
115

Conte xt- and Path-sensitive Memor y Leak Detection ∗

Yichen Xie Alex Aiken

Computer Science Department
Stanford University
Stanford, CA 94305

{yxie,aiken}@cs.stanford.edu

ABSTRACT
We present a context- and path-sensitive algorithm for de-
tecting memory leaks in programs with explicit memory
management. Our leak detection algorithm is based on an
underlying escape analysis: any allocated location in a pro-
cedure P that is not deallocated in P and does not escape
from P is leaked. We achieve very precise context- and path-
sensitivity by expressing our analysis using boolean con-
straints. In experiments with six large open source projects
our analysis produced 510 warnings of which 455 were unique
memory leaks, a false positive rate of only 10.8%. A parallel
implementation improves performance by over an order of
magnitude on large projects; over five million lines of code
in the Linux kernel is analyzed in 50 minutes.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.3 [Software Engineering]: Coding Tools and
Techniques; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms
Algorithms, Experimentation, Languages, Verification.

Keywords
Program analysis, error detection, memory management,
memory leaks, boolean satisfiability.

1. INTRODUCTION
Languages with explicit memory management require the

programmer to manually deallocate memory blocks that are
no longer needed by the program, and memory leaks are a
common problem in code written in such languages. A mem-
ory leak is particularly serious in long running applications,

∗Supported by NSF grant CCF-0430378.

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
ESEC-FSE’05,September5–9,2005,Lisbon,Portugal.
Copyright 2005ACM 1-59593-014-0/05/0009...$5.00.

where it slowly consumes available memory, causing per-
formance degradation and eventually crashing the system.
Furthermore, a memory leak is among the hardest bugs to
detect since it has few visible symptoms other than the slow
and steady increase in memory consumption. Memory leaks
remain an important problem in the development of many
widely-used system programs. We make the following con-
tributions to the problem of detecting memory leaks:

• We give a new algorithm for context-sensitive and path-
sensitive escape analysis of dynamically allocated ob-
jects (Section 4). Our approach, based on representing
computations as boolean constraints, is significantly
more accurate than traditional approaches based on
standard types or dataflow analysis.

• We present experimental results showing that our ap-
proach scales well and that the extra precision of us-
ing boolean constraints translates into static detection
of many memory leaks with a low false positive rate
(Section 5). Across a set of large C codebases our leak
checker generates 510 warnings, of which 455 are dis-
tinct memory leaks1. The 55 false warnings represent
a false positive rate of only 10.8%. Our approach finds
many more leaks than previous approaches, including
algorithms designed to be sound (see Section 6 for a
discussion). The false positive rate of our algorithm
is also much lower than that of any other static leak
detection system known to us.

• Our memory leak checker is computationally intensive.
Analysis of more than 5 MLOC in the Linux kernel,
for example, currently requires one CPU-day on a fast
CPU. However, our algorithm analyzes each function
separately and, potentially, in parallel, subject only to
the ordering dependencies of the function call graph.
Exploiting this parallelism dramatically reduces anal-
ysis times: using roughly 80 unloaded CPUs the Linux
kernel is checked in 50 minutes.

• SAT-based analysis models each bit of a computation
as a separate boolean variable; for example, a 32-bit
integer is represented by 32 boolean variables. A con-
sequence is that static type information is required to
know the size (and therefore the number of bits) of the
values being modeled. We introduce the notion of a
polymorphic location, a memory cell that may be used

1Bug reports are available online at
http://glide.stanford.edu/saturn/leaks/.

116

as multiple types (Section 3). This feature is critical to
accurate modeling of heap references in the presence
of type casts; in object-oriented languages the same
issue would arise with subtyping.

We wish to emphasize that our goal is a bug finding tool,
not a verification tool: our method is unsound. As we will
discuss, the main sources of unsoundness are in the handling
of loops and interprocedural aliasing.

2. BACKGROUND
Our leak checker is implemented in the Saturn analysis

framework [18]. This section briefly describes how Saturn

models the scalar portion of a simple procedural language,
including base types (integers), structures, and the arbitrary
control-flow found in C. Handling pointers in a memory leak
checker requires new ideas and is discussed in Section 3.

Figure 1 defines the scalar entities Saturn manipulates.
A type is either an integer type or a structure type. An
integer type (n, s) includes the number of bits n and whether
the integer is signed or unsigned. Such types are represented
(see the end of Figure 1) by a vector of boolean formulas
(which may include boolean variables) of length n. Structure
types are simply records with named fields.

Programs consist of objects, expressions, conditions, and
statements. An object is either a program variable or a struc-
ture. Objects, a few basic constructs (constants, and unary
and binary operations), and type casts (τ)e require no fur-
ther explanation. A lift expression converts a condition
(see below) to an expression of the appropriate type. Be-
cause conditions are single bits, this operation has the effect
of padding the condition to the number of bits for the type.
An unknown expression is used to mark features of C that
we do not model (e.g., division); an unknown(τ) expression is
represented by a vector of unconstrained boolean variables
of the length given by τ .

Expressions are translated to boolean formulas, defined
by cases using rules of the form

[[e]]ψ = β,

where e ranges over expressions, and β over boolean repre-
sentations. The environment ψ : v 7→ β gives the boolean
representation of the free variables of e. As an example,
the following rule describes the bitwise-and operation, which
evaluates the two operands e and e′ in the current envi-
ronment ψ and constructs the result by building a boolean
representation for the bitwise-and of both operands.

[[e]]ψ = [bn−1 . . . b0]s
[[e′]]ψ = [b′n−1 . . . b

′
0]s

[[e band e′]]ψ = [bn−1 ∧ b
′
n−1 . . . b0 ∧ b

′
0]s

band

For brevity we do not show other translation rules; the in-
terested reader is referred to [18] for details.

A condition is a single bit, and includes the boolean con-
stants, usual boolean operations, standard comparisons be-
tween expressions, and the lift of an expression, which is
the disjunction of all the expression’s bits. Similar to ex-
pressions, judgments of the form

[[c]]ψ = b

translate conditionals to boolean formulas.
A statement can be skip (a no-op), assignment, or assert

or assume statements, which we explain shortly. Judgments

Language

Type (τ) ::= (n, s) | {(f1, τ1), . . . , (fn, τn)}
where s ∈ {signed, unsigned}

Obj (o) ::= v | {(f1, o1), . . . , (fn, on)}

Expr (e) ::= unknown(τ) | const(n, τ) | o | unop e |
e1 binop e2 | (τ) e | lifte(c, τ)

Cond (c) ::= false | true | ¬ c | e1 comp e2 |
c1 ∧ c2 | c1 ∨ c2 | liftc(e)

Stmt (s) ::= o← e | assert(c) | assume(c) | skip

comp ∈ {=, >,≥, <,≤, 6=} unop ∈ {−, !}
binop ∈ {+,−, ∗, /,mod, band, bor, xor,≪,≫l,≫a}

Shorthand

o = {(f1, o1), . . . , (fn, on)}

o.fi
def

= oi
field-access

Representation

Rep (β) ::= [bn−1 . . . b0]s | {(f1, β1), . . . , (fn, βn)}
where s ∈ {signed, unsigned}

Bit (b) ::= 0 | 1 | x | b1 ∧ b2 | b1 ∨ b2 | ¬b

Figure 1: Saturn base language.

for statements have the form

G, ψ ⊢ s
S

⇒
˙

G′;ψ′
¸

where G and G′ are guards. Guards are boolean formulas
expressing the path-sensitive condition under which a state-
ment actually executes. Consider the following example:

stmt 0; /* G : true */
if (x > 5) stmt 1; /* G : x > 5 */
else stmt 2; /* G : ¬(x > 5) */
stmt 3; /* G : (x > 5) ∨ ¬(x > 5) ≡ true */

We start with the guard true for stmt 0. The true branch
of the first if statement is reached when x > 5 is true, so the
guard for stmt 1 is x > 5. Similarly, the guard for the false
branch is the negation of the branch predicate. stmt 3 is
reached from both the true and false branches, so its guard
is the disjunction of the predecessor guards. We use a BDD
based algorithm to simplify guards before converting them
to boolean formulas to avoid overwhelming the SAT solver
with clauses in long chains of conditionals.

Statements are both guard and environment transform-
ers: both the guard and the environment may be affected
by the execution of a statement. A statement assume(c)
affects the guard; if G is the initial guard and b is the bit
representing condition c, then the guard after the statement
is G∧b. Assignments transform the environment (by adding
a new definition of the updated location for the next pro-
gram point) and, in the presence of pointers, the guard (e.g.,
because on statement exit any indirect accesses in the state-
ment must have succeeded and are known to be non-null).

117

An assert(c) statement causes Saturn to check that c is
true at this program point.2

We define function bodies informally as control-flow graphs
where the nodes are statements and directed edges are un-
conditional transfers of control. If a statement has multiple
successors, we require that they be assume statements with
disjoint conditions. A conditional branch with condition c
is then modeled as a node with two successors, one of which
is assume(c) and the other assume(¬c).

We must also define what happens when a node has mul-
tiple predecessors. We combine the various environments
and guards of each of the predecessors into a single envi-
ronment and guard, while preserving path sensitivity. The
merged guard is just the disjunction of the guards of the
predecessors, but the merged environment requires comput-
ing, for each bit b of each variable in the environment, the
disjunction of the corresponding bits in each predecessor en-
vironment. Furthermore, each bit from each predecessor
statement s is conditionally switched on by the guard from
s; this preserves path sensitivity in the new environment. In
the definitions below, we use the notation Xi as a shorthand
for a vector of similar entities: X1 . . . Xn.

MergeScalar
“

v, (Gi, ψi)
”

= [b′m . . . b
′
0]s

where

[bim . . . bi0]s = ψi(v)
b′j =

W

i(Gi ∧ bij)

MergeEnv
“

(Gi, ψi)
”

=
˙
W

i
Gi;ψ

¸

where ψ(v) = MergeScalar
“

v, (Gi, ψi)
”

We can now describe at a high level how Saturn ana-
lyzes a function body. Beginning with the entry node of the
control flow graph, Saturn simply traverses the graph in
topological order, computing the guard and environment for
each statement and issuing satisfiability queries at assert

statements. A remaining issue is the handling of loops, be-
cause this simple procedure is not well-defined for back edges
where the predecessor guard and environment have not yet
been computed. For our leak checker we found it necessary
to improve Saturn’s loop analysis (see Section 3.5).

Finally, we outline how Saturn performs interprocedu-
ral analysis. The function call graph is analyzed bottom-up
(currently recursion is broken arbitrarily and function point-
ers are modeled conservatively). Scalability is achieved by
using function summaries, which are concise representations
of functions’ memory behavior. We use the inferred function
summary in analyzing the callers of the function.

3. EXTENSIONS
In this section, we extend Saturn to support leak de-

tection. We describe a path-sensitive pointer analysis that
builds on Guarded Location Sets (GLS) [18] (Section 3.1);
we extend GLS with type casts and polymorphic locations
(Sections 3.2 and 3.3). We also introduce attributes (Sec-
tion 3.4), which are annotations on objects and polymorphic
locations. We discuss analyzing loops in Section 3.5.

3.1 Guarded Location Sets
Pointers in Saturn are modeled with Guarded Location

Sets (GLS). A GLS represents the set of locations a pointer

2If b is the translation of c and G is the guard of the state-
ment, the assertion holds if G ∧ ¬b is unsatisfiable.

could reference at a particular program point. To main-
tain path-sensitivity, a boolean guard is associated with
each location in the GLS and represents the condition under
which the points-to relationship holds. We write a GLS as
{| (G0, l0), . . . , (Gn, ln) |}. Special braces ({| |}) distinguish
GLSs from other sets. We illustrate GLS with an example,
but delay technical discussion until Section 3.3.

1 if (c) p = &x; /* p : {| (true, x) |} */
2 else p = &y; /* p : {| (true, y) |} */
3 *p = 3; /* p : {| (c, x), (¬c, y) |} */

In the true branch, the GLS for p is {| (true, x) |}, meaning p
always points to x. Similarly, ψ(p) evaluates to {| (true, y) |}
in the false branch. At the merge point, branch guards are
added to the respective GLSs and the representation for
p becomes {| (c, x), (¬c, y) |}. Finally, the store at line 3
makes a parallel assignment to x and y under their respective
guards (i.e., if (c) x = 3; else y = 3;).

To simplify technical discussion, we assume locations in a
GLS occur at most once—redundant entries (G, l) and (G ′, l)
are merged into (G∨G′, l). Also, we assume the first location
l0 is always null (we use the false guard for G0 if necessary).

3.2 Polymorphic Objects
The GLS representation models pointers to concrete ob-

jects with a single known type. However, in the leak analysis
we often need to understand type casts to faithfully track
memory locations. For example, in the following code,

void *malloc(int size);
p = (int *)malloc(len);
q = (char *) p;
return q;

the memory object allocated on the second line goes through
three different types. These types all have different repre-
sentations (i.e., different numbers of bits) and so must be
maintained separately, but the analysis must understand
that they refer to the same location. We need to model:
1) the polymorphic pointer type void*, and 2) cast opera-
tions to and from void*. Casts between incompatible pointer
types (e.g. from int* to char*) can then be modeled via an
intermediate cast to void*.

We solve this problem by introducing addresses (Addr);
which are symbolic identifiers associated with each unique
memory location. We use the AddrOf : Obj → Addr map-
ping to record the addresses of objects. Objects of differ-
ent types share the same address if they start at the same
memory location. In the example above, p and q point to
different objects, say o1 of type int and o2 of type char, and
o1 and o2 must share the same address (i.e. AddrOf(o1) =
AddrOf(o2)). Furthermore, an address may have no associ-
ated concrete objects if it is referenced only by a pointer of
type void* and never dereferenced at any other types. Us-
ing guarded location sets and addresses, we can describe the
translation of pointers in detail.

3.3 Translation of Pointer Operations
Figure 2 defines the language and translation rules for

pointers. Locations in the GLS can be 1) null, 2) a concrete
object o, or 3) an address σ of a polymorphic pointer (void*).
We maintain a global mapping AddrOf from objects to their
addresses and use it in the cast rules to convert pointers to
and from void*.

The translation rules work as follows. Taking the address
of an object (get-addr-{obj,mem}) constructs a GLS with a

118

Language

Type (τ) ::= τ ∗ | void* | . . .
Obj (o) ::= p | . . .

Deref (m) ::= (∗p).f1. · · · .fn (n ≥ 0)
Expr (e) ::= null | &o | &m | . . .
Stmt (s) ::= load(m,o) | store(m, e) | newloc(p) | . . .

Address

Addr (σ) ::= 1̂ | 2̂ | . . .
AddrOf : Obj 7→ Addr

(Constraint: no two objects of the same type
share the same address)

Representation

Loc (l) ::= null | o | σ
Rep (β) ::= {| (G0, l0), . . . , (Gk, lk) |} | ...

Translation

β = ψ(p)

ψ ⊢ p
E

⇒ β
pointer

ψ ⊢ &o
E

⇒ {| (true, o) |}
getaddr-obj

m = (∗p).f1. · · · .fn

ψ ⊢ p
E

⇒ {| (G0, null), (Gi, oi) |}

β = {| (G0, null), (Gi, oi.f1. · · · .fn) |}

ψ ⊢ &m
E

⇒ β
getaddr-mem

ψ(p) = {| (G0, null), (Gi, li) |}

ψ ⊢ liftc(p)
C

⇒
W

i6=0
Gi

liftc-pointer

l =

o if p is of type τ∗
σ if p is of type void*

β = {| (true, l) |} and o or σ fresh

G, ψ ⊢ newloc(p)
S

⇒ 〈G;ψ[p 7→ β]〉
newloc

ψ(p) = {| (G0, null), (Gi, σi) |}
type of oi = τ and AddrOf(oi) = σi

ψ ⊢ (τ∗)p
E

⇒ {| (G0, null), (Gi, oi) |}
cast-from-void*

ψ(p) = {| (G0, null), (Gi, oi) |}
AddrOf(oi) = σi

ψ ⊢ (void*)p
E

⇒ {| (G0, null), (Gi, σi) |}
cast-to-void*

m = (∗p).f1. · · · .fn

ψ ⊢ p
E

⇒ {| (G0, null), (G1, o1), . . . , (Gk, ok) |}
G′ = G ∧ ¬G0

G′ ∧ Gi, ψ ⊢ (oi.f1. · · · .fn ← e)
S

⇒ 〈Gi;ψi〉
(for i ∈ 1..k)

G, ψ ⊢ store(m, e)
S

⇒ MergeEnv
“

(Gi;ψi)
” store

Figure 2: Pointers and guarded location sets.

Merging

AddGuard (G, {| (G1, l1), .., (Gk, lk) |}) =
{| (G ∧ G1, l1), .., (G ∧ Gk, lk) |}

MergePointer
“

p, (Gi, ψi)
”

=
S

i
AddGuard(Gi, ψi(p))

MergeEnv
“

(Gi, ψi)
”

=
˙
W

i
Gi;ψ

¸

where

8

<

:

ψ(v) = MergeScalar
“

v, (Gi, ψi)
”

ψ(p) = MergePointer
“

p, (Gi, ψi)
”

Figure 3: Control-flow merges with pointers.

single entry–the object itself with guard true. The newloc
rule creates a fresh object or address depending on the type
of the target pointer and binds the GLS containing that
location to the target pointer in the environment ψ. Notice
that Saturn does not directly model explicit deallocation.
In our leak checker, we treat deallocated memory blocks as
escaped (Section 4.2). Type casts to void* lift entries in
the GLS to their addresses using the AddrOf mapping, and
casts from void* find the concrete object of the appropriate
type in the AddrOf mapping to replace addresses in the GLS.
Finally, the store rule models indirect assignment through a
pointer, possibly involving field dereferences, by combining
the results for each possible location the pointer could point
to. The pointer is assumed to be non-null by adding ¬G0

to the current guard3. Notice that the store rule requires
concrete locations in the GLS as one cannot assign through
a pointer of type void*. Loading from a pointer is similar
and we omit the rule due to space limitations.

3.4 Attributes
Another feature we have added to Saturn is attributes,

which are simply annotations associated with non-null Sat-

urn locations (i.e. structs, scalar variables, pointers, and
addresses). We use the syntax o#attrname to denote the
attrname attribute of object o.

The definition and translation of attributes is similar to
struct fields except that it does not require predeclaration,
and attributes can be added during the analysis as needed.
Similar to struct fields, attributes can also be read and
changed indirectly through pointers.

We omit the formal definition and translation rules be-
cause of their similarity to field accesses. Instead, we use an
example to illustrate attribute usage in analysis.

1 (*p)#escaped <− true;
2 q <− (void *) p;
3 assert ((*q)#escaped == (*p)#escaped);

In the example above, we use the store statement at line 1 to
model the fact that the location pointed to by p has escaped.
The advantage of using attributes here is that it is attached
to addresses and preserved through pointer casts—thus the
assertion at line 3 holds.

3.5 Loops
For our leak detector Saturn uses a two-pass algorithm

for loops. In the first pass the loop is unrolled a small num-
ber of times (three in our implementation) and the backedges

3Recall G0 is the guard of null; see Section 3.1.

119

discarded; thus, just the first three iterations are analyzed.
For leak detection this strategy works extremely well except
for loops such as

for (i = 0; i < 10000; i++)
;

The problem here is that the loop exit condition is never
true in the first few iterations of the loop. Thus path sen-
sitive analysis of just the first few iterations concludes that
the exit test is never satisfied and the code after the loop
appears to be unreachable. In the first pass, if the loop
can terminate within the number of unrolled iterations, the
analysis of the loop is just the result of the first pass. Oth-
erwise, we discard results from the first pass and a second,
more conservative analysis is used. In the second pass, we
replace the right-hand side of all assignments in the loop
body by unknown expressions and the loop is analyzed once.
Intuitively, the second pass analyzes the last iteration of the
loop; we model the fact that we do not know the state of the
variables after an arbitrary number of earlier iterations by
assigning them unknown values [19]. The motivation for this
two-pass analysis is that the first pass yields more precise
results when the loop can be shown to terminate; however, if
the unrolled loop iterations cannot reach the loop exit, then
the second pass is preferable because it is more important
to at least reach the code after the loop than to have precise
information for the loop itself.

4. THE LEAK DETECTOR
In this section, we present a static leak detector based on

the path sensitive pointer analysis described in Section 3.
We target one important class of leaks, namely neglecting to
free a newly allocated memory block before all its references
go out of scope. These bugs are commonly found in error
handling paths, which are less likely to be covered during
testing.

The rest of the section is organized as follows: Section 4.1
gives examples illustrating the targeted class of bugs and
the analysis techniques required. We briefly outline the
detection algorithm in Section 4.2 and give details in Sec-
tions 4.3, 4.4, and 4.5. Handling the unsafe features of C is
described in Section 4.6. In Section 4.7, we describe a par-
allel client/server architecture that dramatically improves
analysis speed.

4.1 Motivation and Examples
Below we show a typical memory leak found in C code:

p = malloc(. . .); . . .
if (error condition) return NULL;
return p;

Here, the programmer allocates a memory block memory
and stores the reference in p. Under normal conditions p is
returned to the caller, but in case of an error, the function
returns NULL and the new location is leaked. The problem is
fixed by inserting the statement free(p) immediately before
the error return.

Our goal is to find these errors automatically. We note
that leaks are always a flow sensitive property, but some-
times path-sensitive as well:

if (p != NULL) free(p);

To avoid false warnings in their path insensitive leak detec-
tor, Heine et. al. [8] transform this code into:

if (p != NULL) free(p);
else p = NULL;

The transformation handles this idiom with a slight change
of program semantics (i.e., the extra NULL assignment to p).
However, syntactic manipulations are unlikely to succeed in
more complicated examples:

char fastbuf[10], *p;
if (len < 10) p = fastbuf;
else p = (char *)malloc(len);

. . .
if (p != fastbuf) free(p);

In this case, depending on the length of the required buffer,
the programmer chooses between a smaller but more efficient
stack-allocated buffer and a larger but slower heap-allocated
one. This optimization is common in performance critical
code such as Samba and the Linux kernel and a fully path
sensitive analysis is desirable in analyzing such code.

Another challenge to the analysis is illustrated by the fol-
lowing example:

p−>name = strdup(string);
push on stack(p);

To understand this code, the analysis must infer that strdup
allocates new memory and that push on stack adds an ex-
ternal reference to its first argument p and therefore causes
(*p).name to escape. Thus, some interprocedural analysis
is required. Without abstraction, interprocedural program
analysis is prohibitively expensive for path sensitive anal-
yses such as ours. We adopt a summary-based approach
that exploits the natural abstraction boundary at function
calls. For each function, we use boolean satisfiability queries
to infer information about the function’s memory behavior
and construct a summary for that function. The summary
is designed to capture the following two properties:

1. whether the function is a memory allocator, and

2. the set of escaping objects that are reachable from the
function’s parameters.

We show how we infer and use such function summaries in
Section 4.5.

4.2 Outline of the Leak Checker
This subsection discusses several key ideas behind the leak

checker. First of all, we observe that pointers are not all
equal with respect to memory leaks. Consider the following
example:

(*p).data = malloc(. . .); return;

The code contains a leak if p is a local variable, but not if
p is a global or a parameter. In the case where *p itself is
newly allocated in the current procedure, (*p).data escapes
only if object *p escapes (except for cases involving cyclic
structures; see below). In order to distinguish between these
cases, we need a concept called access paths (Section 4.3) to
track the path through which an object is accessed from
both inside and outside (if possible) the function body. We
describe details about how we model object accessibility in
Section 4.4.

References to a new memory location can also escape
through means other than pointer references:

1. memory blocks may be freed;

2. function calls may create external references to newly
allocated locations;

3. references can be transferred via program constructs
in C that currently are not modeled in Saturn (e.g.,

120

Params = {param
0
, . . . , paramn−1

}
Origins (r) ::= {ret val} ∪ Params ∪

Globals ∪ NewLocs ∪ Locals
AccPath (π) ::= r | π.f | ∗ π

PathOf : Loc→ AccPath
RootOf : AccPath→ Origins

Figure 4: Access paths.

by decomposing a pointer into a page number and a
page offset, and reconstructing it later).

To model these cases, we instrument every allocated memory
block with a boolean escape attribute whose default value
is false. We set the escape attribute to true whenever we
encounter one of these three situations. A memory block is
not considered leaked when its escape attribute is set.

One final issue that requires explicit modeling is that mal-
loc functions in C might fail. When it does, malloc returns
null to signal a failed allocation. This situation is illustrated
in Section 4.1 and requires special-case handling in path in-
sensitive analyses. We use a boolean valid attribute to track
the return status of each memory allocation. The attribute
is non-deterministically set at each allocation site to model
both success and failure scenarios. For a leak to occur, the
corresponding allocation must originate from a successful
allocation and thus have its valid attribute set to true.

4.3 Access Paths and Origins
This subsection describes how we track and manipulate

the path through which objects are first accessed. As shown
in the Section 4.2, path information is important in defining
the escape condition for memory locations.

Figure 4 defines the representation and operations on ac-
cess paths. Objects are reached by field accesses or pointer
dereferences from five origins: global and local variables,
the return value, function parameters, and newly allocated
memory locations. We represent the path through which an
object is accessed first with AccPath.

PathOf maps objects (and polymorphic locations) to their
access paths. Access path information is computed by record-
ing object access paths used during the analysis. The RootOf
function takes an access path and returns the object from
which the path originates.

We illustrate these concepts using the following example:
struct state { void *data; };
void *g;
void f(struct state *p)
{

int *q;
g = p−>data;
q = g;
return q; /* rv = q */

}

Table 1 summarizes the objects reached by the function,
their access paths and origins. The origin and path infor-
mation indicates how these objects are first accessed and is
used in defining the leak conditions in Section 4.4.

4.4 Escape and Leak Conditions
Figure 5 defines the rules we use to find memory leaks and

construct function summaries. Without loss of generality,

Object AccPath RootOf
p param

0
param

0

∗p ∗param
0

param
0

(∗p).data (∗param
0
).data param

0

∗(∗p).data ∗(∗param
0
).data param

0

g globalg globalg
q localq localq
rv ret val ret val

Table 1: Objects, access paths, and access origins in
the sample program.

we make the following two assumptions about the control
flow graph of the target function:

1. We assume that there is one unique exit block in each
function’s control flow graph. We handle multiple re-
turn statements in C by introducing a dummy exit-
block linked to all return sites. The exit block is an-
alyzed last (recall the topological order in which we
process the control-flow graph blocks), and the envi-
ronment ψ at the return site encodes all constraints for
paths from function entry to exit. We apply the leak
rules at the end of the exit block, and the implicitly
defined environment ψ in the rules refers to the exit
environment.

2. We model return statements in C by assigning the
return value to the special object rv, whose access path
is ret val (recall Section 4.3).

In Figure 5, the PointsTo(p, l) function gives the condi-
tion under which pointer p points to location l. The re-
sult is simply the guard associated with l if it occurs in the
GLS of p and false otherwise. Using the PointsTo function,
we are ready to define the escape relationships Escaped and
EscapeVia.

Ignoring the exclusion set X for now, EscapeVia(l, p,X)
returns the condition under which location l escapes through
pointer p. Depending on the origin of p, EscapeVia is defined
by four rules via-* in Figure 5. The simplest of the four rules
is via-local, which stipulates that location l cannot escape
through p if p’s origin is a local variable, since the reference
is lost when p goes out of scope at function exit.

The next rule handles the case where p is accessible through
a global variable. In this case, l escapes when p points to
l, which is described by the condition PointsTo(p, l). The
case where a location escapes through a function parameter
is treated similarly in the via-interface rule.

The rule via-newloc handles the case where p is a newly
allocated location. Again ignoring the exclusion set X , the
rule stipulates that a location l escapes if p points to l and
the origin of p, which is itself a new location, in turn escapes.

However, the above statement is overly generous in the
following situation:

s = malloc(. . .); /* creates new location l’ */
s−>next = malloc(. . .); /* creates l */
s−>next−>prev = s; /* circular reference */

The circular dependency that l escapes if l′ does, and vice
versa, can be satisfied by the constraint solver by assuming
both locations escape. To find this leak, we prefer a solution
where neither escapes. We solve this problem by adding an
exclusion set X to the leak rules to prevent circular escape

121

ψ(p) = {| (G0, l0), . . . , (Gn−1, ln−1) |}

PointsTo(p, l) =

8

<

:

Gi if ∃i s.t.
AddrOf(l)=AddrOf(li)

false otherwise

points-to

Excluded Set: X ⊆ Origins− (Globals ∪ Locals)

RootOf(p) ∈ Locals ∪ X

EscapeVia(l, p,X) = false
via-local

RootOf(p) ∈ Globals

EscapeVia(l, p,X) = PointsTo(p, l)
via-global

RootOf(p) = (Params ∪ {ret val})− X

EscapeVia(l, p,X) = PointsTo(p, l)
via-interface

l′ = RootOf(p) l′ ∈ (NewLocs − X)

EscapeVia(l, p,X) = PointsTo(p, l)∧
Escaped(l′,X ∪ {l})

via-newloc

Escaped(l,X) =
[[l#escaped]]ψ ∨

W

p
EscapeVia(l, p,X) escaped

Leaked(l,X) = [[l#valid]]ψ ∧ ¬Escaped(l,X) leaked

*For brevity, RootOf(p) denotes RootOf(PathOf(p)).

Figure 5: Memory leak detection rules.

routes. In the via-newloc rule, the location l in question is
added to the exclusion set, which prevents l′ from escaping
through l.

The Escaped(l,X) function used by the via-newloc rule
computes the condition under which l escapes through a
route that does not intersect with X . It is defined by con-
sidering escape routes through all pointers and other means
such as function calls (modeled by the attribute l#escaped).

Finally, Leaked(l,X) computes the condition under which
a new location l is leaked through some route that does not
intersect with X . It takes into consideration the validity of
l, which models whether the initial allocation is successful
or not (see Section 4.1 for an example).

Using these definitions, we specify the condition under
which a leak error occurs:

∃l s.t. (l ∈ NewLocs) and (Leaked(l, {}) is satisfiable)

We issue a warning for each location that satisfies this con-
dition.

4.5 Interprocedural Analysis
This subsection describes the summary-based approach to

interprocedural leak detection in Saturn. We start by defin-
ing the summary representation in Section 4.5.1, and dis-
cuss summary generation and application in Sections 4.5.2
and 4.5.3.

4.5.1 SummaryRepresentation
Figure 6 shows the representation of a function summary.

In leak analysis we are interested in whether the function re-

Escapee(ǫ) ::= parami | ǫ.f | ∗ ǫ
Summary : Σ ∈ bool × 2Escapee

Figure 6: The definition of function summaries.

IsMalloc:

ψ(rv) = {| (G0, null), (Gi, li), (G′j , l
′
j) |}

where li ∈ NewLocs and l′j /∈ NewLocs
•

W

i
Gi is satisfiable and

W

j
G′j is not satisfiable

• ∀li ∈ NewLocs, (Gi =⇒ Leaked(li, {ret val}))
is a tautology

Escapees:

EscapedSet(f) = { PathOf(l) | RootOf(l) = parami and
Escaped(l, {parami}) is satisfiable }

Figure 7: Summary generation.

turns newly allocated memory (i.e. allocator functions), and
whether it creates any external reference to objects passed
via parameters (recall Section 4.1). Therefore, a summary Σ
is composed of two components: 1) a boolean value that de-
scribes whether the function returns newly allocated mem-
ory, and 2) a set of escaped locations (escapees). Since caller
and callee have different names for the formal and actual pa-
rameters, we use access paths (recall Section 4.3) to name
escaped objects. These paths, called Escapees in Figure 6,
are a subset of AccPath where the origin is a parameter.

Consider the following example:
1 void *global;
2 void *f(struct state *p) {
3 global = p−>next−>data;
4 return malloc(5);
5 }

The summary for function f is

〈isMalloc: true; escapees: {(*(*param
0
).next).data}〉

because f returns newly allocated memory at line 4 and adds
a reference to p->next->data from global and therefore es-
capes that object.

Notice that the summary representation focuses on com-
mon leak scenarios. It does not capture all memory alloca-
tion. For example, functions that return new memory blocks
via a parameter (instead of the return value) are not con-
sidered allocators. Likewise, aliasing relationships between
parameters are not captured by the summary representa-
tion.

4.5.2 SummaryGeneration
Figure 7 describes the rules for function summary gener-

ation. When the return value of a function is a pointer, the
IsMalloc rule is used to decide whether a function returns
a newly allocated memory block. A function qualifies as a
memory allocator if it meets the following two conditions:

1. The return value (rv) can only point to null or newly al-
located memory locations. The possibility of returning

122

any other existing locations disqualifies the function as
a memory allocator.

2. The object rv is the only externally visible reference to
new locations that might be returned. This prevents
false positives from region-based memory management
schemes where a reference is retained by the allocator
to free all new locations in a region together.

The set of escaped locations is computed by iterating
through all parameter accessible objects (i.e., objects whose
access path origin is a parameter p) and testing whether the
object can escape through a route that does not go through
p, i.e., if Escaped(l, {parami}) is satisfiable.

Take the following code as an example:
void insert after(struct node *head, struct node *new) {

new−>next = head−>next;
head−>next = new;

}

The escapee set of insert after includes: (*head).next, since
it can be reached by the pointer (*new).next; and *new,
since it can be reached by the pointer (*head).next. The
object *head is not included, because it is only accessible
through the pointer head, which is excluded as a possible
escape route. (For clarity, we use the more mnemonic names
head and next instead of param

0
and param

1
in these access

paths.)

4.5.3 SummaryApplication
Function calls are replaced by code that simulates their

memory behavior based on their summary. The following
pseudo-code models the effect of the function call r = f(e1,
e2, ..., en), assuming f is an allocator function with escapee
set escapees:

1 /* escape the escapees */
2 foreach (e) in escapees do

3 (*e)#escaped = true;
4

5 /* allocate new memory store it in r */
6 if (*) {
7 newloc(r);
8 (*r)#valid <− true;
9 } else

10 r <− null;

Lines 1-3 set the escaped attribute for f ’s escapees. Note
that e at line 3 is an access path from a parameter. Thus (*e)
is not a valid Saturn object and must be transformed into
one using a series of assignments. The details are omitted
due to space limitations.

Lines 5-10 simulate the memory allocation performed by f.
We non-deterministically assign a new location to r and set
the valid bit of the new object to true. To simulate failure,
we assign null to r at line 10.

In the case where f is not an allocation function, lines 5-10
are replaced by the statement rv← unknown.

4.6 Handling Unsafe Operations in C
The C type system allows constructs (i.e., unsafe type

casts and pointer arithmetic) not currently modeled by Sat-

urn. We have identified several common idioms that use
such operations, motivating some extensions to our leak de-
tector.

One extension handles cases similar to the following, which
emulates a form of inheritance in C:

struct sub { int value; struct super super; }
struct super *allocator(int size)
{

struct sub *p = malloc(. . .);
p−>value = . . .;
return (&p−>super);

}

The allocator function returns a reference to the super field
of the newly allocated memory block. Technically, the refer-
ence to sub is lost on exit, but it is not an error because it can
be recovered with pointer arithmetic. Variants of this idiom
occur frequently in the projects we examined. Our solution
is to consider a structure escaped if any of its components
escape.

Another extension recognizes common address manipu-
lation macros in Linux such as virt to phys and bus to virt,
which add or subtract a constant page offset to arrive at
the physical or virtual equivalent of the input address. Our
implementation matches such operations and treats them as
identity functions.

4.7 A Distributed Architecture
The leak analysis uses a path sensitive analysis to track

every incoming and newly allocated memory location in a
function. Compared to the lock checker previously imple-
mented in Saturn [18], the higher number of tracked ob-
jects (and thus SAT queries) means the leak analysis is much
more computationally intensive.

However, the leak algorithm is highly parallelizable, be-
cause it analyzes each function separately, subject only to
the ordering dependencies of the function call graph. We
have implemented a distributed client/server architecture
to exploit this parallelism.

The server side consists of a scheduler, dispatcher, and
database server. The scheduler computes the dependence
graph between functions and determines the set of func-
tions ready to be analyzed. The dispatcher sends ready
tasks to idle clients. When the client receives a new task, it
retrieves the function’s abstract syntax tree and summaries
of its callees from the database server. The result of the
analysis is a new summary for the analyzed function, which
is sent to the database server for use by the function’s callers.

We employ caching techniques to avoid congestion at the
server. Our implementation scales to hundreds of CPUs
and is highly effective: the analysis time for the Linux ker-
nel, which requires nearly 24 hours on a single fast machine,
is analyzed in 50 minutes using around 80 unloaded CPUs.
The speedup is sublinear in the number of processors be-
cause there is not always enough parallelism to keep all pro-
cessors busy, particularly near the root of a call graph.

5. EXPERIMENTAL RESULTS
We have implemented the leak checker as a plug-in to the

Saturn analysis framework [18] and applied it to five user
space applications and the Linux kernel.

5.1 User Space Applications
We checked five user space software packages: Samba,

OpenSSL, PostFix, Binutils, and OpenSSH. We analyzed
the latest release of the first three, while we used older ver-
sions of the last two to compare with results reported for
other leak detectors [8, 6]. All experiments were done on
a lightly loaded dual XeonTM 2.8G server with 4 gigabytes
of memory as well as on a heterogeneous cluster of around

123

LOC Time LOC/s P.Time P.LOC/s Fn Failed (%) Alloc Bugs FP (%)

Samba 403,744 3h22m52s 33 10m57s 615 7,432 24 (0.3%) 80 83 8 (8.79%)
OpenSSL 296,192 3h33m41s 23 11m09s 443 4,181 60 (1.4%) 101 117 1 (0.85%)
Postfix 137,091 1h22m04s 28 12m00s 190 1,589 11 (0.7%) 96 8 0 (0%)
Binutils 909,476 4h00m11s 63 16m37s 912 2,982 36 (1.2%) 91 136 5 (3.55%)
OpenSSH 36,676 27m34s 22 6m00s 102 607 5 (0.8%) 19 29 0 (0%)
Total 1,783,179 12h46m22s 39 56m43s 524 16,791 136 (0.8%) 387 373 14 (3.62%)

(a) User space applications.

LOC Time LOC/s P.Time P.LOC/s Fn Failed (%) Alloc Bugs FP (%)
Linux v2.6.10 5,039,296 23h13m27s 60 50m34s 1661 74,367 792 (1.06%) 368 82 41 (33%)

(b) Linux Kernel 2.6.10.

LOC: total number of lines of code; Time: analysis time on a single processor (2.8G Xeon);
P.Time: parallel analysis time on a heterogeneous cluster of around 80 unloaded CPUs;

Fn: number of functions in the program; Alloc: number of memory allocators detected; FP: number of false positives.

Table 2: Experimental Results.

1 /* Samba – libads/ldap.c:ads leave realm */
2 host = strdup(hostname);
3 if (. . .) { . . .; return ADS ERROR SYSTEM(ENOENT); }

(a) The programmer forgot to free host on error.

1 /* Samba – client/clitar.c:do tarput */
2 longfilename = get longfilename(finfo);
3 . . .
4 return;

(b) get longfilename allocates new memory.

1 /* Samba – utils/net rpc.c:rpc trustdom revoke */
2 domain name = smb xstrdup(argv[0]);
3 . . .
4 if (!trusted domain password delete(domain name))
5 return −1;
6 return 0;

(c) trusted domain password delete does not free.

Figure 8: Three bugs found by the leak checker.

80 idle workstations4. For each function, the resource limits
are set to 512MB of memory and 90 seconds of CPU time.

Table 2(a) gives the performance statistics and bug counts.
Note that we miss any bugs in the small percentage of func-
tions where resource limits are exceeded. The 1.8 million
lines of code were analyzed in under 13 hours using a sin-
gle processor and in under 1 hour using a cluster of about
80 CPUs. The parallel speedups increase significantly with
project size, indicating larger projects have relatively fewer
call graph dependencies than small projects. Note that the
sequential scaling behavior (measured in lines of code per
second) remains stable across projects ranging from 36K up
to 909K lines of unpreprocessed code.

The tool issued 387 warnings across these applications.
We have examined all the warnings and believe 373 of them
are bugs. (Warnings are per allocation site to facilitate in-
spection.) Besides bug reports, the leak checker generates

4We constantly monitor CPU load and user activity on these
machines, and avoid using clients that have active users or
tasks.

1 /* OpenSSL – crypto/bn/bn lib.c:BN copy */
2 t = BN new();
3 if (t == NULL) return (NULL);
4 r = BN copy(t, a);
5 if (r == NULL)
6 BN free(t);
7 return r;

Figure 9: A sample false positive.

a database of function summaries documenting each func-
tion’s memory behavior. In our experience, the function
summaries are highly accurate, and that, combined with
path-sensitive intraprocedural analysis, explains the excep-
tionally low false positive rate. The summary database’s
function level granularity enabled us to focus on one func-
tion at a time during inspection, which facilitated bug con-
firmation.

Figure 8 shows representative errors we found. The errors
largely fall into three categories: missed deallocation on er-
ror paths (Figure 8a), covert allocators (Figure 8b), and
misunderstood function interfaces (Figure 8c). Figure 9
shows a false positive caused by a limitation of our choice of
function summaries. At line 4, BN copy returns a copy of t
on success, and null on failure, and this is not detected, nor
is it expressible by the function summary.

5.2 The Linux Kernel
Table 2(b) summarizes statistics of our experiments on

Linux 2.6.10. Using the parallel analysis framework (re-
call Section 4.7) we distributed the analysis workload on 80
CPUs. Our implementation monitors system activity and
takes clients offline when they are under load or when there
are active users. The analysis completed in 50 minutes, pro-
cessing 1661 lines per second. We are not aware of any other
analysis algorithm that achieves this level of parallelism.

The bug count for Linux is considerably lower than for the
other applications relative to the size of the source code. The
Linux project has made a conscious effort to reduce memory
leaks, and, in most cases, they try to recover from error con-
ditions, where most of the leaks occur. Nevertheless, the tool
found 82 leak errors, some of which were surrounded by error
handling code that frees a number of other resources. Two

124

errors were confirmed by the developers as exploitable and
could potentially enable denial of service attacks against the
system. These bugs were immediately fixed when reported.

The false positive rate is higher in the kernel than user
space applications due to wide-spread use of function point-
ers and pointer arithmetic. Of the 41 false positives, 16 are
due to calls via function pointers and 9 are due to pointer
arithmetic. Application specific logic accounted for another
12, and the remaining 4 are due to Saturn limitations in
modeling constructs such as arrays and unions.

6. RELATED WORK
Previously we used Saturn to implement a path- and

context-sensitive analysis for detecting a class of locking
discipline errors. This analysis finds many more locking
errors with lower false positive rates than previously pub-
lished studies and the analysis also scales to millions of lines
of code [18]. Detecting memory leaks is a very different and
more complex property than analyzing more purely finite
state properties such as locking. In particular, a much more
sophisticated analysis of pointers and the heap is required.

Jackson and Vaziri were apparently the first to consider
finding bugs via reducing program source to boolean for-
mulas [10]. Subsequently there has been significant work
on a similar approach called bounded model checking [11].
While there are many low-level algorithmic differences be-
tween Saturn and these other systems, the primary concep-
tual difference is our emphasis on scalability (e.g., function
summaries) and focus on fully automated checking of prop-
erties without separate programmer-written specifications.

Memory leak detection using dynamic techniques has been
a standard part of the working programmer’s toolkit for
more than a decade. One of the earliest and best known
tools is Purify [7]; see [2] for a recent and significantly differ-
ent approach to dynamic leak detection. Dynamic memory
leak detection is limited by the quality of the test suite; un-
less a test case triggers the memory leak it cannot be found.

More recently there has been work on detecting memory
leaks statically, sometimes as an application of general shape
or heap analysis techniques, but in other cases focusing on
leak detection as an interesting program analysis problem
in its own right. One of the earliest static leak detectors
was LCLint [5], which employs an intraprocedural dataflow
analysis to find likely memory errors. The analysis depends
heavily on user annotation to model function calls, thus re-
quiring substantial manual effort to use. The reported false
positive rate is high mainly due to path insensitive analysis.

Prefix [1] detects memory leaks by symbolic simulation.
Like Saturn, Prefix uses function summaries for scalability
and is path sensitive. However, Prefix explicitly explores
paths one at a time, which is expensive for procedures with
many paths. Heuristics limit the search to a small set of “in-
teresting” paths. In contrast, Saturn represents all paths
using boolean constraints and path exploration is implicit
as part of boolean constraint solving.

Chou [3] describes a path-sensitive leak detection sys-
tem based on static reference counting. If the static refer-
ence count (which over-approximates the dynamic reference
count) becomes zero for an object that has not escaped, that
object is leaked. Chou reports finding hundreds of memory
leaks in an earlier Linux kernel using this method, most of
which have since been patched. The analysis is quite con-
servative in what it considers escaping; for example, saving

an address in the heap or passing it as a function argument
both cause the analysis to treat the memory at that address
as escaped (i.e., not leaked). The interprocedural aspect of
the analysis is a conservative test to discover malloc wrap-
pers. Saturn’s path- and context-sensitive analysis is more
precise both intra- and inter-procedurally.

We know of two memory leak analyses that are sound and
for which substantial experimental data is available. Heine
and Lam use ownership types to track an object’s owning
reference (the reference responsible for deallocating the ob-
ject) [8]. Hackett and Rugina describe a hybrid region and
shape analysis (where the regions are given by the equiv-
alence classes defined by an underlying points-to analysis)
[6]. In both cases, on the same inputs Saturn finds more
bugs with a lower false positive rate. While Saturn’s lower
false positive is not surprising (soundness usually comes at
the expense of more false positives), the higher bug counts
for Saturn are surprising (because sound tools should not
miss any bugs). For example, for binutils Saturn found
136 bugs compared with 66 found by Heine and Lam. The
reason appears to be that Heine and Lam inspected only
279 of 1106 warnings generated by their system; the other
727 warnings were considered to be likely false positives.
(Saturn did miss one bug reported by Heine and Lam due
to exceeding the CPU time limit for the function containing
the bug.) Hackett and Rugina report 10 bugs in OpenSSH out
of 26 warnings. Here there appear to be two issues. First,
the abstraction for which the algorithm is sound does not
model some common features of C, causing the implementa-
tion for C to miss some bugs. Second, the implementation
does not always finish (just as Saturn does not).

There has been extensive prior research in points-to and
escape analysis. Access paths were first used by Landi and
Ryder [12] as symbolic names for memory locations accessed
in a procedure. Several later algorithms (e.g., [4, 17, 13])
also make use of parameterized pointer information to achieve
context sensitivity. Escape analysis (e.g. [16, 14]) deter-
mines the set of objects that do not escape a certain region.
The result is traditionally used in program optimizers to
remove unnecessary synchronization operations (for objects
that never escape a thread) or enable stack allocation (for
ones that never escape a function call). Leak detection ben-
efits greatly from path-sensitivity, which is not a property
of traditional escape analyses.

Other systems have investigated encoding C pointers us-
ing boolean formulas. CBMC [11] uses uninterpreted func-
tions. SpC [15] uses static points-to sets derived from an
alias analysis. There, the problem is much simplified since
the points-to relationship is concretized at execution time
and integer tags (instead of boolean formulas) can be used to
guard the points-to relationships. F-Soft [9] models pointers
by introducing extra equivalence constraints for all objects
reachable from a pointer, which is inefficient in the presence
of frequent pointer assignments.

7. CONCLUSION
We have presented a novel memory leak detection algo-

rithm based on solving boolean satisfiability constraints.
Scalability is achieved by querying boolean formulas rep-
resenting each function to produce a concise function sum-
mary. Experimental results show that our system scales
well, parallelizes well, and finds more leaks with many fewer
false positives than previous leak detection systems.

125

Acknowledgements
We would like to thank the Stanford database group for
generously donating unused CPU cycles for the distributed
checking experiment; Intel Corporation for donating Pen-
tium 4 workstations and a dual processor Xeon server on
which this research is conducted. We are also grateful to Ted
Kremenek, Mayur Naik, Tachio Terauchi, Junfeng Yang,
and the anonymous referees for their helpful comments and
discussions on an earlier draft of the paper.

8. REFERENCES
[1] W. Bush, J. Pincus, and D. Sielaff. A static analyzer

for finding dynamic programming errors.
Software—Practice & Experience, 30(7):775–802, June
2000.

[2] T. Chilimbi and M. Hauswirth. Low-overhead memory
leak detection using adaptive statistical profiling. In
Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2004.

[3] A. Chou. Static Analysis for Bug Finding in Systems
Software. PhD thesis, Stanford University, 2003.

[4] M. Emami, R. Ghiya, and L. Hendren.
Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In Proceedings of the
ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, 1994.

[5] D. Evans. Static detection of dynamic memory errors.
In Proceedings of the ACM SIGPLAN 1996
Conference on Programming Language Design and
Implementation, 1996.

[6] B. Hackett and R. Rugina. Region-based shape
analysis with tracked locations. In Proceedings of the
32nd Annual Symposium on Principles of
Programming Languages, Jan. 2005.

[7] R. Hastings and B. Joyce. Purify: Fast detection of
memory leaks and access errors. In Proceedings of the
Winter USENIX Conference, Dec. 1992.

[8] D. L. Heine and M. S. Lam. A practical flow-sensitive
and context-sensitive C and C++ memory leak
detector. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and
Implementation, pages 168–181, 2003.

[9] F. Ivancic, Z. Yang, M. Ganai, A. Gupta, and
P. Ashar. Efficient SAT-based bounded model
checking for software verification. In Proceedings of the
1st International Symposium on Leveraging
Applications of Formal Methods, 2004.

[10] D. Jackson and M. Vaziri. Finding bugs with a
constraint solver. In Proceedings of the 2000 ACM
SIGSOFT International Symposium on Software
Testing and Analysis, 2000.

[11] D. Kroening, E. Clarke, and K. Yorav. Behavioral
consistency of C and Verilog programs using bounded
model checking. In Proceedings of the 40th Design
Automation Conference, pages 368–371. ACM Press,
2003.

[12] W. Landi and B. Ryder. A safe approximation
algorithm for interprocedural pointer aliasing. In
Proceedings of the ACM SIGPLAN 1992 Conference
on Programming Language Design and
Implementation, 1992.

[13] D. Liang and M. Harrold. Efficient computation of
parameterized pointer information for interprocedural
analysis. In Proceedings of the 8th Static Analysis
Symposium, 2001.

[14] E. Ruf. Effective synchronization removal for Java. In
Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and
Implementation, 2000.

[15] L. Semeria and G. D. Micheli. SpC: synthesis of
pointers in C: application of pointer analysis to the
behavioral synthesis from C. In Proceedings of the
1998 IEEE/ACM international conference on
Computer-aided design, pages 340–346. ACM Press,
1998.

[16] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proceedings of
the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, 1999.

[17] R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proceedings of the
ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, 1995.

[18] Y. Xie and A. Aiken. Scalable error detection using
boolean satisfiability. In Proceedings of the 32nd
Annual Symposium on Principles of Programming
Languages, Jan. 2005.

[19] Y. Xie and A. Chou. Path sensitive analysis using
boolean satisfiability. Technical report, Stanford
University, Nov. 2002.

