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Abstract

Theory and experiments show that as the per-flow product
of bandwidth and latency increases, TCP becomes inefficient
and prone to instability, regardless of the queuing scheme.
This failing becomes increasingly important as the Internet
evolves to incorporate very high-bandwidth optical links and
more large-delay satellite links.

To address this problem, we develop a novel approach to
Internet congestion control that outperforms TCP in conven-
tional environments, and remains efficient, fair, scalable, and
stable as the bandwidth-delay product increases. This new
eXplicit Control Protocol, XCP, generalizes the Explicit Con-
gestion Notification proposal (ECN). In addition, XCP intro-
duces the new concept of decoupling utilization control from
fairness control. This allows a more flexible and analytically
tractable protocol design and opens new avenues for service
differentiation.

Using a control theory framework, we model XCP and
demonstrate it is stable and efficient regardless of the link ca-
pacity, the round trip delay, and the number of sources. Ex-
tensive packet-level simulations show that XCP outperforms
TCP in both conventional and high bandwidth-delay environ-
ments. Further, XCP achieves fair bandwidth allocation, high
utilization, small standing queue size, and near-zero packet
drops, with both steady and highly varying traffic. Addition-
ally, the new protocol does not maintain any per-flow state in
routers and requires few CPU cycles per packet, which makes
it implementable in high-speed routers.

1 Introduction

For the Internet to continue to thrive, its congestion control
mechanism must remain effective as the network evolves.
Technology trends indicate that the future Internet will have
a large number of very high-bandwidth links. Less ubiqui-
tous but still commonplace will be satellite and wireless links
with high latency. These trends are problematic because TCP
reacts adversely to increases in bandwidth or delay.

Mathematical analysis of current congestion control al-
gorithms reveals that, regardless of the queuing scheme, as
the delay-bandwidth product increases, TCP becomes more

oscillatory and prone to instability. By casting the problem
into a control theory framework, Low et al. [22] show that
as capacity or delay increases, Random Early Discard (RED)
[13], Random Early Marking (REM) [5], Proportional Inte-
gral Controller [15], and Virtual Queue [14] all eventually
become prone to instability. They further argue that it is un-
likely that any Active Queue Management scheme (AQM)
can maintain stability over very high-capacity or large-delay
links. Although their analysis uses Reno TCP, their argument
is valid for all current TCP implementations where through-
put is inversely proportional to the round trip time (RTT) and
the square root of the drop rate. Furthermore, Katabi and
Blake [19] show that Adaptive Virtual Queue (AVQ) [21] also
becomes prone to instability when the link capacity is large
enough (e.g., gigabit links).

In addition to these mathematical models, intuitive rea-
soning shows that “slow start” might also lead to instability
in the future Internet. As capacity increases, the majority
of flows become “short” flows which never exit slow start.
Flows in slow start increase their rate exponentially, a dra-
matically unstable behavior. Currently, although the number
of short flows is large, most of the bytes are in long-lived
flows. Consequently, the dynamics of the aggregate traffic
are usually dominated by the additive-increase multiplicative-
decrease policy. However, as the fraction of flows in slow
start grows, exponential increase may dominate the dynamics
of the aggregate traffic, causing instability.

Potential instability is not the only problem facing TCP
in the future Internet. As the delay-bandwidth product in-
creases, performance degrades. TCP’s additive increase pol-
icy limits its ability to acquire spare bandwidth to one packet
per RTT. Since the bandwidth-delay product of a single flow
over future links may be many thousands of packets, TCP
might waste thousands of RTTs ramping up to full utilization
following a burst of congestion.

Further, since TCP’s throughput is inversely proportional
to the RTT, fairness too might become an issue as more flows
in the Internet traverse satellite links or wireless WANs [25].
As users with substantially different RTTs compete for the
same bottleneck capacity, considerable unfairness will result.

Although the full impact of large delay-bandwidth prod-
ucts is yet to come, we can see the seeds of these problems
in the current Internet. For example, TCP over satellite links
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has revealed network utilization issues and TCP’s undesirable
bias against long RTT flows [4]. Currently, these problems
are mitigated using ad hoc mechanisms such as ack spacing,
split connection [4], or performance enhancing proxies [8].

Simulation results similar to those in § 5 support the above
argument showing that, regardless of the queuing scheme,
TCP’s performance degrades significantly as either capacity
or delay increases.

This paper develops a novel protocol for congestion con-
trol that outperforms TCP in conventional environments, and
further remains efficient, fair, and stable as the link bandwidth
or the round-trip delay increases. This new eXplicit Control
Protocol, XCP, generalizes the Explicit Congestion Notifica-
tion proposal (ECN). Instead of the one bit congestion indi-
cation used by ECN, our routers inform the senders about the
degree of congestion at the bottleneck. Another new concept
is the decoupling of utilization control from fairness control.
To control utilization, the new protocol adjusts its aggressive-
ness according to the spare bandwidth in the network and the
feedback delay. This prevents oscillations, provides stability
in face of high bandwidth or large delay, and ensures efficient
utilization of network resources. To control fairness, the pro-
tocol reclaims bandwidth from flows whose rate is above their
fair share and reallocates it to other flows.

By putting the control state in the packets, XCP needs
no per-flow state in routers and can scale to any number of
flows. Further, our implementation (Appendix A), requires
only a few CPU cycles per packet, making it practical even
for high-speed routers.

Using a control theory framework motivated by previous
work [21, 15, 22], we show that a fluid model of the protocol
is stable for any link capacity, feedback delay, or number of
sources. In contrast to the various AQM schemes where pa-
rameter values depend on the capacity, delay, or number of
sources, our analysis shows how to set the parameters of the
new protocol to constant values that are effective independent
of the environment.

Our extensive packet-level simulations show that the per-
formance of TCP over RED, AVQ, REM, or CSFQ degrades
substantially as capacity or delay increases. In contrast the
new protocol achieves high utilization, small queues, and al-
most no drops, independent of capacity or delay. Even in con-
ventional environments, the simulations show that our pro-
tocol exhibits better fairness, higher utilization, and smaller
queue size, with almost no packet drops. Further, it maintains
better performance in dynamic environments with many short
web-like flows, and has no bias against long RTT flows.

Although we started with the goal of solving TCP’s lim-
itations in high-bandwidth large-delay environments, our de-
sign has several derivative advantages.

First, decoupling fairness control from utilization control
opens new avenues for service differentiation using schemes
that provide desired bandwidth apportioning, yet are too ag-
gressive or too weak for controlling congestion. In § 6, we
present a simple scheme that implements the shadow prices

model [20].
Second, the protocol facilitates distinguishing error losses

from congestion losses, which makes it useful for wireless en-
vironments. In XCP, drops caused by congestion are highly
uncommon (e.g., less than one in a million packets in simu-
lations). Further, since the protocol uses explicit and precise
congestion feedback, a congestion drop is likely to be pre-
ceded by an explicit feedback that tells the source to decrease
its congestion window. Losses that are preceded and followed
by an explicit increase feedback are likely error losses.

Finally, XCP improves security by making it easier to de-
tect attacks and isolate unresponsive flows as described in § 7.

XCP’s performance provides an incentive for both end
users and network providers to deploy the protocol. In § 8
we present possible deployment paths.

2 Design Rationale

Our initial objective is to step back and rethink Internet con-
gestion control without caring about backward compatibility
or deployment. If we were to build a new congestion control
architecture from scratch, what might it look like?

The first observation is that loss is a poor signal of con-
gestion. While we do not believe a cost-effective network can
always avoid loss, dropping packets should be a congestion
signal of last resort. As an implicit signal, loss is bad because
congestion is not the only source of loss, and because a def-
inite decision that a packet was lost cannot be made quickly.
As a binary signal, loss only signals whether there is conges-
tion (a loss) or not (no loss). Thus senders must probe the
network to the point of congestion before backing off. More-
over, as the feedback is imprecise, the increase policy must
be conservative and the decrease policy must be aggressive.

Tight congestion control requires explicit and precise con-
gestion feedback. Congestion is not a binary variable, so con-
gestion signalling should reflect the degree of congestion. We
propose using precise congestion signalling, where the net-
work explicitly tells the receiver the state of congestion and
how to react to it. This allows the senders to decrease their
sending windows quickly when the bottleneck is highly con-
gested, while performing small reductions when the sending
rate is close to the bottleneck capacity. The resulting protocol
is both more responsive and less oscillatory.

Second, the aggressiveness of the sources should be ad-
justed according to the delay in the feedback-loop. The dy-
namics of congestion control may be abstracted as a control
loop with feedback delay. A fundamental characteristic of
such a system is that it becomes unstable for some large feed-
back delay. To counter this destabilizing effect, the system
must slow down as the feedback delay increases. In the con-
text of congestion control, this means that as delay increases,
the sources should change their sending rates more slowly.
This issue has been raised by other researchers [22, 27], but
the important question is how exactly feedback should de-
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pend on delay to establish stability. Using tools from con-
trol theory, we conjecture that congestion feedback based on
rate-mismatch should be inversely proportional to delay, and
feedback based on queue-mismatch should be inversely pro-
portional to the square of delay.

Robustness to congestion should be independent of un-
known and quickly changing parameters, such as the num-
ber of flows. A fundamental principle from control theory
states that a controller must react as quickly as the dynamics
of the controlled signal; otherwise the controller will always
lag behind the controlled system and will be ineffective. In
the context of current proposals for congestion control, the
controller is an Active Queue Management scheme (AQM).
The controlled signal is the aggregate traffic traversing the
link. The controller seeks to match input traffic to link capac-
ity. However, this objective might be unachievable when the
input traffic consists of TCP flows, because the dynamics of
a TCP aggregate depend on the number of flows (N ). The
aggregate rate increases by N packets per RTT, or decreases
proportionally to 1/N . Since the number of flows in the ag-
gregate is not constant and changes over time, no AQM con-
troller with constant parameters can be fast enough to operate
with an arbitrary number of TCP flows. Thus, a third objec-
tive of our system is to make the dynamics of the aggregate
traffic independent from the number of flows.

This leads to the need for decoupling efficiency control
(i.e., control of utilization or congestion) from fairness con-
trol. Robustness to congestion requires the behavior of ag-
gregate traffic to be independent of the number of flows in it.
However, any fair bandwidth allocation intrinsically depends
on the number of flows traversing the bottleneck. Thus, the
rule for dividing bandwidth among individual flows in an ag-
gregate should be independent from the control law that gov-
erns the dynamics of the aggregate.

Traditionally, efficiency and fairness are coupled, as the
same control law (such as AIMD in TCP) is used to obtain
both fairness and efficiency simultaneously [3, 9, 17, 18, 16].
Conceptually, however, efficiency and fairness are indepen-
dent. Efficiency involves only the aggregate traffic’s behav-
ior. When the input traffic rate equals the link capacity, no
queue builds and utilization is optimal. Fairness, on the other
hand, involves the relative throughput of flows sharing a link.
A scheme is fair when the flows sharing a link have the same
throughput irrespective of congestion.

In our new paradigm, a router has both an efficiency con-
troller (EC) and a fairness controller (FC). This separation
simplifies the design and analysis of each controller by re-
ducing the requirements imposed. It also permits modifying
one of the controllers without redesigning or re-analyzing the
other. Furthermore, the decoupling opens new avenues for
service differentiation using bandwidth allocation schemes
that provide some controlled unfairness yet are too aggres-
sive or too weak for controlling congestion.

Figure 1: Congestion header.

3 Protocol

Like TCP, XCP is a window-based congestion control proto-
col intended for best effort traffic. However, its flexible archi-
tecture can easily support differentiated services as explained
in § 6. The description of XCP in this section assumes a pure
XCP network. In § 8, we show that XCP can coexist with
TCP in the same Internet and be TCP-friendly.

3.1 Framework

First we give an overview of how control information flows in
the network, then in § 3.5 we explain feedback computation.

Senders maintain their congestion windowcwnd and round
trip time rtt1 and communicate these to the routers via a
congestion header in every packet. Routers monitor the input
traffic rate to each of their output queues. Based on the differ-
ence between the link bandwidth and its input traffic rate, the
router tells the flows sharing that link to increase or decrease
their congestion windows. It does this by annotating the con-
gestion header of data packets. Feedback is divided between
flows based on their cwnd and rtt values so that the sys-
tem converges to fairness. A more congested router later in
the path can further reduce the feedback in the congestion
header by overwriting it. Ultimately, the packet will contain
the feedback from the bottleneck along the path. When the
feedback reaches the receiver, it is returned to the sender in
an acknowledgment packet, and the sender updates its cwnd
accordingly.

3.2 The Congestion Header

Each XCP packet carries a congestion header (Figure 1), which
is used to communicate a flow’s state to routers and feed-
back from the routers on to the receivers. The field H cwnd
is the sender’s current congestion window, whereas H rtt is
the sender’s current RTT estimate. These are filled in by the
sender and never modified in transit.

The remaining field, H feedback, takes positive or neg-
ative values and is initialized by the sender according to its
requirements. Routers along the path modify this field to di-
rectly control the congestion windows of the sources.

1In this document, the notation RTT refers to the physical round trip time,
rtt refers to the variable maintained by the source’s software, and H rtt
refers to a field in the congestion header.
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3.3 The XCP Sender

As with TCP, an XCP sender maintains a congestion win-
dow of the outstanding packets, cwnd, and an estimate of the
round trip time rtt. On packet departure, the sender attaches
a congestion header to the packet and sets the H cwnd field
to its current cwnd and H rtt to its current rtt. In the first
packet of a flow, H rtt is set to zero to indicate to the routers
that the source does not yet have a valid estimate of the RTT.

The sender uses the H feedback field to request its de-
sired window increase. For example, when the application
has a desired rate r, the sender sets H feedback to the de-
sired increase in the congestion window (r· rtt - cwnd)
divided by the number of packets in the current congestion
window. If bandwidth is available, this initialization allows
the sender to reach the desired rate after one RTT.

Whenever a new acknowledgment arrives, positive feed-
back increases the senders cwnd and negative feedback re-
duces it (s is the packet size):

cwnd = max(cwnd + H feedback, s),

In addition to direct feedback, XCP still needs to respond
to losses although they are rare. It does this in a similar man-
ner to TCP.

3.4 The XCP Receiver

An XCP receiver is similar to a TCP receiver except that when
acknowledging a packet, it copies the congestion header from
the data packet to its acknowledgment.

3.5 The XCP Router: The Control Laws

An XCP router uses a Drop-Tail or RED queue equipped with
an efficiency controller and a fairness controller. Both of
these compute estimates over the average RTT of the flows
traversing the link, which smooths the burstiness of a window-
based control protocol. Estimating parameters over intervals
longer than the average RTT leads to sluggish response, while
estimating parameters over shorter intervals leads to erroneous
estimates. The average RTT is computed using the informa-
tion in the congestion header.

XCP controllers make a single control decision every av-
erage RTT. This is motivated by the need to observe the re-
sults of previous control decisions before attempting a new
control. For example, if the router tells the sources to increase
their congestion windows, it should wait to see how much
spare bandwidth remains before telling them to increase again.

The router maintains a per-link estimation-control timer
that is set to the most recent estimate of the average RTT on
that link. Upon timeout the router updates its estimates and
its control decisions. In the remainder of this paper, we refer
to the router’s current estimate of the average RTT as d to
emphasize this is the feedback delay.

3.5.1 The Efficiency Controller (EC)

The efficiency controller’s purpose is to maximize link uti-
lization while minimizing drop rate and persistent queues. It
looks only at aggregate traffic and need not care about fair-
ness issues, such as which flow a packet belongs to.

As XCP is window-based, the EC computes a desired in-
crease or decrease in the number of bits that the aggregate
traffic transmits in a control interval (i.e., an average RTT).
This aggregate feedback φ is computed each control interval:

φ = α · d · S − β · Q, (1)

α and β are constant parameters, whose values are set based
on our stability analysis (§ 4) to 0.4 and 0.226, respectively.
The term d is the average RTT, and S is the spare bandwidth
defined as the difference between the input traffic rate and
link capacity. Finally, Q is the persistent queue size, as op-
posed to a transient queue that results from the bursty nature
of all window-based protocols. We compute Q by taking the
minimum queue seen by an arriving packet during the last
propagation delay, which we estimate by subtracting the lo-
cal queuing delay from the average RTT.

Equation 1 makes the feedback proportional to the spare
bandwidth because, when S ≥ 0, the link is underutilized
and we want to send positive feedback, while when S < 0,
the link is congested and we want to send negative feedback.
However this alone is insufficient because it would mean we
give no feedback when the input traffic matches the capacity,
and so the queue does not drain. To drain the persistent queue
we make the aggregate feedback proportional to the persistent
queue too. Finally, since the feedback is in bits, the spare
bandwidth S is multiplied by the average RTT.

We can achieve efficiency by dividing the aggregate feed-
back into small chunks that we allocate to single packets as
H feedback. Since the EC deals only with the aggregate be-
havior, it does not care which packets get the feedback and by
how much each individual flow changes its congestion win-
dow. All the EC requires is that the total traffic changes by
φ over this control interval. How exactly we divide the feed-
back among the packets (and hence the flows) affects only
fairness, and so is the job of the fairness controller.

3.5.2 The Fairness Controller (FC)

The job of the fairness controller (FC) is to apportion the
feedback to individual packets to achieve fairness. The FC
relies on the same principle TCP uses to converge to fairness,
namely Additive-Increase Multiplicative-Decrease (AIMD).
Thus, we want to compute the per-packet feedback accord-
ing to the policy:
If φ > 0, allocate it so that the increase in throughput of all

flows is the same.
If φ < 0, allocate it so that the decrease in throughput of a

flow is proportional to its current throughput.
This ensures continuous convergence to fairness as long as
the aggregate feedback φ is not zero. To prevent convergence
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stalling when efficiency becomes optimal (φ = 0), we intro-
duce the concept of bandwidth shuffling. This is the simulta-
neous allocation and deallocation of bandwidth such that the
total traffic rate (and consequently the efficiency) does not
change, yet the throughput of each individual flow changes
gradually to approach the flow’s fair share. The shuffled traf-
fic is computed as follows:

h = max(0, γ · y − |φ|), (2)

where y is the input traffic in an average RTT and γ is a con-
stant set to 0.1. This equation ensures that, every average
RTT, at least 10% of the traffic is redistributed according to
AIMD. The choice of 10% is a tradeoff between the time to
converge to fairness and the disturbance the shuffling imposes
on a system that is around optimal efficiency.

Next, we compute the per-packet feedback that allows the
FC to enforce the above policies. Since the increase law is ad-
ditive whereas the decrease is multiplicative, it is convenient
to compute the feedback assigned to packet i as the combina-
tion of a positive feedback pi and a negative feedback ni.

H feedbacki = pi − ni. (3)

First, we compute the case when the aggregate feedback
is positive (φ > 0). In this case, we want to increase the
throughput of all flows by the same amount. Thus, we want
the change in the throughput of any flow i to be proportional
to the same constant, (i.e., Δthroughputi ∝ constant). Since
we are dealing with a window-based protocol, we want to
compute the change in congestion window rather than the
change in throughput. The change in the congestion window
of flow i is the change in its throughput multiplied by its RTT.
Hence, the change in the congestion window of flow i should
be proportional to the flow’s RTT, (i.e., Δcwndi ∝ rtti).

The next step is to translate this desired change of con-
gestion window to per-packet feedback that will be reported
in the congestion header. The total change in congestion win-
dow of a flow is the sum of the per-packet feedback it re-
ceives. Thus, we obtain the per-packet feedback by dividing
the change in congestion window by the expected number of
packets from flow i that the router sees in a control interval
d. This number is proportional to the flow’s congestion win-
dow, cwndi, and inversely proportional to its round trip time,
rtti. Thus, we find that the per-packet positive feedback is
proportional to the square of the flow’s RTT, and inversely

proportional to its congestion window, (i.e., p i ∝ rtt2i
cwndi

).
Thus, positive feedback pi is given by:

pi = ξp
rtt2i

cwndi
, (4)

where ξp is a constant. The total increase in the aggregate

traffic rate is h+max(φ,0)
d , where max(φ, 0) ensures that we

are computing the positive feedback. This is equal to the sum
of the increase in the rates of all flows in the aggregate, which

is the sum of the positive feedback a flow has received divided
by its rtt, and so:

h + max(φ, 0)
d

=
L∑ pi

rtti
, (5)

where L is the number of packets seen by the router in an
average RTT. From this, ξp can be derived as:

ξp =
h + max(φ, 0)
d · ∑ rtti

cwndi

. (6)

Similarly, we compute the per-packet negative feedback
given when the aggregate feedback is negative (φ < 0). In
this case, we want the decrease in the throughput of flow i to
be proportional to its current throughput (i.e.,
Δthroughputi ∝ throughputi). Consequently, the desired
change in the flow’s congestion window is proportional to its
current congestion window (i.e., Δcwnd i ∝ cwndi). Again,
the desired per-packet feedback is the desired change in the
congestion window divided by the expected number of pack-
ets from this flow that the router sees in an interval d. Thus,
we finally find that the per-packet negative feedback should
be proportional to a flow’s RTT (i.e., ni ∝ rtti).

Thus negative feedback ni is given by:

ni = ξn · rtti (7)

where ξn is a constant. As with the increase case, the total
decrease in the aggregate traffic rate is the sum of the decrease
in the rates of all flows in the aggregate:

h + max(−φ, 0)
d

=
L∑ ni

rtti
. (8)

As so, ξn can be derived as:

ξn =
h + max(−φ, 0)

d · L . (9)

3.5.3 Notes on the Efficiency and Fairness Controllers

A few points are worth noting about the design of the effi-
ciency controller and the fairness controller.

As mentioned earlier, the efficiency and fairness controllers
are decoupled. Specifically, the efficiency controller uses a
Multiplicative-Increase Multiplicative-Decrease law (MIMD),
whereas the fairness controller uses an Additive-Increase
Multiplicative-Decrease law (AIMD). The independence is
maintained by ensuring that as individual flows follow the
feedback from the fairness controller, the aggregate traffic
obeys the efficiency controller. XCP guarantees this indepen-
dence because its equations and implementation ensure that
the sum of feedback given to individual flows in a control
interval adds up to the aggregate feedback computed by the
efficiency controller.

The particular control laws used by the efficiency con-
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troller (MIMD) and the fairness controller (AIMD) are not
the only possible choices. For example, in [26] we describe
a fairness controller that uses a binomial law similar to those
described in [6]. We chose the control laws above because our
analysis and simulation demonstrate their good performance.

We note that the efficiency controller satisfies the require-
ments in § 2. The dynamics of the aggregate traffic are spec-
ified by the aggregate feedback and stay independent of the
number of flows traversing the link. Additionally, in contrast
to TCP where the increase/decrease rules are indifferent to
the degree of congestion in the network, the aggregate feed-
back sent by the EC is proportional to the degree of under- or
over-utilization. Furthermore, since the aggregate feedback
is given over an average RTT, XCP becomes less aggressive
as the round trip delay increases.2

Although the fairness controller uses AIMD, it is signifi-
cantly fairer than TCP. Note that in AIMD, all flows increase
equally regardless of their current rate. Therefore, it is the
multiplicative-decrease that helps converging to fairness. In
TCP, multiplicative-decrease is tied to the occurrence of a
drop, which should be a rare event. In contrast, with XCP
multiplicative-decrease is decoupled from drops and is per-
formed every average RTT.

XCP is fairly robust to estimation errors. For example,
we estimate the value of ξp every d and use it as a prediction
of the value of ξp during the following control interval (i.e.,
the following d). If we underestimate ξp, we will fail to allo-
cate all of the positive feedback in the current control interval.
Nonetheless, the bandwidth we fail to allocate will appear in
our next estimation of the input traffic as a spare bandwidth,
which will be allocated (or partially allocated) in the follow-
ing control interval. Thus, in every control interval, a portion
of the spare bandwidth is allocated until none is left. Since
our underestimation of ξp causes reduced allocation, the con-
vergence to efficiency is slower than if our prediction of ξp

had been correct. Yet the error does not stop XCP from reach-
ing full utilization. Similarly, if we overestimate ξp then we
will allocate more feedback to flows at the beginning of a con-
trol interval and run out of aggregate feedback quickly. This
uneven spread of feedback over the allocation interval does
not affect convergence to utilization but it slows down con-
vergence to fairness. A similar argument can be made about
other estimation errors; they mainly affect the convergence
time rather than the correctness of the controllers. 3

XCP congestion control is independent of the number of
sources, the capacity of the bottleneck, and the delay, and so

2The relation between XCP’s dynamics and feedback delay is hard to
fully grasp from Equation 1. We refer the interested reader to Equation 16,
which shows that the change in throughput based on rate-mismatch is in-
versely proportional to delay, and the change based on queue-mismatch is
inversely proportional to the square of delay.

3There is one type of error that may prevent the convergence to complete
efficiency, which is the unbalanced allocation and deallocation of the shuffled
traffic. For example, if by the end of a control interval we deallocate all of the
shuffled traffic but fail to allocate it, then the shuffling might prevent us from
reaching full link utilization. Yet note that the shuffled traffic is only 10% of
the input traffic. Furthermore, shuffling exists only when |φ| < 0.1y.

Figure 2: A single bottleneck topology.

Figure 3: A parking lot topology.

we can choose constant values for the parameters α and β that
work in all environments. This is a significant improvement
over previous approaches where the parameters either work
only in specific environments (e.g, RED) or have to be chosen
differently depending on the number of sources, the capacity,
and the delay (e.g., AVQ). In § 4, we show how these constant
values are chosen.

Finally, implementing the efficiency and fairness controllers
is fairly simple and requires only a few lines of code as shown
in Appendix A. We note that an XCP router performs only a
few additions and 3 multiplications per packet, making it an
attractive choice even as a backbone router.

4 Stability Analysis

We use a fluid model of the traffic to analyze the stability of
XCP. Our analysis considers a single link traversed by mul-
tiple XCP flows. For the sake of simplicity and tractability,
similarly to previous work [21, 15, 22, 24], our analysis as-
sumes all flows have a common, finite, and positive round
trip delay, and neglects boundary conditions (i.e., queues are
bounded, rates cannot be negative). Later, we demonstrate
through extensive simulations that even with larger topolo-
gies, different RTTs, and boundary conditions, our results still
hold.

The main result can be stated as follows.

Theorem 1. Suppose the round trip delay is d. If the param-
eters α and β satisfy:

0 < α <
π

4
√

2
and β = α2

√
2,

then the system is stable independently of delay, capacity, and
number of sources.

The details of the proof are given in Appendix B. The
idea underlying the stability proof is the following. Given the
assumptions above, our system is a linear feedback system
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with delay. The stability of such systems may be studied by
plotting their open-loop transfer function in a Nyquist plot.
We prove that by choosing α and β as stated above, the sys-
tem satisfies the Nyquist stability criterion. Further, the gain
margin is greater than one and the phase margin is positive
independently of delay, capacity, and number of sources. 4

5 Performance

In this section, we demonstrate through extensive simulations
that by complying with the conditions in Theorem 1, we can
choose constant values for α and β that work with any ca-
pacity and delay, as well as any number of sources. Our
simulations cover capacities in [1.5 Mb/s, 4 Gb/s], propa-
gation delays in [10 ms, 3 sec], and number of sources in
[1, 1000]. Further, we simulate 2-way traffic (with the re-
sulting ack compression) and dynamic environments with ar-
rivals and departures of short web-like flows. In all of these
simulations, we set α = 0.4 and β = 0.226 showing the
robustness of our results.

Additionally, the simulations show that in contrast to TCP,
the new protocol dampens oscillations and smoothly converges
to high utilization, small queue size, and fair bandwidth allo-
cation. We also demonstrate that the protocol is robust to
highly varying traffic demands and high variance in flows’
round trip times.

Our simulations compare XCP with various AQM schemes
running under similar conditions. They show that XCP out-
performs previous proposals in almost every aspect. 5

5.1 Simulation Setup

Our simulations use the packet-level simulator ns-2 [1], which
we have extended with an XCP module. We compare XCP
with TCP Reno over the following queuing disciplines:

Random Early Discard (RED [13]). Our experiments use
the “gentle” mode and set the parameters according to the au-
thors’ recommendations in [2]. The minimum and the maxi-
mum thresholds are set to one third and two thirds the buffer
size, respectively.

Random Early Marking (REM [5]). Our experiments set
REM parameters according to the authors’ recommendation
provided with their code. In particular, φ = 1.001, γ =
0.001, the update interval is set to the transmission time of
10 packets, and qref is set to one third of the buffer size.

Adaptive Virtual Queue (AVQ [21]). As recommended by
the authors, our experiments use γ = 0.98 and compute α
based on the equation in [21]. Yet, as shown in [19], the
equation for setting α does not admit a solution for high ca-
pacities. In these cases, we use α = 0.15 as used in [21].

4The gain margin is the magnitude of the transfer function at the fre-
quency −π. The phase margin is the frequency at which the magnitude of
the transfer function becomes 1. They are used to prove robust stability.

5We will make our code and simulation scripts publicly available.
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Figure 4: XCP significantly outperforms TCP in high band-
width environments. The graphs compare the efficiency of XCP
with that of TCP over RED, CSFQ, REM, and AVQ as a func-
tion of capacity.

Core Stateless Fair Queuing (CSFQ [29]). In contrast to the
above AQMs, whose goal is to achieve high utilization and
small queue size, CSFQ aims for providing high fairness in a
network cloud with no per-flow state in core routers. We com-
pare CSFQ with XCP to show that XCP can be used within
the CSFQ framework to improve its fairness and efficiency.
Again, the parameters are set to the values chosen by the au-
thors in their ns implementation.

The simulator code for these AQM schemes is provided
by their authors. Further, to allow these schemes to exhibit
their best performance, we simulate them with ECN enabled.

In all of our simulations, the XCP parameters are set to
α = 0.4 and β = 0.226. We experimented with XCP with
both Drop-Tail and RED dropping policies. There was no
difference between the two cases because XCP almost never
dropped packets.

Most of our simulations use the topology in Figure 2. The
bottleneck capacity, the round trip delay, and the number of
flows vary according to the objective of the experiment. The
buffer size is always set to the delay-bandwidth product. The
data packet size is 1000 bytes. Simulations over the topol-
ogy in Figure 3 are used to show that our results generalize
to larger and more complex topologies. Unless specified dif-
ferently, the reader should assume that the simulation topol-
ogy is that in Figure 2, the flows RTTs are equivalent, and
the sources are long-lived FTP flows. Simulations’ running
times vary depending on the propagation delay but are always
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Figure 5: XCP significantly outperforms TCP in high delay en-
vironments. The graphs compare bottleneck utilization, aver-
age queue, and number of drops as round trip delay increases
when flows are XCPs and when they are TCPs over RED, CSFQ,
REM, and AVQ.

larger than 300 RTTs. All simulations were run long enough
to ensure the system has reached a consistent behavior.

5.2 Comparison with TCP and AQM Schemes

Impact of Capacity: We show that an increase in link capac-
ity will cause a significant degradation in TCP’s performance,
irrespective of the queuing scheme. In this experiment, 50
long-lived FTP flows share a bottleneck. All links have the
same propagation delay of 20 ms. Additionally, there are 50
flows traversing the reverse path and used merely to create a
2-way traffic environment with the potential for ack compres-
sion. Since XCP is based on a fluid model and estimates some
parameters, the existence of reverse traffic tends to stress the
protocol.

Figure 4 demonstrates that as capacity increases, TCP’s
bottleneck utilization decreases significantly. This happens
regardless of the queuing scheme. In contrast, XCP’s utiliza-
tion is always near optimal independent of the link capacity.
Furthermore, XCP shows a considerably smaller queue size
and drop rate than TCP. We particularly note that in all of the
experiments in Figure 4, XCP did not drop a single packet.

Impact of Feedback Delay: We fix the bottleneck capacity
at 45 Mb/s and study the impact of increased delay on the
performance of congestion control. All other parameters have
the same values used in the previous experiment.
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Figure 6: XCP is efficient with any number of flows. The graphs
compare the efficiency of XCP and TCP with various queuing
schemes as a function of the number of flows.

Figure 5 shows that as the propagation delay increases,
TCP’s utilization degrades considerably regardless of the queu-
ing scheme. XCP, on the other hand, maintains high utiliza-
tion independently of delay.

The adverse impact of large delay on TCP’s performance
has been noted over satellite links. The bursty nature of TCP
has been suggested as a potential explanation and packet pac-
ing has been proposed as a solution [4]; however, this exper-
iment shows that burstiness is a minor factor. In particular,
XCP is a bursty window-based protocol but it copes with de-
lay much better than TCP. It does so by adjusting its aggres-
siveness according to round trip delay.

Impact of Number of Flows: We fix the bottleneck capacity
at 100 Mb/s and round trip propagation delay at 100 ms and
repeat the same experiment with a varying number of FTP
sources. Other parameters have the same values used in the
previous experiment.6 Figure 6 shows that overall, XCP ex-
hibits better utilization, reasonable queue size, and no packet
losses. The increase in XCP queue as the number of flows
increases is a side effect of its high fairness (see Figure 8).
When the number of flows is larger than 500, the fair conges-
tion window is between one and two packets. Since the fair
congestion window is a real number but the effective conges-
tion window is an integer number of packets, the rounding er-
ror increases causing a disturbance. Consequently, the queue

6We choose a capacity of 100 Mb/s and a round trip delay of 100 ms to
guarantee that the pipe is large enough for all flows to send at least one packet
and stay active.
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Figure 7: XCP is robust and efficient in environments with ar-
rivals and departures of short web-like flows. The graphs com-
pare the efficiency of XCP to that of TCP over various queuing
schemes as a function of short flows arrival rate.

increases to absorb this disturbance.

Impact of Short Web-Like Traffic: Since a large number
of flows in the Internet are short web-like flows, it is impor-
tant to investigate the impact of such dynamic flows on con-
gestion control. In this experiment, we have 50 long-lived
FTP flows traversing the bottleneck link. Also, there are 50
flows traversing the reverse path whose presence emulates a
2-way traffic environment with the resulting ack compres-
sion. The bottleneck bandwidth is 100 Mb/s and the round
trip delay is 80 ms. Short flows arrive according to a Poisson
process. Their transfer size is derived from a Pareto distribu-
tion with an average of 30 packets (ns-implementation with
shape = 1.35), which complies with real web traffic [11].

Figure 7 graphs bottleneck utilization, average queue size,
and total number of drops, all as functions of the arrival rate
of short flows. The figure shows that XCP outperforms the
other schemes in all experiments. Further, the utilization,
queue size, and drop rate obtained by XCP are very close
to the optimal behavior. Most importantly, this particular ex-
periment demonstrates XCP’s robustness in dynamic environ-
ments with large numbers of flow arrivals and departures.

Fairness : This experiment shows that XCP is significantly
fairer than TCP, regardless of the queuing scheme. We have
30 long-lived FTP flows sharing a single 30 Mb/s bottleneck.
We conduct two sets of simulations. In the first set, all flows
have a common round-trip propagation delay of 40 ms. In the
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Figure 8: XCP is fair to both equal and different RTT flows.
The graphs compare XCP’s Fairness to that of TCP over RED,
CSFQ, REM, and AVQ.

second set of simulations, the flows have different RTTs in
the range [40 ms, 330 ms] (RTTi+1 = RTTi + 10ms).

Figures 8-a and 8-b demonstrate that, in contrast to other
approaches, XCP provides a fair bandwidth allocation and
does not have any bias against long RTT flows. Furthermore,
Figure 8-b demonstrates XCP robustness to high variance in
the RTT distribution. Thus, although XCP computes an esti-
mate of the average RTT of the system, it still operates cor-
rectly in environments where the RTT varies widely from one
flow to another. For further information on this point see Ap-
pendix C.

At the end of this section, it is worth noting that the av-
erage drop rate of XCP was less than 10−6, which is three
orders of magnitude smaller than the other schemes despite
their use of ECN.

5.3 The Dynamics of XCP

While the simulations presented above focus on long term
average behavior, this section shows the short term dynamics
of XCP. In particular, we show that XCP’s utilization, queue
size, and throughput exhibit very limited oscillations. There-
fore, the average behavior presented in the section above is
highly representative of the general behavior of the protocol.

Convergence Dynamics: We show that XCP dampens os-
cillations and converges smoothly to high utilization small
queues and fair bandwidth allocation. In this experiment, 5
long-lived flows share a 45 Mb/s bottleneck and have a com-
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Figure 9: XCP’s smooth convergence to high fairness, good uti-
lization, and small queue size. Five XCP flows share a 45 Mb/s
bottleneck. They start their transfers at times 0, 2, 4, 6, and 8
seconds.

mon RTT of 40 ms. The flows start their transfers two sec-
onds apart at 0, 2, 4, 6, and 8 seconds.

Figure 9-a shows that whenever a new flow starts, the fair-
ness controller reallocates bandwidth to maintain min-max
fairness. Figure 9-b shows that decoupling utilization and
fairness control ensures that this reallocation is achieved with-
out disturbing the link’s high utilization. Finally, Figure 9-c
shows the instantaneous queue, which effectively absorbs the
new traffic and drains afterwards.

Robustness to Sudden Increase or Decrease in Traffic De-
mands: In this experiment, we examine performance as traf-
fic demands and dynamics vary considerably. We start the
simulation with 10 long-lived FTP flows sharing a 100 Mb/s
bottleneck with a round trip propagation delay of 40 ms. At
t = 4 seconds, we start 100 new flows and let them stabi-
lize. At t = 8 seconds, we stop these 100 flows leaving the
original 10 flows in the system.

Figure 10 shows the utilization and queue, both for the
case when the flows are XCP, and for when they are TCPs
traversing RED queues. XCP absorbs the new burst of flows
without dropping any packets, while maintaining high utiliza-
tion. TCP on the other hand is highly disturbed by the sud-
den increase in the traffic and takes a long time to restabilize.
When the flows are suddenly stopped at t = 10 seconds, XCP
quickly reallocates the spare bandwidth and continues to have
high utilization. In contrast, the sudden decrease in demand
destabilizes TCP and causes a large sequence of oscillations.

A More Complex Topology: This experiment uses the 9-link
topology in Figure 3, although results are very similar for
topologies with more links. Link 5 has the lowest capacity,
namely 50 Mb/s, whereas the others are 100 Mb/s links. All
links have 20 ms one-way propagation delay. Fifty flows, rep-
resented by the solid arrow, traverse all links in the forward
direction. Fifty cross flows, illustrated by the small dashed
arrows, traverse each individual link in the forward direction.
50 flows also traverse all links along the reverse path.

Figure 11 illustrates the average utilization, queue size,
and number of drops at every link. In general, all schemes
maintain a reasonably high utilization at all links (note the y-
scale). However, the trade off between optimal utilization and
small queue size is handled differently in XCP from the var-
ious AQM schemes. XCP trades a few percent of utilization
for a considerably smaller queue size. XCP’s lower utiliza-
tion in this experiment compared to previous ones is due to
disturbance introduced by shuffling. In particular, at links 1,
2, 3, and 4 the fairness controller tries to shuffle bandwidth
from the cross flows to the long-distance flows, which have
lower throughput. Yet, these long-distance flows are throttled
downstream at link 5, and so cannot benefit from this posi-
tive feedback. This effect is mitigated at links downstream
from link 5 because they can observe the upstream throttling
and correspondingly reduce the amount of negative feedback
given (see implementation in Appendix A). In any event, as
the total shuffled bandwidth is less than 10%, the utilization
is always higher than 90%.

It is possible to modify XCP so that it maintains the queue
around a target value rather than draining all of it. This would
cause the disturbance induced by shuffling to appear as a fluc-
tuation in the queue rather than as a drop in utilization. How-
ever, we believe that maintaining a small queue size is more
valuable than a few percent increase in utilization when flows
traverse multiple congested links. In particular, it leaves a
safety margin for bursty arrivals of new flows. In contrast, the
large queues maintained at all links in the TCP simulations
cause every packet to wait at all of the nine queues, which
considerably increases end-to-end latency.

6 Quality of Service

XCP renders differentiated services easier to design and im-
plement because it decouples fairness control from efficiency
control. In particular, since high utilization and small queues
are guaranteed by the efficiency controller, designing differ-
ential services becomes a matter of allocating the aggregate
feedback to the individual flows so that they converge to the
desired rates. The designer need not worry whether the flows
increase too aggressively, causing congestion, or whether they
are too slow at grabbing the spare bandwidth.

Before describing our service differentiation scheme, we
note that in XCP, bandwidth differentiation is the only mean-
ingful quality of service (QoS). Since XCP provides small
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Figure 10: XCP is more robust against sudden increase or decrease in traffic demands than TCP. Ten FTP flows share a bottleneck.
At time t = 4 seconds, we start 100 additional flows. At t = 8 seconds, these 100 flows are suddenly stopped and the original 10 flows
are left to stabilize again.
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Figure 11: Simulation with multiple congested queues. Utiliza-
tion, average Queue size, and number of drops at nine consecu-
tive links (topology in Figure 3). Link 5 has the lowest capacity
along the path.

queue size and near-zero drops, QoS schemes that guarantee
small queuing delay or low jitter are redundant.

In this section, we describe a simple scheme that can pro-
vide differential services according to the shadow prices model
defined by Kelly [20]. In this model, a user chooses the
price per unit time she is willing to pay. The network allo-
cates bandwidth so that the throughputs of users competing
for the same bottleneck are proportional to their prices; (i.e.,
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Figure 12: XCP can provide differential services by making
users’ throughputs proportional to the price they pay. Three
XCP flows each transferring a 10 Mbytes file over a shared 10
Mb/s bottleneck. Flow 1’ s price is 5, Flow 2’s price is 10, and
Flow 3’s price is 15. Throughput is averaged over 200 ms (5
RTTs).

throughputi

pricei
= throughputj

pricej
).

The model allows a continuous spectrum of service differ-
entiation because by changing the price the user can achieve
the rate she desires. Note that all users sharing the same bot-
tleneck pay the same price per unit of bandwidth. Hence, by
observing the rate the user gets for a particular price, she can
predict the increase in price she needs in order to obtain a
certain desired rate.

Using the above model, one can easily provide end-to-end
quality of service in an XCP network. To do so, the sender
replaces the H cwnd field by its current congestion window
divided by the price she is willing to pay (i.e, cwnd/price).
This minor modification is enough to produce a service that
complies with the above model, and allows any throughput
differentiation that a user desires.

Next, we show simulation results that support our claims.
Three XCP sources share a 10 Mb/s bottleneck. The corre-
sponding prices are p1 = 5, p2 = 10, and p3 = 15. Each
source wants to transfer a file of 10 Mbytes, and they all start

11



together at t = 0. The results in Figure 12 show that the
transfer rate depends on the price the flow pays. At the begin-
ning, when all flows are active, their throughputs are 5 Mb/s,
3 1

3Mb/s, and 1 2
3Mb/s, which are proportional to their corre-

sponding prices. After Flow 1 finishes its transfer, the remain-
ing flows grab the freed bandwidth such that their throughputs
continue being proportional to their prices. Note the high re-
sponsiveness of the system. In particular, when Flow 1 fin-
ishes its transfer freeing half of the link capacity, the other
flows’ sending rates adapt in a few RTTs.

7 Security

In this section, we show that XCP improves network secu-
rity against attacks that target the network infrastructure by
attempting to congest one or more links and deny bandwidth
to other legitimate flows. Attacks that target a server or a
particular software bug at a router module, though highly im-
portant, are outside the scope of this paper.

XCP facilitates detecting network attacks and isolating
unresponsive sources because of two features: its operation
with near-zero drops; and the explicit feedback.

The simulation results demonstrate that it is unlikely for
XCP to drop packets. Hence, a sustained high drop rate is a
strong sign of unresponsive flows. Thus, in XCP it is easy
to detect flows that do not respond to congestion signals and
attempt to deny other flows their legitimate share of the band-
width. This is in contrast to a TCP network where drops are
normal events and the drop rate depends on the number of
flows rather than on the flows being unresponsive. Hence,
while detecting attacks in a TCP network requires continuous
scrutiny of at least a subset of the sources [23], and imposes
an extra load on an already congested router, in an XCP net-
work such detection happens naturally.

Additionally, isolating the misbehaving source becomes
faster and easier because the the router can use the explicit
feedback to test a source. More precisely, in TCP isolating an
unresponsive source requires the router to monitor the aver-
age rate of a suspect source over a fairly long interval to de-
cide whether the source is reacting according to AIMD. Also,
since the source’s RTT is unknown, its correct sending rate
is not specified, which complicates the task even further. In
contrast, in XCP, isolating a suspect flow is easy. The router
can send the flow a test feedback requiring it to decrease its
congestion window to a particular value. If the flow does not
react in a single RTT then it is unresponsive. The fact that
the flow specifies its RTT in the packet makes the monitoring
easier. Since the flow cannot tell when a router is monitoring
its behavior, it has to always follow the explicit feedback.7

7As an example, consider a flow that tries to increase its sending rate by
claiming its RTT is larger than it really is. As a result the input traffic will
exceed the link capacity and there will be drops. The router notices these
drops and raises one bit in all of the packets it forwards during this high
drop period. The exit border routers notice this bit and monitor the suspect
flows. In particular, they send these flows a negative feedback and monitor

8 Gradual Deployment

XCP is amenable to gradual deployment, which could follow
one of two paths.

8.1 XCP-based Core Stateless Fair Queuing

XCP can be deployed in a cloud-based approach similar to
that proposed by Core Stateless Fair Queuing (CSFQ). Such
an approach would have several benefits. It would force un-
responsive or UDP flows to use a fair share without needing
per-flow state in the network core. It would improve the ef-
ficiency of the network because an XCP core allows higher
utilization, smaller queue sizes, and minimal packet drops. It
also would allow an ISP to provide differential bandwidth al-
location internally in their network. CSFQ obviously shares
these objectives, but our simulations indicate that XCP might
give better fairness, higher utilization, and lower delay.

To use XCP in this way, we map TCP or UDP flows across
a network cloud onto XCP flows between the ingress and
egress border routes. Each XCP flow is associated with a
queue at the ingress router. Arriving TCP or UDP packets
enter the relevant queue, and the corresponding XCP flow
across the core determines when they can leave. For this
purpose, H rtt is the measured propagation delay between
ingress and egress routers, and H cwnd is set to the XCP
congestion window maintained by the ingress router (not the
TCP congestion window).

Maintaining an XCP core can be simplified further. First,
there is no need to attach a congestion header to the packets,
as feedback can be collected using a small control packet ex-
changed between border routers every RTT. Second, multiple
micro flows that share the same pair of ingress and egress
border routers can be mapped to a single XCP flow. The
weighted fairness scheme, described in § 6, allows each XCP
macro-flow to obtain a throughput proportional to the num-
ber of micro-flows in it. The router will forward packets from
the queue according to the XCP macro-flow rate. TCP will
naturally cause the micro-flows to converge to share the XCP
macro-flow fairly, although care should be taken not to mix
responsive and unresponsive flows in the same macro-flow.

8.2 A TCP-friendly XCP

In this section, we describe a mechanism allowing end-to-end
XCP to compete fairly with TCP in the same network. This
design can be used to allow XCP to exist in a multi-protocol
network, or as a mechanism for incremental deployment.

To start an XCP connection, the sender must check
whether the receiver and the routers along the path are XCP-
enabled. If they are not, the sender reverts to TCP or another
conventional protocol. These checks can be done using sim-
ple TCP and IP options.

the resulting traffic rate. The misbehaving source will show a higher rate
than it is claiming and will be discovered in about one RTT.
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We then extend the design of an XCP router to handle
a mixture of XCP and TCP flows while ensuring that XCP
flows are TCP-friendly. The router distinguishes XCP traffic
from non-XCP traffic and queues it separately. TCP packets
are queued in a conventional RED queue (the T-queue). XCP
flows are queued in an XCP-enabled queue (the X-queue, de-
scribed in § 3.5). To be fair, the router should process pack-
ets from the two queues such that the average throughput ob-
served by XCP flows equals the average throughput observed
by TCP flows, irrespective of the number of flows. This
is done using weighted-fair queuing with two queues where
the weights are dynamically updated and converge to the fair
shares of XCP and TCP. The weight update mechanism uses
the T-queue drop rate p to compute the average congestion
window of the TCP flows. The computation uses a TFRC-
like [12] approach, based on TCP’s throughput equation:

cwndTCP =
s√

2p
3 + 12p

√
3p
8 × (1 + 32p2)

, (10)

where s is the average packet size. When the estimation-
control timer fires, the weights are updated as follows:

wT = wT + κ
cwndXCP − cwndTCP

cwndXCP + cwndTCP

, (11)

wX = wX + κ
cwndTCP − cwndXCP

cwndXCP + cwndTCP

, (12)

where κ is a small constant in the range (0,1), and wT and wX

are the T-queue and the X-queue weights. This updates the
weights to decrease the difference between TCP’s and XCP’s
average congestion windows. When the difference becomes
zero, the weights stop changing and stabilize.

Finally, the aggregate feedback is modified to cause the
XCP traffic to converge to its fair share of the link bandwidth:

φ = α · d · SX − β · QX , (13)

where α and β are constant parameters, d the average round
trip time, QX is the size of the X-queue, and SX is XCP’s
fair share of the spare bandwidth computed as:

SX = wX · c − yX , (14)

where wX is the XCP weight, c is the capacity of the link,
and yX is the total rate of the XCP traffic traversing the link.

Figure 13 shows the throughputs of various combinations
of competing TCP and XCP flows normalized by the fair
share. The bottleneck capacity is 45 Mb/s and the common
delay is 40 ms. The simulations results demonstrate that XCP
is as TCP-friendly as other protocols that are currently under
consideration for deployment in the Internet [12].
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Figure 13: XCP is TCP-friendly.

9 Related Work

XCP builds on the experience learned from TCP and previous
research in congestion control [6, 10, 13, 16]. In particular,
the use of explicit congestion feedback has been proposed by
the authors of Explicit Congestion Notification (ECN) [28].
XCP generalizes this approach so as to send more information
about the degree of congestion in the network. Also, explicit
congestion feedback has been used for controlling Available
Bit Rate (ABR) in ATM networks [3, 9, 17, 18]. However, in
contrast to ABR flow control protocols, which usually main-
tain per-flow state at switches [3, 9, 17, 18], XCP does not
keep any per-flow state in routers. Further, ABR control pro-
tocols are usually rate-based, while XCP is a window-based
protocol and enjoys self-clocking, a characteristic that con-
siderably improves stability [7].

Additionally, XCP builds on Core Stateless Fair Queuing
(CSFQ) [29], which by putting a flow’s state in the packets
can provide fairness with no per-flow state in the core routers.

Our work is also related to Active Queue Management
disciplines [13, 5, 21, 15], which detect anticipated conges-
tion and attempt to prevent it by taking active counter mea-
sures. However, in contrast to these schemes, XCP uses con-
stant parameters whose effective values are independent of
capacity, delay, and number of sources.

Finally, Our analysis is motivated by previous work that
used a control theory framework for analyzing the stability of
congestion control protocols [22, 27, 15, 21, 24].

10 Conclusions and Future Work

Theory and simulations suggest that current Internet conges-
tion control mechanisms are likely to run into difficulty in the
long term if current technology trends continue. This moti-
vated us to step back and re-evaluate both control law and
signalling for congestion control.

Motivated by CSFQ, we chose to convey control infor-
mation between the end-systems and the routers using a few
bytes in the packet header. The most important consequence
of this explicit control is that it permits a decoupling of con-
gestion control from fairness control. In turn, this decoupling
allows more efficient use of network resources and more flex-
ible bandwidth allocation schemes.
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Based on these ideas, we devised XCP, an explicit con-
gestion control protocol and architecture that can control the
dynamics of the aggregate traffic independently from the rela-
tive throughput of the individual flows in the aggregate. Con-
trolling congestion is done using an analytically tractable method
that matches the aggregate traffic rate to the link capacity,
while preventing persistent queues from forming. The decou-
pling then permits XCP to reallocate bandwidth between in-
dividual flows without worrying about being too aggressive in
dropping packets or too slow in utilizing spare bandwidth. We
demonstrated a fairness mechanism based on bandwidth shuf-
fling that converges much faster than TCP does, and showed
how to use this to implement both min-max fairness and the
shadow prices model.

Our extensive simulations demonstrate that XCP main-
tains good utilization and fairness, has low queuing delay, and
drops very few packets. We evaluated XCP in comparison
with TCP over RED, REM, AVQ, and CSFQ queues, in both
steady-state and dynamic environments with web-like traffic
and with impulse loads. We found no case where XCP per-
forms significantly worse than TCP. In fact when the per-flow
delay-bandwidth product becomes large, XCP’s performance
remains excellent whereas TCP suffers significantly.

We believe that XCP is viable and practical as a con-
gestion control scheme. It appears to make defense against
denial-of-service attacks easier than in the current Internet.
We have also proposed two possible strategies whereby XCP
and TCP could gracefully co-exist in the same network.

Our future work focuses on two directions. First, XCP
was motivated by our experience with TCP’s degraded per-
formance over gigabit links. We are currently implementing
XCP in a FreeBSD kernel to use it over our gigabit testbed.
Second, in this paper we developed a simple approach to dif-
ferential services. We think that the decoupling can also make
the design of guaranteed services easier and we are pursuing
this idea.
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A Implementation
Implementing an XCP router is fairly simple and is best described
using the following pseudo code. There are three relevant blocks
of code. The first block is executed at the arrival of a packet and
involves updating the estimates maintained by the router.

On packet arrival do:
input traffic += 1
sum rtt by cwnd += H rtt / H cwnd
sum rtt square by cwnd += H rtt × H rtt / H cwnd

The second block is executed when the estimation-control timer fires.
It involves updating our control variables, reinitializing the estima-
tion variables, and rescheduling the timer.

On estimation-control timeout do:
avg rtt = sum rtt square by cwnd / sum rtt by cwnd8

φ = α× avg rtt × (capacity - input traffic) - β× Queue
shuffled traffic = 0.1× input traffic
ξp = ((max(φ,0) + shuffled traffic) / (avg rtt× sum rtt by cwnd)
ξn = ((max(−φ,0) + shuffled traffic) / (avg rtt × input traffic)
residue pos fbk = (max(φ,0)+ shuffled traffic) /avg rtt
residue neg fbk = (max(−φ,0)+ shuffled traffic) /avg rtt
input traffic = 0
sum rtt by cwnd = 0
sum rtt square by cwnd = 0
timer.schedule(avg rtt)

The third block of code involves computing the feedback and is ex-
ecuted at packets’ departure.

On packet departure do:
pos fbk = ξp× H rtt × H rtt / H cwnd
neg fbk = ξn× H rtt
feedback = pos fbk - neg fbk
if (H feedback ≥ feedback) then

H feedback = feedback
residue pos fbk -= pos fbk / H rtt
residue neg fbk -= neg fbk / H rtt

else
if (H feedback ≥ 0)

residue pos fbk -= H feedback / H rtt
residue neg fbk -= (feedback - H feedback) / H rtt

else
residue neg fbk += H feedback / H rtt
if (feedback ≥ 0) then residue neg fbk -= feedback/H rtt

if (residue pos fbk ≤ 0) then ξp = 0
if (residue neg fbk ≤ 0) then ξn = 0

Note that the code executed on timeout does not fall on the criti-
cal path. The per-packet code can be made substantially faster by
replacing cwnd in the congestion header by rtt/cwnd, and by
having the routers return feedback × H rtt in H feedback and
the sender dividing this value by its rtt. This modification spares
the router any division operation, in which case, the router does
only a few additions and 3 multiplications per packet.

8This is the average RTT over the flows (not the packets).

B Proof of Theorem 1
Model: Consider a single link of capacity c traversed by N XCP
flows. Let d be the common round trip delay of all users, and ri(t)
be the sending rate of user i at time t. The aggregate traffic rate is
y(t) =

∑
ri(t). The shuffled traffic rate is h(t) = 0.1 · y(t).9

The router sends some aggregate feedback every control inter-
val d. The feedback reaches the sources after a round trip delay. It
changes the sum of their congestion windows (i.e.,

∑
w(t)). Thus,

the aggregate feedback sent per time unit is the sum of the deriva-
tives of the congestion windows:

∑ dw

dt
=

1

d

(
−α · d · (y(t − d) − c) − β · q(t − d)

)
.

Since the input traffic rate is y(t) =
∑ wi(t)

d
, the derivative of the

traffic rate ẏ(t) is:

ẏ(t) =
1

d2

(
−α · d · (y(t − d) − c) − β · q(t − d)

)
.

Ignoring the boundary conditions, the whole system can be ex-
pressed using the following delay differential equations.

q̇(t) = y(t) − c (15)

ẏ(t) = −α

d
(y(t − d) − c) − β

d2
q(t − d) (16)

ṙi(t) =
1

N
([ẏ(t−d)]++h(t−d))−ri(t − d)

y(t− d)
([−ẏ(t−d)]++h(t−d))

(17)
The notation [ẏ(t − d)]+ is equivalent to max(0, ẏ(t − d)). Equa-
tion 17 expresses the AIMD policy used by the FC; namely, the posi-
tive feedback allocated to flows is equal, while the negative feedback
allocated to flows is proportional to their current throughputs.

Stability: Let us change variable to x(t) = y(t) − c.
Proposition: The Linear system:

q̇(t) = x(t)

ẋ(t) = −K1x(t − d) − K2q(t − d)

is stable for any constant delay d > 0 if

K1 =
α

d
and K2 =

β

d2
,

where α and β are any constants satisfying:

0 < α <
π

4
√

2
and β = α2

√
2.

Proof. The system can be expressed using a delayed feedback (see
Figure 14. The open loop transfer function is:

G(s) =
K1 · s + K2

s2
e−ds

For very small d > 0, the closed-loop system is stable. The
shape of its Nyquist plot, which is given in Figure 15, does not en-
circle −1.

9We are slightly modifying our notations. While y(t) in § 3.5 refers to
the input traffic in an average RTT, we use it here as the input traffic rate (i.e.,
input traffic in a unit of time). The same is true for h(t).
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Figure 14: The feedback loop and the Bode plot of its open loop
transfer function.

Figure 15: The Nyquist plot of the open-loop transfer function
with a very small delay.

Next, we can prove that the phase margin remains positive in-
dependent of the delay. The magnitude and angle of the open-loop
transfer function are:

|G| =

√
K2

1 · w2 + K2
2

w2

� G = −π + arctan
wK1

K2
− w · d

The break frequency of the zero occurs at: wz = K2
K1

.
To simplify the system, we decided to choose α and β such

that the break frequency of the zero wz is the same as the crossover
frequency wc (frequency for which |G(wc)| = 1). Substituting
wc = wz = K2

K1
in |G(wc)| = 1 leads to β = α2

√
2.

To maintain stability for any delay, we need to make sure that the
phase margin is independent of delay and always remains positive.
This means that we need � G(wc) = −π+ π

4
− β

α
> −π ⇒ β

α
< π

4
.

Substituting β from the previous paragraph, we find that we need
α < π

4
√

2
, in which case, the gain margin is larger than one and the

phase margin is always positive (see the Bode plot in Figure 14).
This is true for any delay, capacity, and number of sources.

C XCP robustness to High Variance in
the Round Trip Time
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Figure 16: XCP robustness to high RTT variance. Two XCP
flows each transferring a 10 Mbytes file over a shared 45 Mb/s
bottleneck. Although the first flow has an RTT of 20 ms and the
second flow has an RTT of 200 ms both flows converge to the
same throughput. Throughput is averaged over 200 ms inter-
vals.
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