
SOFT TYPING

Robert Cartwright, Mike Fagan*

Department of Computer Science

Rice University

Houston, TX 77251-1892

Abstract

Type systems are designed to prevent the improper

use of program operations. They can be classified as

either static or dynamic depending on when they de-

tect type errors. Static type systems detect potential

type errors at compile-time and prevent program ex-

ecution. Dynamic type systems detect type errors at

run-time and abort program execution.

Static type systems have two important advantages

over dynamic type systems. First, they help program-

mers detect a large class of program errors before exe-

cut ion. Second, the y extract information that a com-

piler can exploit to produce more efficient code. The

price paid for these advantages, however, is a loss of

expressiveness, generality, and semantic simplicity.

This paper presents a generalization of static and

dynamic typing—called soft typing--that combines

the best features of both approaches, The key idea un-

derlying soft typing is that a static type checker need

not reject programs that contain potential type errors.

Instead, the type checker can insert explicit run-time

checks around “suspect” arguments of p~imitive op-

erations, converting dynamically typed programs into

statically type-correct form. The inserted run-time

checks identify program phrases that may be erro-

neous. For soft typing to be effective, the type system

must avoid inserting unnecessary run-time checks. To

accomplish this objective, we have developed an exten-

sion of the ML type system supporting union types

and recursive types that assigns types to a wider class

*The work of both authors was partially supported by NSF
and DARPA.

Permission to copy without fee ell or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantege, the ACM copyright notice and the title of the publication and

its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to

republish, requires a fee and/or specific permission.

‘@ 1991 ACM 0-89791 -428 -7/91 /0005 /0278,,, $1 ,50

~

Proceedings of the ACM SIGPLAN ’91 Conference on

Programming Language Design and Implementation

Toronto, Ontario, Canada, June 26-28, 1991.

of programs than ML. We have also developed an al-

gorithm for frugally inserting run-time checks in pro-

grams that do not type check.

1 Introduction

Computations in high-level programming languages

are expressed in terms of op erat ions on abstract values

such as integers, matrices, sequences, trees, and func-

tions. Most of these operations are partial: they are

defined only for inputs that satisfy certain constraints.

For example, the head operation on lists (car in LISP)

is defined only for non-empty lists.

Since the programs submitted to a language transla-

tor may contain undefined applications, the language

must provide some mechanism for coping with them.

For this reason, most programming languages impose

a type discipline on program text. This discipline

can either be static or dynamic. A statically typed

language prevents undefined applications by enforc-

ing syntactic restrictions on programs that guarantee

every application is defined. The language translator

identifies ill-formed applications and refuses to execute

programs containing them. ML[19] is a prominent ex-

ample of a statically typed language.

In contrast, a dynamically typed language accepts

all programs. Undefined applications are detected

during program execution by tests embedded in the

code implementing each primitive operation. If an op-

eration’s arguments are not acceptable, the operation

generates a program exception, transferring control to

an exception handler in the program or the operat-

ing system. Scheme[5] is a prominent example of a

dynamically typed programming language.

Static typing has two important advantages over dy-

namic typing. They are:

Error Detection: The system flags all “suspect”

program phrases before execution, helping the

programmer detect program errors early in the

programming process.

278

Optimization: The compiler can produce bet-

ter code by optimizing the representation of each

type and eliminating most run-time checks.

However, these advantages are achieved at the loss of

Expressiveness: No type checker can decide

whether or not an arbitrary program will generate

any undefined applications. Therefore, the type

checker must err on the side of safety and reject

some programs that do not contain any semantic

errors,

Generality: Some abstractions cannot be encap-

sulated as procedures because they do not type

check, As a result, a programmer may be forced

to write many different instances of the same ab-

straction. In Pszcal, it is impossible to write a

sort procedure applicable to arrays of different

lengths; a separate sort procedure must be writ-

ten for each array index set. In ML, it is impossi-

ble to write the polyadic t aut function presented

in Section 6; a separate function must be written

for each arity.

Semantic Simplicity: The type system is a com-

plex set of syntactic rules that a programmer must

master to write correct programs. Otherwise, he

will repeatedly trip over the syntactic restrictions

imposed by the type checker.

In this paper, we present a generalization of static

and dynamic typing—called SOD typing--that com-

bines the best features of both approaches. A soft type

system can statically type check all programs writ-

ten in a dynamically typed language because the type

checker is permitted to insert explicit run-time checks

around the arguments of “suspect)’ applications. In

other words, the type checker transforms source pro-

grams to type-correct programs by judiciously insert-

ing run-time checks.

Soft typing retains the advantages of static typing

because the final result is a type correct program in

a sublanguage that conforms to a static type disci-

pline. In the context of soft typing, a programmer

can detect errors before program execution by inspect-

ing the program phrases where the type checker fails

and inserts run-time checks. Compilers can generate

efficient code for softly typed languages because the

transformed program statically type checks.

The key technical obstacle to constructing a prac-

tical soft type system is devising a type system that

satisfies two conflicting goals. The system must be

● rich enough to type “most” program components

written in a dynamic typing style without insert-

ing any run-time checks, yet

● simple enough to accommodate aut onlatic type

assignment (often called type inference or type re-

construction).

Existing static type systems fail to satisfy the first

test, namely, the typing of most program components

written in a dynamic style.

In this paper, we show how to construct a practi-

cal soft type system that satisfies the two preceding

criteria. It is a generalization of the ML type system

based on an encoding technique for type expressions

developed by Didier R6my[21] for typing records with

inheritance. We use a variation on R6my’s encoding

to represent arbitrary union types and recursive types

composed from primitive type constructors. This en-

coding reduces the type assignment problem in our

soft type system to the type assignment problem in

ML, provided that circular unification is used instead

of ordinary unification. Consequently, we can use ex-

actly the same type assignment algorithm as ML if we

subsitute circular unification for ordinary unification.

R6my’s encoding also enables us to apply the ML type

assignment algorithm on to transformed problem to

determine what run-time checks to insert in programs

that fail to type check.

The rest of the paper is organized as follows. Sec-

tion 2 presents a simple functional programming lan-

guage that serves as a basis for our study of soft typing.

Section 3 identifies the appropriate design criteria for

a soft type system, focusing on the necessary elements

in the type language. Section 4 describes a type lan-

guage that meet these criteria. Section 5 presents an

inference system for deducing types for program ex-

pressions. Section 6 gives an algorithm that automat-

ically assigns types to program expressions. Section 7

describes a method for inserting run-time checks when

the type assignment algorithm fails. Finally, Section 8

discusses related work, and Section 9 presents some di-

rections for further research.

2 A Simple Programming Language

For the sake of simplicity, we will confine our attention

in this paper to the simple functional language Exp

introduced by Milner[18] as the functional core of ML.

The automatic type assignment and coercion insertion

methods that we present for Exp can be extended

to assignment and advanced control structures using

the same techniques that Tofte[24], MacQueen[3], and

Dubs et al[lO] have developed for ML.

We define the syntax of Exp as follows:

Definition 1 [The programming language] Let z

range over a set of variables and c range over a set

279

of constants 1<. A program M has the form:

M::= xlc]k.Ml(MM)lletx =Min M

We presume that the set of constants K contains

data constructors that build values, selectors that tear

apart values, and case functions that conditionally

combine operations. For example, the boolean con-

stants true and false are O-ary constructors, the list

operation cons is a binary constructor, and the cor-

responding head and tail functions are selectors on

non-empty lists. For each non-repeating sequence of

constructors, there is a case function. If (C1, cm)

is a sequence of constructor names, then cas e(~l, .,C.)

takes n + 1 arguments: a value v, and n functions

ol,o~. The case(cl, ,..,cn) function is informally de-

fined by the following equation:

{

01 (v) V= Cl(. ..)

case{ .,, .,,,~j(v)(o,) . . .(on) = j~(v) v = ~n(~
. . .

wrong otherwise

The program text if x then y else z is syntactic sugar

for the application case(~rue,false) (~)(~~.I/)(~~.Z’).

ternary if construct is syntactic sugar for the func-

tion caSe(true,f alse).

Exp is a conventional call-by-value functional lan-

guage. All of the primitive and defined functions in

Exp are strict: they diverge if any of their arguments

diverge. The formal semantic definition for Exp is

given in Appendix A. The only unusual feature of the

semantics is the inclusion of a special element wrong

in the data domain to model failed applications which

can never be executed in type correct programs. The

data domain also includes exception values to model

the output of dynamic run-time checks.

3 Criteria for a Soft Type System

From the perspective of a programmer, soft typing

is a mechanism for statically detecting potential type

errors in dynamically typed programs. From the per-

spective of a compiler-writer, soft typing is a mecha-

nism for translating dynamically typed programs to

equivalent statically typed programs, reducing the

problem of compiling a dynamically typed langauge

to compiling a statically typed subset.

These two complementary perspectives on soft typ-

ing dictate that a practical soft type system must sat-

isfy the following two criteria:

Minimal Text Principle The system should accept

unannotated dynamically typed programs. Oth-

erwise, the programming interface will be more

cumbersome than that provided by a conventional

dynamically typed programming language.

Minimal Failure Principle The type system

should be rich enough to assign static types to

“typical” program components that produce no

run-time type errors. Otherwise, programmers

will ignore the run-time checks inserted by the

type checker because most of them are false indi-

cators of potential program errors.

To satisfy the minimal text principle, the soft type

system must perform automatic type assignment. Au-

tomatic type assignment deduces types for all program

phrases by propagating the type information associ-

ated with primitive operations.

To satisfy the minimal failure principle, a soft type

system must accommodate parametric polymorphism,

an important form of abstraction found in dynami-

cally typed languages. Parametric polymorphism is

best explained by giving an example. Consider the

well-known LISP function reverse that takes a list as

input and reverses it. For any type a, reverse maps

the type list (a) to list(a). To propagate precise type

information about a specific application of reverse,

we need to capture the fact that the elements of the

output list belong to the same type as the elements

of the input list. Otherwise, we will not be able to

type check subsequent operations on the elements of

the output list. For this reason, a soft typing system

must be able to deduce the fact that reverse has type

‘da.list(a) --+ list(a).

The ML type system supports automatic type as-

signment and parametric polymorphism, but it still

falls short of satisfying the minimal-failure criterion.

There are two important classes of program expres-

sions that commonly occur in dynamically typed pro-

grams that do not type-check in the ML type system.

3.1 Heterogeneity

The first class of troublesome program expressions is

the set of expressions that do not return “uniform”

results. Consider the following sample function defi-

nition.

Example 1 Let f be the function

Ax. if x then 1 else nil

where if-then-else has type Ya bool + a + ~ -+

~. f takes a boolean value and returns either 1 or

nil. Clearly, no run-time error occurs if ~ is a boolean.

Nevertheless, this function fails to type check, because

1 and nil belong to different types.

280

To assign types to heterogeneous expressions, we

need to introduce union types. In a type system

with union types, the function in Example 1 has type

bool + int + nil where int + nil denotes the set the-

oretic union of int and nil: {ZIZ E int or x E nil}.

Union types also enable us to make finer grained type

distinctions because we can partition inductively de-

fined types into unions of subtypes that distinguish

how elements are constructed. The following example

is a good illustration.

Example 2 The type list is the union of two different

constructor types: the empty list nil and non-empty

lists cons(a). The division of the type list(a) into

the union of the types nil and cons(a) is important

because it enables us to assign more precise types to

the selector functions head and tail. head has type

cons(a) ~ a and tail has type cons(a) - list(a).

Languages without union types typically define the

type of head as list(a) -+ a and the type of tail as

list(a) + list(a) permitting undefined applications

such as (head nil) and (tail nil) to pass the type

checker.

3.2 Recursivity

The other class of troublesome program expressions

is the set of expressions that induce recursive type

constraints. A classic example of this phenomenon is

the self application function S’ = Am .($ Z) . Since

x is applied as a function in the body of S, x must

have type a - /3. But the self-application also forces

a -+ D to be subtype of the input type of x which is

a. In a dynamically typed language like Scheme, the

function S can be written and executed. If S is applied

to the identity function or a constant function, it will

produce a well-formed answer, Nearly all static type

systems, however, reject S.

The simplest way to construct solutions to recursive

type constraints is to include a fixed-point operator

fix in the language of type terms. This feature is

usually called recursive typing. Given the operator

fix, we can assign the type fix t.t--+~ to S,

In practice, recursive types naturally arise in con-

junction with union types. The following simple ex-

ample (taken from an introductory Scheme course) is

a good illustration of this phenomenon.

Example 3 Let the function deep be defined by the

equation

deep =

An.(if (=? n O) O

(cons (deep (pred n)) nil))

where O is the O-ary constructor denoting O and pred

is the standard predecessor function.

The deep function takes a natural number n as input

and returns O nested inside n levels of parentheses, It

does not type check in ML because the output type

is both heterogeneous and recursive. In a type sys-

tem with parametric types, union types, and recursive

types, deep has type nat ~ fix t.O + cons(t) where

nat = O + SUC.

4 A Type Language Suitable for Soft

Typing

Our type language, called Typ, is a generalization of

the ML type language. The definition of Typ is pa-

rametrized by the set of data constructors in Exp,

We assume that all data constructors are disjoint: no

value v can be generated by two different construc-

tors. For each data constructor c in Exp, we define

a type constructor with the same name c. The set of

type constructors C consists of the type constructors

derived from data constructors plus the special type

constructor -i for defining function types. The ar-

ity of each type constructor depends on the degree of

polymorphism inherent in the corresponding data con-

structor. For example, the data constructor cons for

building lists accepts arbitrary values as its first argu-

ment, but the second argument must be a list, so the

cons type constructor has arity 1. Similarly, the data

constructor suc takes one argument, but it must be a

non-negative integer, so the type constructor suc has

arity O. The special type constructor ~ has arity 2,

Before we define the syntax of Typ, we need to

define several subsidiary notions including polyregular

type expressions and tidy type expressions.

Definition 2 Given a set of type constructors C, we

define the set of type terms X(C, V) over a set of vari-

ables V to be the free term algebra over C’ and V. The

polyregular type expressions over C and V is the set

of expressions inductively defined by the equation

where x is any type variable in V, c is any type con-

structor in G’, and . . . is a list of n polyregular type

expressions where n is the arity of c. To avoid ambi-

guity, we view expressions as trees rather than strings.

The intended meaning of polyregular type expres-

sions is the obvious one, Every closed type expres-

sion denotes a set of data objects. For each data con-

structor c E C, the corresponding type construction

1An explanation for the choice of this terminology and a dis-

cussion of the properties of polyregular types appears in Fagan’s

dissertation[ll].

281

C(Q!I, .,!, am) denotes the set of all data objects of the

form c(ol, z~) where (z) each argument xi corre-

sponding to a polymorphic parameter yi of c is taken

from the type denoted by the matching2 argument aj

and (ii) each non-polymorphic argument xi is taken

from the type for ~i specified in the definition of the

data constructor c. The function type construction

a ~ /? denotes the set of all continuous functions that

map a into ~. The + operator denotes the union op-

eration on sets and the fix operator denotes the fixed-

point operation on type functions. A formal definition

of the semantics of type expressions based on the ideal

model[16] of MacQueen, Plotkin, and Sethi is given in

Appendix B.

4.1 Tidy Type Expressions

For technical reasons, we must impose some modest

restrictions on the usage of the fix and + operators

in type expressions.

Definition 3 The set of tidy type expressions over C
and V is the set of polyregular type expressions over

C and V that satisfy the following two constraints:

1.

2.

4.2

Every subexpression of the form fix v,t is $or-

really contractile. Almost all uses of fix that

arise in practice are formally contractile, but the

formal definition is tedious. It is given in Ap-

pendix B. The expressions fix x.x and fix x.x+

nil are not formally contractile, but fix x .Z - y

and fix z.nil + cons(z) are.

Every subexpression of the form u + v is discrim-

inative. A polyregular type expression of the

form u + v is discriminative iff (z) neither u or

v is a type variable, and (ii) each type construc-

tor appears at most once at the top level (not

nested inside another type constructor) of u + v.

The expressions t + true, cons(t)+ cons(y), and

(fix z.cons(z)) +cons(y) are not discriminative,

but false + true and nil+ cons(y) are.

Type Schemes

The final step in defining our type language Typ

is adding the notion of universal quantification. As

in ML[8], we restrict universal quantification to the

“outside” of type expressions. Tidy type expres-

sions that may contain quantifiers are called tidy type

schemes.

Definition 4 [The Language Typ] Let C’ be the set

of type constructors for Exp and let V be a set of type

2TYPe ~went ~ j corresponds to the jth PO h orph~c Pa-

rameter ~1 of the data constructor c. Hence, j may be less than

i.

variables. A tidy type scheme over C’ and V is defined

by the grammar:

u ::= T I ‘dt.cT

where r denotes the set of tidy type expressions over

C’ and V. Typ, the soft type language for Exp is the

set of tidy type schemes over C and V. The ML type

language for Exp is the set of type schemes in Typ

that do not contain the + operator (union) or the fix

operator. Hence, the ML type language is defined by

the same grammar as Typ, except that the symbol r

is restricted to the set of type terms.

The types of polymorphic operations are given by

type schemes rather than type expressions. The for-

mal semantics for type expressions given in Appendix

B can easily be extended to type schemes by interpret-

ing Vt.i7 as the intersection

an arbitrary ideal [16].

5 Type Inference

of all ideals a where t is

To assign types to programming language expressions,

we use a type inference system, called Inf, similar to

the type inference system for ML. Inf relies on two

auxiliary relations on type expressions: (i) the generic

instance relation < on type schemes defined by Damas

and Milner[8] for the ML type system and (ii) a sub-

typing relation G on union types, which we will sub-

sequent y define.

Definition 5 A generic instance of type scheme u is

a type scheme u’ obtained by substituting tidy type

expressions for quantified variables of a. For example,

given the type ‘da.cons(a) ~ a, then cons(int) ~

int is a generic inst ante.

Definition 6 The subtyping relation ~ is defined on

tidy type expressions by the inference system given in

Figure 1 where r, r’ , Ti, and -r: denote tidy type expres-

sions; x and y denote type variables; and c denotes an

mar y type constructor other than ~. The inference

system presumes that the + operator is associative,

commutative, and idempotent.

The subtyping inference system is decidable using

the encoding defined in the next section. Given tidy

type expressions ~ and # , r G r’ iff the supertype

encoding of r circularly unifies with the subtype en-

coding of r’.

Given the two auxiliary relations defined above, our

type inference system Inf is defined as follows:

Definition 7 [The type inference system Infj A typ-

ing judgment is a formula e : c where e is a pro-

gram expression and a is a type scheme. The in-

tended meaning of e : u is that e has type ~. Figure 2

282

AXIOM:

REFL:

UNION:

TRANS:

CON:

FUN:

FIX1:

FIX2:
A, ZGykr1Lr2

A 1- fix X.rl ~ fix y.r2

Figure 1: Inference rules for subtype relation

presents the rules in the inference system Inf for typ-

ing judgments. In the figure, u and U1 denote tidy type

schemes; r, r’, T1, and rz denote tidy type expressions;

e, el, e2, and f denote program expressions; x denotes

a type variable; and A denotes a set of type assump-

tions of the form x : u. The intended meaning of the

notation A 1- e : ~ is that A implies e :7,

Inf consists of the conventional ML rules augmented

by the SUB rule to handle subtyping. The effect of

adding the SUB rule is surprisingly subtle. The most

important consequence is that program expressions do

not necessarily have best (principal) types. The fol-

lowing counterexample demonstrates this fact.

Example 4 [Multiple Typings] Let fl : (a --+ a) +
a+~andf2 : a + b - a be program functions

where a and b are O-ary type constructors. We can

immediately deduce that (~1 ~2) : a ~ a. Alterna-

tively, A 1- (fl f2) : a + b ~ a + b. These two typ-

ings for (~1 ~2) are incomparable, so neither is best.

Furthermore, an exhaustive case analysis reveals that

VZ(X - x) is the only tidy type that has both types

as supertypes, but it is not a valid typing for (~1 ~z).

On the other hand, Inf retains the most important

property of the ML type inference system, namely the

soundness theorem and its corollaries. The sound-

ness theorem simply asserts that every provable typing

judgment is true, according to our semantics for the

programming language, the type language, and type

assertion language. On an informal level, the sound-

ness theorem ensures that well-typed programs never

execute undefined function applications.

TAUT:

INST:

GEN:

ABST:

APP:

LET:

SUB :

At-x:u A(x) = u

Ake; u

Ate:Vxu
x not free in A

AU{x:#}l-el:~

AF&z.el:#~r

A1-f:rl-+rz A1-e:rl

At-(fe):r2

At-el:m AU{z:~}t-e2:r

A1-let~=eline2:r

AEe:r
., rg#

A1-e:T’
—

Figure 2: The type inference rules

6 Automated Type Assignment

To satisfy the minimal-text criterion for soft typing,

we must produce a practical algorithm for assigning

types to program expressions. We have developed

an algorithm based on the type assignment algorithm

from ML (Milner’s algorithm W). Our algorithm dif-

fers

●

●

from the ML algorithm in two respects.

First, we encode all program types as instances

of a single polymorphic type that has type pa-

rameters for every type constructor. Our encod-

ing is based on an encoding developed by Didier

R,6my[21] to reduce inheritance polymorphism on

record types to parametric polymorphism.

Second, we use circular unification[6] instead of

regular unification to solve systems of type equa-

tions. Circular unification is required to infer re-

cursive types.

Our encoding for tidy type expressions exploits the

fact that the set of type constructors is jinite. Given a

finite set of type constructors, we can enumerate (up

to substitution instances) all the tidy subtypes and

supert ypes of a given type expression. Consider the

following example.

Example 5 Assume that the only constructors in our

type language are a(z), b, c. Then the supertypes of

the type b are {b, a(z)+b, b+c, a(x)+b+c} . We can

describe this set using a simple pattern by analyzing

which type constructors must appear in a supertype,

which type constructors may appear in a supertype,

and which type constructors must not appear in a su-

pertype.

283

The following table presents the results of this anal-

ysis:

Statusa I Statusb I Statusc

may must may

The same form of analysis can be used to construct a

pattern describing all the possible subtypes of a given

type. Since b has no subtypes other than itself, let’s

consider the type b + c instead. The subtypes of b + c

are {b, c,b + c} . A “must/may/must-not” analysis

of this set yields the table

Status a Status b Status c

must-not may may

Note that in supertype patterns, positive (“must”)

information plays a crucial role, while in subtype pat-

terns, negative (“must-not”) information is crucial.

We need both forms of patterns because the function

type constructor ~ inverts the form of information

provided by its first argument.

We can express these patterns in the framework of

an ML type system by using the following represen-

tation adapted from a similar translation that R&my

developed for record types with inheritance. Consider

an ML type system with three type constructors: a

highly polymorphic type constructor 7? and two type

constants + and — signifying “must” and “must-not”

respectively. R has a “flag” parameter for each type

construct or in T yp and a “pat t em” parameter for

each type argument taken by a constructor in Typ.

A flag parameter must be instantiated by either + or

– A pattern parameter must be instantiated by a

expression of the form 7?(. . .).

For the type language described in the preceding ex-

ample, the %? type constructor takes four arguments:

the flag for a, the pattern describing the type argu-

ment of a, the flag for b, and the flag for e. Using

this notation, we can encode the patterns presented in

the example as follows. The type b is encoded by the

type term ‘R(a : –,la : z,b : +,c : –) where z is a

free type variable and a, la, b, and c are field names

included as annotation. la is the field for the type pa-

rameter for a. The value of pattern variable z is irrel-

evant because the corresponding constructor (a) is ex-

cluded from the encoded type. The supertypes of b are

represented by the term 7Z(a : rl, la : z, b : +, c : TZ);

every instantiation of the flag variables yields the rep-

resentation of a supertype of b. Similarly, the type

b+c is encoded as the term 7Z(a : –,la : z,b : +,c :

+). The subtypes of b + c are represented by the term

%?(a:-,la:z, b:~~, c : T4); every instantiation of

the flag variables yields the representation of a suby-

type of b + c.

Any non-recursive tidy type expression T in Typ

can be encoded as a type term T{ over the three type

constructors 7?, +, –, where the the set of type param-

eters for the type constructor 7? is tailored to the set

of of t ype constructors in Typ. More importantly, the

set of all supertypes of r can be encoded as a type term

1-+ over 7?, +,-. The encodings of the supertypes of

r are simply the terms generated by instantiating the

flag variables of r+. Similarly, the set of all subtypes

of T can be encoded as a type term r– over %?, +, –.

The encodings of the subtypes of r are the terms gen-

erated by instantiating the type variables of T–.

If we extend R&my’s notation to include quantifi-

cation and the fix operator, then we can express all

tidy type schemes and their corresponding sets of su-

pert ypes and subtypes using R&my’s notation.

R6my’s encoding technique has two important tech-

nical properties:

● It reduces the supertyping and subtyping rela-

tions to the instantiation of flag fields in the poly-

morphic type constructor ‘R.

● It eliminates the union operator + from type ex-

pressions.

The combination of these two properties permit us to

infer tidy types for Exp programs using conventional

ML type inference augmented by a rule to unfold ap-

plications of the fix operator. For every primitive op-

eration $: u in Exp, we map it to the R&my type that

encodes all of the superiypes of u because every super-

type of u is a valid typing for u. By the SUB rule, f : u

and u G d implies .f : u’. Consequently, any type in-

ference that we perform using conventional ML type

inference augmented by the fix rule is sound, More

import antly, we can use the circular generalization of

the ML type assignment algorithm to assign types to

program expressions in Exp.

The circular generalization of the ML type infer-

ence system and type assignment algorithm to handle

recursive types is based on work of Huet [15]. This ex-

tension of ML type inference is well known in the ML

community, but it has not been added to ML because

recursive types are not very useful in the absence of

union types.

6.1 The Parametric Type Language

We now present the definition of the ML type lan-

guage in which we encode tidy type expressions. Al-

though the language only contains three constructors,

the definition is tedious because the constructor 7? has

so many type parameters.

Definition 8 [Parametric Type Language] Given a

set of type constructors C including --+ and a set of

284

type variables v, the set of parametric type terms over

C and V is the set of type terms Z(C’, V) where C’

consists of the C)-ary constructors {+, –} and the 7?

constructor of arity

N = ~(1 + anly(c))o

CEC

We assume that C has the form {ck 11< k < n} where

c1 is the 2-ary function type constructor ~. The jZag

position for type constructor c~ (denoted p~) in the

parameter list for 7? is given by the formula

k

w = ~ 1 + arity(ci).

i=l

The type parameter positions for constructor ck are

pk + 1, ., ,,pk + ardy(ck). A term & in ‘R(tI,. . .,t~)

is a flag subterm iff i is a flag position for some type

constructor ch. A subterm p’ of a parametric type

term p is a jlag subterm iff it is a flag subterm of some

application of %? in p. Any subterm of p that is not

a flag subterm is called a type subterm. A parametric

type term p is well-formed iff

1. All flag subterms of p are type variables or con-

st ants + and -.

2. All type subterms of p are type variables or ap-

plications of %?.

3. The type variables occurring as flag subterms in

p are disjoint from the other type variables in p,

The former are called the flag variables of p,

It is easy to show that our encoding (which we de-

fine below) always yields well-formed parametric type

terms. Similarly, ML type inference system (with cir-

cular unification) preserves well-formedness. Conse-

quently, we will omit the adjective well-formed when

referring to parametric type terms for the sake of

brevity.

6.2 Definition of the Encoding Functions

The preceding discussion indicated that we can map

a tidy type expression T to corresponding parametric

type terms R+(~) and R-(~), respectively denoting

the supertypes and the subtypes of T. However, the

definitions of the encoding functions R+ and R_ are

not as straightforward as the preceding analysis sug-

gests because the function type constructor h is anti-

monotonic in its first argument, In the definitions of

R+ and R–, we must treat - as a special case and

make the definitions mutually recursive.

Before we define the mappings from tidy type ex-

pressions to R6my not ation, we need to introduce some

subsidiary definitions.

Definition 9 Let II denote the syntactic concatena-

tion operator defined by the equation:

(a~,..., ak)ll(bl, bz)=(al .ak, bl,,,b~). .,b~)

A tidy type expression ~ of the form c(tl, ..., t~) is

a component of a tidy type expression u + v (written

~ ~ ~ + u) iff ~ is identical to either u or v, or r is

a component of either u or v. If no term of the form

C(tl, . . . , tm) is a component of a expression w, we say

that c does not occur in w (written c $ w).

Definition 10 [Type Encoding] We define the map-

pings R+ and R- from tidy type expressions to para-

metric type terms as follows:

R+(t) =

{

t ‘tEv
fix rn.lt+(t’) t = fix m.t’

R(R+,l(t)ll . . . llR+,~(t)) otherwise

R-(t) =

{

t tev
fix m. R_(t’) t = fix m.t’

%!(R-,1 (t)tl . . . llR_,n(t)) otherwise

R+,I(t) =

{

(+, R-(tl), R+(tz)) tI ~ tz 3 t
(/cj, z;, Zj) +2! t

R+,i(t) =

{

(+, R+(t~),l?+(tm)) Ci(tl,. ... tm)<t

(q,%j,..., z~) Ci$t

R-,l(t) =

(

(~j, R+(tl), R_(t,)) t, -+ tz < t

(-, z{, Wj) +$ t

R_,i(t) =

{

[2,z;:(t,), #. . . R_(tna)) c~(tl,tm) tit

. ..)%) Ci$t

where each occurrence of ~j and x; denotes a fresh

type variable distinct from all other type variables. ~j

signifies a flag variable while Z: signifies a pattern vari-

able. Recall that the index of the special constructor

~ in c is 1, which explains why the definitions of R~,l

and R–,1 are treated as special cases.

The encoding functions can obviously be extended

to map tidy type schemes to parametric type schemes.

6.3 Decoding Parametric Type Terms

The inverse transformations are similar, but they con-

tain a surprising wrinkle. In some cases, a parametric

type term can denote a set of several tidy type expres-

sions instead of j ust one. The unusual situation arises

when the type assignment algorithm equates two flag

variables.

285

Example 6 Assume that the type system has four

type construct ors: - and three 0- ar y type const ruc-

tors a, b, c. Their flags appear in argument positions

1, 4, 5, and 6, respectively, of the 7?(. . .) constructor.

The type arguments for - appear in positions 2 and

3. Let

twice = ~~k.(~ (f z))

The function twice has type (a ~ a) -+ a - a. Now

suppose F is a function of type a + b h a. Then the

parametric type for F is

7?(+,’R(-, zl, Yl, h,71, -)>

R(62, z2, y2, +,72, ~2), ~!7!e)

implying that (twice F) has type

7 = 7?(+: +,7?(-, Z1,Y1, +,71,-),

R(–, w,yl, +,-yl, –), –,–]–)

It is easy to show that this type is not the im-

age of a tidy type expression under R+. Both

)‘rl = 7?(+,’R(-, q, Yl, +j+)—)

q-,q, yl,+, +,-) j-, –>–)

‘q = X?(+, n(-, zl, yl,+, —,—)7
R/(-, q,yl,+, –,–),–, –,–)

are flag instantiation of T, implying that T1 and ‘rz

denote supertypes of T. But rl and rz encode the

types a --i a and a + b -+ a + b, respectively. From

Example 4, we know that these two types are not su-

pertypes of any tidy type except Yx(x -+ x), which is

not a valid typing for (twice F’).

In the general case, the parametric type for a pro-

gram phrase represents a non-empty set of tidy types

that could be inferred in Inf. Fortunately, it is easy

to determine exactly how many tidy types a paramet-

ric type represents and what they are, The decoding

process translates a parametric type scheme p into a

unique tidy type scheme r iff there is a smallest type in

the set of supertypes denoted by p. Each occurrence of

a flag variable contributes positively or negatively to

the denoted type. The decoding process yields a single

tidy type iff all the occurrences of each flag variable

are either positive or negative.

Definition 11 An occurrence of a flag variable in a

parametric type term p is positive iff it appears within

the left hand argument of of an even number of -+

constructors. Otherwise, the occurrence is negative.

A jlag substitution for p is a substitution that binds

all the flag variables of p to + or — and nothing else.

A parametric type term p is univalent iff there is a

flag substitution (substitution for flag variables) that

binds every positive occurrence of a flag variable to
. and every negative occurrence to +. This substi-

tution is called the minimizing flag substitution. The

result of applying the minimizing flag substitution to a

univalent type term p is called the minimum instance

of p. parametric type term produced by applying A

flag variable is a splitting variable in p iff it occurs both

positively and negatively. If p is not univalent, then its

valence is 2~ where k is the number of distinct splitting

variables in p. A splitting substitution for a parametric

type term p is a flag substitution that binds all vari-

ables that occur only positively to –, all variables that

occur only negatively to +, and the splitting variables

to either + or –. A parametric type term is ground iff

it contains no flag variables (type variables may still

be free).

Remark The minimizing substitution for a univalent

term is a degenerate form of splitting substitution.

Hence, the number of distinct splitting substitutions

for a parametric type term p equals the valence of p.

Ground parametric type terms are easy to decode

because they are the images of supertype encodings

composed with minimizing substitutions. Let min

be the function that maps univalent parametric type

terms to their minimum instances. Then the decoding

function R-1 is the inverse of min o R+.

Definition 12 [Decoding Function] The function

R-1, which maps parametric ground terms to tidy

type expressions, is defined by the following equat ions:

R-l(p) =

[

t tcv
fix X. R-l(M) p= fix x.M

~, R;l(p) otherwise

R;l(p) =

{

t t~v
fix X, R-](M) p =fix x.M

ci(R-l(tl),l(tn)))) ~=~(sl,...,s~),

Si=(+, tl,tn)

0 otherwise

Given the preceding definitions, it is easy to define

the decoding translation of any parametric type term

p. The translation consists of two steps. First, gener-

ate the set S of all of the splitting flag substitutions

for p. Second, for each substitution in s E S, compute

R-1 (sp), yielding the set of tidy type expressions rep-

resented by p.

286

6.4 Type Assignment Algorithm

To recapitulate the preceding discussion, our type as-

signment algorithm consists of three steps.

1.

2.

3.

Encode the set of supertypes for each primitive

operation as parametric type terms (R6my nota-

tion).

Perform ordinary type assignment using the cir-

cular generalization of algorithm W.

Translate the parametric type expressions as-

signed to progr~m phrases back into-(sets of) tidy

type expressions.

The algorithm is reasonably efficient because it is

simply the circular generalization of Algorithm W

from ML applied to a transformed collection of type

constructors and t ypings for the primitive operations.

Circular unification like ordinary unification can be

performed in linear time. Of course, the worst case

running time of Algorithm W is exponential in the

number of nested let declarations, but this behavior

has never been observed in practice—presumably be-

cause the type expressions produced in these patholog-

ical cases are enormous and hence incomprehensible.

6.5 Some examples

Consider the function

mixed = A x.if x ‘then 1 else nil

defined in Example 1. Our algorithm assigns the type

true + false ~ suc + nil to mixed,

A more interesting example is the function taut

which determines whether an arbitrary Boolean func-

tion (of any arity!) is a tautology (true for all inputs).

Example 7 [Tautology example]

taut = AB,case B of

true : true

false: false

fun : ((and (taut (1? true)))

(taut (B false)))

For the taut function, our algorithm produces the

typing taut : ~ ~ (true + false) where ~ =
fix t.(true + false + ((true+ false) ~ t)).

7 Inserting run-time checks

As we explained in the introduction, no sound type

checker can pass all “good” programs. The polyreg-

ular type checker described in section 6 succeeds in

assigning static types to a large class programs. iTev-

ertheless, some “good” programs will not pass our type

checker, as the following example demonstrates.

Example 8] The function

NI = ~ ~. if ~(true) then ~(5)+ f(7)

else f(7)

fails to type check because the parameter ~ has to

satisfy conflicting constraints. The if test forces f :

true -+ true + false. Similarly, the true arm of the

if requires $: suc -+ z + SUC. But there is no unifier

for these two typings off, preventing the type checker

from assigning a type to N1. The function N1 is not

badly defined, however, because iV1 (A *.x) never goes

wrong.

Sometimes our type checker fails to account for all

the possible uses of a function. Consider the following

modification of the previous example.

Example 9 [An anomaly]

Nz = ~ f. i.f ~(true) then ~(5) else f(7)

In this case, our type assignment algorithm yields

the typing N2 : (true+ suc ~ true+ false) ~

true i- false. However, the application N2 (A z.z) is

well-defined, but does not type check.

In both of the preceding examples, the program is

meaningful, but the type anal ysis is not sufficiently

powerful to assign an appropriate type. The static

type checker described in Section 6 will reject these

programs, in spite of their semantic content. A soft

type system, however, cannot reject programs, It

must insert explicit run-time checks instead. Hence,

we must produce an algorithm to transform arbitrary

programs to equivalent programs that type check.

To support the automatic insertion of explicit run-

time checks, we force the programming language Exp

to include an exceptional value fault and a collection

of functional constants called narrowers. The narrow-

ers perform run-time checks and the exceptional value

propagates the fact that a run-time check failed, To

define these notions more precisely, we need to intro-

duce the concepts of primitive and simple types. Each

type constructor determines a primitive type: it con-

sists of all values that belong to some instance of the

type. We denote the primitive type corresponding to a

constructor c by the name of the constructor c. Since

the type constructors are disjoint, every value (other

than errors) belongs to ezaciiy one primitive type. For

values that are not functions, the primitive type of the

value is the outermost constructor in the representa-

tion of the value. For a function, the primitive type is

simply a. A simpie type is simply a union of prim-

itive types. Using notation analogous to type terms,

we denote the simple type consisting of the union of

primitive types tl, . . ., tn by the expression tl +. . .+tn.

The exceptional value is denoted by fault. Simi-

larly, there is a narrower .IJ$ for every pair of simple

287

types such that S G T. It is defined by the

{

v VET

J; (v) = fault VES– T

wrong otherwise

equation

The type associated with the narrower J& is sl +. . . ~

tl +... where S={sI,...} and T= {tI,...}.

The type insertion algorithm consists of the follow-

ing three steps:

1.

2.

3.

Encode the set of supertypes for each primitive

operation in parametric form using R+ and con-

vert all ~’—” flags in the encoding to fresh type

variables—eliminating all negative information.

Perform type assignment using the circular gen-

eralization of algorithm W, constructing a ‘{posi-

tive” type (in parametric form) for every program

expression.

For each occurrence of a primitive operation,

unify the “positive” type with the original type

(encoded in parametric form), If unification fails,

insert the narrower required for unification.

The invocation of Algorithm W in the type inser-

tion algorithm always succeeds in assigning a type to

every program expression because the only way that

Algorithm W can fail is to attempt to unify a “+” flag

and a “-)’ flag.3 Since no “-” flags can appear in any

of the type terms manipulated by the algorithm, every

unification step must succeed. However, the type as-

signment is based on the assumption that every prim-

itive operation explicitly checks the type-correctness

of any argument that it evaluates. If the check fails,

the primitive operation must return the special value

fault as its answer. All of the primitive operations

are strict with respect to this special value.4 The final

unification step determines which run-time checks are

unnecessary. If the input program is statically type

correct, no run-time checks are inserted.

Note that the narrower inserter algorithm is essen-

tially the type assignment algorithm partitioned into

two phases: the propagation of positive information

followed by the propagation of negative information.

In the second phase, narrowers are inserted where

the negative information in the input side of prim-

itive functions clashes with the positive information

inferred for their arguments.

3Algorithm W never attempts to unify a flag variable with a
pat tern variable or a fix operation because all parametric type

terms are we~l-fomzed.

4We are using the term strict in a slightly different sense

than it usually is in the literature. Primitive operations must

return the value fault if they evaluate an argument and that

evaluation returns fault as the answer.

7.1 Examples

To illustrate the insertion process, we analyze how it

handles the two troublesome examples that we pre-

sented at the beginning of this section. In both of

these examples, let cl- and C2 denote the narrow-
z+suc+true+falsez+suc+t~Ue+false and !true+false

ers Uz+suc , re-

s~ectivelv.
L .

The insertion algorithm changes the function IVl in

example 8 to

IV; = A ~. if c.2(~(true))

then cl(~(5)) + cl(~(7))

else ~(7)

The type for IV{ is now (z + suc + true +

z + suc + true + false) a z + suc and the

tion N; (A X.2) is now type correct.

false ~

applica-

Similarly, in example 9, assume that a program con-

tains definition of Nz and the application (lV2 (Ax.z)).

Then our insertion algorithm will modify the definition

of N2 to produce

Nj = ~ ~. if cz(~(true)) then ~(5) else ?(7)

Now, the type system infers the type for N; as:

and

8

(z+ suc + true + false+

z + suc + true+ false) -+

z + suc + true+ false

Nj(A Z.Z) now type checks.

l%elatecl Work

The earliest work on combining static and dynamic

type checking was an investigation of the type “dy-

namic” conducted by Abadi et al[l]. They added dy-

namic data values to a conventional statically typed

data domain and provided facilities for converting data

values to dynamic values by performing explicit “tag-

ging” operations. This system permits statically typed

programs to manipulate dynamic forms of data. But

it does not meet the criteria for soft typing because the

programmer must annotate his program with explicit

tagging and stripping operations to create “dynamic”

values and to map them back to conventional ‘(static”

values. In addition, programs are still rejected; nar-

rowers are not inserted by the type checker.

More recently, Thatte[23] has developed the notion

of ‘<quasi-static typing” that augments a static type

system with a universal type f2 that contains tagged

copies of all the values in the program data domain.

Thatte’s system resembles soft typing because it en-

sures that all programs can be executed by inserting

narrowers when necessary to convert values of type Q

288

to corresponding values belonging to a specific type.

However, it does not meet the other criteria required

for soft typing for two reasons, First, it requires

explicit declarations of the argument types for func-

tions. Second, it cannot type check many dynamically

typed programs (without inserting narrowers) because

it does not support parametric polymorphism, recur-

sive types, or more than one level of subtyping.

Gomard[14] has modified the ML type system to

include a type undefined and dynamically typed vari-

ants of all the primitive operations, These variants

accept arguments of undefined type. His system can

perform a weak form of soft typing by replacing prim-

itive operations by their dynamically typed variants.

But the types assigned by the system are not very

precise because his system does not accommodate ei-

ther parametric polymorphism or union types. As a

result, his system cannot statically type check many

dynamically typed programs without modifying them.

Researchers in the area of optimizing compilers have

developed static type systems for dynamically typed

languages to extract information for the purposes of

code optimization. A good example is the system de-

veloped by Aiken and Murphy [2] for FL, These type

systems, however, have not been designed to be used

or understood by programmers. Consequently, they

lack the uniformity and generality required for soft

typing.

Finally, many researchers in the area of static type

systems have developed extensions to the ML type

system that can type a larger fraction of ‘(good” pro-

grams. Both Mitchell[20] and Fuh and Mishra[12, 13]

have studied the problem of type inference in the pres-

ence of subtyping. They augment type expressions

by explicit constraints, which permits them to infer

more precise types in some cases than we do. On the

other hand, their type descriptions are frequently ver-

bose and difficult to comprehend. In addition, neither

of of these systems accommodate parametric poly-

morphism. Wand[25] augments the ML by adding

record operations that support a limited form of inher-

itance polymorphism. Curtis[7] has proposed adding

constrained quantification to the ML type system,

The idea looks promising, but it is an open question

whether a suitable type assignment algorithm exists.

Finally, R6my[21] has developed a clever reduction

of inheritance polymorphism to ML parametric poly-

morphism that supports parametric polymorphism in

the original type language. }Ve have heavily relied on

this reduction in the construction of our soft typing

system.

9 Directions for Further Research

In this paper, we introduced a new approach to pro-

gram typing called sofl typing that combines the best

features of stattc and dynamic typing. To demonstrate

that soft typing is feasible, we presented a soft typing

system incorporating union types, recursive types, and

parametric polymorphism. For this type system, we

showed that there are efficient algorithms for perform-

ing automatic type assignment and automatic coercion

insertion. The algorithms are both variants of the type

assignment algorithm for ML.

We are currently engaged in a project to design a

dynamic generalization of ML and implement the gen-

eralized language by using a soft type checker to trans-

late it to Standard ML. Since Standard ML does not

infer either union types or recursive types, the soft

type checker must perform some supplementary trans-

lation. In particular, the type checker must:

● generate type definitions creating disjoint unions

and tagged recursive types corresponding to all

of the union types and recursive types inferred

for the program, and

● insert explicit injection and projection operations

to add and remove tags for disjoint unions and

tagged recursive types.

We are also interested in developing new soft type

systems that are richer than the one presented in this

paper. In particular, we want to explore the possi-

bility of adding some form of type intersection to the

tidy polyregular types. Through this process, we may

be able to construct a type system than subsumes the

tidy polyregular types but possesses the principal typ-

ing property, In addition, the new type system may

have simpler translations to and from R6my notation.

As we observed in the paper, the R.6my translation oc-

casionally yields multiple polyregular types for a given

program expression. In a system with intersection

types, these multiple types could be expressed as a

single intersection type.

References

[1]

[2]

Martin Abadi, Luca Cardelli, Benjamin Pierce,

and Gordon Plotkin. Dynamic typing in a stati-

cally typed language. In Proceedings of the Six-

teenth POPL Symposium, 1989.

Alexander Aiken and Brian Murphy. Static type

inference in a dynamically typed language. In

Proceedings of the 18th Annual Symposium on

Principles of Programming Languages, 1991. To

appear.

289

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Andrew W. Appel and David MacQueen. Stan-

dard ML of New Jersey Reference Manual. (in

preparation), 1990.

Robert Cartwright. A constructive alternative to

axiomatic data type definitions. In Proceedings of

1980 LISP Conference, 1980.

William Clinger and Jonathan Rees. Revise&gg

Report on the Algorithmic Language Scheme, Au-

gust 1990.

Alain Colmerauer. Prolog and infinite trees. In

K. L. Clark and S. A. Tarnlund, editors, Logic

Programming, pages 231–25 1. Academic Press,

1982.

Pavel Curtis. Constrained quantification in poly-

morphic type analysis. Technical Report CSL-90-

1, Xerox PARC, 1990.

Luis Damas and Robin Milner. Principal type-

schemes for functional programs. In Conference

Record of the Ninth Annual ACM Symposium on

Principles of Programming Languages, 1982.

Luis Manuel Martins Damas. Type Assignment in

Programming Languages. PhD thesis, University

of Edinburgh, 1985.

Bruce F. Duba, Robert Harper, and David Mac-

Queen. Typing first-class continuations in ML.

In Conference Record of the Eighteenth Annual

ACM Symposium on Principles of Programming

Languages, 1991.

Mike Fagan. Soft Typing: An Approach to Type

Checking for Dynamically Typed Languages. PhD

thesis, Rice University, 1990.

You-Chin Fuh and Prateek Mishra. Type infer-

ence with subtypes. In Conference Record of the

European Symposium on Programming, 1988.

You-Chin Fuh and Prateek Mishra. Polymorphic

subtype inference: Closing the theory-practice

gap. In TAPSOFT, 1989.

Carsten K. Gomard, Partial type inference for un-

typed functional programs. In Proceedings of the

1990 ACM Conference on LISP and Functional

Programming, 1990.

G&ard Huet. Rt%olution d’~quations clans les lan-

gages d’ordre 1,2, ..., w. PhD thesis, Universitx$

Paris, 71976.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

A

D. MacQueen, G. Plotkin, and R. Sethi. An ideal

model for recursive polymorphic types. In Con-

ference Record of the Eleventh Annual ACM Sym-

posium on Principles of Programming Languages,

1983.

D. B. MacQueen and Ravi Sethi. A semantic

model of types for applicative languages. In Con-

ference Record of the Tenth Annual ACM Sym-

posium on Principles of Programming Languages,

1982.

Robin Milner. A theory of type polymorphism in

programming. Journal of Computer and System

Sciences, 1978.

Robin Milner, Mads Tofte, and Robert Harper.

The Dejiniiion of Standard ML. MIT Press, 1990.

John C. Mitchell. Coercion and type inference. In

Conference Record of the Eleventh Annual ACM

Symposium on Principles of Programming Lan-

guages, 1983.

Dialer R&my. Typechecking records and vari-

ants in a natural extension of ml. In Conference

Record of the Sixteenth Annual ACM Symposium

on Principles of Programming Languages, 1989.

David A Schmidt. Denotational Semantics. Allyn

and Bacon,Inc, 1986.

Sattish Thatte. Quasi-static typing. In Proceed-

ings of the Seventeenth POPL Symposium, 1990.

Mads ‘1’ofte. Operational Semantics and Polymor-

phic Type Inference. PhD thesis, University of

Edinburgh, 1987.

Mitchell Wand. Complete type inference for sim-

ple objects. In Proceedings of the Second Sympo-

sium on Logic in Computer Science, 1987.

Programming language semantics

We divide the specification of the syntax of Exp into

two parts. The first part is the syntax of the func-

tional language Milner introduced to analyze paramet-

ric polymorphism[18]. It is presented in definition 1 in

Section 2 of the paper. That syntax is parameterized

by a set of constants 1<. The second part of our spec-

ificat ion identifies and defines these constants.

The set of constants K reflects the different kinds

of data included in the programming language. In

Exp, every (non-functional) data value is built from

data constructors. Data constructors may be partial:

they can impose modest restrictions on the form of ar-

guments that they accept (a simple form of dynamic

290

typing). In addition to data constructors, K contains

a separate set of seiectors for each constructor, one

for each argument position of the constructor. The

specification of the constructors and selectors can be

succinctly expressed as a data tableau[4]. The follow-

ing example illustrates this idea.

Example 10 [A Data Tableau] Consider a program-

ming language with natural numbers and lists as data

values. We can define the construction of the natu-

ral numbers from O and suc (successor) in the usual

fashion. Lists are either empty (nil) or constructions

built with cons. The data tableau describing this data

language is:

constructor O;

constructor suc(pred: O + SUC);

constructor nil;

constructor

cons(head: O + suc + cons + nil+ ~,

tail: nil + cons)

The tableau designates pred as the selector for suc

constructions, and head and tail as the selectors for

cons constructions, It also indicates that the argu-

ment in a suc construction must be either the con-

st ant O or a suc construction. The first argume~t of

a cons construction may be anything, The pseudo-

constructor ~ designates the set of functions so that

functions may appear within constructed values.

To manipulate the data values defined by a tableau,

we need to include case functions in K. For every

non-empty, non-repeating sequence s of constructor

names (including -+), there is an n-ary case function

where n is 1 + length(s), An informal description of

the semantics of these functions is given in Section 2.

We define the denotational semantics for Exp along

standard lines as presented in Schmidt [22]. The data

domain D for Exp depends on the constants specified

in the data tableau. We define D as follows:

Definition 13 [The data domain D] Let C = {ci 12 ~

i < n} be the set data constructors (excluding -) de-

fined in the tableau and let Triv = {*, l..} be a one

point domain. Let Do, F, and W abbreviate Triv;

let Dk abbreviate D @ D[k – 1, where @ is the domain

smash product; and let DI c’ I abbreviate Dar@ fcl J.

The data domain D is the least solution to the equa-

tion

D= D~D@ . . .
DIO,I . . .@F@W

where 6 denotes the domain smash sum. The domains

separated by @ operators on the right hand side of the

equation are called summands of D.

For each constructor (including ~), there is a cor-

responding summand in definition 13. We define

[Z]r) = q(z)

[k.e]q = In~+~(M[e][z = 4)

{

wrong dl = wrong

fault dl = fault

[(e, e~)]~ = wrong d2 = wrong

fault d2 = fault

~1 (d2) otherwise

where dl = [el]q),

dz = [ez]q

f~ = Out~+~(dl)

[let z = el in ez]y = [ez]q[~ = all],

where dl = [el]q

Figure 3: Semantic function for Exp

fault = ~nF(x) and wrong = lnw(*). The wrong

value represents undetected run-time errors, and the

fault value represents safely detected run-time excep-

tions.

In the denotational definition for Exp we use the

following notation, For each summand A, the symbol

InA : A * D denotes the standard injection function

mapping A into D. Similary, the symbol @tA : D -i

A denotes the standard projection function mapping

D onto A. In addition, the conditions appearing in a

definition of the form

{

vail condition

f(z) =

Valk condition

are tested in sequential order, implying no condition

can be satisfied unless the conditions preceding it fail.

Definition 14 [Denotational Semantics of Exp] Let

Env be the domain of environments Id ~ D. The

semantic function [.] : Exp -+ Env --+ D is defined in

figure 3.

Before we define the semantics for constants, we

need to define some auxiliary functions. Let R =

{rl, rn } be a set of constructors. The auxiliary

function CR verifies that its argument belongs to one

of the summands specified by R. It is defined by the

equation:

(d d = Innrl (d’)

\

CR(d) = ~

d d = InDr- (d’)

wrong otherwise

291

[c] = IT2DC(*) n=(l

[c] = In~+D(K) ‘n # o
iic~se(c,,..,,ck)l= lnD+D(c)

[u:] = In~+~(N)

where

1< =

c’=

N=

Adl. ..dn.

In~c(CR, ((all, dn)))

~dfl....fk.

I
fl(d)

fk(d)
wrong

Ad,

/

d

fault

(wrong

Figure 4: Semantics for

d = InC, (d’)

d = InC, (d’)

otherwise

CT(d) # wrong

CS (d) # wrong

otherwise

primitive operations

where Dr, is the summand of D associated with con-

structor r~.

For sets of constructors R~, 1< i < k, we define:

CR,,...,R~((dl, . . .,d~)) =

{

(d,,..., dk) foralli,l<i<k

CR, (d~) # wrong

wrong otherwise

Definition 15 [Semantics of Constants] The seman-

tics for constants is given in Figure 4 where c is an

arbitrary constructor of arity n, Dc is the associated

summand in D, and Ri indicates the set of restric-

tions on the i-th argument of c declared in the data

tableau. Since the meaning of constants does not de-

pend on the environment, the environment argument

is left implicit,

B Type Semantics

Our semantics for types is based on the ideal model for

recursive parametric types developed by MacQueen,

Plotkin and Sethi[16]. Ideals are downward-closed,

directed-closed subsets of D. We denote domain of

ideals over D by the symbol Z.

MacQueen, Plotkin and Sethi define a metric on the

ideals and use that metric to define a fixed point oper-

ation on contractile type functions mapping Z into Z.

They show that the abstraction of a type expression

T[c]v =

T[c(tl, . . .,tn)]v =

T[tl -+ tz]v =

T[tl + tz]v =

T[fix a.t]v =

DC U fault

~nDc((T[tl]~, . . . ,T[t&))

U fault

T[tl]v ~ T[tz]v U fault

T[t@ U 7[tz]v

P if(i) U fault

where f(i) = T[t]v[a = i]

Figure 5: Type Semantics

that is formally contractile in the type variable x with

respect z denotes a contractile function on Z.

Definition 16 [Formal Contractiveness] A type ex-

pression E is formally contractile in a iff either:

1,

2.

3,

4.

5.

E = c for c a O-ary type constructor.

E = x’ for some variable x’ # x.

E=c(E1, ..., En) for C. an n-ary type construc-

tor (including +).

E = El + Ez where El and Ez are type expres-

sions that are formally contractile in z

E = fix z’ .E1 where El is formally contractile

in x and x’.

Definition 17 [Type Semantics] The semantics of

the type language Typ is given by the meaning func-

tion To defined in Figure 5. In the definition, v : V -

T denotes a valuation for free type variables; Ins de-

notes the injection function for summand S mapped

over ideals of S (interpreted as sets); p stands for the

fixed point operator on contractile functions mapping

Z into Z: c denotes any type constructor other than

-+: and ~: Z ~ Z ~ Z denotes the ideal function

space constructor defined by the equation:

A~B={fc D~Dlf(A)~ B},

The type semantics constructs ideals that exclude

wrong so that undefined applications cannot type

check. On the other hand, all of the ideals include

the element fault, so that narrowers have a legiti-

mate static type.

292

