
Verifying Quantitative Reliability of Programs
That Execute on Unreliable Hardware (Appendix)

Michael Carbin Sasa Misailovic Martin C. Rinard
MIT CSAIL

{mcarbin, misailo, rinard}@csail.mit.edu

A. Additional Semantics Definitions
This section contains additional semantics definitions elided
from the presentation in Section 3 in the paper.

A.1 Semantics of Arrays
Figure 11 presents the dynamic semantics of array opera-
tions.

Declarations. An array declaration allocates a new array
in the heap. The boundaries of an array are given by a se-
quence of expressions, each of which can evaluate unreli-
ably [E-ARRAY-DECL-R]. Given these boundaries, a new
array is allocated using the function new, which returns the
base address of an array that has been freshly allocated in
the memory region m [E-ARRAY-DECL]. The function new
executes reliably. To guard against ill-defined behavior, the
given semantics also reliably checks that the length of each
dimension is non-negative.

Loads. Executing an array load entails multiple steps. In
the first step, the program reduces the expressions for each
index in left-to-right order [E-ARRAY-LOAD-IDX]. Note
that reduction of the index expressions may encounter faults,
producing incorrect indices. While our dynamic semantics
incorporates bounds checks to prevent incorrect indices from
yielding ill-defined, out-of-bounds behaviors, we have left
the choice of index expression reliability to the discretion of
the developer.

Given the array reference and the reduced indices of each
dimension, the program then checks to see if each index is
within bounds of the allocated dimensions of the array and
also calculates the offset of the element to be accessed [E-
ARRAY-LOAD-C, E-ARRAY-LOAD-F]. In the final step,
the array load proceeds by attempting to fetch the corre-
sponding value from the given memory region. With proba-
bility ψ(rd(m)), this step executes correctly and returns the
value from memory [E-ARRAY-LOAD-C]. With probability
1− ψ(rd(m)), the memory read fails, producing an alterna-
tive value nf with probability P (nf) [E-ARRAY-LOAD-F].

Stores. The semantics of array stores are similar to that
for loads except with the reliability of writes to the array’s
memory region (ψ(wr(m))) substituted for the reliability of

reads. We have elided a full presentation of the semantics of
array stores for brevity.

We note that the store operation may fail in two ways: 1)
the index computation produces a wrong index (the rule is
similar to [E-ARRAY-LOAD-IDX]) or 2) the write operation
may fail, with probability 1 − ψ(wr(m)). If the index com-
putation fails and the computed index is outside of the loop
bounds, then the computation skips the write operation. If
the index computation fails and the computed index is within
the bound, then the write will modify another location within
the array. If the write operation fails, the semantics stores an
alternative value nf with probability P (nf).

A.2 Semantics and Analysis of Functions
A.2.1 Dynamic Semantics
Figure 12 presents the dynamic semantics of function calls
and returns. A function call and return sequence executes via
the following procedure:

Call Argument Evaluation. A function call first evaluates
its arguments in left-to-right order [E-CALLX-ARGS]. Note
that evaluation of the arguments may encounter faults. A
parameter value v is either value that a numerical expression
evaluates to, which is denoted as vnum or a memory location
of the array, which is denoted as vref.

Call Body Unfolding. After the arguments to a call have
been fully evaluated, control then transfers to the body of
function [E-CALLX-UNFOLD]. The rule transfers control by
fetching the code for the body of the function via the utility
function code(f).

The rule also creates a new state σ′ and pushes the old
state σ onto the program stack δ. The rule initializes the
new state with the appropriate values for its parameters by
prepending a sequence of declarations sint init to allocate
and initialize the numerical parameters of the function. The
function array params returns the set of names and position
of the formal array parameters of the function f . The func-
tion int params returns the set of names, memory locations,
and positions of integer formal parameters of the function f .

Note that this rule executes correctly with probability 1;
this implies that both control transfers and manipulations
of the program stack are performed fully reliably. While

E-ARRAY-DECL-R
〈ei, σ〉

θ, p−→ψ e
′
i

〈int a[n1, . . . , ei, . . . , ek] inm, 〈σ :: δ, h〉〉 θ, p−→ψ 〈int a[n1, . . . , e
′
i, . . . , ek] inm, 〈σ :: δ, h〉〉

E-ARRAY-DECL
∀i. 0 < ni 〈nb, h′〉 = new(h,m, 〈n1, . . . , nk〉) σ′ = σ[a 7→ 〈nb, 〈n1, . . . , nk〉,m〉]

〈int a[n1, . . . , nk] inm, 〈σ :: δ, h〉〉 C, 1−→ψ 〈skip, 〈σ′ :: δ, h′〉〉

E-ARRAY-LOAD-IDX

〈ei, σ〉
θ, p−→ψ e

′
i

〈x = a[n1, . . . , ei, . . . , ek], 〈σ :: δ, h〉〉 θ, p−→ψ 〈x = a[n1, . . . , e
′
i, . . . , ek], 〈σ :: δ, h〉〉

E-ARRAY-LOAD-C

σ(a) = 〈nb, 〈l1, . . . , lk〉,m〉 no = lk +
k−1

Σ
i=0

ni · li n = h(nb + no)

〈x = a[n1, . . . , nk], 〈σ :: δ, h〉〉 C, ψ(rd(m))−→ψ 〈x = n, 〈σ :: δ, h〉〉

E-ARRAY-LOAD-F

σ(a) = 〈nb, 〈l1, . . . , lk〉,m〉 no = lk +
k−1

Σ
i=0

ni · li p = (1− ψ(rd(m))) ∗ P (nf | rd(m))

〈x = a[n1, . . . , nk], 〈σ :: δ, h〉〉
〈F,nf 〉, p−→ψ 〈x = nf , 〈σ :: δ, h〉〉

Figure 11: Dynamic Semantics of Arrays

E-CALLX-EXPR-ARG

〈ei, σ〉
θ, p−→ψ e

′
i

〈x = f(v1, . . . , ei, . . . , ek), 〈σ :: δ, h〉〉 θ, p−→ψ 〈x = f(v1, . . . , e
′
i, . . . , ek), 〈σ :: δ, h〉〉

E-CALLX-INT-ARG

〈ei, σ〉
θ, p−→ψ n vnum

i = n

〈x = f(v1, . . . , ei, . . . , ek), 〈σ :: δ, h〉〉 θ, p−→ψ 〈x = f(v1, . . . , v
num
i . . . , ek), 〈σ :: δ, h〉〉

E-CALLX-ARR-ARG
vref
i = σ(ai)

〈x = f(v1, . . . , ai, . . . , ek), 〈σ :: δ, h〉〉 C, 1−→ψ 〈x = f(v1, . . . , v
ref
i , . . . , ek), 〈σ :: δ, h〉〉

E-CALLX-UNFOLD
∀(ai, i) ∈ array params(f) . σ′(ai) = vref

i

sint init ≡ int xi1 = vnum
i1 inmi1 ; . . . ; int xik = vnum

ik inmik where (xij ,mij , ij) ∈ int params(f)

〈x = f(v1, . . . , vk), 〈δ, h〉〉
C, 1−→ψ 〈x = f(v1, . . . , vk) sint init ; code(f) , 〈σ′ :: δ, h〉〉

E-CALLX-BODY

〈s, 〈σ :: δ, h〉〉 θ, p−→ψf 〈s
′, 〈σ′ :: δ′, h′〉〉

〈x = f(v1, . . . , vk) s, 〈σ :: δ, h〉〉 θ, p−→ψc 〈x = f(v1, . . . , vk) s′, 〈σ′ :: δ′, h′〉〉

E-RETURN-R
〈e, σ〉 θ, p−→ψ 〈e′, σ〉

〈return e, 〈σ :: δ, h〉〉 θ,p−→ψ 〈return e′, 〈σ :: δ, h〉〉

E-CALLX-RETURN

〈x = f(v1, . . . , vk) return n, 〈σ :: δ, h〉〉 C, 1−→ψ 〈x = n, 〈δ, h〉〉

E-SEQ-RETURN
s1 ∈ {return, return n}

〈s1 ; s2, 〈δ, h〉〉
C, 1−→ψ 〈s1, 〈δ, h〉〉

Figure 12: Dynamic Semantics of Function Calls and Returns

RPψ(x = f(v1, . . . , vn), Q,C) = Q [ψ(wr(Λ(x)) · Relspec act(f, 0, X)/R({x} ∪X)]
[Relspec act(f, i1, X)/R({ai1} ∪X)] . . .
[Relspec act(f, ik, X)/R({aik} ∪X)]

Relspec act(f, i,X) = Relspec form(f, i)
[ρ1(act par(f, 1)) · R(ρ2(act par(f, 1)) ∪ Y)/R({form par(f, 1)} ∪ Y)] . . .
[ρ1(act par(f, j)) · R(ρ2(act par(f, j)) ∪ Y)/R({form par(f, j)} ∪ Y)] . . .
[ρ1(act par(f, n− 1)) · R(ρ2(act par(f, n− 1)) ∪ Y)/R({form par(f, n− 1)} ∪ Y)]
[ρ1(act par(f, n)) · R(ρ2(act par(f, n)) ∪X)/R({form par(f, n)})]

Figure 13: Constraint Generation for Function Calls

reliable control transfers are given by Rely’s machine model,
reliable program stack manipulations require that a compiler
allocate the program stack in a reliable memory region.

Return Value Evaluation. A return e statement fully
evaluates e under the hardware reliability model, yielding
a value n [E-RETURN-E].

Call Return Execution. Once the body of the call exe-
cutes and reaches a return statement, execution proceeds
by restoring the old state σ′ from the program stack, assign-
ing the return value to the destination variable, and transfer-
ring control back to the caller [E-CALL-RETURN-E]. Note
that as with [E-CALLX-UNFOLD], this step executes cor-
rectly with probability 1 and therefore both the control trans-
fer and stack manipulation are fully reliable.

B. Constraint Generation for Functions
Figure 13 presents the constraint generation rule for func-
tion calls. Intuitively, for a function call x = f(e1, . . . , en)
the constraint generator performs two tasks. First, it substi-
tutes the declared reliabilities of with the reliability expres-
sions for the actual parameters of the function known at the
call site. Second, to update the reliability expressions for the
modified array variables, it constructs a constraint that ab-
stracts the reliability of a function call as the reliability of
multiple assignment statements – one statement represents
the assignment of the final value of the function to the vari-
able x, the remaining statements represent the assignment of
each potentially modified array parameter of the function.

To substitute the return value, the rule in Figure 13 com-
putes the reliability expression derived from the reliability
specification of the function’s return value. The helper func-
tion Relspec act replaces substitutes the reliability of all ac-
tual parameters of the function’s call for the declared param-
eter names within the declared reliability expression for the
return value (when i = 0) or one of the function’s parame-
ters (when i ≥ 1). The rule then identifies array variables (in
the presentation there is total of k ≤ n array variables) that
are passed as parameters to the function and updates their
reliabilities analogously.

The helper function Relspec act takes as input the func-
tion’s specification, the index i of the array parameter or 0

for the return value, and the set of the variables from the
context of the calling function. The function 1) obtains the
reliability specification associated with the i-th parameter of
the function, 2) the name of the i-th formal parameter us-
ing the formal arg function, and 3) the reliability of the ac-
tual parameter expression using the act arg function. The
function act arg returns the reliability of an expression if the
actual parameter is a numerical value or the reliability pair
(1.0,R(ai)) if the actual parameter is an array variable.

Then the function Relspec act substitutes reliabilities of
all function’s formal parameters with the expressions of the
corresponding actual parameters. The resulting expression
does not contain the names of the formal parameters. We
note that the rule for function calls requires that the names
of the formal parameters are distinct from the names of vari-
ables used in the actual parameter reliability expressions.
This can be enforced by additional renaming of formal pa-
rameters.

C. Properties of Reliability Factors
In this section we present proofs of several properties of
reliability factors.

C.1 Discrete Distribution
This theorem ensures that the distribution of unreliable dis-
tributions is discrete, i.e., it can be represented by a proba-
bility mass function ϕ.

Lemma 1 (Discrete Distribution). The probability space of
unreliable environments (E, ϕ) is discrete.

Proof. A probability distribution is discrete if it is defined on
a countable sample space. Therefore, we need to check that
the set E is countable. In this proof we denote the cardinality
of a set X as |X| and as a special case the cardinality of a
set of natural numbers, |N| = ℵ0.

The cardinality of the set of heaps is |Loc × IntM|. Since
both |Loc| and |IntM| are finite, the cardinality of their prod-
uct is also finite. The cardinality of a single stack frame is
|Σ| = |Var × Ref|. The ardinality of Var is finite since a
function can have only a finite number of variables. Cardi-
nality |Ref| = |Loc× Lock ×M | is finite, since Loc and M
are finite, and the number of the array dimensions is a finite

number (which follows from the definition of the program’s
syntax). The cardinality of a stack is then equal to ℵ0 since
as a finite or a countable length list of finite-length frames, it
can be mapped onto N. The cardinality of E is equal to the
product of cardinalities of |H| and |Σ|, and is equal to ℵ0.
Therefore, E is a countable set.

C.2 Reliability Factor Ordering
The ordering proposition states that the function R(X) is
monotonically decreasing – for a larger set of variables X ,
the probability that the variables in that set have the same
value decreases. This proposition also enables comparison
of symbolic reliability predicates.

Proposition 1 (Ordering; restated). For two sets of variables
X and Y , if X ⊆ Y thenR(Y) ≤ R(X).

Proof. First, we consider the case when all variables in X
and Y are scalars. Let UY = E(Y, ε) be the set of al-
ternative environments in which all variables in the set Y
have the same value as in the original environment and let
UX = E(X, ε) be the set of alternative environments in
which all variables in the setX have the same value as in the
original environment. Then, if X ⊆ Y , the set UY ⊆ UX ,
since the variables in Y \X provide additional restrictions
on the states that are contained in UY . Finally, the theo-
rem statement follows from the inequality

∑
v∈UX

ϕ(v) ≥∑
v∈UY

ϕ(v).
If a is an array variable, then the function equiv adds a

constraint for each element of a. Then, we can apply the
same argument for each such obtained sets UX and UY .

As a side note, joint reliability of multiple variables can
be obtained from the marginal reliabilities of these variables:

Proposition 1 (Union Bound). Let X = {x1, . . . , xn} be a
set of n program variables. Then,R(X) ≥

∑n
i=1R({xi})−

(n− 1).

Proof. The probability that the in the set of variables X ,
at least one variable has an incorrect value is 1 − R(X).
The probability that a variable xi has an incorrect value is
1−R({xi}).

The probability that any of variables inX has an incorrect
value is smaller than the probability that every individual
program variable has an incorrect value (from the classical
probabilistic union bound). Then, the statement follows from
1−R(X) ≤

∑n
i=1 1−R({xi}).

C.3 Redundant Constraints
As a consequence of ordering we can define the simplifica-
tion procedure that removing redundant predicates from the
constraints that the analysis produces.

Proposition 2 (Predicate Subsumption). A reliability pred-
icate r1 · R(X1) ≤ r2 · R(X2) subsumes (i.e., soundly re-
places) a predicate r′1 · R(X ′

1) ≤ r′2 · R(X ′
2) if r′1·R(X ′

1) ≤
r1 · R(X1) and r2 · R(X2) ≤ r′2 · R(X ′

2)

Proof. If P = r1 · R(X1) ≤ r2 · R(X2) and P ′ =
r′1 · R(X ′

1) ≤ r′2 · R(X ′
2), we show that P ∧ Prest =⇒

P ∧ P ′ ∧ Prest, where Prest are the remaining predicates in
the constraint.

Let us first consider the case when Prest is empty. Then,
we need to show that P =⇒ P ∧ P ′. This predicate
follows from the inequality assumptions from the theorem
statement. Specifically, if r1 · R(X1) ≤ r2 · R(X2) is true,
by the ordering lemma and the widening of the interval,
r′1 · R(X ′

1) ≤ r′2 · R(X ′
2) is also true.

If Prest is not empty, one can replace the logical value
true or false for Prest and then use the same argument as in
the previous derivation.

i

1 #define tolerance 0.000001

2 #define maxsteps 40

3
4 float <0.9999*R(x)> F(float x in unrel);

5
6 float <0.9999*R(x)> dF(float x in unrel);

7
8 float <0.995*R(xa , xb)> secant

9 (float xa in unrel , float xb in unrel) {

10 float a in unrel;

11 float b in unrel;

12 float c in unrel;

13 float fa in unrel;

14 float fb in unrel;

15 float fc in unrel;

16 bool converged in unrel;

17
18 a = xa;

19 b = xb;

20
21 fa = F(a);

22 fb = F(b);

23
24 while ((a -. b >=. tolerance) ||.

25 (a -. b <=. 0.0-. tolerance))

26 : maxsteps {

27 c = (a +. b) /.2;

28 fc = F(c);

29
30 if ((fa >= 0) &&. (fc >= 0)) {

31 a = c;

32 fa = fc;

33 } else {

34 b = c;

35 fb = fc;

36 }

37 }

38 if (!.((a -. b <=. tolerance) &&.

39 (a -. b >=. 0.0-. tolerance))) {

40 x = INFTY;

41 }

42 return x;

43 }

Figure 14: Secant Method Implementation

i

1 //Array with sine polynomial coefficients

2 #define nsin 20

3 const csin (1) = { /*...*/ };

4
5 //Array with cosine polynomial coefficients

6 #define ncos 19

7 const ccos (1) = { /*...*/ };

8
9 float <0.99999*R(x)> usin(float x in unrel) {

10 float res in unrel;

11 float t in unrel;

12
13 int i; i = 1;

14
15 res = csin [0];

16 while (true) : nsin {

17 t = csin[i];

18 res = res *. x +. t;

19 i = i + 1;

20 }

21 return res;

22 }

23
24 float <0.99999*R(x)> ucos(float x in unrel) {

25 float res in unrel;

26 float t in unrel;

27
28 int i;

29 i = 1;

30
31
32 res = ccos [0];

33 while (true) : ncos {

34 t = ccos[i];

35 res = res *. x +. t;

36 i = i + 1;

37 }

38 return res;

39 }

40
41 void main

42 (float r in unrel , float theta in unrel

43 float <0.99995*R(r, theta , xy)> xy) {

44
45 float x in unrel;

46 float y in unrel;

47 float t in unrel;

48
49 t = ucos(theta);

50 xy(1) = r *. t;

51 t = usin(theta);

52 xy(2) = r *. t;

53
54 }

Figure 15: Coordinate Conversion Implementation

i

1 const num matx = 64;

2 const num maty = 64;

3
4 void matvec (float mat(2) in urel ,

5 float v(1) in urel ,

6 num <.997*R(mat , vec , outvec)>

7 u(1) in urel)

8 {

9 num t1 in urel;

10 num t2 in urel;

11 num t3 in urel;

12 int i, j, k;

13
14 i = 0;

15 repeat matx {

16 j = 0;

17 t3 = 0;

18 repeat maty {

19 t1 = mat[j, i];

20 t2 = v[j];

21 t3 = t3 +. t1 *. t2;

22 }

23
24 u[i] = t3;

25 i = i + 1;

26 }

27 }

Figure 16: Matrix-Vector multiplication Implementation

D. Benchmarks
D.1 Newton’s Method
This is the computation we presented in Section 6.2.

D.2 Secant Method
This computation also searches for a root of function f . It
takes as its input two points xa and xb for which the func-
tion has the opposite sign and returns the value x0 within the
interval [xa, xb] for which the function f evaluates to zero.
The result of the computation can be checked (as in New-
ton’s method) by ensuring that f(x0) is close to zero.

This is the fixed point computation that at each step com-
putes the middle point xc and its function f(xc). Based on
the sign of f(xc) the algorithm divides the search interval
(using a conditional statement). The whole loop can exe-
cute unreliably. If the function f has the reliability specifi-
cation float<0.9999*R(x)> F(float x), then the anal-
ysis verifies that the reliability of the computation is at least
.995*R(xa, xb).

Figure 14 presents the implementation of this computa-
tion. Note that the reliability of this computation is higher
than the reliability of Newton’s method. This is because the
Secant method makes a single call to the function f , whereas
Newton’s method makes calls to both f and f ′ in every it-
eration. Given multiple options (such as Newton’s method
and Secant), verified reliability specifications may help de-
velopers select the option that best satisfies their combined
reliability and efficiency goals.

D.3 Coordinate Conversion
This computation converts polar coordinates of a point to
Cartesian coordinates. Given a coordinate (R, θ), where R
is a radius and θ is an angle, it computes the coordinates
x = R cos(θ) and y = R sin(θ). This is also a checkable
computation: the square of the diameter is equal to the sum
of the squares of Cartesian coordinates.

Figure 15 presents the implementation of this computa-
tion. The function takes the inputs r and theta and stores
the result in the output array xy. The body of the computa-
tion can execute unreliably. The analysis first verifies the im-
plementation of the trigonometric functions (which are eval-
uations of appropriate Chebyshev interpolating polynomi-
als). If the reliability of the input x is R(x), then the the anal-
ysis verifies that the functions sin(x) and cos(x) have the re-
liability at least 0.99999*R(x). The analysis uses this result
to verify that if the reliability of the parameters r and theta

is R(r,theta) , then the reliability of the coordinate con-
version computation is at least 0.99995*R(r,theta,xy).

D.4 Motion Estimation
This is the computation we presented in Section 2.

D.5 Matrix-vector Multiplication
This computation calculates the product of a matrix M and
a vector v. The dimensions of the matrix are w × h, the
length of v is h, and the length of the resulting vector u is w.
The computation takes M, v, and u as inputs, and computes
the values of the elements of the vector u. This computa-
tion is an important kernel in numerical computations. For
example, a linear operator (such as Fourier or Discrete Co-
sine transforms of arbitrary sizes) can be implemented as a
matrix-vector multiplication.

Figure 16 presents the implementation of this computa-
tion. All operations on the input data can execute unreliably.
The output of the function is the vector u. Assuming the
maximum size of the square matrix to be 64x64 (as in some
signal processing applications), the specified output reliabil-
ity for the vector u is 0.997*R(M, v, u). The analysis re-
sult states that the reliability of any element of u is greater
than this specified output reliability. Note that the specifica-
tion needs to account for the possible unreliability of assign-
ments to the vector u before entering the function, because
it does not track the array indices to determine that every
element of u is modified inside the function.

D.6 Hadamard Transform
This computation takes as input two blocks of 4x4 pixels
and computes the sum of differences between the pixels in
the frequency domain. This computation is used in digital
signal processing applications (including motion estimation
algorithms).

Figure 17 presents the implementation of this computa-
tion. The computation calculates the intermediate distances

i

1 int <0.9999995 * R(val)> abs

2 (int val in unrel)

3 {

4 int t in unrel = val;

5 if (t <=. 0) {

6 t = 0 -. t;

7 }

8 return t;

9 }

10
11 int <0.99995 * R(bA , bB, satdstart)>

hadamarddiff

12 (int <R(bA)> bA(2) in unrel ,

13 int <R(bB)> bB(2) in unrel ,

14 int satdstart in unrel)

15 {

16 int isatd in unrel;

17 int tmp00 in unrel; int tmp01 in unrel;

18 int tmp02 in unrel; int tmp03 in unrel;

19 int tmp10 in unrel; int tmp11 in unrel;

20 int tmp12 in unrel; int tmp13 in unrel;

21 int tmp20 in unrel; int tmp21 in unrel;

22 int tmp22 in unrel; int tmp23 in unrel;

23 int tmp30 in unrel; int tmp31 in unrel;

24 int tmp32 in unrel; int tmp33 in unrel;

25 int t1 in unrel; int t2 in unrel;

26 int t3 in unrel; int t4 in unrel;

27 int tt in unrel;

28
29 t1 = bA[0,0]; tt = bB[0,0]; t1 = t1 -. tt;

30 t2 = bA[0,1]; tt = bB[0,1]; t2 = t2 -. tt;

31 t3 = bA[0,2]; tt = bB[0,2]; t3 = t3 -. tt;

32 t4 = bA[0,3]; tt = bB[0,3]; t4 = t4 -. tt;

33 tmp00 = t1 +. t2 +. t3 +. t4;

34 tmp01 = t1 +. t2 -. t3 -. t4;

35 tmp02 = t1 -. t2 -. t3 +. t4;

36 tmp03 = t1 -. t2 +. t3 -. t4;

37
38 t1 = bA[1,0]; tt = bB[1,0]; t1 = t1 -. tt;

39 t2 = bA[1,1]; tt = bB[1,1]; t2 = t2 -. tt;

40 t3 = bA[1,2]; tt = bB[1,2]; t3 = t3 -. tt;

41 t4 = bA[1,3]; tt = bB[1,3]; t4 = t4 -. tt;

42 tmp10 = t1 +. t2 +. t3 +. t4;

43 tmp11 = t1 +. t2 -. t3 -. t4;

44 tmp12 = t1 -. t2 -. t3 +. t4 ;

45 tmp13 = t1 -. t2 +. t3 -. t4 ;

i i

45 t1 = bA[2,0]; tt = bB[2,0]; t1 = t1 -. tt;

46 t2 = bA[2,1]; tt = bB[2,1]; t2 = t2 -. tt;

47 t3 = bA[2,2]; tt = bB[2,2]; t3 = t3 -. tt;

48 t4 = bA[2,3]; tt = bB[2,3]; t4 = t4 -. tt;

49 tmp20 = t1 +. t2 +. t3 +. t4;

50 tmp21 = t1 +. t2 -. t3 -. t4;

51 tmp22 = t1 -. t2 -. t3 +. t4;

52 tmp23 = t1 -. t2 +. t3 -. t4;

53
54 t1 = bA[3,0]; tt = bB[3,0]; t1 = t1 -. tt;

55 t2 = bA[3,1]; tt = bB[3,1]; t2 = t2 -. tt;

56 t3 = bA[3,2]; tt = bB[3,2]; t3 = t3 -. tt;

57 t4 = bA[3,3]; tt = bB[3,3]; t4 = t4 -. tt;

58 tmp30 = t1 +. t2 +. t3 +. t4;

59 tmp31 = t1 +. t2 -. t3 -. t4;

60 tmp32 = t1 -. t2 -. t3 +. t4;

61 tmp33 = t1 -. t2 +. t3 -. t4;

62
63 isatd = satdstart;

64
65 t1 = abs(tmp00 +. tmp10 +. tmp20 +. tmp30);

66 t2 = abs(tmp00 +. tmp10 -. tmp20 -. tmp30);

67 t3 = abs(tmp00 -. tmp10 -. tmp20 +. tmp30);

68 t4 = abs(tmp00 -. tmp10 +. tmp20 -. tmp30);

69 isatd = isatd +. t1 +. t2 +. t3 +. t4;

70
71 t1 = abs(tmp01 +. tmp11 +. tmp21 +. tmp31);

72 t2 = abs(tmp01 +. tmp11 -. tmp21 -. tmp31);

73 t3 = abs(tmp01 -. tmp11 -. tmp21 +. tmp31);

74 t4 = abs(tmp01 -. tmp11 +. tmp21 -. tmp31);

75 isatd = isatd +. t1 +. t2 +. t3 +. t4;

76
77 t1 = abs(tmp02 +. tmp12 +. tmp22 +. tmp32);

78 t2 = abs(tmp02 +. tmp12 -. tmp22 -. tmp32);

79 t3 = abs(tmp02 -. tmp12 -. tmp22 +. tmp32);

80 t4 = abs(tmp02 -. tmp12 +. tmp22 -. tmp32);

81 isatd = isatd +. t1 +. t2 +. t3 +. t4;

82
83 t1 = abs(tmp03 +. tmp13 +. tmp23 +. tmp33);

84 t2 = abs(tmp03 +. tmp13 -. tmp23 -. tmp33);

85 t3 = abs(tmp03 -. tmp13 -. tmp23 +. tmp33);

86 t4 = abs(tmp03 -. tmp13 +. tmp23 -. tmp33);

87 isatd = isatd +. t1 +. t2 +. t3 +. t4;

88
89 return isatd;

90 }

Figure 17: Hadamard Transform Implementation

between the elements stored in the arrays and computes the
sum of the absolute differences of combinations of these ele-
ments. The video can be stored in unreliable memory and the
entire computation can execute unreliably. The analysis ver-

ifies that if the reliability of the two input blocks bA and bB

is R(bA, bB), then the reliability of the computation is greater
than 0.99995*R(bA, bB).

