Appendix to Detecting and Escaping Infinite
Loops with Jolt

Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C. Rinard

Massachusetts Institute of Technology, Cambridge, MA, USA
{mcarbin, misailo, mkling, rinard}@csail.mit.edu

Abstract. Infinite loops make applications unresponsive. Potential prob-
lems include lost work or output, denied access to application functional-
ity, and a lack of responses to urgent events. We present Jolt, a novel sys-
tem for dynamically detecting and escaping infinite loops. At the user’s
request, Jolt attaches to an application to monitor its progress. Specifi-
cally, Jolt records the program state at the start of each loop iteration.
If two consecutive loop iterations produce the same state, Jolt reports
to the user that the application is in an infinite loop. At the user’s op-
tion, Jolt can then transfer control to a statement following the loop,
thereby allowing the application to escape the infinite loop and ideally
continue its productive execution. The goal is to enable the application
to execute long enough to save any pending work, finish any in-progress
computations, or respond to any urgent events.

We evaluated Jolt by applying it to detect and escape eight infinite
loops in five benchmark applications. Jolt was able to detect seven of the
eight infinite loops (the eighth changes the state on every iteration). We
also evaluated the quality of escaping an infinite loop as an alternative
to terminating the application. In all of our benchmark applications,
escaping an infinite loop produced a more useful output than terminating
the application. Finally, we evaluated how well escaping from an infinite
loop approximated the correction that the developers later made to the
application. For two out of our eight loops, escaping the infinite loop
produced the same output as the fixed version of the application.

1 Case Studies

In [1] we have presented Jolt, a system to detect, and if desired, escape the infinite
loops. In addition to the case studies of grep and indent that we presented in the
paper ([1], Section 5), in this appendix we present the remaining detailed case
studies of the infinite loops that we have used in our evaluation:

— ctags-fortran (Section 2)
ctags-python (Section 3)
ping (Section 4)
— look (Section 5)

2 Ctags Fortran

Ctags scans program source files to produce an index that maps program entities
(e.g., modules, functions, and variables) to their line numbers within the source
files [2]. Ctags version 5.5 contains an infinite loop in the Fortran module (Ctags
Bugzilla tracker #734933). The loop is located in the method parseProgramUnit
in the file fortran.c

Figure 1 presents the source code that contains the loop that recursively
parses the input source file, starting from the Fortran program unit. Each itera-
tion of the loop is designed to read a single lexical token from the input file and
then identify and handle the corresponding language keyword as appropriate.
The called functions may consume additional input tokens until they close the
scope of the program construct they are parsing. The result of the computation
is a set of index entries that identify the locations of the program entities within
the file.

The loop does not have an explicit exit condition. Instead, the computation
uses an exception mechanism implemented using the setjmp/longjmp library calls
to exit from the loop when all characters from the input stream have been
consumed.

1|do {

2 if (isType (token, TOKEN_STATEMENT_END))

3 readToken (token);

4 else

5 switch (token->keyword) {

6 case KEYWORD_block: parseBlockData (token); break;
7 case KEYWORD_end: skipToNextStatement (token); break;
8 case KEYWORD_function: parseFunctionSubprogram (token); break;
9 case KEYWORD_module: parseModule (token); break;
10 case KEYWORD_program: parseMainProgram (token); break;
11 case KEYWORD_subroutine: parseSubroutineSubprogram (token); break;
12 default:

13 if (isSubprogramPrefix (token)) {

14 readToken (token);

15 } else {

16 parseSpecificationPart (token);

17 parseExecutionPart (token);

18 }

19 break;

20| }

21 |} while (TRUE);

Fig. 1. Source Code for Ctags Fortran Infinite Loop

Infinite Loop: The infinite loop happens when an input token which the loop
body does not recognize appears at the outer-most scope in the input source

code. Typically, the developers intended to handle such tokens within some inner
scope (handled by the specific parsing functions).

We have identified two scenarios which lead to infinite looping. In one sce-
nario, ctags infinitely loops 1) on a syntactically valid file, as a consequence of
not recognizing certain token and failed recovery, and 2) a syntactically invalid
input source file, with unmatched scope start and end statements. Finally, the
value of variable token is a token that the loop body cannot handle, but it does
not read new tokens from the input file — all future loop iterations only compare
this token against a set of expected keywords.

For the infinite loop to occur on a syntactically valid Fortran File, ctags must
first encounter a semicolon as a delimiter between multiple statements on the
same line. This version of ctags does not recognize the semicolon as a delimiter.
It attempts to recover by discarding input tokens until the next end statement.
As part of this recovery process it can lose track of the nesting structure of the
program components — it exits from the first end statement it encounters, even
it was an end statement of a nested component, instead of the end statement of
the component where semicolon appeared.

Ctags then proceeds on to process the following tokens as part of the outer-
most scope (i.e., part of no component at all) rather than within the scope of
the outer component. When it encounters a keyword that is specific to the outer
component (and that it is therefore not expecting to see in the outermost scope),
the body of the loop does not contain a handler for the keyword, ctags does not
read the next token, and the computation makes no progress. An example of
such a keyword is CONTAINS, which separates the specification part of the module
from the subprocedure definitions.

Syntactically invalid Fortran programs can also illicit the infinite loop with
improperly nested module components (whether the Fortran source code uses
the semicolon separator or not). When encountering the statements that end
the scope, the parser does not check whether it actually closes the opened scope.
Instead, the parser just continues on to close the opened scope. For example, an
additional, unmatched END TYPE statement within the definition of the module
may be matched with the module opening statement, causing the module scope
to close, returning control to the main loop. Main loop can then encounter the
tokens that the developers expected only within the module definition, causing
it to infinitely loop.

To reproduce the infinite loop, we used the input that was submitted with
the bug report (y.£90). The input consists of one Fortran module with multiple
fields and type definitions followed by subprocedure definition section. It contains
semicolon between the definition of a field and the definition of the compound
type. Based on this input we created additional inputs that also cause the infinite
loop in the code. Some of the inputs contain semicolons located at different places
in the code, while some of the inputs that we created do not have semicolons, but
instead have unmatched scoping keywords (causing the inputs to be syntactically
invalid).

Effects of Escaping Infinite Loop: When Jolt identifies and escapes the infi-
nite loop, the application exits and produces an output file. Executing the pro-
gram with Valgrind shows escaping the infinite loop does not introduce memory
errors.

Our inspection of the output shows that the net effect of using Jolt to escape

the infinite loop is that the user loses some of the indexing information in the
regions of the program surrounding the semicolon that causes the infinite loop,
but otherwise obtains a complete index. The index does not contain the defini-
tions between the semicolon character and the next end statement following the
semicolon (ctags discards all of these tokens when it attempts to recover from
the unrecognized semicolon). Subsequent definitions that appear after the end
token may not have proper scoping information (i.e., they may be indexed as
appearing in the surrounding module). This lack of proper scoping information
does not affect the operation of at least some of the tools that use the ctags
information. Specifically, the vim and emacs ctags modules are able to use the
generated index to navigate to the corresponding entities even if the module
information is not correct for all entries.
Comparison with Termination: As a comparison, terminating the applica-
tion when it infinite loops causes it to generate no output at all for the program
that elicited the infinite loop. And if the input consists of multiple files, ctags
produces no output at all for any file after the file that elicits the infinite loop.
Comparison with Manual Fix: The output of the application is an index of
modules, functions and variables defined in the source file. The index contains
names, locations, and scoping information for each element. We compare the
output that the version of the application with Jolt produces with the output
produced by Version 5.5.1, which has been updated to correctly recognize the
semicolon separator, which enables the parser to handle the following keywords
correctly. Specifically, ctags does not lose track of the component nesting struc-
ture of the application and handles each keyword appropriately within its correct
component.

We note, however, that the fix in Version 5.5.1 works only for syntactically
correct programs. If the program has incorrectly nested component entry and
exit keywords, Version 5.5.1 can still infinitely loop. This cause of infinite looping
was fixed by Version 5.7.

3 Ctags Python

Ctags version 5.7beta (svn commit 646) contains an infinite loop in Python
module (Ctags BugZilla tracker #1988027). The loop is located in the function
find_triple_end in python.c.

Listing 2 presents the loop which recognizes the termination of multi-line
string literals. Multi-line string literals begin and end with triple-quote literals
(""" or >??) and can span more than one line. Multi-line strings are by conven-
tion used as documentation comments in Python.

static void find_triple_end(char const *string, char const **which) {
char const *s = string;
while (1) {
s = strstr (string, *which);
if (!s) break;
s += 3;
*which = NULL;
s = find_triple_start(s, which);
if (!s) break;
s += 3;

}

© 00 N O Uk W N =

— =
= o

}

=
[\

Fig. 2. Source Code for Ctags

Infinite Loop: Figure 2 presents find triple_end(), the function from Ctags’s
Python module, which serves to identify if string, which points to a character
buffer containing a single line of text from a parsed file, closes an already open
multi-line string. The parameter which contains the delimiter that began the
multi-line string (either 2> or """).

At the beginning of each iteration of the loop, s points to some position in
string and which contains the triple-quote that began the last multi-line string.
Within the loop, if s does not contain a matching triple-quote, then the loop
exits (Line 5). If s does contain a matching triple-quote, then the computation
1) records that the currently opened multi-line string has been closed, by setting
which to NULL on Line 7, and 2) checks if s contains any additional triple-quotes.

If s does not contain an additional triple-quote, then the computation exits
the loop (Line 9). Otherwise, the computation 1) records that a new multi-
line string has been opened (by updating which in find triple_string()), and
2) updates s to point to the character after the newly found triple-quote. The
computation then returns to the beginning of the loop to look for a triple-quote
that closes the newly opened multi-line string.

The programmer wrote this loop with the intention that each iteration of
the loop would start at some position in string (given by s) and either exit,
or continue with another iteration that starts at a later position in string. To
establish this, the value of s is incremented by the functions strstr() (Figure 2,
Line 4) and find triple string() (Figure 2, Line 8).

However, in the call to strstr() the developer mistakenly passed string,
instead of s, as the starting position for each iteration. As a consequence, every
iteration of the loop starts over at the beginning of string, which can cause an
infinite loop. For example, if the triple-quotes of the first and the second multi-
line string are of the same type, then at the beginning of every loop iteration
(except the first), the values of s and which are always the same: s equals to the
starting position of the second multi-line string and which contains the triple-
quote that starts the second multi-line string.

We used the input python program that was submitted as a part of the
bug report (triple_string_loop.py). The input consists of one python source

file with three functions defined. Each function contains multi-line strings. Note
that the input from the bug report elicits and additional bug (by mistake ctags
recognizes the character *#’ as a beginning of a comment within the multi-line
string), which eventually causes the application to encounter the infinite loop.

Based on our understanding of the bug and the code, we created more inputs
that elicit the infinite loop. Inputs that we have created isolate the infinite loop,
and check for different number of functions, and different literal configurations.
We also identified four input files from numpy package (used in performance
tests) that cause ctags to loop infinitely.

Effects of Escaping Infinite Loop: After Jolt escapes the infinite loop, the
application eventually terminates, producing a well-formed output file. Running
the application under Valgrind shows that escaping from the loop does not in-
troduce memory errors.

Escaping the loop only affects the file that elicits the infinite loop — the other
files are fully processed. Escaping the loop may have different effects depending
on the position of the closing triple of the second multi-line string. If the second
multi-line string is closed on a subsequent line, ctags recognizes the closing of
the string and successfully parses the rest of the file. The resulting index file in
this case is identical to the index file produced by the reference application.

If, on the other hand, the string is closed on the same line as it is opened,
ctags does not update the variable which, which indicates that the application is
in the multi-line string literal. In this case, the triple quotes become unmatched,
causing the computation to consider the content of the source file until the next
triple quote symbol (which actually opens another string literal) as a string
literal.

The result is that ctags parses the portion of code between the quotes not as
python source code, but as a long string literal. Moreover, when it reaches the
next string literal, it treats the string literal as python source code, then treats
the following python source code as a string literal, and so on until the end of the
file. In effect, ctags gets out of phase with respect to the program. In this case
ctags produces a well-formed output file that omits the indexing information for
all of the entities that it (incorrectly) treated as part of string literals.

Comparison with Termination: Terminating ctags when it enters the infinite
loop causes ctags to lose some or all of the indexing information for the file (de-
pending on when the output is flushed to the output file). Moreover, terminating
ctags leaves it unable to process any subsequent files.

Comparison with Manual Fix: We compare the output after escaping the
infinite loop with the output produced by ctags 5.7beta (svn commit 668). In
this version of the program, the developers passed s instead of string as the first
parameter of the function strstr(), which allows the computation to continue
the search for the additional comment delimiters.

4 Ping

Ping [3] is a computer network utility which checks for the reachability of a
remote computer. Ping client from the package iputils, version 20100214 (Bug
id CVE-2010-2529) has an infinite loop in the function pr_options, line 984.

Ping uses Internet control message protocol (ICMP), a part of IP protocol
suite, to communicate between the local and the remote computer. In particular,
ping client sends ICMP echo requests, and the remote ICMP server responds
with ICMP echo replies. Each request and reply messages have mandatory and
optional headers.

Listing 3 presents the relevant parts of the loop that parses an optional part
of ICMP reply messages. ICMP supports multiple optional headers, including
the timestamp (IPOPT-TS) and the recorded route between the client and the
server (IPOPT.RR).

1 |while (totlen > 0) {

2 Cp = optptr;

3 switch (*cp) {

4 case IPOPT_TS:

5 j = *++cp; /* get length */
6 i = *++cp; /* and pointer */
7 if (1> j) i=j;

8 i -=05;

9 if (i <= 0) continue;

10 /* handle IPOPT_TS */

11 break;

12 case IPOPT_RR:

13 j = x++cp; /* get length */
14 i = *++cp; /* and pointer */
15 if (1> 3) 1i=j;

16 i -= IPOPT_MINOFF;

17 if (i <= 0) continue;

18 /* handle IPOPT_RR reply */

19 break;

20 /* handle other replies */

21 }

22 totlen -= j;

23 optptr += j;

24 | }

Fig. 3. Source Code for Ping Infinite Loop
7

Infinite Loop: The infinite loop may happen while handling timestamp optional
header or route record optional header.

The handler for the timestamp message is in the branch IPOPT_TS. The handler
initially reads the length and the offset of the data. The handler processes the
header only if the value of the offset (which is bounded by the length of the
header) is greater than 5. The handler for the route record header is in the
branch IPOPT_RR. The handler also reads the length and the offset of the data.
The handler processes the header only if the value of the offset is greater than
the constant IPOPT_MINOFF.

If the condition on the offset value is not met, the continue statement is
executed, skipping the rest of the current header and returning to the start of
the loop. Note that the value of the pointer to the optional header (optptr) does
not change within the loop. Thus, the following loop iteration reads the same
optional header again, and, being unable to process the header, keeps spinning
in the infinite loop.

To produce ICMP replies that elicit the infinite loop, we use the server based
on [4]. We ran the client and the server on physically separate machines, as
connecting to the local host does not execute this loop. We used the following
relevant parameters for the messages: for timestamp optional headers, the header
length was 8 (four bytes for the optional header header and four bytes for the
timestamp data) and offset value was 5; for recorded route headers we set the
header length to 8 and the length of the data to 4.

To produce ICMP replies that do not elicit infinite loop, we use the same
server, but with different header parameters. For the timestamp header, we set
length value 8 and offset value 6. For the recorded route header, we use value 8
for the lenght of the data.

Effects of Escaping Infinite Loop: After escaping the loop using Jolt the
program eventually terminates, returning the correct number of received replies,
and a correct list of times for the replies. The program does not print the content
of the optional reply header that caused the infinite loop. Running the applica-
tion under Valgrind confirms that escaping the loop does not introduce memory
errors.

Comparison with Termination: Terminating the program does not handle
the ICMP reply, and does not report the number of sent messages and the num-
ber and the status of the received messages. On the other hand, when escaping
from the infinite loop using Jolt, the program is able to send and receive addi-
tional echo messages and report on the number of successfully received replies.
Comparison with Manual Fix: The version of the iputils 20101006 fixes
the infinite loop by replacing the continue statements in both IPOPT_TS and
IPOPT_RR branches with the break statements, which exit the loop immediately
after encountering the unsupported optional header.

The effect of the manual fix is essentially identical to the effect of applying
Jolt. In both cases, the program can send and receive additional ping messages.
Note that if ping sends multiple requests to the same server, Jolt needs to run
in vigilant mode, as each reply will elicit the same infinite loop bug.

5 Look

Look searches for a word in lexicographically sorted dictionary. The computation
performs binary search, returning the lines which begins with a word. Look ver-
sion 1.1 from System V Revision 4 has an infinite loop in the function getword,
line 172.

Listing 4 presents the source code for the function getword in which look
may enter an infinite loop. The function copies a single line of the text from the
input file and stores it into the buffer pointed to by the input parameter w.

1 |int getword(register char *w) {
2 register c;

3 register avail = WORDSIZE - 1;
4 while(avail--) {

5 c = getc(dfile);

6 if (c==EQOF) return O;

7 if(c==’\n’) break;

8 *xu++ = c;

9 }

10 while (c != ’\n’)

11 c = getc(dfile);

12 *w = 0;

13 return 1;

14 |}

Fig. 4. Source code for Look Infinite Loop

Infinite Loop: Because the buffer pointed to by the variable w has finite size
WORDSIZE, the application reads the file in two loops: 1) the first loop on Line 4
reads WORDSIZE - 1 characters from the input and stores it into w, 2) the second
loop on Line 10 drains the rest of the line so that the next call to read from the
file will start at the next line.

The second loop (Line 10) does not account for the case when the file is not
terminated by ’\n’. In this case, the function getc() will always return End-
Of-File (EOF). Because the loop does not check for this return value, it iterates
forever.

Look uses length-based binary search strategy to find matching lines. Since
the input is lexicographically sorted, at every step the application calculates the
next search range for comparison by calculating the midpoint between the two
previously selected index entries. Look infinitely loops any time its midpoint
calculation causes it to examine the last line of the file. The loop may start
looping infinitely disregarding whether the searched word is or is not in the
dictionary.

We used multiple queries of words that exist and words that do not exist
in a single dictionary with 50 entries. We also created an additional dictionary
where the length of the last entry exceeds the WORDSIZE length bound set by the
application, also eliciting the infinite loop.

Effects of Escaping Infinite Loop: Applying Jolt to look when it has entered
this infinite loop allows look to gracefully escape the loop and return a well-
formed output in which w is null-terminated and contains the correct content
from the last line of the file.

Comparison with Termination: In comparison to the alternative of termi-
nating the application, using Jolt allows a user to gain any additional output
that may be computed after processing the contents of the last line of the file.
Comparison with Manual Fix: The output of the application is the list of
lines in input file that begin with the searched word. We did not have a reference
version of this application. Instead, we manually fixed the infinite loop bug by
adding a check for an end of file in the second loop. Escaping the infinite loop
produces the same output as this corrected version of look.

References

1. M. Carbin, S Misailovic, M. Kling, and M. Rinard. Detecting and escaping infinite
loops with Jolt. In European Conference on Object Oriented Programming, 2011.

2. Exuberant ctags. http://ctags.sourceforge.net.

iputils. http://www.skbuff.net/iputils/.

4. Ping infinite loop analysis.
http://blog.stalkr.net/2010/07/cve-2010-2529-ping-infinite-loop.html .

@

10

