call chains.

3. STATIC ANALYSIS

3.1 Analysis Input
To allow the use of the analysis on incomplete programs

(e.g., class libraries), we assume that it takes as input a set of
Java classes that form the analyzed component. We also as-
sume that some form of class analysis had been already used
to compute a component-level call graph. Each non-abstract
method in the component is represented by a graph node.
Graph edges represent possible calling relationships. If a
whole program is not available, some form of fragment class
analysis [20] can be used to compute the graph. An example
of a component-level call graph is shown in Figure 2.

In general, call graphs may represent different kinds of
relationships:

• method mi invokes method mj

• call site ck inside mi invokes mj

• call site ck inside mi invokes mj on an instance of X

These different granularities are useful for different applica-
tions. For example, the display of call graphs in a software
understanding tool may use the first category of relation-
ships in order to simplify the displayed diagram. On the
other hand, testing that takes into account polymorphism
(e.g., [5]) requires information about individual call sites and
the receiver classes at these sites. Our static and dynamic
analyses are designed for the last choice from the list; there-
fore, we assume that each call graph edge is labeled with a
pair (ck, X) of a call site and a receiver class. Of course, if
static and dynamic call chains are computed at this finest
level of granularity, the results can be trivially projected to
the other two approaches. The experiments in Section 7
present results for all three levels of granularity.

The static analysis and the subsequent dynamic analysis
need to take into account the calling relationships between
the component and code that is outside of the component.
For convenience, we assume that this information is encoded
in the given call graph through artificial nodes and edges.
Artificial node caller is an abstraction of all external callers
of the component, and artificial node callee is an abstraction
of any external code that is called by the component. All
edges from caller are artificial edges that represent calls to
the component. Similarly, the edges to callee represent calls
from the component.

This representation is conceptual and is used only to sim-
plify the discussion; there is no need to explicitly construct
these nodes and edges. Figure 2 shows an example of such
a representation; the two artificial nodes are shown with
shaded rectangles. For every component method m that
may be called from the outside, there must be at least one
artificial edge from caller to m. Similarly, if m contains a

public abstract class NumberFormat {
public int getMaxIntDigits() { return maxIntDigits; }
public void setMaxIntDigits(int n)

{ maxIntDigits = n; }
private int maxIntDigits = 40;

}
final public class FormatSymbols {

FormatSymbols() { separator = ’?’; }
public char getSeparator()

{ if (separator == ’?’) return getDefault(); (c1)
else return separator; }

public void setSeparator(char c) { separator = c; }
public char getDefault() { return ’,’; }
private char separator;

}
public class DecimalFormat extends NumberFormat {

public DecimalFormat()
{ symbols = new FormatSymbols(); } (c2)

public FormatSymbols getSymbols() { return symbols; }
public String toPattern()

{ return toPattern(false); } (c3)
public String toLocalizedPattern()

{ return toPattern(true); } (c4)
private String toPattern(boolean localized) {

StringBuffer res = new StringBuffer(); (c5)
if (getMaxIntDigits() == 0) (c6)

return res.toString(); (c7)
res.append(localized ? (c8)

symbols.getSeparator():SEPARATOR); (c9)
return res.toString(); (c10)

}
private FormatSymbols symbols;
private static final char SEPARATOR = ’,’;

}

Figure 1: Sample classes based on package java.text.

call site that may invoke some external method for some re-
ceiver class, the graph should contain an artificial edge from
m to callee with the corresponding label.

3.2 Running Example
We illustrate the analysis using the sample component in

Figure 1. The component contains classes based on code
from the standard package java.text. NumberFormat is the
root of a hierarchy for parsing and formatting of numbers.
DecimalFormat implements this functionality for decimal
numbers. FormatSymbols stores symbols that are necessary
for locale-specific formatting. We considered some of the
code from package java.text, and through simplifications
and modifications obtained the sample code in Figure 1. For
ease of explanation, labels ci are attached to all call sites.

Figure 2 shows a possible call graph for this component.
For this example, we assume that all public methods in
the component may be called by non-component code, and
therefore the graph contains edges from caller to these meth-
ods. These artificial edges have empty labels. The remaining
edges in the graph are labeled with the corresponding call
site; in this example, the receiver classes are obvious and are
not shown explicitly as part of edge labels. Note that all call
graph edges in Figure 2 are feasible—that is, it is possible
to exercise each edge at run time.

3.3 Calling Context Trees
A calling context tree is a data structure originally pro-

posed by Ammons et al. [2] for the purposes of context-
sensitive profiling. The root of the tree represents the start-

4

caller

getMaxIntDigits getSeparator setSeparator setMaxIntDigits

getDefault

DecimalFormat getSymbolstoPattern toLocalizedPattern

FormatSymbols

c1

toPattern(boolean)

c6 c9

callee

c5 c7 c8 c10

c2c3 c4

Figure 2: Component-level call graph.

ing point of the program, and each tree node n represents
a particular call chain containing n and all of its ancestors
in the tree. Edges represent relationships of the form “call
site ck inside procedure pi invokes procedure pj”. The data
structure is built at run time, and is used to gather frequency
information and other dynamic metrics for call chains.

We have modified the approach from [2] in several dimen-
sions. First, since we are interested in analyzing a compo-
nent instead of a complete program, we associate a separate
calling context tree with each entry method in the compo-
nent. In the component-level call graph, an entry method
has an incoming artificial edge which shows that the method
may be called by non-component code. Thus, we create a
forest of context calling trees. Second, we build the trees us-
ing static analysis, which allows their use for various applica-
tions: for example, to define test coverage requirements, to
represent possible calling behavior in program understand-
ing tools, and to provide call chain information to other
static analyses. As described in Section 4, a subsequent dy-
namic analysis can traverse the trees at run time in order
to gather coverage information and other metrics. Third,
since the set of all possible static call chains could be large,
the analysis uses a “stopping” mechanism to restrict the set
of represented call chains and to filter out some chains that
are infeasible. Furthermore, we allow different treatment
of recursion. Finally, since we are interested in analysis of
object-oriented software, we augment tree edges with infor-
mation about the receiver class of the invocation.

3.4 Tree Construction
Figure 3 shows the algorithm for constructing a context

calling tree for an entry method. The algorithm maintains
a list of call graph edges that correspond to the current
chain, and attempts to extend the chain with a new edge.
We use label(e) to denote the pair (ck, X) of a call site
and a receiver class associated with call graph edge e. The
call to createNewChild at line 10 creates a new tree node
corresponding to m′, and adds it as a child of tree node t;
the newly created tree edge is labeled with label(e).

Boolean function stop used at line 4 encodes a stopping
criterion for building the tree. Such a criterion is a param-
eter of the analysis and can play two roles. First, it allows
filtering of call chains that are not “interesting” for the in-
tended uses of the analysis. For example, if the chains are

ContextForest forest;
boolean use backedges;
proc buildTree(Method entry)
1 TreeNode root = forest.createNewRoot(entry);
2 build(entry,root,new EdgeList());
proc build(Method m, TreeNode t, EdgeList chain)
3 for each e ∈ OutgoingCallGraphEdges(m)
4 if (stop(chain,e)) continue;
5 Method m′ = target(e);
6 if (not inComponent(m′)) continue;
7 if(use backedges and m′ ∈ chain)
8 forest.createNewBackedge(t,m′ ,label(e));
9 continue;
10 TreeNode t′ = forest.createNewChild(t,m′,label(e));
11 chain.append(e);
12 build(m′,t′,chain);
13 chain.removeLastElement();

Figure 3: Algorithm for tree construction.

used to define test coverage requirements, this filter can con-
trol the strength of the requirements. Similarly, for reverse
engineering of UML interaction diagrams (e.g., [29]), the
stopping criterion can filter out all calls that are not part of
the object interactions under consideration.

Another use of the filter is to prevent the creation of in-
feasible call chains. If it can be determined that a call
graph edge e is infeasible under the calling context repre-
sented by chain, the edge can be ignored. In our imple-
mentation, we use the following simple infeasibility test: for
any call through this, the receiver class associated with
e should match the receiver class associated with the last
edge in chain. Of course, more sophisticated approaches
are possible—for example, context-sensitive class analyses
such as k-CFA [23, 11] can provide information that allows
filtering of some infeasible chains.

Another parameter of the analysis is the treatment of re-
cursion, encoded by boolean flag use backedges. The orig-
inal definition by Ammons et al. represents recursion by
creating a backedge from a tree node to some ancestor of
that node.1 If use backedges is true, our analysis uses the
same approach (lines 7–9). The call to createNewBackedge

at line 8 traverses the ancestors of t, finds the ancestor node
t′ that corresponds to m′, and creates a backedge from t to
t′ labeled with label(e). If the flag is false, recursion is un-
rolled until the stopping criterion indicates that no further
unrolling is necessary; of course, the criterion must guaran-
tee that the unrolling eventually terminates. Such unrolling
is useful for testing of recursion when the call chains rep-
resent test coverage requirements. For example, if method
m invokes itself, then the inclusion of k consecutive occur-
rences of m in a call chain indicates that during testing, at
least k−1 repetitions of the recursion must be executed.

Example. Figure 4 shows part of the forest of calling
context trees for the example from Figure 2, with stopping
criterion chain.size()==2. The creation of the dotted edges
to getDefault is prevented by this stopping criterion. Calls
to external code, represented in Figure 2 as artificial edges
to callee, are not added to the trees due to the check at line
6. Note that call chain (n1, n2, n4) is infeasible: regardless of
how the component is invoked, the chain cannot be exercised
because localized is false.

1Thus, the data structure is not strictly a tree. Due to the clear
separation between tree edges and backedges, this is not an issue.

5

n3: getMaxIntDigits n7: getMaxIntDigits

n10: FormatSymbols

n11: getSeparator

n12: getDefault

c1

n4: getSeparator

getDefault

(not created)

n8: getSeparator

getDefault

(not created)

n9: DecimalFormat

c2

n1: toPattern

n2: toPattern(boolean)

c3

n5: toLocalizedPattern

n6: toPattern(boolean)

c4

c6 c9 c6 c9

Figure 4: Examples of context calling trees.

4. DYNAMIC ANALYSIS
This section presents a dynamic call chain analysis which

takes as input the calling context trees for all entry methods,
performs run-time traversals of these trees, and gathers dy-
namic information related to the underlying call chains. We
focus the discussion on the approach for traversing the trees.
The run-time information gathered during these traversals
depends on the intended use of the dynamic analysis. For ex-
ample, frequency information may be collected for the pur-
poses of program understanding and performance optimiza-
tion. Section 5 describes the information gathered for test
coverage tracking in our coverage tool.

4.1 Instrumentation
The dynamic analysis employs two kinds of code instru-

mentation. First, we need instrumentation at the beginning
and at the returns of each entry method. This instrumen-
tation creates run-time events of the form entered (m) and
exited (m), where m is an entry method. Second, we need
instrumentation immediately before and immediately after
certain call sites. For a call site c, the generated run-time
events are before(c, X) and after(c, X), where X is the class
of the receiver object. At run time, X can be obtained
through reflection. If c is a call to a static method, we use
X = none. Call site instrumentation is needed only for call
sites that correspond to edges in the input forest, and for
call sites that have outgoing call edges to non-component
code (i.e., exit call sites).

Example. For the code in Figure 1 and the trees in
Figure 4, method entry/exit instrumentation is inserted for
all public methods. Call site instrumentation is inserted for
{c1, c2, c3, c4, c6, c9} because they are included in the forest,
and for {c5, c7, c8, c10} because they are exit call sites (i.e.,
they are labels of artificial edges to callee in Figure 2).

The instrumentation plays two roles. Before/after events
at call sites in the forest allow the dynamic analysis to move
upwards and downwards in the trees. Events at entry meth-
ods and at exit call sites are used to keep track of how the
run-time execution enters and leaves the component.

The dynamic analysis was specifically designed to use in-
strumentation only inside the component. The rest of the
system is not affected, which makes the technique less in-
trusive and easier to use in practice. The alternative is to
require instrumentation inside callers and/or callees of the
component; however, this would make the analysis harder
to use in large and evolving systems. For example, with this

Start Active
entered

exited

before, after,
entered, exited

Limited
before

External
before

after

before, after,
entered, exited

before

after

after

Figure 5: Analysis states and transitions.

alternative approach, changes in callers/callees will require
their re-instrumentation; furthermore, software configura-
tion management will become more complicated because it
has to track both the original and the instrumented versions
of many components. Another design goal was to avoid un-
necessary instrumentation in the component—for example,
for call sites inside the component that are not related to
the trees or to the component boundaries. This is impor-
tant when we have a large component, but the call chains of
interest only cover a small subset of this component.

4.2 Dynamic Analysis States
We describe the operation of the analysis as transitions

among four internal analysis states. These states represent
certain properties of the run-time execution that is being
tracked by the analysis. State Start represents periods in
the execution when no component methods are active on
the run-time call stack. State Active corresponds to mo-
ments in which the currently active method is represented
by a node in the forest. We use Active.curr to denote the
tree node that corresponds to the currently active method.
State Limited is used when the currently active method is
a component method that is not represented in the forest.
State External models the case when the current method is
not in the component, but it was invoked directly or transi-
tively by a component method.

Figure 5 summarizes the states and the transitions among
them. The dynamic analysis algorithm is based on these
transitions and on some additional information encoded in
counters and stacks, as discussed shortly. Figure 5 and the
remainder of this section describe the case in which com-
ponent reentrance does not occur. Section 4.3 discusses the
generalization of the approach in order to handle reentrance.

4.2.1 StartState
When the dynamic analysis is activated, the initial state

is Start . At this moment, there should be no component
methods on the run-time call stack. If the state is Start and
a run-time event entered (m) is observed, the state is changed
to Active, and the current node Active.curr is initialized
with the root of the tree for entry method m.

4.2.2 ActiveState
While in state Active , the analysis uses the run-time events

to decide how to traverse the tree. Event before(c, X) moves
Active.curr down one level in the tree, by following the tree
edge labeled with (c, X). The algorithm in Figure 3 guar-
antees that there is at most one edge with this label com-
ing out of Active.curr . If no such edge exists, the state is
changed to Limited or External as described below. Intu-
itively, run-time event before(c, X) means that the flow of
control is about to enter the corresponding callee method
under calling context (c, X). Event after(c, X) means that

6

the flow of control has just returned back to the caller; thus,
the analysis follows the corresponding tree edge backwards,
and Active.curr is moved one level up in the tree.

If use backedges was turned on for the static analysis,
event before(c, X) may correspond to a backedge. In this
case, the backedge is followed and Active.curr is set to the
appropriate ancestor node n. Furthermore, the backedge
is pushed onto a stack associated with n. Subsequently,
when Active.curr = n and the analysis observes an after
event corresponding to the top of n’s stack, the backedge
is popped from the stack and Active.curr is moved to the
backedge source.

Event exited (m) triggers a transition Active → Start when
the execution of entry method m completes, Active.curr is
the root of the corresponding tree, and the stack of backedges
for the root is empty.

While in the active state, events entered and exited may
also be observed. This happens, for example, when one
entry method calls another entry method. In Figure 5, this
possibility is represented by entered and exited associated
with the transition Active → Active . Such events should be
ignored by the analysis, with the exception of exited at the
root of the tree.

Example. In Figure 1, consider the invocation of method
getSeparator by some code external to the component.
Suppose that the dynamic analysis takes as input the trees
in Figure 4 and the single-node trees for the remaining en-
try methods. From state Start , event entered(getSeparator)
triggers a transition to Active with Active.curr = n11. Event
before(c1,FormatSymbols) changes Active.curr to n12. Since
getDefault is an entry method, the corresponding events
entered and exited are observed and ignored by the analysis.
After getDefault completes, the execution returns to c1 and
after(c1,FormatSymbols) occurs. This changes Active.curr
back to n11. The return from getSeparator generates event
exited(getSeparator), which triggers Active → Start .

4.2.3 LimitedState
Due to the stopping criterion in the static analysis, some

of the run-time call chains may be missing from the for-
est. To handle this case, we introduce an analysis state
Limited to represent execution states in which the current
active method is in the component, but there is no corre-
sponding tree node. For example, for the trees shown in
Figure 4, an invocation of toLocalizedPattern may even-
tually lead to a call to getDefault. However, node n8 does
not have a child corresponding to this call. Therefore, when
Active.curr = n8, an event before(c1, FormatSymbols) will
trigger a transition Active → Limited . Note that a child
may also be missing because the target method is outside of
the component (line 6 in Figure 3). For example, for Fig-
ure 4, Active.curr = n6 and event before(c10,StringBuffer)
mean that the flow of control is about to leave the compo-
nent. In this case a transition Active → External is neces-
sary, as described shortly. To distinguish between these two
cases, the static analysis associates with the forest the set of
call graph edge labels that correspond to calls to component
methods. The dynamic analysis uses this set to choose the
appropriate state transition.

If we encounter an event before(c, X) that triggers a tran-
sition Active → Limited , this “freezes” the traversal. To
resume the traversal, the analysis needs to perform a tran-
sition Limited → Active . In general, we cannot resume the

traversal at the first event after(c, X). The reason is that
additional events before(c, X) may happen in state Limited ,
and the first after(c, X) will correspond to the last event
before , not to the original one.

To solve this problem, we introduce a counter associated
with state Limited . On transition Active → Limited , the
counter is set to 1. For every event before(c, X) which in-
vokes a component method, the counter is incremented. Ev-
ery after event decrements the counter. When the counter
becomes zero, a transition Limited → Active occurs. Note
that if a before event corresponds to the invocation of a
non-component method, we need to perform a transition
Limited → External instead of staying in state Limited .

As with state Active, in state Limited it is possible to ob-
serve events entered and exited due to entry methods being
invoked by other component methods. In Figure 5, this sit-
uation is represented by entered and exited associated with
the transition Limited → Limited . All such events should
be ignored by the analysis.

Example. Consider node n8 in Figure 4. Upon event
before(c1,FormatSymbols), the state becomes Limited and
the execution enters getDefault. For the sake of this exam-
ple, suppose that getDefault were mutually recursive with
getSeparator. If the run-time recursion went through k it-
erations, there would be k events before(c1, FormatSymbols),
followed by k+1 events after(c1,FormatSymbols). Only the
last event should trigger the transition back to Active . While
in Limited , events entered and exited for getDefault and
getSeparator will be observed and ignored by the analysis.

4.2.4 ExternalState
Analysis state External represents a state of the run-time

execution in which the current active method is not a com-
ponent method, but the call stack contains at least one com-
ponent method. As described above, transitions Active →
External and Limited → External will occur when the com-
ponent code invokes a non-component method. Since we
insert instrumentation only inside the component, no run-
time events will be generated by the execution of code that
is external to the component. If this code does not call com-
ponent methods, then the only possible transition is back to
Active or Limited upon receiving an after event. To know
which of these two possible transitions to perform, the dy-
namic analysis has to remember the last state before enter-
ing External , and has to resume the traversal in that state.

Example. For the chains starting at n1 and n5 in Fig-
ure 4, event before(c10,StringBuffer), puts the analysis in
state External . After the execution of toString completes,
after(c10,StringBuffer) changes the state back to Active.
Similar changes occur for call sites c5, c7, and c8.

4.3 Component Reentrance
The approach described above cannot be applied in the

presence of component reentrance—that is, run-time execu-
tions in which the component calls external code, and during
the execution of this external code there is a call back to the
component. The problem is that once a component is reen-
tered, the information related to previous entrances is lost.
For example, in Figure 1, suppose that toLocalizedPattern
contained a call to some external method that in turn calls
toPattern. During the execution of toLocalizedPattern,
the dynamic analysis could enter state External and then
observe event entered(toPattern). If this happens, the anal-

7

ysis should make a transition External → Active and should
start traversing the tree rooted at toPattern. However, af-
ter toPattern returns, the state would become Start and all
information related to the execution of toLocalizedPattern
would be lost.

To solve this problem, the dynamic analysis maintains a
stack of traversals. Each traversal corresponds to an entry
into the component from some external code. When the
component is entered, a new traversal is created and pushed
onto the stack; upon return, the traversal is popped. To
implement this approach, we define the notion of a traversal
as a run-time object that has the following information:

• state: one of Active , Limited , External

• curr: current tree node

• stacks: stacks of backedges for all backedge targets

• counter: counter for state Limited

• prev: previous state, one of Active , Limited

• level: entry level, an integer ≥ 0

The counter is used to decide when to change the traver-
sal state from Limited to Active, as described earlier. State
prev is the traversal state before the traversal went into
External . As discussed above, prev is needed in order to
determine how to change traversal state when a call to exter-
nal code returns. Integer level is the height of the traversal
stack when the traversal was created. This entry level char-
acterizes the depth of reentrance for the traversal.

The dynamic analysis starts at state Start with an empty
traversal stack. Event entered (m) creates a new traversal
and pushes it onto the stack. The traversal is in active state,
with current node being the root of the tree for m, and with
entry level 0. If the flow of control leaves the component,
the traversal state becomes External . If subsequently event
entered (n) is observed, a new traversal with entry level 1 is
created and pushed onto the stack. Eventually, exited (n) is
observed and the traversal is popped from the stack. After
possibly many traversals with entry levels ≥ 1, the flow of
control returns back to the first traversal. Event exited(m)
pops the traversal from the stack (which leaves the stack
empty), and sets the analysis state to Start . Any subsequent
call to an entry method also triggers a sequence of traversal
pushes and pops; upon completion of the sequence, the stack
is empty and the analysis state is Start .

4.4 Restrictions
The dynamic analysis described above is designed under

two restrictions. First, the run-time execution is assumed
to be single-threaded. It may be possible to generalize the
technique for multi-threaded programs by keeping multiple
traversal stacks, one per run-time thread; we are currently
working on this generalization. A second restriction is that
the run-time execution should not involve exceptions that
are caught by the component or by its callers. In order to
handle such exceptions, the static analysis should include
some form of exception flow analysis (e.g., similar to [24]).
We plan to address this issue in the near future.

For the experiments presented in Section 7, we ensured
that these restrictions were satisfied through a combination
of static and dynamic techniques. Using static call graph
analysis, we showed that the analyzed components were not
reachable from the starting points of any threads. Since fi-
nalizers and static initializers (represented in bytecode by

methods <clinit>) can be executed in multi-threaded fash-
ion by the virtual machine, we also ensured that compo-
nent methods were not reachable from non-component fi-
nalizers and <clinit> methods. For finalizers defined in-
side the component, instrumentation was inserted to warn
about their execution. We generalized the dynamic analysis
to handle the execution of static initializers defined in the
component; this technique will be described in a companion
technical report. All catch clauses in the component were
instrumented to warn about exceptions being caught. Ex-
ceptions that would have been normally propagated to the
callers of the component were caught by try-catch blocks in-
serted in the bodies of all entry methods. This combination
of techniques ensured that the restrictions were satisfied for
the experiments described in Section 7.

5. COVERAGE TOOL
Using the framework for static and dynamic analysis, we

built a test coverage tool for Java. The tool takes as input a
component under test (CUT) and a test suite T for this com-
ponent. The static analysis is used to define test coverage
requirements for the suite. During test execution, the dy-
namic analysis tracks the achieved run-time coverage. The
calling context trees are a natural representation of coverage
requirements for call chains: there is one tree node per chain
(i.e., the representation is compact), and it it is easy to find
the longest covered prefix of an uncovered chain, which is
useful when constructing additional test cases.

The tool starts by building a component-level call graph
using fragment class analysis [20], a class analysis technique
designed to analyze incomplete programs. This is achieved
by creating an artificial main method which calls all methods
that are invoked by the given test suite and “simulates” all
possible effects on object references. A whole-program class
analysis is then executed on main, on the CUT, and on any
code reachable from main or the CUT. The resulting call
graph is used as input to the static analysis of call chains.
This approach allows us to compute an over-estimate of all
calling relationships that may be observed during the execu-
tion of any test suite T ′ such that T ′ invokes the same meth-
ods as the given suite T , and the execution of T ′ involves
only classes that are available for analysis by the fragment
class analysis. After running the class analysis, it is trivial
to construct a call graph similar to the one in Figure 2.

Given the component-level call graph, the coverage re-
quirements can be defined using the static analysis frame-
work. In particular, the stopping criterion can be used to
define the set of “interesting” call chains that should be cov-
ered. This could happen interactively—the tester can choose
a set of relevant entry methods, the tool can display all pos-
sible chains of length 1 starting at these methods, the tester
can filter out chains that are not relevant for his testing goal,
and this can continue until the desired breadth and depth of
the trees is achieved. Such a technique may be applicable,
for example, in the context of collaboration integration [5].
This approach for integration testing is based on defining
and testing a sequence of collaborations, where each collab-
oration can be defined (interactively) by a set of call chains.
Similarly, interactive chain definition may be applicable for
integration testing of layered systems [5].

An alternative approach is to compute all chains up to
a certain length, and then (if necessary) to filter out irrel-
evant chains. This may be applicable, for example, when

8

performing testing based on UML interaction diagrams. In
this case, a necessary condition for achieving high coverage
of object interactions is to have high coverage of the corre-
sponding call chains. Since interaction diagrams typically
have limited depth of the represented calling relationships,
the length of the call chains is also limited, and therefore
the stopping criterion can be based on chain length.

In addition to defining the call chains that need to be cov-
ered, a coverage criterion may also define the entry levels at
which they should be covered. This may be used for test-
ing the behavior of the component under reentrance—that
is, situations in which the component calls external code,
and during the execution of this external code there is a
call back to the component. As Szyperski points out [28],
component reentrance creates the possibility of observing
invalid intermediate states, in which case maintaining cor-
rectness becomes difficult. To ensure correct behavior in this
case, coverage criteria may require a certain degree of reen-
trance to be exercised during testing. Thus, for each node in
a calling context tree, a set of required entry levels may be
defined. For example, if we require a chain nr, . . . , ns (nr is
an entry method) to be covered at entry level 1, the execu-
tion of the test suite must create the following configuration
of the run-time call stack:

m1, . . . , mp−1, np, . . . , nq−1, mq, . . . , mr−1, nr, . . . , ns−1, ns

Here the bottom of the stack is shown on the left; methods
mi are external to the CUT, and methods nj are in the CUT.
A variety of coverage requirements can be defined in this
manner: e.g., “n must be covered for some level l > 0”, or
“n must be covered for l = 1”. Of course, such requirements
may be infeasible for some tree nodes.

Recall from Section 4.3 that the dynamic analysis tracks
precisely the depth of reentrance for each tree traversal.
Therefore, for each tree node it is possible to know exactly
the entry levels at which it was traversed at run time. This
allows the coverage tool to support coverage requirements
that take into account component reentrance, in order to en-
sure correct behavior of complicated interactions (e.g., call-
backs) between the CUT and the rest of the system.

For the experiments presented later, we defined the cov-
erage requirements in the following manner. Starting from
the artificial main method, we considered all call chains con-
taining at most k call graph edges. In each chain, every
maximal subsequence of CUT-only methods—that is, sub-
sequence with no adjacent CUT methods—was mapped to
a corresponding chain in the calling context trees. (This
required some trivial additions to the algorithm from Fig-
ure 3.) Thus, the stopping criterion was based on the chain
length, counting from main. This approach was used because
we plan to generalize the tool to support testing based on
interaction diagrams, and k-limiting of chain length is the
appropriate stopping criterion in this context. If within a
single chain there were multiple CUT-only maximal subse-
quences, they represented potential component reentrance;
the first subsequence in the chain defined coverage require-
ments at entry level 0, the second one at entry level 1, etc.

The stopping criterion also used the simple infeasibility
test described in Section 3.4: for any call through this, the
receiver class of the call graph edge matched the receiver
class of the last edge in the chain. Since we were interested
in achieving coverage of recursion during testing, the static
analysis was run with recursion unrolling turned on (i.e.,

backedges were not used). Finally, we computed and mea-
sured coverage requirements at three different granularities:
(1) method mi invokes method mj , (2) call site ck inside
mi invokes mj , and (3) call site ck inside mi invokes mj

on an instance of X. Choices (2) and (3) result in more
comprehensive coverage requirements, while (1) produces a
coarser-grain representation for which coverage may be eas-
ier to achieve.

6. STATIC ANALYSIS IMPRECISION
As discussed earlier, the static analysis described in Sec-

tion 3 can produce infeasible call chains. For example, in
Figure 4, (n1, n2, n4) is infeasible even though all underly-
ing call graph edges are feasible. Such infeasibility presents
a serious problem for program understanding and testing,
because it provides misleading information to tool users.
In our coverage tool we had the opportunity to evaluate
the degree of this imprecision. Through a somewhat labor-
intensive process (about one person-month), we wrote test
suites that achieved the highest possible coverage for sev-
eral coverage criteria. Substantial effort was made to ensure
that the best possible coverage was achieved. For each com-
ponent, one of the authors constructed (1) a suite that he
believed to cover all feasible chains, and (2) arguments of
why each of the remaining chains could not be covered. The
other author then considered all chains not covered by the
suite, and independently constructed his own arguments of
infeasibility. The two authors then examined each other’s
arguments. After coming to an agreement for each of the
uncovered chains, these chains were deemed infeasible and
due to the imprecision of the static analysis.

The experiment described above allows exact evaluation
of the precision of the static call chain analysis. Since pre-
cision is a critical issue for the use of any static analysis
in software engineering tools, such results provide valuable
insights for analysis designers and tool users. Tradition-
ally, static analysis research evaluates analysis precision by
comparing several static analyses with each other. Some
researchers have also compared static analysis results with
information collected at run time for some set of program
inputs. However, neither of these approaches provides a pre-
cise answer to the the key question: what is the difference
between the static analysis solution and the “perfect” solu-
tion? Our results provide a precise answer to this question.

Clearly, this evaluation approach has certain limitations.
For example, a potential validity threat is the possibility of
human error when determining the perfect solution. An-
other obvious concern is the scalability of such evaluations.
Nevertheless, we believe that this approach is valuable be-
cause it leads to insights that cannot be obtained through
traditional techniques. More in-depth discussion of this topic
is available in [18].

For analysis designers, understanding why analyses are
imprecise is crucial for future improvements. Our goal was
to evaluate the limits of current class analysis technology
with respect to the computation of call chains. We consid-
ered one particular source of imprecision: the standard ap-
proach of imprecise modeling for conditions in if, switch,
while, etc. For example, at if(p*q>5).., class analysis
does not attempt to track the values of p and q and to de-
cide whether the condition is true or false; rather, the actual
condition is abstracted away and both the true and the false
outcome are considered possible. Some class analyses may

9

attempt to track conditions involving reference values: e.g.,
(x instanceof Y), (x == y), or (x == null). However,
class analyses typically do not track conditions involving
non-reference values.

We extended our study to estimate the degree of impre-
cision due to this common approximation. To achieve this,
we defined an abstracted semantics for Java which differs
from the standard semantics only in its treatment of certain
conditions. An irrelevant condition is a condition which
does not involve the reference equality operators == and
!= [10, Section 15.21.3] and the type comparison operator
instanceof [10, Section 15.20.2]. In the abstracted seman-
tics, each run-time evaluation of an irrelevant condition re-
sults in a random choice between true and false. Compared
with the standard semantics, the only difference is the choice
of the next statement to be executed: after evaluating an ir-
relevant condition, rather than using the resulting boolean
value, the execution randomly chooses one of the two pos-
sible next statements. The semantics of switch statements
is modified in a similar fashion.

The abstract semantics captures the common approxima-
tion discussed earlier: all conditions that do not involve ref-
erence values (i.e., instanceof, or == and != for references)
are abstracted away. In this model, there may be multi-
ple possible valid executions for the same program on the
same input. If a call chain occurs during one of these valid
executions, this means that any static analysis which ab-
stracts away conditions involving non-reference values must
report the chain as feasible (due to the safety of the anal-
ysis). This theoretical model allows us to draw conclusions
about all possible static analyses that employ this approx-
imation. Thus, if a call chain is infeasible in the standard
Java semantics, but is feasible in the abstracted semantics, it
will be erroneously reported as feasible by any such analysis.
We refer to such chains as worst-case chains.

Example. Consider chain (n1, n2, n4) in Figure 4. This
chain is feasible in the abstracted semantics because both
outcomes of (localized ? :) are possible regardless of
the value of localized. If a static analysis uses the standard
approximation described above, it will not be able to detect
this chain as infeasible.

In our experiments we considered all chains that were re-
ported by the static analysis from Section 3, based on a call
graph computed by an Andersen-style fragment class analy-
sis. For each chain that was actually infeasible (i.e., it could
not be covered by our test suites), we attempted to construct
manually an execution in the abstracted semantics for which
the chain was feasible. Any chain for which such an execu-
tion was constructed successfully is a worst-case chain.

7. EMPIRICAL STUDY
For our experiments we used the components summa-

rized in Table 1. These components were based on some
of the test cases from the Mauve open-source test suite
(sources.redhat.com/mauve). We considered six sets of re-
lated test cases and the functionalities they exercised. For
each functionality, we defined a corresponding component
containing the classes that implemented this functionality.

The components include classes from standard packages
java.util.zip and java.text. The first two components
are related to processing of GZIP and ZIP files, respectively.
The remaining components contain functionality for text
collation, formatting of dates, formatting of decimal num-

(1) (2)#Classes (3) #Methods
Component (a) CUT (b) All (a) CUT (b) All
gzip 6 199 41 2316
zip 5 195 40 2277
collator 12 203 160 2394
date 7 205 143 2504
decimal 7 198 141 2360
boundary 8 199 83 2302

Table 1: Analyzed Components.

bers, and identifying boundaries in text. Column (2a) in
Table 1 shows the number of classes in the CUT, and (3a)
shows the number of methods in these classes. Column (2b)
contains the number of classes that are directly or transi-
tively referenced by CUT classes. The number of methods
in classes from (2b) is shown in (3b).

Our implementation is built on top of the Soot frame-
work (www.sable.mcgill.ca), and employs RTA [4] and the
Andersen-style points-to analysis from [19] to compute the
component-level call graph. Using different values of param-
eter k and different granularities of the call chains, we com-
puted the coverage criteria as described in Section 5. For
each node in the forest, the coverage requirements define
the set of entry levels at which the node should be covered.
We considered each pair of a node and an entry level for the
node to be a separate chain. The number of such chains was
measured in several ways. First, we measured the number of
chains covered by the Mauve tests. Next, these tests were
enhanced to achieve the highest possible coverage, as dis-
cussed in Section 6; this process revealed all feasible chains
in the coverage requirements. The number of feasible chains
was compared with the number of chains reported by two
versions of the static analysis, one using Andersen’s analysis
and the other using RTA.

The results from these experiments are shown in Table 2.
For each component, there are two rows labeled (a) and (b).
Row (a) corresponds to trees in which edges represent rela-
tionships “call site ck inside mi invokes mj on an instance
of X”, while row (b) is for trees with edges representing re-
lationships “mi invokes mj”. A third possibility is to distin-
guish call sites without taking into account receiver classes.
The results for this variation are not included in the table
because they were the same as the results from rows (a).

Part (1) of Table 2 shows the number of feasible call chains
for k = 1, 2, 3, 4. Part (2) lists the number of feasible chains
that were not covered by the Mauve tests. For example, for
collator(a) and k = 4, 118 out of the 181 feasible chains
were not covered. Parts (3) and (4) show the number of
infeasible call chains that were reported by the static analy-
sis, using RTA and Andersen’s analysis to compute the call
graph. For example, for collator(a) and k = 4, RTA re-
ported 238 possible chains of which 57 were infeasible. Since
RTA is less precise that Andersen’s analysis, the numbers in
part (3) are greater than or equal to the corresponding num-
bers in part (4).

7.1 Evaluation of Mauve
For several components, the coverage achieved by Mauve

tests indicates possible test deficiencies. We investigated the
chains that were not covered, as part of the effort to write
additional test cases that achieved the highest possible cov-
erage. For example, for decimal, some of the uncovered

10

(1) Feasible (2) Mauve (3) RTA (4) Andersen (5) InfPrefix
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 3 4

gzip (a) 3 9 20 47 -1 -3 -16 +1 +4 +13 +1 +3 0% 100%
gzip (b) 3 9 20 36 -1 -3 -9 +1 +4 +13 +1 +3 0% 100%
zip (a) 2 7 25 43 -2 -6 -14 +1 +9 +1 +8 0% 43%
zip (b) 2 7 15 21 -2 -6 -11 +1 +7 +1 +6 0% 60%
collator (a) 8 36 105 181 -14 -63 -118 +3 +40 +57 +3 +31 +37 36% 33%
collator (b) 8 22 41 66 -5 -11 -19 +10 +18 +1 +2 0% 0%
date (a) 14 20 26 33 +7
date (b) 14 20 26 33 +7
decimal (a) 21 57 159 208 -2 -15 -45 -61 +1 +3 +72 +153 +2 +71 +152 0% 1%
decimal (b) 21 48 127 166 -2 -7 -27 -41 +1 +2 +32 +54 +1 +31 +53 0% 5%
boundary (a) 10 30 107 194 -1 -4 -12 -36 +1 +3 +3 +3
boundary (b) 10 28 63 85 -1 -3 -6 -8 +1 +2 +2 +2

Table 2: Number of call chains.

chains were due to insufficient testing of certain boundary
values such as positive infinity, Not-a-Number (NaN) [10],
and double floating-point numbers with at least 127 dig-
its before the decimal point. As another example, some of
the chains in collator were not covered due to the lack of
testing of the full set of decomposition rules for text com-
parison. The additional tests we wrote covered these chains
and allowed us to distinguish between feasible and infeasi-
ble chains. Eventually, we plan to contribute our additional
tests to the Mauve open-source repository.

7.2 Static Analysis Imprecision
Parts (1), (3), and (4) of Table 2 evaluate the imprecision

of the static call chain analysis. For rows (a) and k = 4,
242 chains (25.5%) out of the 948 chains reported by the
RTA-based analysis were infeasible; for the Andersen-based
analysis, 200 chains (22.1%) out of the reported 906 chains
were infeasible. For rows (b) and k = 4, 101 (19.9%) out of
the reported 508 chains were infeasible for the RTA-based
analysis, and 64 (13.6%) out of the reported 471 chains were
infeasible for the Andersen-based analysis, The infeasible
chains occur mostly in two components with complicated
internal logic (collator and decimal).

Part (5) shows how many infeasible chains have infeasible
prefixes, which is an indication of how many new chains
required non-trivial effort to determine their infeasibility.
For k = 3 and k = 4, we considered the number of infeasible
chains introduced when going from k−1 to k in part (4). For
example, for collator(a), there are 28 new infeasible chains
when k is increased from 2 to 3, and 6 new infeasible chains
when k is increased from 3 to 4. If such a chain has a parent
node (at the same entry level) that is also infeasible, the
chain has an infeasible prefix. The corresponding columns
in (5) show what percentage of the new infeasible chains
have infeasible prefixes. For example, in gzip, all new chains
introduced when k is increased from 3 to 4 have infeasible
prefixes, while for decimal almost all new infeasible chains
have feasible prefixes.

7.3 Worst-Case Call Chains
As described in Section 6, we used an abstracted seman-

tics to identify infeasible chains that were worst-case chains.
Surprisingly, for collator(a) and decimal(a), all 189 in-
feasible chains reported by the Andersen-based analysis for
k = 4 were determined to be worst-case chains. Thus, more
powerful class analyses would not have resulted in any preci-
sion improvements. For these two components, using Ander-

sen’s analysis to compute the call graph provided the best
possible call chain precision that may be expected from tra-
ditional class analysis approaches. Overall for the Andersen-
based analysis with k = 4, 94.5% of the infeasible chains for
rows (a) and 85.9% for rows (b) were worst-case chains.

This precision evaluation leads to an interesting result: for
our subject components, Andersen’s analysis is very close to
the precision limits that may be expected from class analy-
ses. We are not aware of any previous work that attempts
to investigate such precision limits. Clearly, more experi-
ments will be necessary to obtain similar measurements for
additional subject components. If a large portion of the in-
feasible call chains in these experiments are worst-case call
chains, this will imply that analysis designers have to look
beyond traditional techniques for class analysis. For exam-
ple, it may be necessary to investigate approaches that take
into account context-dependent conditions that guard the
execution of method invocations.

8. RELATED WORK
The closest related work to our investigation is by Souter

and Pollock [25]. This work considers a particular source
of call chain infeasibility, referred to as type infeasibility.
This infeasibility is due to different types being propagated
to the same polymorphic call site along different paths in
the call graph. The work in [25] defines the conditions un-
der which this infeasibility occurs, and presents an empirical
evaluation of the number of type infeasible chains. The ex-
periments provide indirect estimates of the number of such
chains, and the precision of these estimates remains unclear.
In contrast, our work provides a direct evaluation of the
number of infeasible chains, and characterizes a source of
imprecision which is independent of type propagation.

Context-sensitive class analyses employ some approxima-
tion of calling context, and can identify the infeasibility of
a call graph edge under certain contexts. Context is mod-
eled either through some abstract of the values of method
parameters, or by the top k call sites on the call stack [11].
The scalability of most of these approaches remains unclear.
Furthermore, as indicated by our investigation of precision
limits, there may be other significant sources of imprecision
that cannot be tackled with context sensitivity.

Some previous work proposes techniques for identifying
infeasible paths in control-flow graphs, and for using this in-
formation to improve the precision of data-flow analysis [12,
9, 6]. Such approaches may be able to address some of
the problems due to imprecise modeling of conditions. At

11

present, it is unclear how these techniques can be combined
with class analysis to filter out infeasible chains.

9. CONCLUSIONS AND FUTURE WORK
We present a parameterized framework for static and dy-

namic analysis of call chains that can be easily adapted for
various uses in software tools. Using the framework, we have
built a coverage tool that supports several coverage criteria.
The tool can be used for integration testing, for testing based
on interaction diagrams, and for testing of component reen-
trance. Our experiments provide new insights about the de-
gree of call chain analysis imprecision and the sources of this
imprecision. The experiments confirm the value of investi-
gations of analysis imprecision, and raise several interesting
questions for future work.

Additional data, gathered by us and by other researchers,
will be necessary to confirm the results of this study and to
gain better understanding of the precision of call chain anal-
ysis. Even though obtaining such data is labor-intensive, it
reveals important properties of different static analyses that
affect the usefulness of these analyses in various software
tools. Inclusion-based flow- and context-insensitive analyses
appear to be a good starting point for such experiments: in
our study, the Andersen-style analysis was capable of achiev-
ing precision very close to the theoretical limits.

Our results indicate that future investigations would ben-
efit from evaluations of the theoretical limits of analysis pre-
cision, similar to the approach from Section 6. If more re-
sults confirm that substantial imprecision is introduced by
abstracted modeling of conditions, traditional class anal-
ysis techniques will have to be extended to track (some)
non-reference values. Several techniques provide possibili-
ties for such extensions: for example, interprocedural con-
stant propagation, or approaches for identifying infeasible
paths in control-flow graphs. For imprecision that cannot
be avoided even with such techniques, static analyses may
have to be augmented to work with user assertions.

Acknowledgments. We would like to thank the ISSTA
reviewers for their helpful comments.

10. REFERENCES
[1] A. Abdurazik and J. Offutt. Using UML collaboration

diagrams for static checking and test generation. In Int.
Conf. Unified Modeling Language (UML’00), pages
383–395, 2000.

[2] G. Ammons, T. Ball, and J. Larus. Exploiting hardware
performance counters with flow and context sensitive
profiling. In Conf. Programming Language Design and
Implementation, pages 85–96, 1997.

[3] L. O. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, 1994.

[4] D. Bacon and P. Sweeney. Fast static analysis of C++
virtual function calls. In Conf. Object-Oriented
Programming Systems, Languages, and Applications, pages
324–341, 1996.

[5] R. Binder. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley, 1999.

[6] R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow
information using infeasible paths. In Symp. Foundations
of Software Engineering, pages 361–377, 1997.

[7] L. Briand and Y. Labiche. A UML-based approach to
system testing. J. Software and Systems Modeling, 1(1),
2002.

[8] F. Fraikin and T. Leonhardt. SeDiTeC—testing based on
sequence diagrams. In Int. Conf. Automated Software
Engineering, pages 261–266, 2002.

[9] A. Goldberg, T. C. Wang, and D. Zimmerman.
Applications of feasible path analysis to program testing.
In Int. Symp. Software Testing and Analysis, pages 80–94,
1994.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison-Wesley, 2 edition, 2000.

[11] D. Grove and C. Chambers. A framework for call graph
construction algorithms. ACM Trans. Programming
Languages and Systems, 23(6):685–746, Nov. 2001.

[12] L. H. Holley and B. Rosen. Qualified data flow problems.
IEEE Trans. Software Engineering, 7(1):60–78, Jan. 1981.

[13] P. Jorgenson and C. Erickson. Object-oriented integration
testing. Commun. ACM, 37(9):30–38, Sept. 1994.

[14] O. Lhoták and L. Hendren. Scaling Java points-to analysis
using Spark. In Int. Conf. Compiler Construction, LNCS
2622, pages 153–169, 2003.

[15] D. Liang, M. Pennings, and M. J. Harrold. Extending and
evaluating flow-insensitive and context-insensitive points-to
analyses for Java. In Workshop on Program Analysis for
Software Tools and Engineering, pages 73–79, June 2001.

[16] T. McCabe and C. Butler. Design complexity measurement
and testing. Commun. ACM, 32(12):1415–1425, Dec. 1989.

[17] M. Robillard and G. Murphy. Concern graphs: Finding and
describing concerns using structural program dependencies.
In Int. Conf. Software Engineering, 2002.

[18] A. Rountev, S. Kagan, and M. Gibas. Evaluating the
imprecision of static analysis. In Workshop on Program
Analysis for Software Tools and Engineering, June 2004.

[19] A. Rountev, A. Milanova, and B. G. Ryder. Points-to
analysis for Java based on annotated constraints. In Conf.
Object-Oriented Programming Systems, Languages, and
Applications, pages 43–55, Oct. 2001.

[20] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class
analysis for testing of polymorphism in Java software.
IEEE Trans. Software Engineering, 2004.

[21] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison-Wesley,
1999.

[22] B. G. Ryder. Dimensions of precision in reference analysis
of object-oriented programming languages. In Int. Conf.
Compiler Construction, 2003.

[23] O. Shivers. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, Carnegie Mellon University, 1991.

[24] S. Sinha and M. J. Harrold. Analysis and testing of
programs with exception handling constructs. IEEE Trans.
Software Engineering, 26(9):849–871, Sept. 2000.

[25] A. Souter and L. Pollock. Characterization and automatic
identification of type infeasible call chains. Information
and Software Technology, 44:721–732, 2002.

[26] A. Souter and L. Pollock. The construction of contextual
def-use associations for object-oriented systems. IEEE
Trans. Software Engineering, 29(11):1005–1018, Nov. 2003.

[27] M. Streckenbach and G. Snelting. Points-to for Java: A
general framework and an empirical comparison. Technical
report, U. Passau, Sept. 2000.

[28] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 2nd
edition, 2002.

[29] P. Tonella and A. Potrich. Reverse engineering of the
interaction diagrams from C++ code. In Int. Conf.
Software Maintenance, pages 159–168, 2003.

[30] Y. Wu, M.-H. Chen, and J. Offutt. UML-based integration
testing for component-based software. In Int. Conf.
COTS-Based Software Systems, 2003.

