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We present a new approach to programming lan- 
guages for parallel computers that uses an effect sys- 
tem to discover expression scheduling constraints. 
This effect system is part of a ‘kinded’ type system 
with three base kinds: types, which describe the value 
that an expression may return; effects, which describe 
the side-effects that an expression may have; and re- 
gions, which describe the area of the store in which 
side-effects may occur. Types, effects and regions are 
collectively called descriptions. 

Expressions can be abstracted over any kind of 
description variable - this permits type, effect and 
region polymorphism. Unobservable side-effects can 
be masked by the effect system; an effect soundness 
property guarantees that the effects computed stati- 
cally by the effect system are a conservative approxi- 
mation of the actual side-effects that a given expres- 
sion may have. 

The effect system we describe performs certain 
kinds of side-effect. analysis that were not previously 
feasible. Experimental data from the programming 

language FX indicate that an effect system can be 
used effectively to compile programs for parallel com- 

puters. 
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1. Introduction 
We present a new approach to programming that 

is intended to combine the advantages of functional 
and imperative programming. Our approach uses an 
effect system in conjunction with a conventional type 
system to compute both the type and the effect of 

each expression statically. The effect of an expression 
is a concise summary of the observable side-effects 
that the expression may have when it is evaluated. If 
two expressions do not have interfering effects, then a 

compiler may schedule them to run in parallel subject 
to dataflow constraints. The effect system described 

in this paper is an integral part of the programming 
language FX [Gif87]. 

The effect system we present is capable of certain 
kinds of side-effect analysis that were not previously 
feasible. In particular, the effect system permits con- 
currency analysis in the presence of first-class func- 
tion values, and it permits the masking of side-effects 
on local data values even in the presence of first-class, 
heap-allocated values of user-defined types. (A value 
is first-class if it can be stored, passed as an argu- 
ment, and returned as a result.) In particular, the 

effect system is able to mask effects on first-class, 
user-defined, heap-allocated data structures, which 
no previously published static method can do. An 
effect soundness property guarantees that the effects 
computed statically by the effect system are a conser- 
vative approximation of the actual side-effects that a 
given expression may have. 

We distinguish three sorts of effects: READ, WRITE, 

and ALLOC effects, where allocation includes initial- 
ization. Each effect is subscripted by the region where 
the effect may occur. Compound effects can be con- 
structed as unions of simple effects, and thus effects 
form a lattice. The bottom of the effect lattice is the 
effect PURE, which is used to describe expressions that 
have no side-effects. 
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The type and effect system is based on a ‘kinded’ 

type system for the second-order lambda calculus 

[McC79]. Kinds are the types of descriptions. The 

type and effect system :has three base kinds: types, 

which describe the value that an expression may re- 
turn; effects, which describe the side-effects that an 

expression may have; and regions, which describe the 

area of the store in which side-effects may occur. 

Types, effects and regions are closely interrelated; in 

particular, a subroutine type incorporates a latent ef- 
fect, which describes the side-effects that the subrou- 

tine may have when it is applied; and a reference type 

incorporates a region, which describes where the ref- 

erence is allocated. The kind system is used to verify 
the well-formedness of descriptions; the type and ef- 

fect system is used to verify the well-formedness of 

expressions. 

The effect s;ystem is designed to be useful to pro- 
grammers, compiler writers, and language designers 
in the following respects: 

l An effect system helps a programmer specify the 

side-effect properties aof program modules in a way 
that is machine-verifiable. Effect specifications are 
a natural ex-tension of the type specifications found 

in conventional programming languages. We be- 

lieve that the use of effect specifications has the 

potential to improve the design and maintenance 
of imperative programs. 

l An effect system helps the compiler identify opti- 
mization opportunities that are hard to detect in 
a conventional higher-order imperative program- 
ming langua.ge. We have focused our research on 
two classes of optimizations: evaluation order, in- 
cluding eager, lazy, and concurrent evaluation and 
code motion, and common subexpression elimina- 
tion, which i.ncludes memoization. We believe that 
the ability -to perform these optimizations effec- 
tively in the presence of side-effects represents a 
step towards integrating functional and imperative 
programming for the purpose of massively parallel 
programming. 

l An effect system lets the language designer express 
and enforce side-effect constraints in the language 
definition. F’or example, by limiting polymorphism 
to expressions without side-effects, we have been 
able to construct the first type system known to 
us that permits an efficient implementation of fully 
orthogonal polymorphiism (in which any expression 
can be abstr<acted over any description variable and 
in which all polymorphic values are first class) in 
the presence of side-effects. 

In the remainder of this paper we review related 
work (Section 2), introduce the principles of type 
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and effect checking by means of examples (Section 
3), present the formal type and effect inference rules 

which constitute the static semantics of the language 
(Section 4), present the dynamic semantics and dis- 
cuss the soundness of the type and effect system (Sec- 
tion 5), show how soundness results can be extended 
to a language with effect masking (Section 6), discuss 
our experience with an implementation of the FX pro- 
gramming language (Section i’), and summarize our 

results (Section 8). 

2. Relation to Other Work 
In this section we compare our research with other 

work on conventional flow analysis, abstract interpre- 
tation, syntactic interference control, and earlier work 
on effect systems. 

l In conventional flow analysis [Ban79, Bar78, 
WeiSO] the local effects of each sudroutine are first 

computed, and then the true effects of each sub- 
routine are computed using a transitive closure or 
graph flow algorithm on the subroutine call graph. 
These methods require that the calling pattern be- 

tween subroutines be known statically, so that the 
call graph can be computed. Thus, conventional 
flow analysis can not deal with first-class subrou- 
tines or separate compilation. Our effect system, 

on the other hand, is able to handle first-class sub- 

routines as well as separate compilation because 
the latent effect of each subroutine is evident from 
its type. Our approach also differs from conven- 

tional flow analysis in that all effect information is 

visible to the programmer, and must therefore be 

expressed in human-readable form, preferably in 

terms that are related to the programmer’s view 

of the program. 

Neirynck et ~2. [Nei87] show how to compute sup- 

port sets and aliasing relationships statically us- 

ing abstract interpretation. Within this frame- 
work the side-effects of a subroutine invocation can 

depend on the side-effects of its procedural argu- 

ments, in a way that resembles our notion of ef- 

fect polymorphism. Neirynck et al. restrict their 

attention to a language in which subroutines and 

references are not storable, and in which references 
can not be returned out of the scope in which they 

are created (i.e. heap allocation is not supported), 

In our approach, the use of the type system allows 

both subroutines and references to be first-class 
values. 

In his paper on syntactic control of interfer- 

ence, Reynolds [Rey78] presents a simple syntac- 

tic method for computing the support set of an 



expression, with the objective of permitting con- 

current evaluation of two expressions only if their 

support sets do not overlap. This method does not 
distinguish between the variables accessed by the 

expression, on the one hand, and the support set of 

the value returned by the expression on the other 
hand. As a result, the restrictions on concurrent 

evaluation are unnecessarily conservative. Our ef- 

fect inference rules, on the other hand, maintain a 
clear distinction between support sets (which are 

described by regions) and side-effects (which are 

described by effects). 

The programming language Euclid [Lam77, Pop771 

was designed to aid program verification via static 

side-effect and aliasing restrictions. Euclid in- 

cludes collections, which are similar to our notion 

of regions, and it has two kinds of abstractions: 

procedures, that are executed only for their side- 

effects, and functions, that are executed only for 

their result value. Functions are permitted to have 

side-effects on internal objects. Euclid’s collections 
are not first-class values, and thus they are a source 

of non-uniformity in the language. Euclid’s side- 

effect restrictions are less general than an effect 

system, and thus Euclid does not provide effect 

polymorphism or general effect masking. 

The Rabbit compiler [Ste78] distinguishes five dif- 

ferent kinds of side-effects via a static analysis sys- 

tem. Like an effect system, Rabbit computes the 

side-effects of an expression based upon its effects 

and the side-effects of its subexpressions. However, 

Rabbit does not include effect polymorphism or ef- 
fect masking, nor does it provide a mechanism to 

communicate the effects of a procedure from the 

point of definition to the point of use. 

The idea of effect systems, and their application to 

compilation and to first-class polymorphism, were 

originally introduced in [Gif86]. This earlier pa- 

per distinguishes four ‘effect classes’ ranging from 

PURE to PROCEDURE, and shows how the effect 
class of a subroutine can be determined syntac- 

tically. There is no abstraction over effect classes; 

moreover, there is no way to mask unobservable 

side-effects. In the present paper, the elevation of 

effects to the status of first-class descriptions con- 

tributes to the uniformity of the system. Moreover, 

we are able to state and prove [Luc87] an impor- 

tant effect, soundness property. 

3. Examples of Effects and 

Types 
In order to give the reader an intuitive idea of how 

an effect system can be used we first present exam- 
pies of effect polymorphism and effect masking. The 
examples are written in MFX [Luc87], a statically 
scoped Lisp dialect with a type and effect system. 
The name MFX stands for “mini-FX"; MFX is a sub- 

set of the full Fx language [Gif87]. 
We first consider the polymorphic subroutine 

twice, which takes a subroutine of a single argument 

and returns the result of composing that subroutine 
with itself: 

twice = (PLAMBDA (t:TYpE ~:EFFEcT) 
(LAMBDA (f:(suBR 

(LAMBDA (x:t) 
(f (f x>>))> 

(t> e t>> 

twice is polymorphic in both the argument type t 
and the latent effect e of its argument. This is re- 
flected in the type of twice, which is inferred from 
the above definition by the type inference rules: 

twice : (POLY (t :TYPE e : EFFECT) PURE 
(SUBR (suBR:(t) 8 t) PURE 

(sUBR (t) e t))> 

The POLY type reflects the fact that twice is polymor- 
phic with respect to a type t and an effect e. Note 
that the kinds of the description variables t and e 

are specified in the POLY type. In what follows we 
will omit the latent effect of a POLY type whenever it 
is PURE. However, we will never omit the latent effect 

of a SUBR type. 
A more elaborate example of polymorphism is the 

mapcar subroutine, which is defined below. We have 

omitted the details of the recursive definition; note, 
however, that the type and the effect of the body of 
MAPCAR are declared in advance using THE. The effect 
constructor MAXEFF returns the effect that is the least 
upper bound of its arguments. 

mapcar = 
(PLAMBDA (ti:TYpE t2:TYpE ~:REGION 

e:EFFECT) 
(LAMBDA (~:(SUBR (ti) e t2) 

input: (listof r tl) 1 
(THE (MAxEFF (ALLoc r) (READ r) e) 

(listof r t2) 
(IF (null? input) empty 

((PROJ cons r) 
(f (car input)) 
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(mapcar f (cdr input>>))))> 

mapcar is polymorphic in the type of the elements 

of its input list, the type of the elements of its out- 
put list, the region in which these lists are allocated, 
and the latent effect ad the subroutine that is be- 
ing mapped. This is rejlected in the type of mapcar, 
which is inferred from the above definition by the type 
inference rules given suitable declarations for listof, 
null?, cons, car and cdr: 

mapcar : 
(POLY (t:L:TYPE t:Z:TYPE r:REGION 

(3 : EFFECT 1 PURE 
(SUBR ‘((SUBR (ti) e t2> (listof r tl)) 

‘(MAXEFF (READ r) a (ALLoc r)) 
?(listof :r t2))) 

The latent effect of mapcar has three distinct compo- 
nents: the effect of reading the input list, the effect 
of applying the mapping subroutine, and the effect of 
allocating the output list. Note that the listof type 
constructor incorporates both the region in which the 
list is allocated and the type of, the elements of the 
list. 

Our final example is a simple case of effect mask- 
ing: 

example = 

(LET ((y ((PROJ cons @red) 1 2))) 

be-car! y 2) 

(car y)> 

This expression allocates a cons-cell initialized to 

(1,2) in the region @red, mutates the car of the pair 

to be 2, and then returns the car of the pair. Al- 

though the ex:pression a.llocates, writes, and reads the 

region (Pred, the effect masking rules can prove that 

this expressio:n has no observable side-effects. As a 

result, the expression as a whole has effect PURE. In 

general, effects on a given region can be masked from 

the effect of at given ex.pression whenever the region 

does not appear free in the type of the expression or 

in the type of .any free v,ariable of the expression. This 

is discussed in more detail in Section 6. 

4. Inference Rules for Types 
and Effects 

This section presents a set of type and effect in- 

ference rules for the language MFX. MFX is based on 

the second-order typed lambda-calculus and on the 

higher-order ‘kinded’ lambda-calculus of McCracken 

[McC79, Rey74]. Th e an ua 1 g g e consists of three lay- 

ers: expressions, descriptions (which include types, 

effects and regions), and kinds (which are the ‘types’ 

of descriptions). There are three kind constants: 

REGION, EFFECT and TYPE; there are no higher-order 

kinds in MFX. 

Kind = 

REGION 

- kinds (K) 

- the kind of regions 

EFFECT 

TYPE 

- the kind of effects 

- the kind of types 

There are two general classes of MFX expressions: 

expressions that come from the higher-order lambda- 

calculus, and expressions that deal with side-effects. 

Exp = 
- expressions (e) 

Var 
- ordinary variable (z) 

(LAMBDA (Var:Type) Exp) 
- ordinary abstraction 

- (compare with XZ:~ . e) 

WP EXP) 
- ordinary application 

(PLAMBDA (Dvar:Kind) Exp) 
- polymorphic abstraction 

- (compare with Ad:tc . e) 

(PROJ Exp Desc) 
- polymorphic application 

(NEW Region Type Exp) 
- allocating and initializing a location 

(GET Exp) 
- reading a location 

(SET Exp Exp) 
- writing a location 

Expressions that cannot be reduced are considered 

to be values. The only expressible values are the ab- 

straction expressions listed below. Other values, such 

as locations, are not directly expressible and will be 

presented later. 
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Vd = 
- values (u) 

(LAMBDA (Var:Type) Exp) 
- ordinary abstraction 

(PLAMBDA (Dvar:Kind) Exp) 
- polymorphic abstraction 

The expressions NEW, GET and SET interact with 
the store. We distinguish three ways of interacting 
with the store: the allocation and initialization of 
memory locations, the reading (or dereferencing) of 
locations, and the writing (or updating) of locations. 
As we will see, each of these store interactions is re- 
flected in the syntactic effect of the corresponding 
expression. 

Syntactically, effects are specified in terms of re- 
gions, which correspond to infinite sets of locations. 
Thus, effects may be of the following forms: 

Effect = 

Dvar 
- effect descriptions (E) 

- effect variable 
(ALLOC Region) 

- allocating in a given region 
(READ Region ) 

- reading from a given region 
(WRITE Region) 

- writing to a given region 
(MAXEFF Effect*) 

- combination of zero or more effects 
PURE 

- “no effect”; synonym for (MAXEFF) 

Syntactically, regions can be region constants, re- 
gion variables, the empty region (it contains no loca- 

tions), and unions of multiple regions: 

Region = 

Rconst 
- region descriptions (p) 

Dvar 
- region constant (r) 

- region variable 

(UNION Region+) 
- union of one or more regions 

In MFX, the type of an (ordinary or polymorphic) 
subroutine incorporates not only the type (or kind) 
of the formal parameter and the type of the returned 
value, but also the latent effect of the subroutine. The 
type of a location incorporates not only the type of 
its contents, but also the region to which the location 
belongs. 

Type = 

Dvar 

- type descriptions (7) 

- type variable 

(SUBR (Type) Effect Type) 
types of ordinary subroutines 

1 (compare with r-f-)7’) 

(POLY (Dvar:Kind) Effect Type) 
- types of polymorphic subroutines 
- (compare with Vd : n F 7) 

(REF Region Type) 
- types of locations 

The set of descriptions is made up of all types, 

effects and regions: 

Desc = 

Region 

Effect 

- descriptions (6) 

- region descriptions 

Type 

- effect descriptions 

- type descriptions 

A description is well-formed with respect to a kind 

assignment B : Dvar + Kind iff it has a kind with 
respect to B. The kind assignment maps description 

variables to their kinds. We omit the kind inference 
rules, which are straightforward. 

The generalized subtype relation C on descriptions 
is defined to correspond to the subset relation on the 
underlying sets of locations, state interactions, or val- 

ues respectively. For example, p C (UNION p,p'), 

PURE E E, and (REFP T) g (REF(UNIONP,P')T). 

We omit the formal definition. The generalized type 
conversion relation N on descriptions corresponds to 
set equality on the underlying sets. Thus, T 2: 7’ iff 

rCr’andr’C~. 
An expression is well-formed with respect to a type 

assignment A : Dvar + Kind and a kind assignment 
B iff it has a type with respect to A and B. The type 
assignment maps ordinary variables to their types. 
The type inference rules are given below. They have 
been interleaved with the effect inference rules in or- 
der to illustrate the relation between types and ef- 

fects. 

Definition. An expression e has type r with re- 
spect to the type assignment A and the kind assign- 
ment B iff the formula 

A,B I- e:r 

can be derived using the axioms and inference rules 
given below. Similarly, the expression has effect E ifE 
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the formula 

A,B t- e!e 

can be derived. If e has no free variables, we will 
simply write e : T and e ! E. 

We write FV(e) f or the union of the free descrip- 

tion variables and the free region constants of the 

expression e; likewise, we write FV(6) for the free 

description variables and region constants of the de- 

scription 6. 

The sole type axiom states that the type of an 

ordinary variable is give.n by the type assignment; the 

effect axioms z&ate that every ordinary variable and 

every value has effect PURE. 

A,B I- x : A(x) 
x!PURE 
21! PURE 

The types and. effects of larger expressions are given 
by type and effect inference rules. 

(Ordinary Abstraction) 

A[x c q-1, B I- e : T’ 
A[z t T], B I- e ! E 

A,B I- (LAMBDA I(Z:T) e) : (SUBR(T) r T') 

(Ordinary Application) 

A,B I- el :: (suBR(TI) ET-J) 
A,B I- e2:T A T&T~ 

A,B t- el!q 
A,B k ez!q 

A,B I- (el e2) : T2 

A,B I-- (el e2) ! (MAXEFFC~ ~2 c) 

(Polymorphic Abstraction) 

A,B[~+K] I- e:T 
A,B[d+-] I- e!e 

Vx E W(e) . d # FV(A(z)) 

A, B I- (PLAMBDA (d:n) e) : (POLY (d:n) E T) 

(Polymorphic Application) 

A,B l- e : (POLY (d:rc) E’ 7’) 
A,B I- e!c 

B t- 6:~ 

A,B t- (PROJe6) : 7-l m4 
A,B I- (PROJe6) ! (MAXEFF E e’[S/d]) 

(Allocating and Initializing a Location) 

B k p: REGION 
B t- T:TYPE 

A,B I- e:r’ A 7’57 
A,B I- e!e -- 

A,B t- (NEWPTe) : (REFP~) - 

A,B i- (NEWPTe) ! (MAXEFFE (ALLOCP)) 

(Reading a Location) 

A,B k e:(REFPT) 
A,B I- e!e 

A,B i- (GETe) : 
A,B !- (GETe) ! (MAXEFF:(FLE*D,,) 

(Writing a Location) 

A,B I- el:(REFPT) 
A,B I- e:!:T’ A T’CT 

A,B I- el!q 
A,B I- ez!ez 

A,B k (SET~I e2) : UNIT 
A,B I- (SET~I e2) ! (MAXEFF q e2 (WRITEP)) 

In general, the effect of an expression consists of 
two components, namely its inherited effect and its 

intrinsic effect: the inherited effect of an expression 

consists of the effects of those of its immediate subex- 
pressions that may be evaluated in order to evaluate 
the expression, and the intrinsic effect of the expres- 
sion is the effect that is introduced by the expression 
itself. 

5. Semantics 
The soundness of the MFX effect inference rules can 

be expressed only in terms of its semantics. In this 
section we present a structured operational semantics 
of MFX that is expressed in terms of rewrite rules. 
These rules, which closely resemble the rewrite rules 
for the lambda-calculus, operate on tuples consisting 
of an expression, which models the computation that 
remains to be performed, and a store, which models 
the memory of the computation. The store maps lo- 
cations to values. In order to deal with the locations 
that may arise during the course of computation, we 
expand the set of expressions to include locations. 

Definition. A store is a finite function u : Lot ---* 
Val that maps locations to values. 

Definition. A state is a tuple (e,a) of the form 
(Exp x Store). 

Definition. A terminal state is a state (~,a) of 
the form (Val x Store). 
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A location can be tagged with a region description 

and a type description. The region tag of a location 

indicates to what region the location belongs, and 

the type tag of a location indicates what types of val- 

ues the location may contain. The tags of a location 

ought to be closed; tags that contain free description 

variables are meaningless. We write R(Z) for the re- 

gion tag of the location 1 and T(Z) for its type tag. 

Moreover, we write Z,,, to indicate that R(Z,,,) = p 

and T(Z,,) = 7. If p is a region constant, then the lo- 

cation I,,, belongs to the region corresponding to that 

region constant; otherwise, it belongs to the union 

of the corresponding regions. This situation reflects 

either uncertainty indifference about the region con- 

stant to which the location actually belongs. 

Definition. A location can be reached through a 

region p, 1 E Reach(p), iff the region tag of Z overlaps 

with p, i.e. iff FV(R(Z)) II IV(p) # 0. 

Computation proceeds by repeatedly reducing the 

current state according to a set of reduction axioms 

and inference rules, until a terminal state results. The 

relation ‘reduces to’ or ‘3 ’ on (State x State) gives 

the states, if any, to which a given state can be re- 

duced. The reduction axioms are given below: 

(((LAMBDA (23) e) v),6)S (e[w/z],u) 

(((PLAMBDA (d:~) e) h),a) i% (e[S/d],cr) 

((NEW P 7 u>,a> 3 (l,,r ,b[lp,t + ~1) 

(1 not bound in u) 

((GET $a) = (g(l), g) 

((SET 1 v),b)Z$ (w,u[Z c v]) 

The reduction inference rules show how to reduce 

a state (e,o) that does not match any reduction ax- 
iom by reducing a designated subexpression of e. The 

rules have been designed to ensure left-to-right, ap- 
plicative order evaluation. We present only the rules 
for ordinary application; the remaining rules are sim- 
ilar. 

(el,d 3 (4,fl’) 

(e2,c) 3 (eh,u’) 

((“1 e2),4 * ((~1 eh>,u’) 

A state is well-formed, WFstete(Z3), iff its expres- 
sion component is well-formed, the contents of the 
locations that are bound in the store are well-formed 

and of a type that agrees with the tags of the corre- 
sponding locations, and every location that occurs in 

the state has the same tags everywhere and is bound 
in the store. 

Proposition. (Type and Effect Preservation) Re- 
duction of a well-formed state preserves or decreases 
the type and effect descriptions of the state. 

WFstote ((e, u)) 
e:r 
e!e 

zs - 

(e,a) * (e’,u’) 
e’ ! E’ where E’ E E 

In order to express the effect soundness property, 
we need to be able to refer to the locations that are 

involved in effects in a reduction step. 

Definition. For all 0 and 19’ such that 0 %$ O’, let 

d(O,O’) denote the set of locations allocated and 
initialized in the reduction step 8 s 8’ 

R(B,e’) denote the set of locations read in the re- 
duction step 0 3 8’ 

YV(e,e’) denote the set of locations written in the 
reduction step t9 & 8’ 

For the language defined thus far, these sets contain 

either zero or one location; however, we will not make 
use of this fact. 

Proposition. (Effect Soundness) Reduction of a 
well-formed state allocates, reads, and writes only lo- 
cations that can be reached through the regions spec- 
ified by its effect. In other words, if 8 G% 8’ and 0 ! E 
where 

E c? (MAXEFF(ALLO~~~) (READP~)(wRITE~~)) 

then 
d(e,e’> c Reach 

R(e,e’) G Reach(pR) 

w(e,el) 5 Reach(pw ) 

6. Effect Masking 
Under certain circumstances, side-effects that can- 

not be observed outside of a given expression can be 
masked by the effect system. The rule for effect mask- 
ing is developed in two steps. First, we present a 
construct for declaring private regions along with an 
effect masking rule for side-effects involving these pri- 
vate regions, and we demonstrate the soundness of 
this masking rule relative to our operational seman- 
tics. Second, we show how this rule can be modified to 
mask local side-effects even when private regions are 
not used. Effect masking allows imperative program 
fragments to be embedded in functional programs, 
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provided that these imperative fragments have func- 

Conal semantics. Thus, effect masking allows func- 
tional programs to be implemented using imperative 
constructs. In addition, effect masking increases the 
feasibility of compile-time garbage collection in the 
presence of fir&-class subroutines and references. 

The PRIVATE expression declares a private, anony- 
mous region for local u:se that becomes inaccessible 
when the exprlession returns. Side-effects on this re- 
gion cannot be observe’d outside of the expression, 
and need not be reported in the syntactic effect of the 
expression; we say that such effects can be masked. 
Since the locations belonging to a private region can- 
not be accessed after the expression returns, they can 
be safely deallocated whlen the expression returns. 

The grammiar clause for the PRIVATE expression is 
given below. 

Exp = 
- expressions 

(PRIVATED~~~ Exp) 
- declaration of a private region 

The type and effect inference rule for the PRIVATE 
expression is given below. Note that the type and 
effect of the expression are the same as the type and 

effect of e, except that all effects on d are masked. 
Effect masking is accomplished by substituting the 

empty region $ for the private region variable d in the 

effect description E; the empty region is defined such 
that any effect on + is interconvertible with PURE. 

A,B[d c :REGION] I- e : T 
.4,B[d c REGION] k e ! E 

A,B I- (PRIVATE d e) : 
A,B 1 (PRIVATE d e) ! e[$yd) 

This rule resembles a composition of the rules for 

polymorphic abstraction and polymorphic applica- 
tion, except that (i) no actual region parameter is 

specified, (ii) the forma,1 region parameter must not 
appear free in the type of the body, and (iii) any ef- 

fects on the fo,rmal region parameter are masked. 
The simplest way to define the semantics of the 

PRIVATE expression would be with the foIlowing re- 

duction axiom, where I. denotes a fresh region con- 
stant: 

((PFLIVATE d e),a) 3 (e[z/d], u) 

Unfortunatlely, this d.efinition would invalidate the 

type preservation proposition: if the PRIVATE expres- 

sion that masks the eflrects on the private region is 

removed, the effect of the expression may actually in- 

crease. Since type preservation is the foundation of 
our type and effect soundness propositions, we have 

developed a technique for reducing expressions such 
as the PRIVATE expression while retaining the type 

preservation property. Formally, the semantics of the 
PRIVATE expression are defined in terms of an aux- 

iliary expression, which resembles the PRIVATE ex- 

pression except that the bound variable has been re- 
placed by a region constant. The auxiliary expres- 

sion, *PRIVATE*, serves as a syntactic marker that in- 

dicates that effect masking is taking place. When a 

PRIVATE expression is reduced to a *PRIVATE* expres- 
sion, a fresh region constant is chosen and embedded 

in the expression. The body of the *PRIVATE* expres- 
sion is then reduced recursively, while the expression 

serves as a reminder that the chosen region constant 
is private to the expression, and that any effects on 

it can therefore be masked. When the body has been 
reduced to a value, there are no more effects to be 
masked and the *PRIVATE* expression can be reduced 
to its body. 

The syntax of the *PRIVATE* expression is given by 

the type and effect inference rule shown below. 

Exp = 
- expressions 

(*PRIVATE* Dvar Exp) 
- PRIVATE in progress 

In order to represent the fact that the region con- 
stant chosen in the reduction of a PRIVATE expression 
must be fresh, we extend the state of the computa- 
tion with a third component (besides the expression 
and the store), namely a region map 7 : T --, {USED). 
States will now be of the form (e,a,r), and the ex- 
isting reduction axioms and reduction inference rules 

are edited accordingly. (An alternative technique is 
given by Felleisen and Friedman [Fe187]). 

The region map is used by the reduction axiom for 
PRIVATE expressions: 

((PRIVATE d e),a,7) S- 
((*PRIVATE* 7 e[r/d]),g,7[T +- USED]) 

(T not bound in 7) 

The resulting *PRIVATE* expression can be recur- 
sively reduced using the following reduction inference 
rule: 

((*PRIVATE* T e),o, 7)s ((+PRIVATE* T e'),u', 7’) 

When the body has been reduced to a value, the 
*PRIVATE* expression can be eliminated using the fol- 
lowing axiom: 

((*PRIVATE* T w),6,7)3 (v,a,7) 
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Even though we have taken special care to retain 
a syntactic marker throughout the reduction process 
whenever effect masking is taking place, the effect 

soundness proposition no longer holds as originally 
stated, because it fails to take side-effects on private 
regions into account. Specifically, if a state 8 ! e con- 

tains an active expression of the form (*PRIVATE* T e), 

then reduction of 0 may have effects on the region T, 
even though T does not appear in E. 

We will now reformulate the effect soundness 
proposition so that it allows locations to be allocated, 

read, or written in regions that are private to a given 

expression even though these effects are not specified 
by the syntactic effect of the expression. The modi- 
fied proposition operates by confining attention to the 
regions that are accessible in the context that sur- 

rounds the expression. This automatically excludes 
the private regions of the expression. 

Definition. A context C is an expression con- 
taining a single “hole” in which an expression can be 
placed, i.e. such that C[e] is an expression for any 

expression e. 

Definition. A region constant r is accessible in 

a context C iff it appears in the effect of any active 

expression in that context, i.e. iff some active expres- 

sion in C has an effect E such that T E w(e). We 

write Act(C) to denote the region constants that are 
accessible in the context C. 

Using this notation, we can express the regions 
that are accessible in a given context C as simply 
Acc( C). We can now revise the effect soundness 
proposition. It is expressed in a somewhat peculiar 
way in order to simplify a comparison with the orig- 
inal proposition. 

Proposition (revised). (Effect Soundness) Re- 
duction of an expression in a well-formed state allo- 
cates, reads, and writes only locations that can be 
reached through the regions specified by its effect 
or through the private regions of the expression. In 
other words, if 8 = (C[e],o, y), 8’ = (C[e’],cr’,r’) and 
8 s 0’, and e ! e where 

E N (MAXEFF(ALL~CP~)(READ~~)(WRITEP~)) 

then 

d(6,0’) n Reach(Acc(C)) E Reach(pA) 

72(8,0’) n Reach(Acc(C)) g Reach(pR ) 

W(e, 0’) n Reach(Acc(C)) E Reach(pw ) 

Whenever it is possible to wrap a given expression 
in a PRIVATE expression for a certain region without 

making the program in question ill-typed, the effects 
on that region can be masked as if this PRIVATE were 
actually present. The rule for this so-called implicit 
effect masking is derived directly from the rule for 
PRIVATE: 

A,B i- e:r 
A,B I- e!e 

B t- d: REGION 

z E W(e) a d $ FV(A(z)) 

d 4 W(T) 
A, B I- e ! l [$/d] 

Its soundness follows from the fact that there is a 
meaning-preserving source-to-source transformation 
that introduces the appropriate PRIVATE expression. 

7. Experience with a prototype 
FX implementation 

We have developed a prototype compiler for the 
FX programming language that uses effect informa- 
tion to constrain the parallel evaluation of expres- 
sions [Luc87]. Th e compiler enforces evaluation or- 

der constraints that guarantee serial evaluation se- 
mantics. The target language of the compiler is a 

dataflow graph that has been annotated with schedul- 

ing constraints; a dataflow graph representation was 

chosen because (i) the dataflow model allows us to ex- 
press concurrency without considering such issues as 
processor allocation and computation grain size, and 
(ii) a parallel simulator for this model was available 

[ Arv87, Tra86]. 
To date we have used the compiler and the simula- 

tor to check, compile and run a variety of programs, 
most of them fairly small. In general, the experimen- 

tal results agree with our predictions. 
Figures 1 and 2 show the result of an experiment 

that tested the value of effect masking on a small 
program that computes the sum of l! to lo!. Figure 
1 shows the execution of the program when it was 
compiled with effect masking disabled, while Figure 2 
shows the execution of the program with effect mask- 
ing enabled. Factorial was programmed in a conven- 
tional manner using an iterative method with side- 
effects; when effect masking was enabled, these local 
effects were masked, resulting in a functional speci- 
fication for the factorial function, which in turn re- 
sulted in the concurrent evaluation of the iterations 
of the outer loop. The figures show the number of 
ALU operations the simulated dataflow machine exe- 
cuted during each instruction cycle. In this example, 
effect masking resulted in a substantial improvement 
in elapsed time. In general, of course, the results 
depend on the susceptibility of the program to the 
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particular kinds of concurrency analysis supported by 9. Bibliography 
the language. 

8. Conclusions 
We have presented a stattic effect system with effect 

and region polymorphism and effect masking. The 

type and effect information can be used to imple- 
ment certain kinds of sid.e-effect analysis that were 
not previously feasible in the presence of first-class 
subroutines and reference variables, particularly con- 
currency analysis and the the masking of local side- 
effects. Empirical results from a prototype implemen- 
tation suggest that the effect system can be used by 
a parallel compiler. 
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