
Polymorphic Effect Systems

John M. Lucassen * and David K. Gifford
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, Massachusetts 02139

We present a new approach to programming lan-
guages for parallel computers that uses an effect sys-
tem to discover expression scheduling constraints.
This effect system is part of a ‘kinded’ type system
with three base kinds: types, which describe the value
that an expression may return; effects, which describe
the side-effects that an expression may have; and re-
gions, which describe the area of the store in which
side-effects may occur. Types, effects and regions are
collectively called descriptions.

Expressions can be abstracted over any kind of
description variable - this permits type, effect and
region polymorphism. Unobservable side-effects can
be masked by the effect system; an effect soundness
property guarantees that the effects computed stati-
cally by the effect system are a conservative approxi-
mation of the actual side-effects that a given expres-
sion may have.

The effect system we describe performs certain
kinds of side-effect. analysis that were not previously
feasible. Experimental data from the programming

language FX indicate that an effect system can be
used effectively to compile programs for parallel com-

puters.

This work was supported in part by DARPA/ONR
contract number N00014-83-K-0125

* Currently at IBM Tokyo Research Laboratory, 5-
19 Sanbancho, Chiyoda-ku, Tokyo 102, Japan

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

1. Introduction
We present a new approach to programming that

is intended to combine the advantages of functional
and imperative programming. Our approach uses an
effect system in conjunction with a conventional type
system to compute both the type and the effect of

each expression statically. The effect of an expression
is a concise summary of the observable side-effects
that the expression may have when it is evaluated. If
two expressions do not have interfering effects, then a

compiler may schedule them to run in parallel subject
to dataflow constraints. The effect system described

in this paper is an integral part of the programming
language FX [Gif87].

The effect system we present is capable of certain
kinds of side-effect analysis that were not previously
feasible. In particular, the effect system permits con-
currency analysis in the presence of first-class func-
tion values, and it permits the masking of side-effects
on local data values even in the presence of first-class,
heap-allocated values of user-defined types. (A value
is first-class if it can be stored, passed as an argu-
ment, and returned as a result.) In particular, the

effect system is able to mask effects on first-class,
user-defined, heap-allocated data structures, which
no previously published static method can do. An
effect soundness property guarantees that the effects
computed statically by the effect system are a conser-
vative approximation of the actual side-effects that a
given expression may have.

We distinguish three sorts of effects: READ, WRITE,

and ALLOC effects, where allocation includes initial-
ization. Each effect is subscripted by the region where
the effect may occur. Compound effects can be con-
structed as unions of simple effects, and thus effects
form a lattice. The bottom of the effect lattice is the
effect PURE, which is used to describe expressions that
have no side-effects.

Proceedings of the Fifteenth Annual ACM
SIGACT-SIGPLAN Symposium on Princi-

@ 1988 ACM-O-89791-252-7/88/0001/0047 $1.50 47
ples of Programming Languages, San Diego,
California (January 1988)

The type and effect system is based on a ‘kinded’

type system for the second-order lambda calculus

[McC79]. Kinds are the types of descriptions. The

type and effect system :has three base kinds: types,

which describe the value that an expression may re-
turn; effects, which describe the side-effects that an

expression may have; and regions, which describe the

area of the store in which side-effects may occur.

Types, effects and regions are closely interrelated; in

particular, a subroutine type incorporates a latent ef-
fect, which describes the side-effects that the subrou-

tine may have when it is applied; and a reference type

incorporates a region, which describes where the ref-

erence is allocated. The kind system is used to verify
the well-formedness of descriptions; the type and ef-

fect system is used to verify the well-formedness of

expressions.

The effect s;ystem is designed to be useful to pro-
grammers, compiler writers, and language designers
in the following respects:

l An effect system helps a programmer specify the

side-effect properties aof program modules in a way
that is machine-verifiable. Effect specifications are
a natural ex-tension of the type specifications found

in conventional programming languages. We be-

lieve that the use of effect specifications has the

potential to improve the design and maintenance
of imperative programs.

l An effect system helps the compiler identify opti-
mization opportunities that are hard to detect in
a conventional higher-order imperative program-
ming langua.ge. We have focused our research on
two classes of optimizations: evaluation order, in-
cluding eager, lazy, and concurrent evaluation and
code motion, and common subexpression elimina-
tion, which i.ncludes memoization. We believe that
the ability -to perform these optimizations effec-
tively in the presence of side-effects represents a
step towards integrating functional and imperative
programming for the purpose of massively parallel
programming.

l An effect system lets the language designer express
and enforce side-effect constraints in the language
definition. F’or example, by limiting polymorphism
to expressions without side-effects, we have been
able to construct the first type system known to
us that permits an efficient implementation of fully
orthogonal polymorphiism (in which any expression
can be abstr<acted over any description variable and
in which all polymorphic values are first class) in
the presence of side-effects.

In the remainder of this paper we review related
work (Section 2), introduce the principles of type

48

and effect checking by means of examples (Section
3), present the formal type and effect inference rules

which constitute the static semantics of the language
(Section 4), present the dynamic semantics and dis-
cuss the soundness of the type and effect system (Sec-
tion 5), show how soundness results can be extended
to a language with effect masking (Section 6), discuss
our experience with an implementation of the FX pro-
gramming language (Section i’), and summarize our

results (Section 8).

2. Relation to Other Work
In this section we compare our research with other

work on conventional flow analysis, abstract interpre-
tation, syntactic interference control, and earlier work
on effect systems.

l In conventional flow analysis [Ban79, Bar78,
WeiSO] the local effects of each sudroutine are first

computed, and then the true effects of each sub-
routine are computed using a transitive closure or
graph flow algorithm on the subroutine call graph.
These methods require that the calling pattern be-

tween subroutines be known statically, so that the
call graph can be computed. Thus, conventional
flow analysis can not deal with first-class subrou-
tines or separate compilation. Our effect system,

on the other hand, is able to handle first-class sub-

routines as well as separate compilation because
the latent effect of each subroutine is evident from
its type. Our approach also differs from conven-

tional flow analysis in that all effect information is

visible to the programmer, and must therefore be

expressed in human-readable form, preferably in

terms that are related to the programmer’s view

of the program.

Neirynck et ~2. [Nei87] show how to compute sup-

port sets and aliasing relationships statically us-

ing abstract interpretation. Within this frame-
work the side-effects of a subroutine invocation can

depend on the side-effects of its procedural argu-

ments, in a way that resembles our notion of ef-

fect polymorphism. Neirynck et al. restrict their

attention to a language in which subroutines and

references are not storable, and in which references
can not be returned out of the scope in which they

are created (i.e. heap allocation is not supported),

In our approach, the use of the type system allows

both subroutines and references to be first-class
values.

In his paper on syntactic control of interfer-

ence, Reynolds [Rey78] presents a simple syntac-

tic method for computing the support set of an

expression, with the objective of permitting con-

current evaluation of two expressions only if their

support sets do not overlap. This method does not
distinguish between the variables accessed by the

expression, on the one hand, and the support set of

the value returned by the expression on the other
hand. As a result, the restrictions on concurrent

evaluation are unnecessarily conservative. Our ef-

fect inference rules, on the other hand, maintain a
clear distinction between support sets (which are

described by regions) and side-effects (which are

described by effects).

The programming language Euclid [Lam77, Pop771

was designed to aid program verification via static

side-effect and aliasing restrictions. Euclid in-

cludes collections, which are similar to our notion

of regions, and it has two kinds of abstractions:

procedures, that are executed only for their side-

effects, and functions, that are executed only for

their result value. Functions are permitted to have

side-effects on internal objects. Euclid’s collections
are not first-class values, and thus they are a source

of non-uniformity in the language. Euclid’s side-

effect restrictions are less general than an effect

system, and thus Euclid does not provide effect

polymorphism or general effect masking.

The Rabbit compiler [Ste78] distinguishes five dif-

ferent kinds of side-effects via a static analysis sys-

tem. Like an effect system, Rabbit computes the

side-effects of an expression based upon its effects

and the side-effects of its subexpressions. However,

Rabbit does not include effect polymorphism or ef-
fect masking, nor does it provide a mechanism to

communicate the effects of a procedure from the

point of definition to the point of use.

The idea of effect systems, and their application to

compilation and to first-class polymorphism, were

originally introduced in [Gif86]. This earlier pa-

per distinguishes four ‘effect classes’ ranging from

PURE to PROCEDURE, and shows how the effect
class of a subroutine can be determined syntac-

tically. There is no abstraction over effect classes;

moreover, there is no way to mask unobservable

side-effects. In the present paper, the elevation of

effects to the status of first-class descriptions con-

tributes to the uniformity of the system. Moreover,

we are able to state and prove [Luc87] an impor-

tant effect, soundness property.

3. Examples of Effects and

Types
In order to give the reader an intuitive idea of how

an effect system can be used we first present exam-
pies of effect polymorphism and effect masking. The
examples are written in MFX [Luc87], a statically
scoped Lisp dialect with a type and effect system.
The name MFX stands for “mini-FX"; MFX is a sub-

set of the full Fx language [Gif87].
We first consider the polymorphic subroutine

twice, which takes a subroutine of a single argument

and returns the result of composing that subroutine
with itself:

twice = (PLAMBDA (t:TYpE ~:EFFEcT)
(LAMBDA (f:(suBR

(LAMBDA (x:t)
(f (f x>>))>

(t> e t>>

twice is polymorphic in both the argument type t
and the latent effect e of its argument. This is re-
flected in the type of twice, which is inferred from
the above definition by the type inference rules:

twice : (POLY (t :TYPE e : EFFECT) PURE
(SUBR (suBR:(t) 8 t) PURE

(sUBR (t) e t))>

The POLY type reflects the fact that twice is polymor-
phic with respect to a type t and an effect e. Note
that the kinds of the description variables t and e

are specified in the POLY type. In what follows we
will omit the latent effect of a POLY type whenever it
is PURE. However, we will never omit the latent effect

of a SUBR type.
A more elaborate example of polymorphism is the

mapcar subroutine, which is defined below. We have

omitted the details of the recursive definition; note,
however, that the type and the effect of the body of
MAPCAR are declared in advance using THE. The effect
constructor MAXEFF returns the effect that is the least
upper bound of its arguments.

mapcar =
(PLAMBDA (ti:TYpE t2:TYpE ~:REGION

e:EFFECT)
(LAMBDA (~:(SUBR (ti) e t2)

input: (listof r tl) 1
(THE (MAxEFF (ALLoc r) (READ r) e)

(listof r t2)
(IF (null? input) empty

((PROJ cons r)
(f (car input))

49

(mapcar f (cdr input>>))))>

mapcar is polymorphic in the type of the elements

of its input list, the type of the elements of its out-
put list, the region in which these lists are allocated,
and the latent effect ad the subroutine that is be-
ing mapped. This is rejlected in the type of mapcar,
which is inferred from the above definition by the type
inference rules given suitable declarations for listof,
null?, cons, car and cdr:

mapcar :
(POLY (t:L:TYPE t:Z:TYPE r:REGION

(3 : EFFECT 1 PURE
(SUBR ‘((SUBR (ti) e t2> (listof r tl))

‘(MAXEFF (READ r) a (ALLoc r))
?(listof :r t2)))

The latent effect of mapcar has three distinct compo-
nents: the effect of reading the input list, the effect
of applying the mapping subroutine, and the effect of
allocating the output list. Note that the listof type
constructor incorporates both the region in which the
list is allocated and the type of, the elements of the
list.

Our final example is a simple case of effect mask-
ing:

example =

(LET ((y ((PROJ cons @red) 1 2)))

be-car! y 2)

(car y)>

This expression allocates a cons-cell initialized to

(1,2) in the region @red, mutates the car of the pair

to be 2, and then returns the car of the pair. Al-

though the ex:pression a.llocates, writes, and reads the

region (Pred, the effect masking rules can prove that

this expressio:n has no observable side-effects. As a

result, the expression as a whole has effect PURE. In

general, effects on a given region can be masked from

the effect of at given ex.pression whenever the region

does not appear free in the type of the expression or

in the type of .any free v,ariable of the expression. This

is discussed in more detail in Section 6.

4. Inference Rules for Types
and Effects

This section presents a set of type and effect in-

ference rules for the language MFX. MFX is based on

the second-order typed lambda-calculus and on the

higher-order ‘kinded’ lambda-calculus of McCracken

[McC79, Rey74]. Th e an ua 1 g g e consists of three lay-

ers: expressions, descriptions (which include types,

effects and regions), and kinds (which are the ‘types’

of descriptions). There are three kind constants:

REGION, EFFECT and TYPE; there are no higher-order

kinds in MFX.

Kind =

REGION

- kinds (K)

- the kind of regions

EFFECT

TYPE

- the kind of effects

- the kind of types

There are two general classes of MFX expressions:

expressions that come from the higher-order lambda-

calculus, and expressions that deal with side-effects.

Exp =
- expressions (e)

Var
- ordinary variable (z)

(LAMBDA (Var:Type) Exp)
- ordinary abstraction

- (compare with XZ:~ . e)

WP EXP)
- ordinary application

(PLAMBDA (Dvar:Kind) Exp)
- polymorphic abstraction

- (compare with Ad:tc . e)

(PROJ Exp Desc)
- polymorphic application

(NEW Region Type Exp)
- allocating and initializing a location

(GET Exp)
- reading a location

(SET Exp Exp)
- writing a location

Expressions that cannot be reduced are considered

to be values. The only expressible values are the ab-

straction expressions listed below. Other values, such

as locations, are not directly expressible and will be

presented later.

50

Vd =
- values (u)

(LAMBDA (Var:Type) Exp)
- ordinary abstraction

(PLAMBDA (Dvar:Kind) Exp)
- polymorphic abstraction

The expressions NEW, GET and SET interact with
the store. We distinguish three ways of interacting
with the store: the allocation and initialization of
memory locations, the reading (or dereferencing) of
locations, and the writing (or updating) of locations.
As we will see, each of these store interactions is re-
flected in the syntactic effect of the corresponding
expression.

Syntactically, effects are specified in terms of re-
gions, which correspond to infinite sets of locations.
Thus, effects may be of the following forms:

Effect =

Dvar
- effect descriptions (E)

- effect variable
(ALLOC Region)

- allocating in a given region
(READ Region)

- reading from a given region
(WRITE Region)

- writing to a given region
(MAXEFF Effect*)

- combination of zero or more effects
PURE

- “no effect”; synonym for (MAXEFF)

Syntactically, regions can be region constants, re-
gion variables, the empty region (it contains no loca-

tions), and unions of multiple regions:

Region =

Rconst
- region descriptions (p)

Dvar
- region constant (r)

- region variable

(UNION Region+)
- union of one or more regions

In MFX, the type of an (ordinary or polymorphic)
subroutine incorporates not only the type (or kind)
of the formal parameter and the type of the returned
value, but also the latent effect of the subroutine. The
type of a location incorporates not only the type of
its contents, but also the region to which the location
belongs.

Type =

Dvar

- type descriptions (7)

- type variable

(SUBR (Type) Effect Type)
types of ordinary subroutines

1 (compare with r-f-)7’)

(POLY (Dvar:Kind) Effect Type)
- types of polymorphic subroutines
- (compare with Vd : n F 7)

(REF Region Type)
- types of locations

The set of descriptions is made up of all types,

effects and regions:

Desc =

Region

Effect

- descriptions (6)

- region descriptions

Type

- effect descriptions

- type descriptions

A description is well-formed with respect to a kind

assignment B : Dvar + Kind iff it has a kind with
respect to B. The kind assignment maps description

variables to their kinds. We omit the kind inference
rules, which are straightforward.

The generalized subtype relation C on descriptions
is defined to correspond to the subset relation on the
underlying sets of locations, state interactions, or val-

ues respectively. For example, p C (UNION p,p'),

PURE E E, and (REFP T) g (REF(UNIONP,P')T).

We omit the formal definition. The generalized type
conversion relation N on descriptions corresponds to
set equality on the underlying sets. Thus, T 2: 7’ iff

rCr’andr’C~.
An expression is well-formed with respect to a type

assignment A : Dvar + Kind and a kind assignment
B iff it has a type with respect to A and B. The type
assignment maps ordinary variables to their types.
The type inference rules are given below. They have
been interleaved with the effect inference rules in or-
der to illustrate the relation between types and ef-

fects.

Definition. An expression e has type r with re-
spect to the type assignment A and the kind assign-
ment B iff the formula

A,B I- e:r

can be derived using the axioms and inference rules
given below. Similarly, the expression has effect E ifE

51

the formula

A,B t- e!e

can be derived. If e has no free variables, we will
simply write e : T and e ! E.

We write FV(e) f or the union of the free descrip-

tion variables and the free region constants of the

expression e; likewise, we write FV(6) for the free

description variables and region constants of the de-

scription 6.

The sole type axiom states that the type of an

ordinary variable is give.n by the type assignment; the

effect axioms z&ate that every ordinary variable and

every value has effect PURE.

A,B I- x : A(x)
x!PURE
21! PURE

The types and. effects of larger expressions are given
by type and effect inference rules.

(Ordinary Abstraction)

A[x c q-1, B I- e : T’
A[z t T], B I- e ! E

A,B I- (LAMBDA I(Z:T) e) : (SUBR(T) r T')

(Ordinary Application)

A,B I- el :: (suBR(TI) ET-J)
A,B I- e2:T A T&T~

A,B t- el!q
A,B k ez!q

A,B I- (el e2) : T2

A,B I-- (el e2) ! (MAXEFFC~ ~2 c)

(Polymorphic Abstraction)

A,B[~+K] I- e:T
A,B[d+-] I- e!e

Vx E W(e) . d # FV(A(z))

A, B I- (PLAMBDA (d:n) e) : (POLY (d:n) E T)

(Polymorphic Application)

A,B l- e : (POLY (d:rc) E’ 7’)
A,B I- e!c

B t- 6:~

A,B t- (PROJe6) : 7-l m4
A,B I- (PROJe6) ! (MAXEFF E e’[S/d])

(Allocating and Initializing a Location)

B k p: REGION
B t- T:TYPE

A,B I- e:r’ A 7’57
A,B I- e!e --

A,B t- (NEWPTe) : (REFP~) -

A,B i- (NEWPTe) ! (MAXEFFE (ALLOCP))

(Reading a Location)

A,B k e:(REFPT)
A,B I- e!e

A,B i- (GETe) :
A,B !- (GETe) ! (MAXEFF:(FLE*D,,)

(Writing a Location)

A,B I- el:(REFPT)
A,B I- e:!:T’ A T’CT

A,B I- el!q
A,B I- ez!ez

A,B k (SET~I e2) : UNIT
A,B I- (SET~I e2) ! (MAXEFF q e2 (WRITEP))

In general, the effect of an expression consists of
two components, namely its inherited effect and its

intrinsic effect: the inherited effect of an expression

consists of the effects of those of its immediate subex-
pressions that may be evaluated in order to evaluate
the expression, and the intrinsic effect of the expres-
sion is the effect that is introduced by the expression
itself.

5. Semantics
The soundness of the MFX effect inference rules can

be expressed only in terms of its semantics. In this
section we present a structured operational semantics
of MFX that is expressed in terms of rewrite rules.
These rules, which closely resemble the rewrite rules
for the lambda-calculus, operate on tuples consisting
of an expression, which models the computation that
remains to be performed, and a store, which models
the memory of the computation. The store maps lo-
cations to values. In order to deal with the locations
that may arise during the course of computation, we
expand the set of expressions to include locations.

Definition. A store is a finite function u : Lot ---*
Val that maps locations to values.

Definition. A state is a tuple (e,a) of the form
(Exp x Store).

Definition. A terminal state is a state (~,a) of
the form (Val x Store).

52

A location can be tagged with a region description

and a type description. The region tag of a location

indicates to what region the location belongs, and

the type tag of a location indicates what types of val-

ues the location may contain. The tags of a location

ought to be closed; tags that contain free description

variables are meaningless. We write R(Z) for the re-

gion tag of the location 1 and T(Z) for its type tag.

Moreover, we write Z,,, to indicate that R(Z,,,) = p

and T(Z,,) = 7. If p is a region constant, then the lo-

cation I,,, belongs to the region corresponding to that

region constant; otherwise, it belongs to the union

of the corresponding regions. This situation reflects

either uncertainty indifference about the region con-

stant to which the location actually belongs.

Definition. A location can be reached through a

region p, 1 E Reach(p), iff the region tag of Z overlaps

with p, i.e. iff FV(R(Z)) II IV(p) # 0.

Computation proceeds by repeatedly reducing the

current state according to a set of reduction axioms

and inference rules, until a terminal state results. The

relation ‘reduces to’ or ‘3 ’ on (State x State) gives

the states, if any, to which a given state can be re-

duced. The reduction axioms are given below:

(((LAMBDA (23) e) v),6)S (e[w/z],u)

(((PLAMBDA (d:~) e) h),a) i% (e[S/d],cr)

((NEW P 7 u>,a> 3 (l,,r ,b[lp,t + ~1)

(1 not bound in u)

((GET $a) = (g(l), g)

((SET 1 v),b)Z$ (w,u[Z c v])

The reduction inference rules show how to reduce

a state (e,o) that does not match any reduction ax-
iom by reducing a designated subexpression of e. The

rules have been designed to ensure left-to-right, ap-
plicative order evaluation. We present only the rules
for ordinary application; the remaining rules are sim-
ilar.

(el,d 3 (4,fl’)

(e2,c) 3 (eh,u’)

((“1 e2),4 * ((~1 eh>,u’)

A state is well-formed, WFstete(Z3), iff its expres-
sion component is well-formed, the contents of the
locations that are bound in the store are well-formed

and of a type that agrees with the tags of the corre-
sponding locations, and every location that occurs in

the state has the same tags everywhere and is bound
in the store.

Proposition. (Type and Effect Preservation) Re-
duction of a well-formed state preserves or decreases
the type and effect descriptions of the state.

WFstote ((e, u))
e:r
e!e

zs -

(e,a) * (e’,u’)
e’ ! E’ where E’ E E

In order to express the effect soundness property,
we need to be able to refer to the locations that are

involved in effects in a reduction step.

Definition. For all 0 and 19’ such that 0 %$ O’, let

d(O,O’) denote the set of locations allocated and
initialized in the reduction step 8 s 8’

R(B,e’) denote the set of locations read in the re-
duction step 0 3 8’

YV(e,e’) denote the set of locations written in the
reduction step t9 & 8’

For the language defined thus far, these sets contain

either zero or one location; however, we will not make
use of this fact.

Proposition. (Effect Soundness) Reduction of a
well-formed state allocates, reads, and writes only lo-
cations that can be reached through the regions spec-
ified by its effect. In other words, if 8 G% 8’ and 0 ! E
where

E c? (MAXEFF(ALLO~~~) (READP~)(wRITE~~))

then
d(e,e’> c Reach

R(e,e’) G Reach(pR)

w(e,el) 5 Reach(pw)

6. Effect Masking
Under certain circumstances, side-effects that can-

not be observed outside of a given expression can be
masked by the effect system. The rule for effect mask-
ing is developed in two steps. First, we present a
construct for declaring private regions along with an
effect masking rule for side-effects involving these pri-
vate regions, and we demonstrate the soundness of
this masking rule relative to our operational seman-
tics. Second, we show how this rule can be modified to
mask local side-effects even when private regions are
not used. Effect masking allows imperative program
fragments to be embedded in functional programs,

53

provided that these imperative fragments have func-

Conal semantics. Thus, effect masking allows func-
tional programs to be implemented using imperative
constructs. In addition, effect masking increases the
feasibility of compile-time garbage collection in the
presence of fir&-class subroutines and references.

The PRIVATE expression declares a private, anony-
mous region for local u:se that becomes inaccessible
when the exprlession returns. Side-effects on this re-
gion cannot be observe’d outside of the expression,
and need not be reported in the syntactic effect of the
expression; we say that such effects can be masked.
Since the locations belonging to a private region can-
not be accessed after the expression returns, they can
be safely deallocated whlen the expression returns.

The grammiar clause for the PRIVATE expression is
given below.

Exp =
- expressions

(PRIVATED~~~ Exp)
- declaration of a private region

The type and effect inference rule for the PRIVATE
expression is given below. Note that the type and
effect of the expression are the same as the type and

effect of e, except that all effects on d are masked.
Effect masking is accomplished by substituting the

empty region $ for the private region variable d in the

effect description E; the empty region is defined such
that any effect on + is interconvertible with PURE.

A,B[d c :REGION] I- e : T
.4,B[d c REGION] k e ! E

A,B I- (PRIVATE d e) :
A,B 1 (PRIVATE d e) ! e[$yd)

This rule resembles a composition of the rules for

polymorphic abstraction and polymorphic applica-
tion, except that (i) no actual region parameter is

specified, (ii) the forma,1 region parameter must not
appear free in the type of the body, and (iii) any ef-

fects on the fo,rmal region parameter are masked.
The simplest way to define the semantics of the

PRIVATE expression would be with the foIlowing re-

duction axiom, where I. denotes a fresh region con-
stant:

((PFLIVATE d e),a) 3 (e[z/d], u)

Unfortunatlely, this d.efinition would invalidate the

type preservation proposition: if the PRIVATE expres-

sion that masks the eflrects on the private region is

removed, the effect of the expression may actually in-

crease. Since type preservation is the foundation of
our type and effect soundness propositions, we have

developed a technique for reducing expressions such
as the PRIVATE expression while retaining the type

preservation property. Formally, the semantics of the
PRIVATE expression are defined in terms of an aux-

iliary expression, which resembles the PRIVATE ex-

pression except that the bound variable has been re-
placed by a region constant. The auxiliary expres-

sion, *PRIVATE*, serves as a syntactic marker that in-

dicates that effect masking is taking place. When a

PRIVATE expression is reduced to a *PRIVATE* expres-
sion, a fresh region constant is chosen and embedded

in the expression. The body of the *PRIVATE* expres-
sion is then reduced recursively, while the expression

serves as a reminder that the chosen region constant
is private to the expression, and that any effects on

it can therefore be masked. When the body has been
reduced to a value, there are no more effects to be
masked and the *PRIVATE* expression can be reduced
to its body.

The syntax of the *PRIVATE* expression is given by

the type and effect inference rule shown below.

Exp =
- expressions

(*PRIVATE* Dvar Exp)
- PRIVATE in progress

In order to represent the fact that the region con-
stant chosen in the reduction of a PRIVATE expression
must be fresh, we extend the state of the computa-
tion with a third component (besides the expression
and the store), namely a region map 7 : T --, {USED).
States will now be of the form (e,a,r), and the ex-
isting reduction axioms and reduction inference rules

are edited accordingly. (An alternative technique is
given by Felleisen and Friedman [Fe187]).

The region map is used by the reduction axiom for
PRIVATE expressions:

((PRIVATE d e),a,7) S-
((*PRIVATE* 7 e[r/d]),g,7[T +- USED])

(T not bound in 7)

The resulting *PRIVATE* expression can be recur-
sively reduced using the following reduction inference
rule:

((*PRIVATE* T e),o, 7)s ((+PRIVATE* T e'),u', 7’)

When the body has been reduced to a value, the
PRIVATE expression can be eliminated using the fol-
lowing axiom:

((*PRIVATE* T w),6,7)3 (v,a,7)

54

Even though we have taken special care to retain
a syntactic marker throughout the reduction process
whenever effect masking is taking place, the effect

soundness proposition no longer holds as originally
stated, because it fails to take side-effects on private
regions into account. Specifically, if a state 8 ! e con-

tains an active expression of the form (*PRIVATE* T e),

then reduction of 0 may have effects on the region T,
even though T does not appear in E.

We will now reformulate the effect soundness
proposition so that it allows locations to be allocated,

read, or written in regions that are private to a given

expression even though these effects are not specified
by the syntactic effect of the expression. The modi-
fied proposition operates by confining attention to the
regions that are accessible in the context that sur-

rounds the expression. This automatically excludes
the private regions of the expression.

Definition. A context C is an expression con-
taining a single “hole” in which an expression can be
placed, i.e. such that C[e] is an expression for any

expression e.

Definition. A region constant r is accessible in

a context C iff it appears in the effect of any active

expression in that context, i.e. iff some active expres-

sion in C has an effect E such that T E w(e). We

write Act(C) to denote the region constants that are
accessible in the context C.

Using this notation, we can express the regions
that are accessible in a given context C as simply
Acc(C). We can now revise the effect soundness
proposition. It is expressed in a somewhat peculiar
way in order to simplify a comparison with the orig-
inal proposition.

Proposition (revised). (Effect Soundness) Re-
duction of an expression in a well-formed state allo-
cates, reads, and writes only locations that can be
reached through the regions specified by its effect
or through the private regions of the expression. In
other words, if 8 = (C[e],o, y), 8’ = (C[e’],cr’,r’) and
8 s 0’, and e ! e where

E N (MAXEFF(ALL~CP~)(READ~~)(WRITEP~))

then

d(6,0’) n Reach(Acc(C)) E Reach(pA)

72(8,0’) n Reach(Acc(C)) g Reach(pR)

W(e, 0’) n Reach(Acc(C)) E Reach(pw)

Whenever it is possible to wrap a given expression
in a PRIVATE expression for a certain region without

making the program in question ill-typed, the effects
on that region can be masked as if this PRIVATE were
actually present. The rule for this so-called implicit
effect masking is derived directly from the rule for
PRIVATE:

A,B i- e:r
A,B I- e!e

B t- d: REGION

z E W(e) a d $ FV(A(z))

d 4 W(T)
A, B I- e ! l [$/d]

Its soundness follows from the fact that there is a
meaning-preserving source-to-source transformation
that introduces the appropriate PRIVATE expression.

7. Experience with a prototype
FX implementation

We have developed a prototype compiler for the
FX programming language that uses effect informa-
tion to constrain the parallel evaluation of expres-
sions [Luc87]. Th e compiler enforces evaluation or-

der constraints that guarantee serial evaluation se-
mantics. The target language of the compiler is a

dataflow graph that has been annotated with schedul-

ing constraints; a dataflow graph representation was

chosen because (i) the dataflow model allows us to ex-
press concurrency without considering such issues as
processor allocation and computation grain size, and
(ii) a parallel simulator for this model was available

[Arv87, Tra86].
To date we have used the compiler and the simula-

tor to check, compile and run a variety of programs,
most of them fairly small. In general, the experimen-

tal results agree with our predictions.
Figures 1 and 2 show the result of an experiment

that tested the value of effect masking on a small
program that computes the sum of l! to lo!. Figure
1 shows the execution of the program when it was
compiled with effect masking disabled, while Figure 2
shows the execution of the program with effect mask-
ing enabled. Factorial was programmed in a conven-
tional manner using an iterative method with side-
effects; when effect masking was enabled, these local
effects were masked, resulting in a functional speci-
fication for the factorial function, which in turn re-
sulted in the concurrent evaluation of the iterations
of the outer loop. The figures show the number of
ALU operations the simulated dataflow machine exe-
cuted during each instruction cycle. In this example,
effect masking resulted in a substantial improvement
in elapsed time. In general, of course, the results
depend on the susceptibility of the program to the

55

particular kinds of concurrency analysis supported by 9. Bibliography
the language.

8. Conclusions
We have presented a stattic effect system with effect

and region polymorphism and effect masking. The

type and effect information can be used to imple-
ment certain kinds of sid.e-effect analysis that were
not previously feasible in the presence of first-class
subroutines and reference variables, particularly con-
currency analysis and the the masking of local side-
effects. Empirical results from a prototype implemen-
tation suggest that the effect system can be used by
a parallel compiler.

Arv87

Ban79

Bar78

Gif86

Gif87

Fe187

Lam77

Cycle Number

Figure 1: Execution without Masking

Luc87

Cycle Number

Figure 2: Execution with Masking

lbecu ting a Program on the MIT Tagged-

Token Datai?ow Ar-

chitecture, Arvind, Rishiyur S. Nikhil, MIT
LCS Computation Structures Group Memo

No. 271 (March 1987)

An Efficient Way to Find the Side Effects of
Procedure Calls and the Aliases of Variables.

John P. Banning, Fifth Annual ACM Sym-
posium on Principles of Programming Lan-

guages (January 1979), pp. 29-41

A Practical Interprocedural Data Flow Anal-
ysis algorithm, Jeffrey M. Barth, Communi-

cations of the ACM, Vol. 21, No. 9 (Septem-
ber 1978), pp. 724-736
Tnntegrating Functional and Imperative Pro-
gramming, David K. Gifford, John M. Lu-
cassen, 1986 ACM Conference on LISP

and Functional Programming (August 1986),

pp. 28-38

FX-87 Reference Manual, David K. Gifford
et al., MIT LCS TR-409, MIT Laboratory

for Computer Science, September 1987.

A Calculus for Assignments in Higher-Order

Languages, Matthias Felleisen, Daniel Fried-
man, Fourteenth Annual ACM Symposium
on Pr-inciples of Programming Languages

(January 1987), pp. 314-325

Report on the Programming Language Eu-
clid, Butler W. Lampson, James J. Horning,

Ralph L. London, James G. Mitchell, Ger-

ald J. Popek, SIGPLAN Notices, 12 (1977),

pp. l-79

Types and Effects - Towards the Integration
of Functional and Imperative Programming,
John M. Lucassen, Ph. D. Thesis, MIT Lab-

oratory for Computer Science LCS TR-408

(August 1987)

McC79 An Investigation of a Programming Lan-

guage with a Polymorphic Type Structure,
Nancy Jean McCracken, Ph. D. Thesis, Syra-

cuse University School of Computer and In-

formation Science (June 1979)

Nei87 Computation of Aliases and Support Sets,
Anne Neirynck, Prakash Panagaden, Alan

J. Demers, 14th Annual ACM Symp. on

Principles of Programming Languages, Mu-

nich, West Germany, January 21-23, 1987,

pp. 274-283.

Pop77 Notes on the Design of Euclid, G. J. Popek,

J. J. Horning, R. L. London, Proceedings

56

of an ACM Conference on Language De-
sign for Reliable Software, SIGPLAN No-
tices, Vol. 12, No. 3 (March 1977), pp. 11-18

Rey74 Towards a Theory of Type Structure, Inter-
national Programming Symposium, Lecture
Notes in Computer Science no. 19 (1974),
pp. 408-425

Rey78 Syntactic Control of Interference, John
C. Reynolds, Fifth Annual ACM Sympo-
sium on Principles of Programming Lan-
guages (January 1978), pp. 39-46

Ste78 Rabbit: A Compiler for Scheme (A Study
in Compiler Optimization), AI-TR-474, MIT
AI Laboratory, May 1978.

Tra86 A Compiler for the MIT Tagged-Token
Dataffow Architecture, Kenneth R. Traub,
S.M. Thesis, MIT Laboratory for Computer
Science (August, 1987)

Wei Interprocedural Data Flow Analysis in the
Presence of Pointers, Procedure Variables,

and Label Variables, Seventh Annual ACM
Symposium on Principles of Programming
Languages (January 1980), pp. 83-94

57

