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Abstract—TCP’s burstiness is usually regarded as harmful, or at
best, inconvenient. This paper adopts a new perspective and exam-
ines whether TCP’s burstiness is useful for certain applications. It
shows that the burstiness can be harnessed to make TCPmore robust
to packet reordering caused by route change. We define a flowlet as
a burst of packets from the same flow followed by an idle interval.
We develop a scheme that uses flowlets to split traffic across multiple
parallel paths. We show that flowlet switching is an ideal technique
for load balancing traffic across multiple paths as it has the accuracy
of packet switching, combined with the robustness of flow switching
to packet reordering. The accuracy, simplicity, and low-overhead of
flowlet switching makes it a strong candidate for replacing the cur-
rent hash-based schemes used in routers for splitting traffic across
multiple links. In particular, when the desired split ratios vary over
time, flowlet switching accurately splits traffic across multiple paths
whereas current hash-based schemes are highly inaccurate. Hence
flowlet switching provides a key component for research in the areas
of realtime adaptive multipath routing and fine-grained traffic engi-
neering.

I. INTRODUCTION

Splitting traffic across multiple paths/links according to some
desired ratios is an important functionality for network manage-
ment. Many commercial router vendors, such as Cisco and Ju-
niper, provide basic support for it in their products [10, 16]. It is
also a key enabling technology for much research in the areas of
traffic engineering [7, 27] and adaptive multipath routing [17, 28],
which balances the load across multiple paths to reduce conges-
tion and increase availability. Another potential application for
traffic splitting includes adaptive multihoming, which allows a
stub domain to adaptively split its traffic across multiple access
links connected to different ISPs to optimize performance and
cost [2, 14].
Traffic splitting is a challenging problem because of the trade-

off between achieving low deviation from the desired traffic ratios
(i.e. high accuracy) and avoiding packet reordering, which hinders
TCP performance. Two main approaches exist for splitting traffic.
The first is packet-based splitting, which assigns each packet to
a path with a probability proportional to the path’s desired traffic
share and independent of the assignment of other packets [7, 20].
This method ensures the resulting allocation accurately matches
the desired split ratios but may allocate packets from the same flow
to different paths, causing reordering and confusing TCP conges-
tion control. Some proposals aim to make TCP less vulnerable to
reordered packets [6, 19, 31], which, if widely deployed, would
make packet-based splitting more robust. But prior experiences
suggest such wide-scale deployment is unlikely in the near future.
Instead, routers [10, 16] use variations of flow-based splitting,

assigning all packets of a flow to a single path. In contrast to
packet-based splitting, this approach avoids reordering but can-
not accurately achieve the desired splitting ratios [24]. Distribut-

Fig. 1. If the first packet leaves the convergence point before the second
packet reaches the divergence point, one can assign the second packet to a
new path without risking TCP packet reordering.

ing traffic in units of flows rather than packets reduces the res-
olution of the splitting scheme. Further, flows differ greatly in
their rates [22, 25, 32]. Assigning an entirely new TCP flow to a
path makes the change to the path’s rate unpredictable. Prior work
tried to estimate the rate of each flow and used these estimates
when mapping flows to paths, but found these rates to be unstable
and change quickly during the lifetime of a flow [22]. The inaccu-
rate traffic splitting resulting from pinning a flow to particular path
leads to an unbalanced load and potentially worse performance. It
may also lead to extra cost if the domain is charged differently for
sending traffic on different parallel links, as in adaptive multihom-
ing [14].
Ideally, one would like to combine the accuracy and low-

overhead of packet-based splitting with the ability of flow-based
splitting to avoid reordering TCP packets. This paper shows that
flowlet-based splitting achieves the best of both these worlds.
A flowlet is a burst of packets from a given TCP flow. Flowlets

are characterized by a timeout value, Æ, which is the mini-
mum inter-flowlet spacing, i.e., packet spacing within a flowlet
is smaller than Æ.
Flowlet-based splitting exploits a simple observation. Consider

a set of parallel paths, which diverge at a particular point and con-
verge later, each containing some number of hops. Given two con-
secutive packets in a TCP flow, if the first packet leaves the con-
vergence point before the second packet reaches the divergence
point, one can route the second packet —and subsequent pack-
ets from this flow— on to any available path with no threat of
reordering, as in Fig. 1. Thus, by picking flowlet timeout larger
than the maximum latency of the set of parallel paths, consecutive
flowlets can be switched independently with no danger of packet
reordering. In fact, for any set of parallel paths, we can further
tighten the timeout value to the difference between the maximum
and minimum path latencies. We call this maximum delay differ-
ence, the Minimum Time Before Switch-ability (MTBS). As long
as the flowlet timeout, Æ, is larger than the MTBS, flowlet switch-
ing does not cause packet reordering.

FLARE:We have developed FLARE, a flowlet aware routing en-
gine, which uses flowlet switching to split traffic across multiple
paths or links according to some desired split ratios.
Analyzed on traces collected at a major peering point, a stub



domain border router, and various backbone routers, FLARE’s er-
rors (i.e., deviation from desired splits) are often as low as packet-
based splitting and an order of magnitude lower than flow-based
schemes, including the hash-based approach currently used by
routers. Using FLARE is particularly advantageous when the de-
sired splitting ratios vary with time, in which case the errors re-
sulting from pinning every flow to a single path may reach 65%
(see �IV).
FLARE is also tolerant to misconfiguration. The probability of

reordering, for misconfigured values of Æ, changes slowly with its
deviation from MTBS. For example on the peering trace, a devia-
tion of up to 100 ms produces, at maximum, a 0.06% probability
of triggering 3 dup-acks. This number is negligible in comparison
with typical drop probabilities in the Internet [3, 23], and thus on
average is unlikely to affect TCP’s performance.
Finally, FLARE’s overhead is limited to maintaining a small ta-

ble of approximately 1000 entries and calculating a single hash
per packet (which is what routers currently do when splitting traf-
fic [10, 16]). The low errors, simplicity, and minimal overhead of
FLARE make it a candidate for replacing current traffic splitting
mechanisms in the routers.

Harnessing TCP’s burstiness with flowlets: Prior work either
characterizes TCP’s burstiness [12, 15, 30, 33], or proposes mech-
anisms for smoothing it [1]. We adopt a new perspective and ex-
plore whether TCP’s burstiness is useful for certain applications.
We describe the use of flowlets as a way to harness TCP’s bursti-
ness to improve the performance of traffic splitting across multiple
paths. This paper reveals intrinsic properties of flowlets. Our re-
sults show that contrary to intuition, the origins of flowlets are
not limited to very short flows, flows that are starting with small
windows (1-2 pkts), or flows suffering from timeouts. The major
source of flowlets is the burstiness of TCP at RTT and sub-RTT
scales. As a result, most flowlets are either a whole or a fraction
of a congestion window. Further, though the number of flowlets
is usually an order of magnitude larger than the number of flows
in a trace, the number of concurrent flowlets, at any point in time,
is two orders of magnitude smaller than the number of concurrent
flows. As a result, a small hash table with a few hundred entries is
enough to track flowlets.

This paper is a promising first step. Packet reordering is the first
hurdle to overcome when spreading a single flow across multiple
paths. We plan to study the interaction between multipath routing
and TCP’s RTT estimators and its congestion window adaptation
algorithm. While some prior work on these topics exists, the prob-
lems are far from being solved. If successful, our work will enable
adaptivemultipath routing and adaptive multihoming to deliver on
their promises of better performance and increased availability.

II. FLARE: FLOWLET AWARE ROUTING ENGINE

A. The Splitting Problem

The traffic splitting problem is formalized as follows [24]. The
aggregate traffic arriving at a router, at rate �, is composed of a
number of distinct transport-layer flows of varying rates. Given�
disjoint paths, which can be used concurrently, and a split vector
�� � ���� ��� ���� �� �� �� � ��� �� and

����

��� �� � �, split the

aggregate traffic into � portions such that the traffic rate flowing
on path � is equal to �� ��.
The splitting problem is a key component of the general prob-

lem of load balancing. In addition to a traffic splitter, balancing
the load across multiple paths requires a mechanism to find the
splitting vector �� . Depending on the environment, the network
administrator may set �� to a static value, or use an adaptive rout-
ing protocol to dynamically adapt �� to the state of the network.

B. Design & Implementation

FLARE accurately splits traffic across multiple paths, while
minimizing TCP packet reordering. FLARE resides on a router
that feeds multiple parallel paths and takes as input a split vector,
that could change over time. Upon receiving a packet, FLARE de-
termines the best path along which to route the packet to achieve
the desired split vector, and forwards the packet appropriately. 1

FLARE relies on the flowlet abstraction to accurately split
TCP traffic along multiple paths without causing reordering. The
network administrator configures FLARE with a flowlet timeout
value Æ. The administrator uses knowledge of the network to pick
a Æ larger than the MTBS, the maximum delay difference between
the set of parallel routes under consideration. This choice of Æ
lets FLARE assign flowlets of the same flow to different parallel
paths, without causing TCP packet reordering. As we show in �IV,
Æ � ���� ������ produces good accuracy in general. Further, mis-
configuring Æ by up to 100ms causes negligible reordering.
Packets for which transport-layer performance is unaffected by

reordering may be allocated to any path. For simplicity, we re-
fer to these packets as non-TCP packets. Since routing flowlets
will typically be slightly less accurate than a packet-based splitter,
FLARE uses non-TCP packets to balance residual error occurring
from routing flowlets.
FLARE is configured with a flowlet timeout Æ and has two com-

ponents: a token-counting algorithm and a flowlet assignment al-
gorithm.
Token-counting algorithm: FLARE assigns a token counter, 	 �
to each path � of the set of parallel paths. For every packet of size

 bytes, all token counters are updated as follows:

	� � 	� � �� � 
� ��

where �� is the fraction of the load to be sent on path �. If the
packet is a non-TCP packet, it is assigned to the path with the
maximum number of tokens. Otherwise, it is assigned according
to the flowlet-to-path assignment algorithm. In either case, once
the packet has been assigned to a particular path �, the correspond-
ing token counter is decremented by the size of the packet:

	� � 	� � 
�

Flowlet-to-path assignment: FLARE uses a hash table that
maps flowlets to paths. Each table entry contains two fields
last seen time and path id. When a packet arrives,
FLARE computes a hash of the source IP, destination IP, source
port and destination port.2 This hash is used as the key

�FLARE actually hands the packet to the next stage toward transmission on the
appropriate link (e.g., an output queue).
�The authors of [8] recommend a CRC-16 hash.



Trace Date Duration Packets # Flows Avg. Flow Rate Max. Flow Rate % Bytes Non-TCP
Peering Mar 5, 2003, 7 PM 12 minutes 9.15 million 454K 1.83 Kbps 6.01 Mbps 7.97%
LCSout May 9, 2003, 6 PM 1 hour 25.4 million 426K 13.73 Kbps 75.29 Mbps 2.80%
NLANR-1 Mar 7, 2004, 3 AM 90 seconds 7.3 million 340.5K 7.74 Kbps 50.89 Mbps 13.1%
NLANR-2 Apr 15, 2003, 8 PM 90 seconds 1.69 million 10K 31 Kbps 98.1 Mbps 12.1%

TABLE I. Datasets used in evaluation.
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Fig. 2. Visualization of results in Table II. Points near the origin represent
performance with low error and low reordering. FLARE’s performance falls
within this region. The performance of S-HASH is close, but S-HASH cannot
be used when the split vector is dynamic.

Trace Static
FLARE PACKET FLOW S-HASH

Peering 0.47% (0.01%) 0.12% (0.71%) 4.54% (0%) 6.47% (0%)
LCSout 7.50% (0.07%) 0.07% (6.17%) 37.98% (0%) 31.69% (0%)
NLANR-1 0.55% (0.02%) 0.02% (4.72%) 30.60% (0%) 6.79% (0%)
NLANR-2 0.70% (0.05%) 0.03% (6.29%) 35.36% (0%) 3.08% (0%)

Trace Mildly Dynamic
FLARE PACKET FLOW S-HASH

Peering 0.75% (0.00%) 0.11% (0.69%) 7.82% (0%) –
LCSout 13.48% (0.07%) 0.09% (5.34%) 65.10% (0%) –
NLANR-1 0.82% (0.01%) 0.03% (5.43%) 16.86% (0%) –
NLANR-2 0.78% (0.04%) 0.05% (6.65%) 73.55% (0%) –

Trace Dynamic
FLARE PACKET FLOW S-HASH

Peering 0.74% (0.00%) 0.12% (0.52%) 29.33% (0%) –
LCSout 13.26% (0.07%) 0.09% (5.36%) 63.54% (0%) –
NLANR-1 0.90% (0.02%) 0.02% (4.30%) 61.05% (0%) –
NLANR-2 1.56% (0.05%) 0.03% (5.83%) 87.47% (0%) –

TABLE II. FLARE’s accuracy is an order of magnitude higher than flow-
based and static-hash splitting schemes and its robustness to reordering is an
order of magnitude higher than packet-based splitting. Values outside the
parenthesis are errors; numbers inside the parenthesis are the probability
of mistakenly triggering 3 dup acks. Note that this experiment utilized the
values, Æ=60 ms, MTBS=80 ms. FLARE’s reordering arise from this slight
misconfiguration of Æ. When Æ=MTBS, FLARE shows no reordering.

into the flowlet table. If the current time is smaller than
last seen time + Æ, the packet is sent on the path identi-
fied by path id and last seen time is set to current time.
Otherwise, the packet begins a new flowlet and may be assigned
to a new path. FLARE assigns new flowlets to the path with the
maximum number of tokens, sets path id to the new path id,
and sets last seen time to current time.

III. EXPERIMENTAL ENVIRONMENT

Packet Traces: We use traffic traces from four sources. First, the
Peering trace is collected at multiple 622Mbps peering links from
the same router connecting a Tier-1 ISP to two large ISPs. Sec-
ond, the LCSout trace is collected at the border router connecting
MIT’s Computer Science and Artificial Intelligence Lab to the In-
ternet over a 100 Mbps link. Finally, NLANR-1 and NLANR-2
are sets of backbone traces collected by NLANR on OC12 and
OC3 links [21], respectively. Table I summarizes relevant in-
formation about these traces (flow rates are computed according

to [32]). In all traces, TCP constitutes over 85% of the traffic,
with the LCSout trace being 97% TCP.

Methodology: We imagine the router at which the trace is col-
lected to be feeding multiple parallel paths, and splitting the traffic
among them according to a desired split vector. We evaluate how
well FLARE tracks the desired splits while avoiding TCP reorder-
ing. The experiments depend on these parameters:

�
�� , the split vector, specifying the fractions at which incoming
traffic needs to be split. In our experiments, we use both a
static vector ��� � ��	� �	� �
�� and a dynamic vector

����	� � ��	��� �� �� � �������� ���� � ����� ������

where �	� � ���
�
. We use two dynamic vectors, ����, which

reflects changes over long time scales (�=40min), and ����,
which reflects changes over short time scales (�=4min). The
amplitude and period of ��� are chosen based on [2]. The
period of the fast changing vector is chosen based on [9],
which states that congestion spikes lasting for 5 to 10minutes
occur in ISP networks.

� Æ, the flowlet timeout interval. Unless specified otherwise,
Æ � ��ms. This means that we are simulating a situation
in which the administrator thinks that the delay difference
between the various parallel paths is less than 60 ms. Given
current values for one-way delay in the Internet (e.g., coast-
to-coast is typically � 40ms), a delay difference of 60 ms or
less is applicable to many possible cases of parallel paths.

� MTBS, the actual maximum delay difference between the
parallel paths. Unless specified otherwise, MTBS=80 ms.
By making MTBS different from Æ, we simulate errors in the
administrator’s estimate of MTBS.

� ��	
, the time window over which the paths’ rates are com-
puted to measure whether they match the desired split. This
is a measurement parameter irrelevant to the operation of
FLARE. We fix ��	
 � ��	�.3

� �����, the size of hash table used by FLARE. Unless other-
wise specified, we set ����� � ��� entries.

Measuring Accuracy: An optimal traffic splitting policy ensures
that path � receives a fraction of the traffic �� on any timescale,
but the actual fraction of traffic sent on � is � �

� . We measure the
splitting error as:

����� �
�

�

��

���

��� � � �

� �

��
� (1)

�The exact value of this parameter is not important as long as it is small enough
to show the instantaneous variability of the load. We chose ���� � ���� because
this is the update interval of TeXCP [17], an adaptive multipath routing protocol.
Also, routers can typically buffer about 250ms worth of data [5].
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Fig. 3. A flowlet timeout in the range ���� ����ms produces good accuracy.
Errors as a function of flowlet timeout interval Æ for the static split, ���, the
mildly dynamic split, ���� , and the dynamic split ����.

where� is the number of parallel paths among which the traffic is
divided. The graphs report the average error over non-overlapping
windows of size ��	
. Accuracy is �������.

Measuring TCP Disturbance: We estimate the disturbance of a
certain splitting algorithm as the probability that a packet triggers
3 dup-acks due to the reordering caused by the splitting scheme.

Simulating Splitting Schemes: We use Deficit Round Robin to
simulate packet-based traffic splitting [26], which is highly accu-
rate [24]. We simulate flow-based splitting by assigning each new
flow to the path farthest away from its desired traffic share, and
retaining the assignment for the duration of the flow. We also sim-
ulate a static-hash splitting (S-HASH) scheme by hashing the ar-
riving packet’s source and destination IP addresses and ports into
a large space, then allocating the hash space to the various paths
proportionally to their desired traffic shares [24].

IV. PERFORMANCE OF FLOWLET-BASED SPLITTING

Comparison with Other Splitting Schemes Table II and Fig. 2
compare FLARE with other splitting schemes vis-a-vis accuracy
and TCP disturbance. The results in the table are computed us-
ing Æ=60ms and MTBS=80ms, which is a slight misconfiguration
of Æ. In our experiments, FLARE provides a good tradeoff be-
tween accuracy and robustness to reordering. Its errors are an
order of magnitude lower than flow-based and static hash split-
ting schemes, and its tendency to trigger TCP congestion window
reduction is an order of magnitude less than that of packet-based
splitting. The table also shows that packet-based splitting is in-
adequate for these scenarios because it triggers 3 dup ack events
at a rate comparable to or higher than the loss rate in the Inter-
net [4, 23]. Finally, the S-HASH scheme, though 10 times less
accurate than FLARE, has a reasonable splitting accuracy for a
static split vector, but does not react to dynamic split vectors.

Accuracy of Flowlet Splitting First, we show that flowlet-based
splitting is accurate for realistic values of Æ. Fig 3 shows the er-
ror as a function of flowlet timeout for our four traces. The figure
shows results for the split vectors: ���, ����, and ����. The figure
shows that on all traces other than the LCSout trace, flowlet-based
splitting achieves an accuracy comparable to packet-based split-
ting, as long as Æ �100 ms. Given typical values for one-way
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Fig. 4. In contrast to flow-based splitting, FLARE is suitable for adaptive
multipath routing protocol as it can accurately track a varying split vector.
Graphs are for the peering trace, 60ms flowlet timeout, and 2 paths with a
sinusoidal splitting function. For clarity, we show the load on one path.

delay in the Internet (e.g., coast-to-coast delay is less than 40ms),
a delay difference in the range ���� ����ms should apply to many
possible sets of parallel paths.
The errors on the LCSout trace are higher. For this domain, the

administrator might want to pick Æ=60ms, which results in an er-
ror of 7%-14% depending on how quickly the split vector changes.
Despite the relatively high error, other schemes that do not reorder
packets have substantially more errors on the LCSout trace (see
Table II). We attribute the higher errors in the LCSout trace to
two factors. This trace contains a large amount of local intra-MIT
traffic with a small RTT. Also, it has a low fraction of non-TCP
traffic (�3% of the bytes), which prevents FLARE from compen-
sating for residual errors. We note that FLARE does not require
non-TCP traffic to perform well because FLARE performs well
on the other 3 traces even when all non-TCP traffic is removed.
Second, Fig. 4 compares how flowlet- and flow-based splitting

track a changing split vector in real-time, a feature required by
adaptivemultipath routing [11, 17]. The figure represents Æ=60ms
and two paths with a split that varies along a sinusoidal wave with
a period of 2 minutes ( �� � ������ ������������ �����). In this
experiment, FLARE tracks the desired split much more closely
than the flow-based splitter.

TCP’s Disturbance We also evaluated FLARE’s sensitivity to
flowlet timeout values smaller than the actual MTBS. Such a
choice of Æ will result in TCP packet reordering. Fig. 5 shows
the probability of mistakenly triggering 3 dup acks, as a function
of Æ and ���� � Æ, for the case of 3 paths with a static split
vector ���, path latencies �� ��������� ������, on the
Peering trace.
The figure shows that FLARE is tolerant to bad choices of the

flowlet timeout, i.e., choices in which Æ is smaller than the actual
MTBS. In particular, we have seen that, choosing Æ in the range
���� ����ms achieves good accuracy on our traces. Fig. 5 shows
that for any Æ � ����, the percentage of packets that trigger a
TCP window reduction is less than 0.06%, even when the actual
MTBS is larger than the chosen Æ by 100 ms. This number is
negligible in comparison with typical drop probabilities in the In-
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ternet [3, 23], and thus on average is unlikely to impact TCP’s
performance. In general, for Æ � ��ms, the probability of 3 dup
ack occurrences increases slowly as the difference betweenMTBS
and Æ increases. In other words, a misconfigured FLARE, using
a flowlet timeout smaller than the actual MTBS, may continue to
perform reasonably well.

Overhead of Flowlet Splitting One of the most surprising results
of this paper is the little overhead incurred by flowlet-based split-
ting. It requires edge routers to perform a single hash operation
per packet and maintain a flowlet hash table, a few KB in size,
which easily fits into the router’s cache. We have estimated the
required hash table size by plotting the splitting error, averaged
over time windows ��	
 � ��	�, as a function of the hash length.
For example, a hash length of 10 bits results in table of ��� en-
tries. Fig. 6 shows the error in our traces for both the static split
vector ��� and the dynamic sinusoidal vector ����. It reveals that
the errors converge for a table size as small as ��� entries.

V. HARNESSING TCP’S BURSTINESS

The idea underlying flowlet-based splitting is simple; instead
of switching paths at the granularity of a packet or a flow, allow
the router to switch bursts of packets from the same flow, as long
as they are separated by a large-enough idle interval. Switching
bursts of a few packets provides a higher resolution than flow-
based switching, and thus can be more accurate. But a natural
question to ask is why it is possible to divide most TCP flows
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into short flowlets, particularly the long ones, which contain the
majority of total traffic [32]. Another is why tracking flowlets re-
quires very little state even though the number of flowlets is larger
than the number of flows. This section shows that by harnessing
TCP’s burstiness, flowlet-based splitting achieves an effectiveness
that might appear puzzling at first.

Where Do Flowlets Come From? The origins of flowlets are
not limited to very short flows, flows that are just starting with a
small window of one or two packets, or flows that are suffering
timeouts. These flowlet sources are not enough to make flowlet
splitting as effective as �IV shows because most of the bytes are
in the long TCP flows [32]. In fact, the main origin of flowlets
is the burstiness of TCP at RTT and sub-RTT scales. Prior work
has shown that the TCP sender tends to send a whole congestion
window in one burst or a few clustered bursts and then wait idle for
the rest of its RTT. This behavior is caused by ack compression,
slow-start, and other factors [15, 30, 33]. This burstiness enables
a FLARE router to consider a long TCP flow as a concatenation
of short flowlets separated by idle periods, which is necessary for
the success of flowlet-based splitting.
Figure 7 supports this argument. It was computed using the

peering trace for Æ=60 ms. The figure plots the time between ar-
rivals of two consecutive flowlets from the same flow normalized
by the RTT of the flow (RTT is computed using the MYSTERY
TCP analyzer [18]). The graph shows that the vast majority of
flowlets are separated by less than an RTT, indicating that a flowlet
is usually a congestion window or a portion of it.

Why Flowlet Splitting is Accurate? Flowlet-based splitting is
accurate due to two reasons. First, there are many more flowlets
than flows, leading to many opportunities to rebalance an imbal-
anced load. Table III shows that flowlet arrival rates are an order of
magnitude higher than flow arrival rates, in our traces. This means
that in every second, flowlet-based splitting provides an order of



Trace Arrival Rate (/sec) #Concurrent
Flows Flowlets Flows Flowlets

LCSout 143.16 1454.98 1450.42 (2030) 18.41 (49)
Peering 611.95 8661.43 8477.33 (8959) 28.08 (56)

NLANR-1 3784.10 35287.04 47883.33 (57860) 240.12 (309)
NLANR-2 111.33 2848.76 1559.33 (1796) 50.66 (71)

TABLE III. 60ms-Flowlets arrive at a much higher rate than flows; but there
are much fewer concurrent flowlets than flows. The values outside parenthesis
are averages while the numbers inside are the maximum values.

magnitude more opportunities to rebalance an incorrect split than
with flow-based splitting. Second, as shown in Fig. 8, most of the
bytes are in small flowlets, allowing load rebalancing at a much
higher granularity than at the size of a flow.

Why Flowlet Tracking Requires a Small Table? Despite the
large number of flowlets in a trace, FLARE only needs to main-
tain state for currently active flowlets, i.e., flowlets that currently
have packets in the network. Table III shows that the average num-
ber of concurrent flowlets is two orders of magnitude smaller than
the number of concurrent flows. Indeed the maximum number of
concurrent flowlets in our traces never exceeds a few hundreds.
To track these flowlets without collision, the router needs a hash
table containing approximately thousand entries, which is com-
patible with the results in �IV.
TCP’s burstiness results in flow transmissions that take an on-

off pattern– a burst of packets followed by an idle period [15].
This burstiness enables one to divide each long flow into multiple
short flowlets. Much prior work advocates mechanisms to smooth
TCP burstiness [1]. A paced TCP is useful for many applications.
But since current TCP is bursty and is likely to stay bursty for
the near future, it is beneficial to explore whether TCP burstiness
can be useful. FLARE harnesses TCP burstiness to improve the
performance of traffic splitting across multiple paths.

VI. RELATED WORK

Traffic Splitting Mechanisms: Early work on traffic splitting
considers forwarding packets onto multiple paths using some form
of weighted round-robin or deficit round robin [26] scheduling.
Others avoid packet reordering by consistently mapping pack-
ets to paths based on their endpoint information. Commercial
routers [10, 16] implement the Equal-Cost Multipath (ECMP) fea-
ture of routing protocols such as OSPF and IS-IS. Hash-based
versions of ECMP divide their hash space into equal-size parti-
tions corresponding to the outbound paths, hash packets based on
their endpoint information, and forward them onto the path whose
boundaries envelop the packet’s hash value [8, 28].
A few papers analyze the performance of various splitting

schemes. Cao et al. evaluate the performance of a number of hash-
ing functions on hash-based traffic splitting [8]. Rost and Balakr-
ishnan [24] evaluate different traffic splitting policies, including
rate-adaptive splitting methods.

Multipath Routing: The majority of proposed approaches to
multipath routing require a method for traffic splitting across var-
ious parallel paths. Multipath routing sends traffic on multiple
paths to balance the load and minimize the possibility of conges-
tion [11, 13, 17, 28, 29]. Some of the work in this area focuses
on adaptive approaches where the desired splitting vector varies

with time and reacts to the observed load [11, 17]. This capabil-
ity further constrains the splitting mechanism to be able to track a
changing split vector, in addition to the standard requirements of
achieving accuracy and maintaining packet order.

VII. CONCLUSION

To our knowledge, we are the first to introduce the concept of
flowlet-switching and develop an algorithm which utilizes it. Our
work reveals several interesting conclusions. First, highly accu-
rate traffic splitting can be implemented with little to no impact on
TCP packet reordering and with negligible state overhead. Next,
flowlets can be used to make adaptive multipath routing more
practical. Finally, the existence and usefulness of flowlets show
that TCP burstiness is not necessarily a bad thing, and can in fact
be used advantageously.
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