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Abstract

Video broadcast and mobile video challenge the conventional wireless design. In
broadcast and mobile scenarios the bit-rate supported by the channel differs across
receivers and varies quickly over time. The conventional design however forces the
source to pick a single bit-rate and degrades sharply when the channel cannot support
it.

This thesis presents SoftCast, a clean-slate design for wireless video where the
source transmits one video stream that each receiver decodes to a video quality com-
mensurate with its specific instantaneous channel quality. To do so, SoftCast ensures
the samples of the digital video signal transmitted on the channel are linearly related
to the pixels’ luminance. Thus, when channel noise perturbs the transmitted sig-
nal samples, the perturbation naturally translates into approximation in the original
video pixels. Hence, a receiver with a good channel (low noise) obtains a high fidelity
video, and a receiver with a bad channel (high noise) obtains a low fidelity video.

SoftCast’s linear design in essence resembles the traditional analog approach to
communication, which was abandoned in most major communication systems, as it
does not enjoy the theoretical opimality of the digital separate design in point-to-
point channels nor its effectiveness at compressing the source data. In this thesis, I
show that in combination with decorrelating transforms common to modern digital
video compression, the analog approach can achieve performance competitive with
the prevalent digital design for a wide variety of practical point-to-point scenarios,
and outperforms it in the broadcast and mobile scenarios.

Since the conventional bit-pipe interface of the wireless physical layer (PHY) forces
the separation of source and channel coding, to realize SoftCast, architectural changes
to the wireless PHY are necessary. This thesis discusses the design of RawPHY, a
reorganization of the PHY which exposes a waveform interface to the channel while
shielding the designers of the higher layers from much of the perplexity of the wireless
channel.

I implement SoftCast and RawPHY using the GNURadio software and the USRP
platform. Results from a 20-node testbed show that SoftCast improves the average
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video quality (i.e., PSNR) across diverse broadcast receivers in our testbed by up to
5.5 dB in comparison to conventional single- or multi-layer video. Even for a single
receiver, it eliminates video glitches caused by mobility and increases robustness to
packet loss by an order of magnitude.

Thesis Supervisor: Dina Katabi
Title: Associate Professor
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Chapter 1

Introduction

Video is already making up majority of Internet traffic [69,81], According to the Cisco
visual networking index, mobile video will grow 66 fold over a period of five years [1].
Such predictions lead to a natural question: can existing wireless technologies, e.g.,
WiFi, WiMax, or LTE, support this impending demand and provide scalable and

robust mobile video?

1.1 The Problem

Today, when a station transmits a wireless packet, it encodes the packet at a particular
bit rate - a combination of error correction and digital modulation codes. At a high
bit rate, the transmission is short and thus the station can send the data faster,
but the packet is less resilient to noise. At a low bit rate, the encoding adds extra
redundancy making the packet more resilient to noise, but reduces the net data rate.
Thus, the bit rate choice presents a trade-off between throughput and robustness and

it poses a challenge to scalable mobile video.

(a) Scalability. Asdemands for mobile video increase, congestion will also increase.
The problem becomes particularly severe when many users try to watch a popular
realtime event, e.g., the championship game of a national sport, such as Super Bowl.
In such case, one would like to save bandwidth by multicasting the event as a single

video stream. Different receivers, however, have different channel quality (i.e., signal-
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Figure 1-1: Impact of interference-related packet loss on video quality. PSNR
below 20 dB corresponds to unacceptable video quality [79]. The figure shows that
video encoded with either H.264/MPEG4 or SVC (i.e., layered) suffers dramatically
at a packet loss rate as low as 1%.

to-noise ratio). Multicasting a single video stream to multiple receivers requires the
source to transmit at the lowest bit rate supported by their channels. This reduces
all receivers to the video quality of the receiver with the worst channel. Since such a
design is undesirable from a user perspective, the typical approach today transmits
an individual video stream to each receiver, even when all of these streams share the

same content, which is unscalable.

(b) Robustness. The wireless medium suffers high bit error and packet loss rates
due to both interference and channel noise. Video codecs however are very sensitive
to errors and losses [4,89]. Fig. 1-1 plots the impact of interference-caused packet
loss on MPEG4 (i.e., H.264/AVC) and SVC layered-video.! The figure is generated
using the reference implementations of the two codecs [50,103], and by having an
interferer transmit at regular intervals. (Other details are in §5.2.4.) The figure
confirms past results [89], showing that both MPEG4 video and SVC layered video
are highly sensitive to interference and become unviewable (i.e., PSNR < 20 dB)
when the packet loss rate is higher than 1%.

The lack of scalability and robustness in today’s mobile video stems from the

existing design of the network stack. Specifically, mobile video is impacted by two

ISVC produces a base layer necessary for decoding and a refinement layer that adds details for
receivers with better channels.
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layers in the stack: the application video codec, which compresses the video, and
the physical layer, which protects the video from channel errors and losses. Today,
video codecs do an excellent job in compressing the video and removing redundancy.
However, they also make the video highly vulnerable to bit errors and packet losses.
In particular, all common video codecs use entropy coding (e.g., Huffman), in which a
single bit flip can cause the receiver to confuse symbol boundaries, producing arbitrary
errors in the video. This compressed video has to be transmitted over an erroneous
wireless channel. Thus, the PHY layer has to add back redundancy in the form of
error correction codes. Since the compressed video is highly fragile, video streaming
requires the PHY to add excessive redundancy to eliminate the possibility of bit flips
or packet loss. This approach is particularly inefficient in mobile video because the
PHY needs to add excessive coding to deal with channel variations across time due
to mobility or interference, and across space due to receiver diversity.

Theoretical results show that the existing layer separation — i.e., separating source
coding (i.e., video compression) from channel coding (i.e., error protection) — is ac-
ceptable only in the case of unicast (point-to-point) channels and when the statistics
of the channel are known a priori to the transmitter [87,96]. In practice, this means
that, for a specific known channel SNR, one can find appropriate error correcting
code to maximize the bit rate and guarantee sufficiently low error rate thus delivering
optimal video performance. Such separation however becomes inefficient for multi-
cast/broadcast channels, or when the channel’s statistics are hard to predict due to

mobility or interference [87,96].

1.2 Approach

SoftCast is a clean-slate end-to-end architecture for transmitting video over wireless
channels. In contrast to the separate conventional design, SoftCast adopts a unified
design that both encodes the video for compression and for error protection. This end-
to-end approach enables multicast video delivery to multiple mobile receivers, with

each receiver obtaining video quality commensurate with its specific instantaneous
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Figure 1-2: A comparison of SoftCast to the conventional wireless design.
The transmitter encodes video pixels to channel signal samples. In contrast to the
conventional design, SoftCast replaces separately designed video compression codec
and error protection codes with a unified linear transform.

channel quality.

SoftCast starts with video that is represented as a sequence of numbers, with
each number representing a pixel luminance. Taking an end-to-end perspective, it
then performs a sequence of transformations to obtain the final signal samples that
are transmitted on the channel. The crucial property of SoftCast is that each trans-
formation is linear. This property ensures that the signal samples transmitted on
the channel are linearly related to the original pixel values. Thus, increasing channel
noise progressively perturbs the transmitted bits in proportion to their significance
for the video application, i.e., high-quality channels perturb only the least significant
bits while low-quality channels still preserve the most significant bits. Each receiver
therefore decodes the received signal into video whose quality is proportional to the

quality of its specific instantaneous channel.

SoftCast’s end-to-end architecture has the following four linear components:

(1) Compression: Traditional video compression is designed in separation from
the wireless channel. Hence, though the wireless channel has a high error rate, tradi-

tional compression uses Huffman and differential encoding which are highly sensitive
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to errors.? In contrast, SoftCast compresses a video by applying a three-dimensional
decorrelation transform, such as 3D DCT. Using 3D DCT (as opposed to the 2D DCT
used in MPEG), allows SoftCast to remove redundant information within a frame as
well as across frames. Further, since DCT is linear, errors on the channel do not lead

to disproportionate errors in the video.

(2) Error Protection: Traditional error protection codes may map values that
are numerically far apart, e.g., 2.5 and 0.3, to adjacent codewords, say, 01001000
and 01001001, causing a single bit flip to produce a dramatic change in the rendered
video. In contrast, SoftCast’s error protection is based on scaling the magnitude of
the transmitted coded samples. Consider a channel that introduces an additive noise
in the range +0.1. If a value of 2.5 is transmitted directly over this channel, it results
in a received value in the range [2.4 — 2.6]. However, if the transmitter scales the
value 10 times, the received signal varies between 24.9 and 25.1, and hence when
scaled down to the original range, the received value is in the range [2.51 — 2.49],
and its best approximation given one decimal point is 2.5, which is the correct value.
SoftCast has a built in optimization that identifies the proper scaling that minimizes

video error subject to a given transmission power.

(3) Resilience to Packet Loss: Current video codecs employ differential encoding
and motion compensation. These techniques create dependence between transmitted
packets. As a result, the loss of one packet may cause subsequent correctly received
packets to become undecodable. In contrast, SoftCast ensures that all packets con-
tribute equally to the quality of the decoded video. Specifically, SoftCast employs a
Hadamard transform [6] to distribute the video information across packets such that

each packet has approximately the same amount of information.

(4) Transmission over OFDM: Modern wireless technologies (802.11, WiMax,
Digital TV, etc.) use an OFDM-based physical layer (PHY). SoftCast is integrated

2Huffman is a variable length code and hence a bit error can cause the receiver to confuse symbol
boundaries. Differential encoding and motion compensation encode frames with respect to other
frames and hence any error in a reference frame percolates to other correctly received frames.
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within the existing PHY layer by making OFDM transmit SoftCast’s encoded data
as the I and Q components of the digital signal.

SoftCast builds on prior work on video multicast over channels with varying qual-
ity. The state of the art approaches to this problem still use a separate design. These
schemes use a layered approach in which the video is encoded into a low-quality base
layer (which all receivers must correctly decode to obtain any video at all) and a few
higher-quality enhancement layers (which receivers with higher-quality channels can
decode to obtain higher-quality video). In the limit, as the number of layers becomes
very large, a layered approach would ideally deliver to each receiver a video quality
proportional to its channel quality. In practice, however, encoding video into layers
incurs an overhead that accumulates with more layers [100]. Thus, practical layered
schemes (such as those proposed for Digital TV) use only two layers [23,32,56]. In
contrast to a layered approach, a SoftCast sender produces a single video stream,
with the video quality at each receiver determined by the significance of the bits that
its channel delivers without distortion. The quality of the video degrades smoothly
at the granularity of the individual luminance bits, rather than at the much coarser
granularity of the number of layers in the transmitted video. SoftCast also builds
on a growing literature in information theory tackles joint source and channel coding
(JSCC) [68,77,88]. SoftCast’s design is motivated by the same philosophy but differs
in its emphasis on linear transforms. Furthermore, past work on JSCC is mainly

theoretical and is not tested over an actual wireless channel.

1.2.1 Graphical Comparison

Fig. 1-3 graphically displays the characteristics of the different video encoding and
transmission schemes. This figure presents three graphs; each graph plots the video
quality at the receiver as a function of the channel quality. All schemes use exactly
the same transmission power and the same channel bandwidth over the same period
of time, i.e., they are exposed to the same channel capacity and differences are due
only to how effectively they use that capacity. The measurements are collected using

GNURadio USRP nodes. For more details on the experimental setup see §5.1.
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Figure 1-3: Approaches to wireless video: Fig. (a) plots the space of video quali-
ties obtained with the conventional design which uses MPEG4 over 802.11. Each line
refers to a choice of transmission bit rate (i.e., modulation and FEC). Fig. (a) shows
that for any choice of bit rate, the conventional design experiences a performance
cliff. Fig. (b) plots 2-layer video in red and 3-layer video in blue. For reference, the
dashed lines are the three equivalent single-layer MPEG4 videos. The figure shows
that layered video makes the cliffs milder but each new layer introduces overhead
and reduces the maximum video quality. Fig. (c) shows SoftCast (in black) and
single-layer MPEG4. It shows that SoftCast video quality fully scales with channel

quality.
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Fig. 1-3(a) illustrates the realizable space of video qualities for conventional MPEG-
based approaches. Each line refers to a particular choice of transmission bit rate, i.e.,
a particular choice of forward error correction code and a modulation scheme. The
video codec encodes the video at the same rate as the channel transmission bit rate.
Fig. 1-3(a) shows that for any selection of transmission bit rate (i.e., modulation and
FEC) the conventional design experiences a performance cliff, that is there is a critical
SNR, below which the video is not watchable, and above that SNR the video quality

does not improve with improvements in channel quality.

Fig. 1-3(b) illustrates the video qualities obtained by state of the art layered video
coding. The video is encoded using the JSVM reference implementation for scalable
video coding (SVC) [50]. The physical layer transmits the video using hierarchical
modulation over OFDM, an inner convolutional code and an outer Reed-Solomon
code following the recommendations in [23]. The figure shows two solid lines, the
red line encodes the video into two layers while the blue line encodes the video into
three layers. For reference, the figure also shows in dashed lines the single layer
MPEG4 videos that span the range of channel SNRs spanned by the layers in the
layered video. The figure shows that layered video transforms the performance cliff
of the conventional design to a few milder cliffs. Layering however causes extra
overhead [100] and thus increases the size of the video. Given a particular bit rate
budget, the video codec has to reduce the quality of the layered video in comparison
with the single layer video to ensure that the videos have the same size and can be
streamed at the same bit rate. As a result, the enhancement layer of the 3-layer video
has a lower quality than the corresponding layer in 2-layer video, which has a lower

quality than the corresponding single layer video.

Fig. 1-3(c) illustrates the video qualities obtained with SoftCast. The figure shows
that SoftCast’s video quality is proportional to the channel quality and stays com-

petitive with the envelope of all of MPEG curves.
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1.3 Contributions

This thesis makes the following contributions.

e It presents SoftCast, a novel design for wireless video, where the sender need
not know the wireless channel quality or adapt to it. Still, the sender can
broadcast a video stream that each receiver decodes to a video whose quality is
commensurate with its channel quality. This happens without receiver feedback,

bit rate adaption, or video code rate adaptation.

e SoftCast includes a packet loss protection scheme compatible with the degrad-
able nature of the video content. Unlike existing video approaches where some
packets are more important than others, SoftCast protects the data from loss
of whole packets by ensuring that all packets contribute equally to the quality
of the decoded video. The distortion resulting from packet loss is then propor-
tional to the number of lost packets, rather than dependent on which packets

have been lost. This property significantly increases resilience to packet loss.

e It discusses RawPHY, a new architecture for the wireless PHY layer that enables
flexible error protection for wireless applications, and in particular integration
of SoftCast. RawPHY shields the designers of the higher layers from much of
the perplexity of the wireless channel while exposing a waveform - rather than

binary — interface to the channel.

e It presents an implementation and an empirical evaluation of SoftCast and
RawPHY in a 20-node testbed of software radios. It shows that the protocol
significantly improves robustness to mobility and packet loss and provides a

better quality video multicast.

e It includes information-theoretic analysis of the performance bounds of Soft-
Cast’s analog design to the conventional digital design that separates source
and channel coding by one or more layers of bits. It shows that for multivari-

ate correlated Gaussian sources, there exist regimes where the analog scheme
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is near-optimal for stationary point-to-point communication and provides sig-
nificant gains over the best theoretical performance of a digital design for non-

stationary (broadcast or mobile) scenarios.

1.3.1 Summary of Experimental Results

I have implemented SoftCast and evaluated it in a testbed of 20 GNURadio USRP
nodes [33,94]. I compare SoftCast with two baselines: 1) MPEG-4 (i.e., H.264/AVC)
over 802.11, and 2) layered video where the layers are encoded using the scalable video
extension to H.264 (SVC) and transmitted using hierarchical modulation as in [56].
I evaluate these schemes using the Peak Signal-to-Noise Ratio (PSNR), a standard
metric of video quality [65,79]. T have the following findings:

e SoftCast delivers to each multicast receiver a video quality that is proportional
to its channel quality and is competitive (within 1 dB) with the optimal quality

the receiver could obtain if it were the only receiver in the multicast group.

e For multicast receivers of SNRs in the range [5,25] dB, SoftCast improves the

average video quality by 5.5 dB over the best performer of the two baselines.

e Even with a single mobile receiver, SoftCast eliminates video glitches, whereas
14% of the frames in our mobility experiments suffer glitches with the best

performer of the two baselines.

e Finally, SoftCast tolerates an order of magnitude higher packet loss rates than

both baselines.

1.4 Organization

Chapter 2 offers a quick primer on the fundamentals of source and channel coding
theory as well as practical considerations in wireless communication systems and
video compression. Chapter 3 presents the design of SoftCast’s linear code for video

compression and error protection. Chapter 4 presents RawOFDM, a realization of
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RawPHY which allows to integrate SoftCast in the network stack without having
to redesign the whole PHY. Chapter 5 includes experimental results from a 20-node

testbed as well as the theoretical analysis.

1.4.1 Previously Published Material

I have presented a preliminary design of SoftCast in [46]. This design was extended to
include inter-frame coding and presented in [43]. The results of the complete design
as included in Chapter 3 have been published in [45]. The prototype design of Ra-
wOFDM was described in [46] and a GNURadio implementation of both RawOFDM
and SoftCast was presented in a real-time demonstration in [44]. The theoretical

results in Chapter 5 have been published in [47].
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Chapter 2

Background

Before I describe the design and implementation of SoftCast, I provide the reader with
a quick primer on the fundamentals of source and channel coding theory as well as
some practical considerations in wireless communication systems and video compres-
sion. This chapter offers tools that will aid understanding of the rest of this thesis.
I limit the exposition to the major concepts rather than the formal definition and
proofs. Details and excellent textbook treatment for the core information-theoretic

results can be found in [16,62].

Source and Channel Coding: In his 1948 paper, Claude Shannon introduced the
notion of channel capacity, the tightest upper bound on the amount of information
that can be reliably transmitted over a communications channel [86]. Implicit in his
seminal theorem is that the communication effort can be split between a source coder

and a channel coder, where the source coder deals only with the statistics of the ran-

source channel X Y channel { source
encoder encoder decoder decoder

noise source

Figure 2-1: Source and channel coding. By separate source-channel design, the
output of the channel decoder is an error-free replica of the binary message M gener-
ated by the source encoder, although the overall output of the system S is generally
an approximation of the original source signal S due to compression loss.
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dom source and the channel coder deals only with the statistics of the random channel.
As illustrated in Fig. 2-1, between the source and channel coders flows a memoryless,
uniformly-random binary stream at some fixed rate (bit/s). Although, in this thesis,
I discuss the limitations of such separation, I will leverage many techniques of source
and channel coding which will also be used as the reference baseline in evaluation. I
end this chapter with the introduction of most common joint source-channel coding
(JSCC) techniques that do not abide by this separation but can improve performance

in scenarios when such separation is suboptimal.

2.1 Source Coding

In the context of data communications, the term source coding refers to reduction in
the bit-rate necessary to convey the source information either without loss (lossless
compression) or with a distortion criterion (lossy compression). In theory, the bit-
stream to be decoded is exactly as it was produced by the encoder and any information
loss is caused by the encoder. In practice, many compression algorithms have some
built-in mechanisms to detect (and conceal) a small number of errors, which inevitably
comes at the price of compression efficiency. We will discuss some of these techniques
in the context of video compression.

Notably, in the context of networks, source coding could refer to any coding applied
at the source node, including additional redundancy to protect from loss within the
network. However, in this thesis, we will use it strictly in the context of lossy data

compression.

2.1.1 Rate-Distortion Theory

If some loss of information is tolerable, the mismatch between the original data and
the decoded reconstruction is measured by distortion, often denoted by D. Naturally,
we are interested in the lowest distortion achievable at a particular bit-rate, R, or
conversely the lowest bit-rate required to achieve particular distortion. This trade-

off can be captured by curves D(R) and R(D), referred to as rate-distortion curves.
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Rate-distortion theory deals with finding rate-distortion curves for specific source

models and distortion curves [16].

Formally, the source produces a random variable X, the encoder computes a
function f(X™) € {1,2,...2"F} ie., maps n source symbols to one of 2"% indices,
which require nR bits to represent. Hence the average bit-rate is R with block-length
of n. The decoder reconstructs X™. The non-negative distortion function is defined

for a source symbol x and its reconstruction Z:
d(z,2) € Rt

with the requirement that d(x,z) = 0. The distortion between two sequences is

defined as
1 n
d ") = — d X A'i
(8" = 3 ) dlan )

We are interested in the expected distortion
D = E[d(z", £")]

where the expectation is with respect to the probability distribution of X. The rate-
distortion function R(D) is defined as the infimum of rates R such that there exists a
sequence of codes of bit-rate R whose expected distortion is less than D as the block-
length n tends to infinity. I.e., it defines the fundamental bound of the rate-distortion

trade-off regardless of how many source symbols are coded together.

Memoryless Gaussian source with MSE distortion: A well-treated example is
the rate-distortion function of a random iid variable with distribution N (0, 0?) under
the mean-square-error (MSE) distortion metric d(z, %) = (z —£)? [16]. The minimum

rate required to achieve expected distortion D is

R(D) = %10g2 (%)
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Note that for fixed rate, distortion is directly proportional to variance, so it is cus-

tomary to consider source-to-distortion ratio (SDR) defined as:

02

SDR = D

Hence the rule of thumb that 6dB in SDR requires 1 bit in rate.

Remarks: Under the MSE distortion metric, the memoryless Gaussian source is
the hardest to encode, i.e. all other sources with the same variance have R(D) below
the Gaussian rate-distortion curve [16]. Furthermore, if the source is not memoryless,
but rather exhibits some auto-correlation, it will require lower rate for the same SDR
than a memoryless source. This hinges on the assumption that the encoder/decoder
know the conditional probability distribution of the source, but that prior knowledge
reduces the rate required to describe the sequence of source symbols. Along the same
lines, a multi-variate source (where each symbol is a vector in R™) in which the dimen-
sions are independent but some have lower variance than others, will require lower
rate (per source symbol) than if all source dimensions were iid (white). Intuitively,
the lower-variance dimensions require lower rate bringing the overall rate down. Gen-
erally, the more “detailed” the model of the source the more compression potential
we have. In practice, many dynamic parameters of such model, such as frequency of
source symbols, variance or covariance of the joint probability distribution, etc., can
be learned by the encoder and communicated to the decoder in-band (as metadata),

although the rate required to encode this description cannot be ignored.

2.1.2 Compression Techniques

Let us introduce some of the most popular compression techniques. We specifically
focus on techniques that are commonly used in image and video compression, but

introduce the general ideas first, before discussing their application in that domain.
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symbol | probability | codeword
a 0.8 0
b 0.1 10
c 0.05 110
d 0.05 111

Table 2.1: Entropy coding. Example source probability distribution over an alpha-
bet of four symbols and one possible binary source code.

Entropy Coding: For a source with a finite alphabet of size 2* but non-uniform
distribution over the alphabet or non-zero auto-correlation, it is possible to use fewer

bits than k£ per symbol to encode it losslessly.

Consider the source with probability distribution over the alphabet {a, b, ¢, d} pre-
sented in Table 2.1. Rather than using 2 bits per symbol {00, 01, 10,11} we could use
the codewords shown in the table and achieve an average bit-rate of 1.3 bits/symbol.
Observe that in this variable-length code, each symbol is mapped to one codeword.
In general, a codeword could encode more than one symbol or a variable number of
symbols. Furthermore, this prefiz code has the property that no codeword is a prefix
of another, and hence can be decoded without ambiguity via simple lookup. Simplic-
ity of the decoder is a common property in many popular source coding techniques,

but is not a requirement.

The reduction in bit-rate comes from the arrangement that more popular symbols
are assigned shorter codewords and vice-versa. Shannon has shown that the optimal
bit-rate for a source with distribution px(z) over its alphabet {z1,zs,...} equals its

entropy defined as:

H(X) = E[-log, px(z)] = ) —px(x:) log, px (:)

1

Observe that for a given alphabet size N, the entropy is highest when the distribution
is uniform over all elements and equals log, V. Looking back at Table 2.1, the entropy
of the source is around 1.022. The achieved rate of 1.3 bits/symbol is actually the best
possible for any code with block-length 1, i.e., encoding each symbol independently.

To compress further, one would consider blocks of 2 or more symbols. For instance
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the optimal code of block-length 2 achieves 1.06 bits/symbol. As the block-length

goes to infinity, the bit-rate will approach the entropy, but with diminishing returns.

Most well-known entropy coding techniques are Huffman and arithmetic cod-
ing [40,62]. The code in Table 2.1 is actually produced by the Huffman algorithm,
which constructs the codebook by iteratively replacing the two least likely symbols by
a new symbol and using one bit to distinguish between them. The Huffman algorithm
achieves the optimal bit-rate for given block-length. Arithmetic coding differs from
Huffman coding in that rather than mapping each input symbol to a codeword sepa-
rately, it encodes the entire message into a single number, a fraction between 0 and
1, represented by its binary expansion. The more likely source symbols are mapped

to wider sub-intervals of the current interval. When the end of input, is reached. a

I

¥

source values into each codeword. Quantization can also be used more generally

to refer to the process of mapping a continuous range of values to a finite number
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Figure 2-2: Principle of quantization. A quantizer is a non-injective function
which maps the continuous source alphabet to a finite codebook. A quantizer assigns
codewords to disjoint ranges of source values and determines the decoded symbols
corresponding to each codeword. Transmitted over the channel is just the index of
the codeword. Shown here is (a) an example probability distribution function for a
Gaussian source with the decision boundaries and reconstruction levels of an 8-level
(3-bit) Lloyd-Max quantizer [60,66], and (b) a plot of the encoding function.
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function is non-uniform but the input ranges have all equal length.

For fixed-length codewords one can do better by allowing non-uniform quantiza-
tion ranges. The goal then is to minimize the distortion given fixed number of levels.
For MSE distortion, the conditions on the optimal quantizer, found by Lloyd and
Max, require that the decision boundaries are the mid-points between reconstruction
levels and the reconstruction levels are the centroids of the probability distribution
function within each range between the decision boundaries [60,66]. This recursive
definition requires an iterative algorithm, known as the Lloyd-Max algorithm.

As in the case of lossless compression, where the optimal codebook with block-
length 1 did not achieve entropy, the optimal scalar quantizer (with block-length 1)
does not achieve the rate-distortion function. A wector quantizer maps vectors of
input symbols to codewords. Rather than scalar ranges, decision boundaries define
cells in the multidimensional space. Vector quantization is optimal in the limit of
infinite block-length, and can deal with sources with auto-correlation, but encoding
is computationally expensive (even with pre-optimized decision boundaries) due to
dimensionality explosion. Hence, practical methods apply decorrelation via transform

or predictive coding therefore performing scalar quantization.

Transform Coding: When there is auto-correlation in the source signal, encoding
more than one source symbol becomes essential (as the average entropy of a sequence
is much lower than the entropy of each symbol). Likewise, when the source signal
has multiple components exhibiting cross-correlation. General block-n encoders (such
as Huffman, arithmetic or Lloyd-Max quantizer) are complex, since the alphabet /
signal space grows exponentially with block length. In contrast, if the source can
be represented by a vector of independent random variables (or bands), then each
dimension in such vector can be encoded independently without substantial loss in
performance. For now we focus on the case when components of the source signal are
dependent linearly.

Converting a vector of correlated random variables into a vector of orthogonal (i.e.,

linearly independent or uncorrelated) variables can be done universally by means of
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Figure 2-3: Vector quantization. A vector quantizer assigns codewords to regions
of the input space. The decision boundaries in the optimal quantizer are equidistant
from the reconstruction vectors. Shown in figure is an example of a 2-d vector quan-
tizer found using the Linde-Buzo-Gray algorithm [59]. The decision boundaries form
a Voronoi diagram on the plane.

the Karhunen-Loéve transform (KLT) [61]. The Karhunen-Loéve theorem applies
to general stochastic process not just random vectors, but for random vectors it is

equivalent to singular value decomposition (SVD) of the covariance matrix.

Specifically, consider a random vector X with covariance matrix Ax. Then we

can decompose:

Ax =UZU”

so that U is an orthogonal matrix, 7 is transpose and ¥ is a diagonal matrix of non-
negative values. The rows of U are eigenvectors while the corresponding elements of ¥
are the corresponding eigenvalues of Ay. Now consider the random vector Y = U7 X,

Its covariance matrix is
Ay =UTAxU =UTUTUTU = &

which is diagonal. Hence, the components of Y are orthogonal.

After the linear transform, the decorrelated signal is further processed by quanti-
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zation (in lossy compression) or directly by entropy coding (in lossless compression).
At the decoder, the transform is inverted X = U Y on the dequantized signal Y~Y.

The downside of the SVD method is that the transform U, which is necessary
to decode, is dependent on the covariance matrix Ay. Communicating the values
in either of these matrices might require substantial out-of-band capacity and would
grow with square of the vector size. The alternative is to use a preset transform
matrix. In that case, the operation is essentially a projection of the source signal
onto a new basis, with the assumption that the signal is “sparse” in that basis. Some
of the most widely used transforms are the Fourier transform, the closely related
discrete cosine transform (DCT), the Hadamard transform and the wavelet transform.
Their common feature is energy companding?, i.e., after transform, most of the source
components have a low variance, and conversely the energy is concentrated in a few
components. Closely related to transform coding are subband coders which use wavelet
or other filter banks (often hierarchical) to decompose the signal into uncorrelated

subbands and then code each sub-band independently [18].

Predictive Coding: Another approach to exploiting auto-correlation or cross-
correlation in the source signal is to use some of its elements to predict the others
according to an assumed model of source. For instance, a strongly auto-correlated
signal couid be extrapolated from the past history or interpolated using samples from
both past and the future. In either case, rather than a sequence of direct signal sam-
ples, the encoder emits: the reference samples, parameters of the prediction model,
and the difference between the prediction and the actual value, i.e., the residual. Pre-
dictive coding is often recursive, i.e., the predicted value can itself be used to predict
other values. If recursive predictive coding is followed by lossy compression, it is
critical that the decoded version of the reference values is used for prediction, since
the lossless version will not be available for reconstruction at the decoder.

An example of one of the simplest predictive coding schemes is DPCM (differen-

tial pulse-code modulation) which uses the previous value as prediction for the next

20n the specific class of sources that they are applied to
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value. In that case, the model is non-adaptive and the predictive coder is essentially
equivalent to applying a linear transform, with the difference that it operates on an
infinite stream rather than a finite size block. In practice, a reference value is used
periodically to allow recovery from decoding errors or missing data. In general, the
predictive model can be non-linear and/or adaptive. For instance, an encoder could
use a subset of past samples for prediction and encode the indices of those samples

in parameters of the model.

2.1.3 Video Compression Primer

Now that we introduced the basic concepts of source coding, we provide a quick primer
on the anatomy of modern video coders. Video compression exploits redundancy

within the video data:

spatial: pixels in the same frame are highly correlated. In natural images many

areas have slowly changing luminance and colors.

temporal: adjacent frames in a sequence are similar. A static background is the
same across a sequence. An object in motion or a scene during camera pan is

composed of the same pixels, but at a changing offset.

psycho-visual: sensitivity of human vision is selective. Human eye is more sensitive
to changes in luminance than chroma (color). It has also limited acuity for fine
detail, in particular over slow changes in luminance and chroma, i.e. a shifted

edge is much more detectable than a shift in a gradient.

The spatial and temporal redundancy is exploited by transform and predictive coding,
while the psycho-visual effects are taken into account in quantization.
Figure 2-4 presents a block diagram of the state-of-the-art video encoder: joint

ITU/MPEG standard H.264/AVC (Advanced Video Coding) or MPEG-4 part 10.

Color Transform and Subsampling: The most popular way of representing color

in computer systems is the RGB model founded on the trichromacy of human vision.
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Figure 2-4: Anatomy of a modern video coder. H.264/AVC, i.e., MPEG-4 part
10. The Prediction block includes intra~-frame prediction and motion-compensated
inter-frame prediction.

Thus, the input data has three channels: red, green and blue. However, encoding
each of the channels independently would be inefficient, as there is high correlation
in the channels and human eye is more sensitive to luminance than color. Thus, the
first step of most video compression algorithms is to perform a color transform, i.e.
project the three-dimensional pixel values onto a different color space. The YUV (and
closely related Y’CbCr) color space uses the Y dimension to represent luminance and
the UV dimensions to encode color. As the human eye is less sensitive to variations
in color than luminance, the data in the chroma channels is subsequently subsampled,
usually at a rate of 2. For example, the typical 4:2:0 format represents a 16 x 16
macroblock of pixels by a 16 x 16 Y block, 8 x 8 U block and a 8 x 8 V block, thus

requiring half the number of values needed before subsampling.

Predictive Coding: The coder operates on macroblocks of 16 x 16 pixels, but they
are not encoded independently. Rather a set of previously encoded macroblocks can
by used for to compute a prediction of the block to be encoded. This prediction is then

subtracted from the original block and only the difference is encoded. It is important
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to note that the reference data used for prediction must be available at the decoder
for reconstruction. Therefore, the frame buffer stores pixel values as they would
be available at the decoder, i.e., after lossy compression. Furthermore, note that
the decoder cannot decode predicted pixels until the reference data is reconstructed,
which introduces constraints on the ordering of data in the bitstream.

Intra-frame predictive coding uses for reference only the pixels within the frame.
H.264 defines 9 modes — directions of prediction — including horizontal, vertical, diag-
onal, etc. Le., in horizontal prediction, the pixels are predicted to match the values
in their direct left neighbors.

Inter-frame coding uses as reference pixels from surrounding frames in the se-
quence. To exploit similarity in pixels despite motion of the object or the whole
scene (caused by panning), the reference does not need to correspond to the same
spatial coordinates, but rather be offset by a vector. Thus, for each macroblock to be
predicted, the coder estimates a motion vector to its best reference. For better effi-
ciency, more than one reference could be used, including the frames that follow in the
temporal order. Furthermore, the references can be weighted in a linear combination.
This is particularly useful when encoding fading and cross-fading scenes.

In MPEG-2, each frame has a particular reference. I-frames are not predicted.
P-frames are predicted using the preceding I- or P-frame. Finally, B-frames are
predicted using both the directly preceding and following I- or P-frames. In H.264,
the I/P/B distinction can be made per macroblock, more than 2 (up to 16) weighted
reference frames can be used, B-frames can be used for prediction (in a so called
B-frame hierarchy), and motion can be estimated independently for parts (as small
as 4 x 4) of the macroblock.

[t is important to note that the intra-frame prediction mode, as well as the inter-
frame prediction type, motion vectors and weights, are parameters of the predictive
model and need to be encoded in the bit-stream. Motion vectors, for instance, are
often correlated within a frame, and therefore encoded differentially in another ap-
plication of predictive coding.

As a final note, predictive coding, motion estimation in particular, is the most
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computationally intensive step in the modern video coder which heavily skews the
computational effort towards the encoder side, which has to perform the search for

the best mode and motion vectors, while the decoder side performs a simple lookup.

Transform: As pixels within a macroblock are highly correlated, the encoder ap-
plies a decorrelating transform to compand the energy of the signal down to a few
components. The most prevalent is the 8 x 8 2-dimensional DCT (Discrete Cosine
Transform) applied within each block, but other transforms (notably wavelets and

Hadamard) have been used in some video and image coders.

Adaptive Quantization: The DCT coefficients are subsequently quantized, by
simple divide-and-truncate operation. The greater the divisor, the more coarse the
approximation. The divisor might be different for each DCT coefficient in accordance
with the human psycho-visual model. Typically, the coefficients corresponding to high
spatial frequencies are quantized more coarsely than the low spatial frequencies, and
DC (i.e., the average value in the whole frame) is quantized most finely. That said,
when inter-frame prediction is used, the residual after prediction does not resemble
natural images and is typically quantized with a uniform quant size.

The quantizer step is multiplied by the quantization factor which lets the video
coder trade rate off for distortion. The coarser the approximation, the lower the
decoded video quality, but also the fewer bits are required to encode it. In the
streaming scenario, the encoder must keep the bit-rate constant and so, when the
buffer is reaching its limit, it needs to increase the quantization factor thus reducing
quality and rate. In practice, the rate control process is more complex, as it is difficult

to predict the rate that will result in using a specific quantization factor.

Entropy Coding: The quantized coefficients, as well as all the parameters such
as: prediction mode, motion vectors and weights, quantization factors, etc., are then
compressed without loss in the entropy coder. The entropy coder might user precom-
puted codebook, but could also be adaptive in which case the codebook needs to be

encoded as well.
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Legacy video coders (MPEG-2 and its foundation, JPEG) used a combination of a
Huffman variable-length code (VLC) and run-length encoding (RLE) in which a non-
zero DCT coefficient followed by a run of zero-valued coefficients would be encoded as
one codeword. To facilitate that, the coefficients would be encoded following a special
zig-zag order. The modern H.264 coder uses more sophisticated context-adaptive VLC

or arithmetic coding (CAVLC or CABAC).

2.2 Channel Coding

While source coding reduces the bit-rate by removing redundancy from the bit stream,
channel coding creates structured redundancy in the transmitted symbols in order to

help the decoder invert the destructive effects of the channel.

2.2.1 Channel Model and Capacity

The channel coder takes a sequence of bits and maps it to a codeword which is sent
on the channel. The decoder then must infer the original sequence of bits from the
distorted codeword it received. Just as source coders are designed around a statistical
model for the source, channel coders address the channel model.

In general, a memoryless channel model is captured by the conditional distribution
Py|x (y|z) where X is the channel input symbol and Y is the channel output symbol.
In 1948, Claude Shannon defined channel capacity as the tightest upper bound on
the amount of information that can be reliably transmitted over the channel, given

its probabilistic model. Capacity is given by:

C=suwl(X;Y)

pPx

where I(X;Y') is the mutual information between X and Y defined as

o _Pxy(@y)
I(X;Y)=FE llogz px(x),py(y)]
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where px y is the joint distribution and px,py are the respective marginal distribu-

tions. Equivalently, using the definition of entropy from section 2.1.2:
I(X;YY=H(X)+HY)-H(X,)Y)

Note that px is determined by the designer of the channel code, i.e., codebook. Shan-
non has shown that for a given channel with capacity C, and information transmitted
at rate R, then there exist channel codes that allow the probability of error at the
receiver to be made arbitrarily small if and only if R < C. As in rate-distortion
theory, the practical limit to achieving capacity is the block-length of the channel
coder, i.e., number of channel symbols spanned by each codeword, which determines

delay and complexity of both encoder and decoder.

Commonly considered memoryless models and their capacities are:

additive white Gaussian noise (AWGN) channel: adds a random variable (noise)

with normal distribution, N(0,0?) to the input value.
1
C= 5 log,(1+ SNR)

where the signal-to-noise ratio, SNR = E[X?]/o?

binary symmetric channel (BSC): flips the input bit (0 to 1 and vice versa) with
fixed probability, p.
C=1-H(p)

where H(p) is the entropy of a Bernoulli trial with probability of success p, i.e.

H(p) = —plogyp — (1 — p)logy(1 — p).

binary erasure channel (BEC): replaces input with € (“erased”) with fixed prob-
ability, p.
C=1-p
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Wireless Channel: The above models do not directly apply to the wireless chan-
nel. Typical wireless applications utilize RF frequencies in a passband, which allows
multiple concurrent transmission in different frequency ranges (commonly referred to
as a different channels) and efficient propagation through the environment. However,
all or most of the digital processing is done at the baseband, i.e. before analog interpo-
lation and up-conversion at the transmitter and after down-conversion and sampling
at the receiver. Therefore from a communication system design point of view, it is
most useful to consider the discrete-time baseband model of the wireless channel. In
principle, a (stationary) wireless channel which uses radio frequency EM waves can
be modeled as a linear time-invariant (LTT) system. Thus, it can be characterized by
its impulse or frequency response, determined by electrical properties of the environ-
ment and the communications hardware. In practice, the response is unknown and
can change over time. Additionally, the signal can experience non-linear and time-
dependent distortion during the digital and analog processing at the transmitter or
receiver, or due to Doppler shift. Furthermore, signals from other sources, such as
interference or circuit noise, can add up and distort the information signal at the
receiver. Finally, a defining characteristic of the mobile wireless channel is fading,

i.e., the variations of the channel quality over time, space and frequency.

2.2.2 Channel Coding Techniques

In this section, we briefly describe a series of techniques that together will wrap the
wireless channel into a lossless bitpipe. The modern wireless communication chain
applies each of the above models at some point in the pipeline. We introduce the

general ideas first, before discussing their application in the coded OFDM system.

Training: The impulse response (or equivalently the phase and amplitude of the
frequency response) of the wireless channel is determined by the propagation envi-
ronment, in particular, by obstacles which attenuate or reflect the radio waves. A
frequency shift caused by Doppler effect or oscillator mismatch between the transmit-

ter and receiver devices is also initially unknown to the communicating parties. In
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order to effectively deal with this distortion (primarily by compensating for it at the
receiver), the transmitter includes known symbols that allow the receiver to estimate
parameters for the channel model. These known symbols can be included at the be-
ginning of the transmission, e.g., as the preamble of the packet, or intermingled with
data, e.g. pilots. In many systems, training is essential not only to compensate for
channel distortion but also to find the beginning of the packet and establish timing,

i.e., when does one symbol end and another begin.

Equalization and Orthogonalization: As the EM wave propagates through en-
vironment, it reflects from surfaces and may reach the receiver antenna via multiple
different paths. As multiplc copics of the signal add up with different delays and
attenuations, the impulse response of the channel contains multiple copies of the
impulse. Conversely, some frequencies within the signal will add up destructively
and so the frequency response is no longer flat. Consequently, a symbol transmitted
on the channel is spread in time and can interfere with subsequent symbols. There
are two major ways to combat this inter-symbol interference (ISI): equalization and
orthogonalization.

Equalization attempts to counter the effects of ISI at the receiver by estimating
channel response (via training) and compensating for it, e.g., by decoding the previous
symbol, recoding it, and canceling its interference, or by filtering the signal to make
the frequency response flat.

Orthogonalization avoids ISI by ensuring that two symbols cannot interfere with
each other. A guard interval inserted between symbols, if longer than the delay
spread of the channel, ensures that there will be no ISI. A pulse-shaping filter at the
transmitter can ensure that the channel satisfies the Nyquist ISI criterion, i.e., that
the impulse response is zero at subsequent symbol sampling points, so it does not

create ISI despite spreading over multiple symbols.

Orthogonalization in Frequency Domain: Alternatively, if we consider a signal

of length T but in the frequency domain, then we can see that frequencies at multiplies
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of 1/T are orthogonal® and can be used to encode symbols which will not interfere
with each other. We tacitly assumed that the signal is periodic with period of T,
but we would like to send different signal in the next period. If we sent different
signals in every span of T, the channel could spread them over to the next span
thus causing ISI. To prevent that, we use a guard interval in the time domain as
before, but rather than sending a zero signal in the interval, we extend the signal
with a cyclic prefiz. If the length of the cyclic prefix d is longer than the impulse
response, then the output signal sampled in the time span [d, T + d] looks as if the
signal was infinitely periodic. This is the principle behind multi-tone systems, in
particular orthogonal frequency division multiplering (OFDM), which we will focus
on throughout this section. Although technically carrying multiple channel symbols,
one span of T is referred to as the OFDM symbol the component frequencies as the
subcarriers or bins. Observe that, although OFDM prevents ISI, equalization is still
necessary to compensate for a non-flat frequency response which will cause different

subcarriers to experience different attenuation and phase change.

Digital Modulation: In general, modulation refers to modifying the properties of
a high frequency carrier signal by a lower frequency information signal. Modulation
facilitates frequency division multiplexing (FDM), i.e., division of the EM spectrum
into separate channels, and is used for virtually all RF communications. However,
modulation can be applied within the information signal as well. Specifically, the
amplitude and phase of each subcarrier in an OFDM symbol can be modulated.
Equivalently, each subcarrier is represented by a pair of cosine and sine of the partic-
ular frequency, and the amplitude of each can be modulated. This is the quadrature
amplitude modulation (QAM), which naturally fits within the OFDM scheme. By
convention, a pair of real values modulating one subcarrier is represented as one
complex number, or a phasor. Thus an OFDM symbol comprised of N subcarriers
encodes N complex numbers. In ideal OFDM (assuming stationary channel response,

perfect channel estimation, sufficient cyclic prefix), each of the 2N dimensions is or-

3These frequencies form the Fourier series.
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thogonal and can be modeled as AWGN, where the noise comes from far interference
and receiver circuitry. For simplicity, we assume that each subcarrier experiences
equal amount of attenuation, equal amount of noise and is subject to the same power

constraint.*

Using this model, the capacity of this channel is C = Nlog,(1 + SNR) bits per
symbol, but so far, the wireless channel accepts discrete-time, continuous-value inputs.
To fit in the source-channel system, we need a channel coder to map sequences of bits
to one or more channel symbols. In principle, this task is the dual complement of
quantization in source coding. This is particularly true in the case when we contrapose
a Gaussian source and a channel with Gaussian noise. In principle, the channel code
defines a finite alphabet of codewords which are vectors in the multi-dimensional
space R" (or C™/?) for block-length n. The encoder maps each sequence of bits to
its corresponding codeword, e.g., an encoder taking k bits would need 2* codewords
in the codebook and achieve rate of k/n bits per channel dimension. The decoder
on the other hand receives distorted codewords and needs to determine the original
bit-sequence. The optimal decoder finds the mazimum likelihood (ML) bit-sequence,
i.e., the one that maximizes the conditional probability p(data|received codeword)
When the noise is Gaussian and white (i.e., each dimension has identical independent
distribution), it can be shown that the the ML decoder finds the codeword has the
minimum mean square error (MMSE) from the received distorted vector, i.e., within
the smallest Euclidean distance in R". Consequently, codewords in a good codebook
are spaced as far as possible in R" to minimize probability of decoding error, but at
the same time the average power E[X?] of the codebook must be within the constraint
on total power. In fact, the capacity of the AWGN channel is derived by considering
the task of sphere-packing the R™ space, as n goes to infinity.

As in the case of compression, the scalar (one-dimensional) codebook does not
achieve capacity at any SNR. Although multi-dimensional codebooks for AWGN

have been proposed, e.g., lattice codes, the prevalent design uses two-dimensional

4Although that is usually not true and can be exploited as diversity discussed later, it is often
the assumed model when the attenuation or interference is unknown ahead of transmission.
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Figure 2-5: Sphere packing in R?. Subject to white Gaussian noise, the error
probability for any codeword is dominated by the probability of confusion with the
nearest codeword. Hence, the "goodness” of the codebook is determined by the
maximum radius of balls inflated around all codewords. However, the codebook is
also constrained by power, the average square-distance of codewords from the origin.

codebooks which facilitate decoding via simple search. In the context of QAM, the
codebook is refered to as constellation. Common constellations are BPSK, QPSK, 16-
QAM, 64-QAM, illustrated on Fig. 2-6. Finite-block-length constellations can never
guarantee correct decoding (thanks to the unbounded nature of the normal distribu-
tion), but we can compute the probability of bit error, P,. For instance, for BPSK

the probability of bit error is:

P, = %erfe (\/m)

where erfc is the complementary error function. One would typically define a target
bit error rate, e.g., 1077 and find the minimum SNR required to achieve it. Observe
that the higher order of a constellation, i.e. the more bits are encoded in each
symbol, the more closely packed the codewords need to be, thus requiring a lower
noise variance (higher SNR) to achieve the same probability of bit error.
Two-dimensional constellations, limited by their short block-length, are far from

achieving capacity on their own. For instance, to achieve 10~7 bit-error rate (BER),
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Figure 2-6: Quadrature amplitude modulation. In QAM, the channel codewords
are fixed phase and amplitude modulations of a single-frequency carrier (e.g., one
subcarrier in an OFDM symbol). Using the phasor representation of the sine wave, the
codewords are complex numbers and are often drawn on the Argand plane as shown in
the figure. The real and imaginary parts of the complex vector are commonly referred
to as the in-phase (I) and quadrature (Q) components of the signal. The figure shows
common QAM constellations: (1) BPSK, (2) QPSK, (3) 16-QAM, (4) 64-QAM. The
corresponding rate is 1, 2, 4, and 6 bits per complex dimension (i.e., per Hz). The
higher the rate the closer together thus less resilient to noise the codewords are, since
the average power of the constellation is fixed.
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BPSK requires over 10.5dB SNR to provide a rate of 0.5 bits per channel dimension.
At that SNR, Shannon capacity of the AWGN channel is over 1.8 b/d. In a different
comparison, Shannon capacity is 0.5 b/d at 0dB SNR, so BPSK needs 10 times more
power. Rather than expecting such a low BER from the constellation we could treat
the residual bit errors as a binary symmetric channel (BSC) and apply a binary code
to deal with errors. The binary code could then efféctively increase the block-length
of the channel code, while keeping the constellation simple to implement. In practice,
using weak QAM constellations to convert an AWGN channel into a BSC is not
very efficient and better performance can be achieved by using soft-value decoding

discussed later.

Digital Error Detection and Correction: The principle of binary channel cod-
ing is analogous to digital modulation except that, rather than in R", codewords
are points in the n-dimensional vector space over the binary finite field where n is
the block-length. Furthermore, in this space of size 2", there is no power constraint.
In a BSC, bit-errors are iid with Bernoulli distribution, so the maximum-likelihood
decoded codeword is the one from the codebook which minimizes the Hamming dis-
tance to the received distorted codeword.’ Consequently, a good codebook spaces its
2 codewords as far as possible in the 2" space, achieving rate k/n.

Performance of binary codes is considered for a specific bit error probability on
the channel, and in contrast to AWGN, one can design codes that guarantee error-
free decoding when the number of bit errors introduced by the channel in a codeword
does not exceed ¢, the error-correcting ability of the code. Minimum-distance decoding
implies that to guarantee error-free output, the minimum Hamming distance between
any two codewords in the codebook, d must equal at least 2¢t + 1. Furthermore,
the decoder can determine whether the codeword contains bit errors provided their
number is less than d. For instance, a code with minimum distance 3, can detect up
to 2 bit errors and correct up to 1 bit error in a block. When digital codes are used

for error correction, they are often referred to as Forward Error Correction (FEC)

SHamming distance between two binary sequences of equal length is the number of differing bits.
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codes.
In 1960, Hamming formulated the sphere-packing bound which relates n, k and ¢
for any binary block code and shown that there exist perfect codes that achieve this

bound. For binary codes, the bound is:

t
()<
im0 \'
Unfortunately, perfect codes are rare, and fortunately in practice unnecessary in the
context of communications. Instead, practical error-correcting codes are designed to
greatly reduce the probability of bit error while achieving a high rate.

The state-of-the-art binary codes used to strengthen the weak QAM constellation
are convolutional codes and low-density parity-check (LDPC) codes [28,62]. LDPC
codes are block codes which compute parity checks by adding together (modulo 2) a
small number of bits from the block. Unlike block codes, convolutional codes produce
a stream of parity checks computed over a short window of past data bits® Since
binary codes use a much larger codebook than the QAM constellation, the challenge
is the complexity of the decoder, as exhaustive search for the maximum likelihood
codeword becomes prohibitive. To find the most likely sequence of data bits given
the sequence of received coded bits, the convolutional decoder employs the Viterbi
algorithm, a dynamic programming method which treats the data bits as hidden states
in a hidden Markov model [97]. Unfortunately, the Viterbi algorithm requires O(2*)
space for a binary code with constraint length &£ which limits the strength of practical
convolutional codes. For LDPC, iterative belief propagation decoding methods are
not optimal, but require only linear space with block-length, and perform very close
to the theoretical Shannon capacity [63].

Digital codes need not be binary, but instead use a larger finite field as the alpha-
bet for their arithmetic. Galois fields are of particular interest as their elements can
be expressed in a round number of bits. A different bound discovered by Singleton

states that for any digital code, the minimum Hamming distance d in the codebook

6The length of that window or “memory” is the constraint length of the code.
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must be smaller than n — &, the number of parity symbols:
d<n—k-1

The only binary codes that are optimal under the Singleton bound (also known as
mazimum distance separable or MDS) are trivial (a single codeword or the complete
field in the codebook), but there are non-trivial MDS codes for larger fields. Notably,
the Reed-Solomon codes are g-ary MDS codes such that ¢ = 2¢ and block-length
n = q — 1. Because Reed-Solomon codes are MDS they can correct up to |(n— k)/2]
symbol errors where k is the number of data symbols per block, i.e. at rate k/n.
However, observe that as each symbol is composed of ¢ bits, an error in any of the bits
constitutes a symbol error. Reed-Solomon codes are typically decoded in O((n — k)?)

time using the algebraic Berlekamp-Massey algorithm.

Code Concatenation and Interleaving: Although we suggested that the residual
error after decoding QAM can be treated as BSC, in a higher order QAM multiple
bits are encoded per symbol, and hence one symbol error can map to multiple bit
errors. Using Gray coding for mapping bits to QAM symbols ensures that if the
decoder mistakes the symbol for an immediately adjacent symbol then exactly one
bit in the symbol is incorrect. However, if the distorted symbol lies farther away,
we get potentially a burst of bit errors. Furthermore, as we will discuss in the next
section, fading may lead to burst errors. A burst of errors within a block or constraint
length of the FEC code will likely exceed the code’s error correcting ability, hence the
goal is to distribute the errors over multiple blocks. This channel decorrelation is dual
to source decorrelation described in Section 2.1.2, and aims at converting the non-
memoryless channel into a memoryless BSC. The common approach to decorrelation
is interleaving which in essence permutes the symbols in the stream in deterministic

or pseudo-random fashion.

This general strategy of combining two channel codes with interleaving in-between

is called code concatenation. This technique can also be applied to correct residual
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Figure 2-7: Code concatenation. The inner code wraps the raw channel into a
”super-channel” which exhibits lower noise or error probability but also lower rate.
The outer code encodes for the super-channel to remove any residual errors. to spread
any bursts in the residual errors, an interleaver is applied in-between. At the encoder
the outer code is applied first, followed by the interleaving, and finally inner code.
The process is reversed at the decoder.

errors after FEC. When FEC decoder fails to decode all errors, there are typically
a large number of errors in a block or a burst of errors in a convolutional stream.
Although the rate of the resulting code is the multiple of rates of its components,
thus smaller, the effective block-length is large without paying the price in complexity
as shown by Forney. The disadvantage, however, is the increased latency needed to

interleave and deinterleave the blocks.

Soft-Decision and Iterated Decoding: Consider the concatenation of QAM with
a convolutional FEC. For practical reasons, the early decoders decoded the QAM
symbols to bits and then the resulting bit-stream into data bits. In this hard-decision
system the received symbol in R™ is converted to a codeword in 2% then passed
to the FEC decoder and all other information about the original symbol is forfeit.
Therefore, the FEC decoder sees a BSC and each coded bit is considered to carry
the same amount of information. In particular, the FEC decoder cannot distinguish
whether the received QAM symbol is near or far from a constellation point. However,
if the received QAM symbol is far from its presumed original, then the conditional
probability that this is the actual transmitted symbol is low. Consequently, the
confidence in the decoded symbol is low. Given this confidence information, an FEC
decoder can perform significantly better. In particular, recall that a block code which
can detect d — 1 errors, can correct |(d — 1)/2] errors. Furthermore, when applied

to a binary erasure channel (BEC), the code can recover from d — 1 erasures. If
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the decoder is told which bits have low confidence, it can treat them with erasures
and correct them with much greater effectiveness than unknown bit errors. Thus,
modern FEC codes use soft-decision decoding in which the information exchanged
between the inner and outer code is composed of soft values indicating the inner
decoder’s confidence. Intuitively, a soft-decision concatenated code is an efficient
implementation of a vector modulation. A more general approach is to jointly design
the FEC codebook and modulation constellation. An example of such design is trellis-
coded modulation (TCM) in which the constellation symbols directly encode parity
checks on the data stream [93]. In this case, the joint decoder accepts as input the
received constellation symbols and uses these observations to determine the most
likely sequence of data bits. Soft-decision decoding can also be part of an iterated
decoding algorithm such as belief propagation in LDPC codes or the turbo method in
turbo codes [8,63]. Turbo codes involve random interleaving of concatenated encoders

at the transmitter and iterative maximum a-posteriori (MAP) decoding [8].

Errors as Erasures: No matter how much redundancy is introduced to the channel
symbols, when the channel capacity is lower than effective rate, Shannon’s theorem
shows that errors in the decoded data stream are inevitable. In most cases, any
corruption to the data is catastrophic, whether the flipped bit is a control flag, part
of an integer in a data structure, a floating point value or a codeword in arithmetic
or variable length code. Thus, to protect from such failures, an error detecting code
is used. Packets which fail the parity check are then discarded. Thus, a BSC can be
converted into a BEC. This conversion carries a trade-off: all data bits covered by

share fate with just a single bit error.

In comparison to FEC, the rate of the error detecting code can be very high.
Furthermore, the code is typically fine tuned to the expected error patterns. For
example, the popular 32-bit CRC-32 is used on packets of around 12000 bits in length

and is designed to detect bursts of errors.
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Capacity Estimation and Adaptation: For efficient communication in the sep-
arate design, the channel coder must adjust the code rate to the capacity of the
channel. If the rate is too low, the communication is not as efficient as it could be.
On the other hand, if the rate is too high, the error probability is significant and
data corruption is inevitable. There are essentially two ways of dealing with variable
capacity.

Rate adaptation: the receiver assesses the state of the channel and communicates
it to the transmitter which adjusts the channel code rate. Hints that can be used for
capacity estimation include estimated SNR (e.g., from training sequences and pilots),
BER or single-bit packet erasure state (i.e., reception acknowledgment or ACK). One
of the main challenges of rate adaptation in wireless networks is to separate effects
that can be mitigated without modifying the channel code, such as interference from
other users of the medium in TDMA or CSMA schemes.

Rateless coding: the encoder uses a scheme in which the codeword carrying given
message can be extended on demand. Thus the effective rate is progressively reduced,
until the receiver successfully decodes the message and acknowledges to the transmit-
ter that no more symbols are needed. Notably, most wireless systems employ ARQ
(Automatic Repeat Request) which is the simplest repetition-based rateless scheme.
Rateless codes for erasure channels have received a lot of attention in the context of
packet networks. For BEC, hybrid techniques such as HybridARQ are the mid-point
between rateless coding and fixed-rate coding. Recently, the rateless approach has

been applied to real-valued noise channels, e.g. AWGN [22,82].

2.2.3 Fading

As discussed in the previous section, the received RF signal is a superposition of
multiple copies propagating along different paths through the environment. This
leads to ISI and frequency-selective attenuation which requires equalization. This
effect also applies to other media, such as cables, as well. However, in the wireless
setting the attenuation along any path is inherently variable as the device antennae

or parts of the environment are mobile. The result is that the channel exhibits fading,
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i.e., significant deviations of the effective attenuation.

Whether caused by multi-path interference or line-of-sight obstruction (shadow-
ing), fading is inherently connected to the phase-geometry of the environment. Thus,
fading can be observed as we move along different dimensions: time, frequency and

space.

How fading is addressed depends on the speed of the variation. If the changes are
sufficiently slow to estimate the new value, communicate it via feedback and respond
by adjusting the channel coding scheme for the next coding block, then they can be
dealt via adaptation in a feedback loop. Rate adaptation, for instance, addresses slow
fading. Similarly, given frequency-selective slow fading, the OFDM channel encoder

could allocate different code rates to different frequency bins.

On the other hand, if the fading is fast then the feedback loop is too slow to adjust
code rate in response to capacity changes. There is high probability that the channel
will experience a deep fade during a code block which will lead to data corruption
in that block, i.e., outage. To prevent outages, the channel encoder must ensure
that each coding block experiences average channel state. Thus, the coder uses an
interleaver or another decorrelation method to spread each deep fade across many
blocks. This way the variance of the channel conditions across blocks, and thus the

probability of outage is significantly reduced.

Observe that dthough interleaving increases latency of the code, it does not in-
crease the block-length. In particular, interleaving applied to a memoryless channel
does not change the capacity or the performance of any code. However, if the under-
lying channel exhibits fading, then the outage capacity is improved by interleaving.
The same principle is exploited in the code concatenation technique discussed earlier.
In fact, if interleaving of the channel symbols is not feasible, the channel coder can
deal with block failures of the channel code by interleaving its input and applying
an outer code as in concatenation. This way errors from the failed block will be

distributed across many blocks of the outer code and recovered from.
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2.2.4 Coded OFDM-based Communication System

In this section, we put together the techniques introduced above to describe the design
of a typical modern wireless communication system. We focus our attention on the
popular OFDM-based design common to the PHY layer of 802.11, 802.16 and DVB
wireless standards. In these standard, the communication takes place in the UHF and
SHF radio frequency ranges, from 500MHz to 5GHz, but is confined in channels 5MHz
to 40MHz wide. Therefore, the typical implementation uses analog signal processing
to upconvert /downconvert the baseband signal to the communication passband, while
all baseband processing is digital, requiring digital clock speeds below 100MHz. The
scope of this exposition is the digital signal processing where virtually all of the
channel coding is applied.

Figure 2-8 presents a conceptual block diagram of the coded OFDM PHY layer.
The transmitter converts packets of bits to frames of digital baseband samples. The
receiver processes the stream of digital samples to detect frames and decode packets
to be passed to the higher layers. The processing blocks are organized into a pipeline
with notable correspondence between the encoding and decoding blocks of specific
features of th channel code. We follow the feature stack from the raw baseband
channel at the bottom to the packet erasure channel presented to the higher layer.

This order matches the layout of Section 2.2.2 for the convenience of the reader.

Preambles and Training: To help the receiver identify the beginning of a frame,
i.e., wanted signal, from the stream of baseband samples, the transmitter prepends a
preamble of known symbols to the frame. For simplicity of logic design these symbols
are often unique so that the detection is not triggered in the middle of a frame. The
key property of the preamble is that it can be detected despite unknown channel
response because the distinguishing characteristic survives any linear time-invariant
(LTT) channel. Such preamble also allows timing recovery, i.e., establishing symbol
boundaries. For example, the 802.11a/g preamble is composed of so called “short
training symbols” which are periodic with half-symbol period. Since this periodicity

is preserved by the channel, the receiver can detect such symbols by observing spikes in
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Figure 2-8: Organization of an OFDM-based channel coder. E.g., 802.11a/g/n
(without the outer code) or DVB-T. Retransmissions and bit-rate adaptation are
performed at the higher layers: link and MAC.
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the auto-correlation function in the signal, e.g., as in the Schmidl-Cox synchronization
algorithm.

The preamble can also be used to determine the channel response and train the
equalizer. In an OFDM system, this is commonly done in a coherent fashion in the
frequency domain, i.e., after synchronization, sampling and FFT. The receiver simply
compares the received symbol to the expected known one to determine the linear, but
frequency-dependent channel response which can be described by one complex number
per frequency bin.

Finally, a practical wireless channel has non-LT1 effects such as a carrier frequency
offset (CFO) or a sampling frequency offset (SFO). Such offset is caused by a mismatch
in the hardware oscillators between devices or the Doppler effect, and results in a
frequency shift or time-dependent phase offset. Both offsets can be estimated by

observing the channel impact on the known preamble symbols.

Cyclic Prefix and Sampling: The cyclic prefix is the ISI-free guard interval (GI)
between OFDM symbols. In 802.11a/g, the cyclic prefix adds 1/4th to the symbol
length. Specifically, the 20MHz channel is sampled at 40Msamples/s and one OFDM
symbol spans 4us, i.e. 80 samples. Of those, 16 samples are the cyclic prefix in
front of a 64-sample data symbol. In 802.11n and DVB-T other choices for the GI
are available thus providing a tradeoff between delay-spread tolerance and efficiency.
At the receiver, the signal from the timing recovery indicates which subsequences of
samples should be considered as OFDM symbols. Recall that to guarantee that to
remove the effects of an channel with impulse response of length d, the sample needs
to be done at least d after the transmission of the previous symbol has ended. If d is

shorter than GI, the sampler has some slack.

IFFT and FFT: The key component of the OFDM pipeline is the conversion
between the time domain of the baseband signal and the frequency domain to which
the data is mapped. The transmitter converts the frequency bins to time-domain

signal by applying complex inverse digital Fourier transform (IDFT). The receiver
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simply inverts the operation by applying complex DFT. Fast Fourier transform (FFT)

is the common algorithm for computing these transforms. In 802.11, the 64 samples

in an OFDM symbol are converted to 64 frequency bins. Observe that since the
40/2

sampling frequency is 40MHz, the subcarriers are —4= = 312.5kHz apart.

Pilots and Phase Tracking: Not all frequency bins are used for data. Specifically,
some bins are left empty for spectrum shaping, i.e., ensuring that the signal fits the
spectral envelope imposed by the RF spectrum regulator (such as the FCC) and that
there is no aliasing in case of severe CFO. In addition, some bins are reserved for pilot
tones. Those known values in specific bins can be used by the receiver to track changes
in the channel response from one OFDM symbol to the next. For instance, a residual
CFO causes the phase offset of all bins to advance between symbols, while a residual
SFO causes a linear phase offset. 802.11 uses only 52 out of the 64 bins and reserves
4 bins for pilots, thus leaving 48 bins for data. Together with GI, bin allocation in
802.11 reduces the net data bandwidth of the 20MHz channel from nominal 20M to

12M complex dimensions per second.

QAM Mapper and Slicer: The QAM modulation is where bits are mapped to
the waveform in the OFDM bins. The most popular constellations, employed both
in 802.11 and DVB systems are shown in Fig. 2-6. Observe that higher order con-
stellations carry more bits per dimension, but also require more bits of precision to
express the waveform value. In practice, a fixed number of bits is used for the wave-
form (both before and after FFT) and is often tuned to the receiver noise floor. The
receiver performs demapping or slicing to recover the original bit-stream by finding
the nearest (in Euclidean distance) constellation point to the received value. In most
modern implementations, the slicer outputs a soft-value per bit rather than 0 or 1.
This allows soft-decision decoding which greatly reduces BER. Notably, in 802.11 the
order of the QAM as well as the rate of the FEC code described below can vary from
packet to packet. Therefore, the packet must include a SIGNAL field which is always
mapped using the same QAM constellation and FEC code. Parameters that don’t
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change from packet to packet are typically announced via periodic beacons from the

wireless access point or base station.

FEC Code: 802.11a/g and DVB-T employ a binary convolutional code (BCC) with
rate 1/2 and constraint length 8. For greater flexibility, the code can be punctured by
removing some of the check bits from the code stream. This increases the data rate
at the price of reducing minimum distance between codewords thus increasing BER

or conversely increasing the required SNR to achieve the same BER. More advanced

802.11n, 802.16 and DVB-T2 employ LDPC or Turbo codes.

Interleaving: As the frequency response of the 20MHz channel is rarely flat, the
encoder must ensure that bits within the constraint length of the BCC do not ex-
perience a deep fade thus causing a bit error in the decoded data stream. This is
achieved by interleaving the coded bits across OFDM bins before they are mapped
via QAM. Additionally, not all bits in a higher order Gray-coded QAM are equally
protected, and therefore the interleaver ensures that highly protected bits are inter-
spersed with more noisy bits in order to average the behavior. Notably, the LDPC
code has codeword block-lengths starting at 648 bits which is greater than 192, the
maximum number of coded bits per OFDM symbol at the highest order 64-QAM,

and therefore is not interleaved.

Scrambler: To reduce the probability of long sequences of zeros or ones in the input
of the FEC coder, the scrambler decorrelates the input sequence by multiplying the

input signal with pseudo-random binary noise sequence.

Outer Code: In some systems, such as DVB-T and DVB-T2, but also in some
802.11n modes, an outer coder is applied to reduce the probability of residual bit
errors. Reed-Solomon code can be applied on top of BCC with or without interleaving.
Interleaving is not required to yield benefits from code concatenation, because the
errors in the output of the BCC are most likely bursty and the Reed-Solomon code

(RSC) operates on byte sized symbols. Therefore, 8 bit errors in a row will corrupt
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at most two symbols in a RSC block and can be easily corrected. In DVB-T, the
BCC and RSC are interleaved using a convolutional interleaver which spreads the

RSC encoded bytes from one 204-byte block as far as 2244 bytes apart.

Error Detection: To guarantee that the packets delivered to the higher layer are
error free, a CRC32 check is appended to the data frame. If the check fails, the
received frame is discarded and no ACK is sent. Lack of ACK is interpreted by the
transmitter as reception failure and the frame is retransmitted. This simple feedback
is the basis of bit-rate adaptation in 802.11a/g. In 802.11n, the communicating devices
can exchange souding frames thus providing more accurate estimate of channel state

including per-bin information.

2.3 Joint Source-Channel Coding

The separation theorem, based on ideas from Shannon [86], proves that the designs
of the source and channel codes can be decoupled without loss of optimality if the
channel capacity is well defined, as in the case of stationary point-to-point channels.
Such separation greatly simplifies the construction of the system by focusing the
concerns of the code designers on only one source of uncertainty, either the source
or the channel. However, such approach also has some drawbacks. In particular,
channel coding assumes that the channel statistics are known to the source. When this
assumption is violated, i.e., the actual channel capacity drops below target capacity,
the performance of these codes degrades sharply, showing a threshold effect. This
threshold degradation is a direct result from the separation of channel and source
coding, where errors at the channel decoder may render the output of the source
decoder completely random. The second drawback is that the separation principle
applies only to stationary point-to-point channels and could incur a severe penalty
for other channel types [30]. Last, digital communication codes usually requires long
blocklengths and high encoder/decoder complexity to achieve near-optimal distortion

which becomes problematic for real-time communication.
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The above limitations of digital separation are particularly important for wireless
channels. Specifically, in mobile scenarios the channel SNR may vary widely and un-
predictably [98], creating a mismatch between the instantaneous channel capacity and
the target capacity of the used channel code. To prevent such a situation, a digital
design may need to be overly pessimistic in its choice of channel-code rate. Broadcast
channels are also problematic for digital design because receivers may have diverse
channel SNRs, invalidating the assumptions of the separation theorem. Finally, in
sensor networks and mobile applications, latency and computational complexity be-
come important design decisions. As a result, one may prefer a mild increase in
distortion if it results in a reduction in latency or computational complexity. To ad-
dress the deficiencies of the digital separation, we have to jointly optimize the source
and channel codes and the result falls into joint source-channel coding (JSCC). Tech-
nically, any joint or cross-layer design and optimization of source and channel coders
falls into JSCC making it a rather broad term. In this chapter, however, I will focus
on the techniques addressing the case of transmitting analog signals (such as video)

on broadcast channels which are most relevant to this thesis.

2.3.1 Multi-Resolution (Layered) Coding

When users with different channel capacities want to receive data from a single source,
the user with higher capacity expects a more accurate (less distorted) content, but
otherwise there is a high correlation between the reconstructions that each user re-
ceives. Thus, if the system is to support such users simultaneously and the channel
resources are limited, the natural approach is to attempt to isolate common informa-
tion that can be delivered to all users to avoid redundant transmissions. On top of
that, the better user using the extra capacity receives additional data which allows it
to reduce the distortion in reconstruction.

For this approach, commonly referred to as layered or multi-resolution coding, to
be feasible, the channel must allow a channel signal to be received by all users, which
in general is not always the case. However, many broadcast channels are degraded [16],

that is, the different realizations of the channel can be modelled as simply successively
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Figure 2-9: Degraded broadcast channels. In a degraded broadcast channel, the
user with a weak channel (Receiver 2) receives the same signal as the user with a
strong channel (Receiver 1) but with additional noise. In a wired channel, the noise
equivalent is packet loss.

accumulating more channel noise. This is illustrated in Fig. 2-9. A wired broadcast
network can be physically degraded in the sense that all packets that reach the second
user first go through the first user which acts as a forwarder, as in application-level
multicast [12,26]. In contrast, in a wireless broadcast, users experience independent
channel noise coming from nearby interferers or their receiver circuitry. However,
in many cases (as in the case of the AWGN channel), such broadcast channel is
stochastically degraded, that is, it can be modeled as in Fig. 2-9.

When a channel is degraded, the transmitter can encode the data into a base layer,
targeting all users and carrying coarse approximation of the source signal, and a series
of enhancement layers which progressively refine the quality of the decoded signal.
The more layers a user receives, the better its reconstruction. Most importantly the
layers form a stack in the sense that an enhancement layer is only useful if all the
coarser layers have been received without error.

A distinguishing feature of layered coding is that it allows to keep some notion
of the source-channel separation. The source coder deals with the statistics of the
source and generates layers of codewords that allow progressive refinement of its
reconstruction, while the channel coder deals with the statistics of the channel to
ensure that the base layer is better protected from channel noise and thus reaches all
users. However, in contrast to the point-to-point (single layer) scenario, both coders
have to jointly optimize the bit rate of each layer since the layers essentially interfere

with each other on the channel, that is any channel resources (power, bandwidth or
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airtime) spent on one layer require a reduction in bit-rate of the other layer.

Successive Refinement: Recall that in the process of lossy compression described
in §2.1.2, the source coder discards some information about the source signal in or-
der to describe it using the finite number of bits in a message. The decoder then
approximates the original values from the binary codewords it receives. To support
layered coding, the source coder creates a coarse approximation of the data using a
few bits and then iteratively refines the approximation using the additional bits. In
information theory, successive refinement refers to the problem of finding such layered
source code that the distortion achieved at any stage is optimal [21]. Formally, if the
source signal has a distortion-rate function D(R) and layer 4 is encoded at bit-rate

R;, then the distortion achieved by the user who receives the first k layers would be
k
D=D (Z Ri>
i=1

A small number of source distributions have been shown to be successively re-
finable with respect to specific distortion metrics [21,92]. In general, the key to
successive refinement as in achieving the optimal rate-distortion trade-off is using
long blocks rather than single source symbols. That said, a simple implementation of
a layered quantizer could simply use the quantization error of the previous layer as
the input signal to quantize again. Such design does not generally achieve successive
refinement, but is easy to implement. For instance, the SNR scalable profile of the
work-in-progress H.264/SVC (Scalable Video Coding) standard [85] applies this ap-
proach to the DCT coefficients after inter-frame prediction. A different method is to
leverage multi-resolution properties of some transforms. For instance, the coefficients
of the wavelet transform used in the JPEG2000 standard can be split into different
bins ranging from coarse to fine so that reconstructing the image from a subset of

bins produces a blurry approximation of the original.
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Superposition Coding: Once the source prepares a base and a series of enhance-
ment layers, the channel coder must ensure that each layer is appropriately protected
from channel noise. Unlike the point-to-point case where the channel code simply
alms at zero error-rate and protects all input bits equally, a layered channel coder
has to provide unequal error protection (UEP). A simple approach to achieve differ-
ent resilience to noise is to use time-division multiplexing between different channel
codes. The base layer is encoded using at a low rate using a strong channel code that
guarantees resilience at low channel SNR, while the enhancement layers are encoded
using at a high rate using a weak channel code thus only decodable at high SNR.
This approach however is rather inefficient and strictly better rates can be achieved
using superposition coding in which the codewords of each layer are added together

in the channel signal space [16].

Hierarchical Modulation: The idea of superposition coding can be applied to
QAM (see Digital modulation in §2.2.2) to create hierarchical modulation. When
codewords of two constellations are added together, the result is a Cartesian product
of possible codewords as illustrated in Fig. 2-10. Crucial for unequal error protection
of the constellations added together is that they are scaled accordingly. The constel-
lation encoding the high priority bits in the base layer is allocated more power by
scaling it by a larger factor than the low priority enhancement constellation. This
allows a low SNR receiver to differentiate between clusters corresponding to different
symbols in the base constellation even if the noise corrupts the enhancement symbols
to the extent that decoding is impossible.

Observe that in hierarchical modulation, the layers interfere with each other. If the
receiver cannot distinguish between the codewords of the low priority constellation,
then the unknown symbols directly contribute to the noise from the channel. Com-
pare the minimum distance in the base constellation in Fig. 2-10a to the combined
constellation in the case where the receiver only attempts to decode which cluster
the codeword belongs to. Thus, the presence of the enhancement layer increases the

minimum SNR required for the base layer to be decodable at a desired BER. We
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Figure 2-10: Hierarchical Modulation. Two QPSK constellations are added to-
gether with different scaling factors to form the hierarchical constellation. At high
SNR, the receiver can resolve all codewords, but at low SNR it can only resolve
which cluster (circled) the codeword belongs to as the noise is likely to confuse the
codewords within each cluster.
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can reduce the interference by scaling the enhancement constellation down, but that
increases the minimum SNR. required to decode that layer. It is important to note
that this inter-layer interference is present in other unequal error protection schemes,

such as time-division multiplexing or embedded diversity coding [20].

2.3.2 Analog-like and Hybrid Digital-Analog Coding

When transmitting an analog signal such as video over an analog channel such us
wireless, it is worth considering to directly map the source signal to the channel
signal using a continuous mapping. By avoiding quantization at the transmitter, the
distortion of fhe reconstruction is not determined by the chosen bit rate, but only
by the amount of noise on the channel. This approach naturally provides graceful
degradation and can simultaneously support diverse receivers.

In fact, when transmitting a scalar white Gaussian source over am AWGN channel,
one can easily show that a very simple linear encoder and decoder which only scales the
input signal by a factor can achieve the optimum performance [7,16,34]. In contrast
to the separate design which requires unbounded block-length to achieve optimal
performance at a specific known SNR, the linear design has a unit block-length and
operates at optimum regardless of the actual SNR without any feedback or adaptation.

Although other combinations of sources and channels where such uncoded trans-
mission is optimal have also been also explored [29], to enjoy this remarkable property
the statistics of the source and channel need to correspond to each other in a so called
match. Specifically, if the channel is multidimensional with AWGN, then a matching
source is a multivariate iid Gaussian variable with the same number of dimensions.
This is unlikely in practice, and if there is a gap in dimensionality, also known as
bandwidth mismatch, the linear design inevitably becomes suboptimal.

As simple linear scaling cannot effectively address a bandwidth mismatch, many
non-linear schemes have been proposed [15,38]. These schemes achieve bandwidth ex-
pansion or compression by using space-filling curves to map between one-dimensional
and two-dimensional spaces. Alternative hybrid designs combine digital and ana-

log (most often linear) coding to leverage the efficiency of the digital design with
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some graceful degradation or improvement coming from the analog design. Gener-
ally, these schemes operate close to the optimal performance while providing some
graceful degradation [77,88]. However, they cannot achieve the remarkable property

of uncoded Gaussian transmission which is simultaneously optimal at all receiver

SNRs.
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Chapter 3

SoftCast: an End-to-End Linear

Design

This chapter presents SoftCast, a clean-slate end-to-end architecture for transmitting
video over wireless channels. In contrast to the conventional design which separates
the concerns of the video compression codec from the error correction codes of the
PHY, SoftCast adopts a unified design that both encodes the video for compression
and for error protection. This end-to-end approach enables a one-size-fits-all video
stream that can deliver multicast video to multiple mobile receivers, with each receiver

obtaining video quality commensurate with its specific instantaneous channel quality.

3.1 Why Does the Conventional Design Not Allow

One-size-fits-all Video?

Today’s approach to compression and error protection coding prevents existing wire-

less design from providing one-size-fits-all video.

(a) Compression: Video pixels are highly correlated within a frame. Further,
video frames are correlated in time. MPEG exploits this correlation by operating on

sequences of successive video frames called GoPs (Group of Pictures). MPEG com-
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presses a video in two steps [27]. First, it performs intra-frame compression to remove
redundant information within each frame. This is done by applying a 2-dimensional
DCT on small blocks of 8x8 pixels, and quantizing the resulting DCT components to
a fixed precision. The conventional design then treats these quantized real values as
sequences of bits and compresses them to a compact bit sequence using a Huffman
code. Second, MPEG performs inter-frame compression to eliminate redundant in-
formation across frames in a GoP. In particular, it uses differential encoding, which
compares a frame against a prior reference frame and only encodes the differences. It
also uses motion compensation to predict the movement of a particular block across
time. Using this combination MPEG achieves good compression ratios. However, it

is this combination that prevents one-size-fits-all video:

e Quantization is performed by the source, and coarsens the resolution of the
video to match a desired bit rate, and hence fixes the quality of the video, even

if the receiver channel could support a higher bit rate.

e Huffman coding and differential encoding fail sharply in the presence of bit
errors and packet losses. Specifically, a Huffman code is variable length, and
a few bit flips can cause the receiver to confuse symbol boundaries, making
the whole frame unrecoverable. Differential encoding and motion compensation
create dependencies between different packets in a coded video, and hence the

loss of some packets can prevent the decoding of correctly received video packets.

Note that layered and scalable video coding (SVC) also use quantization, variable-
length coding, differential encoding and motion compensation, and hence are also

highly sensitive to wireless errors.

(b) Error Protection: Error protection is typically done at the physical layer
(PHY) by picking a bitrate, i.e., a combination of modulation and forward error
correcting code, that ensures the receiver can decode the vast majority of the packets
correctly. The packet decoding probability drops sharply when the bitrate chosen is
higher than can be supported by the channel SNR [73], and hence the PHY layer is
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constrained to pick a low modulation and code rate that works well across time and
receivers.

The problem occurs when the actual channel conditions are too bad for the bit
rate that the PHY chose, and today, there are two popular ways to approach this

problem:

Bit rate adaptation in which the PHY attempts to predict which bit-rate will yield
the maximum throughput. In response, the application must monitor (often in-
directly, e.g., by observing buffer levels) the effective transfer rate and adjust the
level of source compression when necessary, in order to ensure timely stream-
ing. In effect, the end-to-end delay inherently includes the delay in this feedback
loop. This approach also requires that the adaptive stream is dedicated to one

user which is unscalable.

Layered coding in which the PHY anticipates multiple simultaneous receivers with
different channel conditions, and therefore cannot pick a single bit-rate for all.
Instead, the application encodes the source content into ordered layers, so that
the more layers delivered, the better the quality of the decoded content. Each
layer is then encoded by the PHY in such way that the first (base) layer should
be decodable without errors by all receivers, but decoding the further (enhance-
ment) layers would require better channel quality. And so, the better the chan-
nel conditions at a particular receiver, the more layers can be decoded, yielding

a higher quality of the content delivered.

Although layered coding, e.g., hierarchical modulation [56], in combination with
a layered video codec [85] can provide some graceful degradation, such system is
inherently inefficient. The core of the inefficiency lies in that which layers can actually
be decoded is determined by the channel quality at the receiver, after the wireless
resources (power, bandwidth and airtime) have already been spent. This is in contrast
to layered multicast problem in wired networks where layers beyond the available
capacity can be simply dropped from the packet queue without causing any congestion

to higher priority base layer [3]. On a wireless channel, each layer consumes some of
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Figure 3-1: Wireless broadcast delivers more signal bits to low noise re-
ceivers. The figure shows the transmitted sample in red, the received samples in
blue, and noise in black. The source transmits the signal sample in (a). A nearby
receiver experiences less noise and can estimate the transmitted sample up to the
small square, i.e., up to 4 bits. A far receiver sees more noise and hence knows only
the quadrant of the transmitted sample, i.e., it knows only 2 bits of the transmitted
sample.

the limited resources and so depending on the resource allocation, either users with
good channels or those with weak channels will be favored. This also means that the
PHY cannot optimally select layer bit rates without coordination with the application

layer.

3.2 SoftCast Overview

SoftCast’s design harnesses the intrinsic characteristics of both wireless broadcast and
video. The wireless physical layer (PHY) transmits complex numbers that represent
modulated signal samples, as shown in Fig. 3-1(a). Because of the broadcast nature
of the wireless medium, multiple receivers hear the transmitted signal samples, but
with different noise levels. For example, in Fig. 3-1, the receiver with low noise can
distinguish which of the 16 small squares the original sample belongs to, and hence can
correctly decode the 4 most significant bits of the transmitted sample. The receiver
with higher noise can distinguish only the quadrant of the transmitted signal sample,
and hence can decode only the two most significant bits of the transmitted sample.
Thus, wireless broadcast naturally delivers to each receiver a number of signal bits

that match its SNR.
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Video is watchable at different qualities. Further, a video codec encodes video
at different qualities by changing the quantization level [27], that is by discarding
the least significant bits. Thus, to scale video quality with the wireless channel’s
quality, all we need to do is to map the least significant bits in the video to the least
significant bits in the transmitted samples. Hence, SoftCast’s design is based on a
simple principle: ensure that the transmitted signal samples are linearly related to
the original pixel values.

The above principle cannot be achieved within the conventional wireless design.
In the conventional design, the video codec and the PHY are oblivious to each other.
The codec maps real-value video pixels to bit sequences, which lack the numerical
properties of the original pixels. The PHY maps these bits back to pairs of real values,
i.e., complex samples, which have no numerical relation to the original pixel values.
As a result, small channel errors, e.g., errors in the least significant bit of the signal
sample, can cause large deviations in the pixel values.

In contrast, SoftCast introduces a clean-slate joint video-PHY architecture. Soft-
Cast both compresses the video, like a video codec would do, and encodes the signal
to protect it from channel errors and packet loss, like a PHY layer would do. The
key characteristic of the SoftCast encoder is that it uses only linear codes for both
compression and error and loss protection. This ensures that the final coded samples
are linearly related to the original pixels. The output of the encoder is then delivered

to the driver over a special socket to be transmitted directly over OFDM.

3.3 Encoder

SoftCast’s encoder both compresses the video and encodes it for error and loss pro-

tection.

3.3.1 Video Compression

Both MPEG and SoftCast exploit spatial and temporal correlation in a GoP to com-

pact information. Unlike MPEG, however, SoftCast takes a unified approach to intra
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(a) 4-frame GoP (b) 3D DCT of GoP (c) Discarding Zero-Valued
Chunks

Figure 3-2: 3D DCT of a 4-frame GoP. The figure shows (a) a 4-frame GoP, (b)
its 3D DCT, where each plane has a constant temporal frequency, and the values
within a plane represent spatial frequencies at that temporal frequency, (c¢) the non-
zero DCT components in each plane grouped into chunks. The figure shows that
most DCT components are zero (black dots) and hence can be discarded. Further,
the non-zero DCT components are clustered together.

and inter-frame compression, i.e., it uses the same method to compress information
across space and time. Specifically, SoftCast treats the pixel values in a GoP as a
3-dimensional matrix. It takes a 3-dimensional DCT transform of this matrix. The
DCT transforms the data to its frequency representation. Since frames are correlated,
their frequency representation is highly compact.

Fig. 3-2 shows a GoP of 4 frames, before and after taking a 3D DCT transform.
The grey level after the 3D DCT reflects the magnitude of the DCT component in
that location. The figure shows two important properties of 3D DCT:

(1) Most DCT components have a zero (black) value, i.e., have no information. This
is because frames tend to be smooth [99], and hence the high spatial frequencies
tend to be zero. Further, most of the structure in a video stays constant across
multiple frames [27], and hence most of the higher temporal frequencies tend
to be zero. This means that one can discard all of these zero-valued DCT

components without affecting the quality of the video.

(2) Non-zero DCT components are spatially clustered. This is because spatially

nearby DCT components represent nearby spatial frequencies, and natural im-
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ages exhibit smooth variation across spatial frequencies. This means that one
can express the locations of the retained DCT components with little informa-
tion by referring to clusters of DCT components rather than individual compo-

nents.

SoftCast exploits these two properties to efficiently compress the data by trans-
mitting only the non-zero DCT components. This compression is very efficient and
has no impact on the energy in a frame. However, it requires the encoder to send a
large amount of metadata to the decoder to inform it of the locations of the discarded

DCT components.

To reduce the metadata, SoftCast groups nearby spatial DCT components into
chunks, as shown in Fig. 3-2c. The default chunk in our implementation is 44x30x1
pixels, (where 44 x 30 is chosen based on the SIF video format where each frame is
352 x 240 pixels). Note that SoftCast does not group temporal DCT components
because typically only a few structures in a frame move with time, and hence most
temporal components are zero, as in Fig. 3-2c. SoftCast then makes one decision for
all DCT components in a chunk, either retaining or discarding them. The clustering
property of DCT components allows SoftCast to make one decision per chunk with-
out compromising the compression it can achieve. As before, the SoftCast encoder
still needs to inform the decoder of the locations of the non-zero chunks, but this
overhead is significantly smaller since each chunk represents many DCT components
(the default is 1320 components/chunk). SoftCast sends this location information as
a bitmap. Again, due to clustering, the bitmap has long runs of consecutive retained

chunks, and hence can be efficiently compressed using run-length encoding.

The previous discussion assumed that the source has enough bandwidth to trans-
mit all the non-zero chunks over the wireless medium. What if the source is bandwidth
constrained? It will then have to judiciously select non-zero chunks so that the trans-
mitted stream can fit in the available bandwidth, and still be reconstructed with

the highest quality. SoftCast selects the transmitted chunks so as to minimize the
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reconstruction error at the decoder:

err =Y (Y (@li] = &:[5])?), (3.1)
i J
where z;[j] is the original value for the j%* DCT component in the i** chunk, and
&;[j] is the corresponding estimate at the decoder. When a chunk is discarded, the
decoder estimates all DCT components in that chunk as zero. Hence, the error from
discarding a chunk is merely the sum of the squares of the DCT components of that
chunk. Thus, to minimize the error, SoftCast sorts the chunks in decreasing order
of their energy (the sum of the squares of the DCT components), and picks as many
chunks as possible to fill the bandwidth.

Note that bandwidth is a property of the source, (e.g., a 802.11 channel has a
bandwidth of 20 MHz) independent of receiver, whereas SNR is a property of the
receiver and its channel. As a result, discarding non-zero chunks to fit the source
bandwidth does not prevent each receiver from getting a video quality commensurate
with its SNR.

Two points are worth noting about the used compression.

e SoftCast can capture correlations across frames while avoiding motion compen-
sation and differential encoding. It does this because it performs a 3D DCT, as
compared to the 2-D DCT performed by MPEG. The ability of the 3D DCT
to compact energy across time is apparent from Fig. 3-2b where the values of
the temporal DCT components die quickly (i.e., in Figs. 3-2b, the planes in the
back are mostly black).

e The main computation performed by SoftCast’s compression is the 3D DCT,
which is O(K log(K)), where K is the number of pixels in a GoP. A variety of

efficient DCT implementations exist both in hardware and software [25,70].

e Finally, it is possible to replace 3D DCT with other 3D decorrelation transforms,

such as 3D Wavelets [106]. I have experimented with both 3D DCT and 3D
Wavelets and found them to be comparable, with 3D DCT showing better
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clustering of non-zero components.

3.3.2 Error Protection

Traditional error protection codes transform the real-valued video data to bit se-
quences. This process destroys the numerical properties of the original video data
and prevents us from achieving our design goal of having the transmitted digital sam-
ples scale linearly with the the pixel values. Thus, SoftCast develops a novel approach
to error protection that is aligned with its design goal. SoftCast’s approach is based
on scaling the magnitude of the DCT components in a frame. Scaling the magnitude
of a transmitted signal provides resilience to channel noise. To see how, consider a
channel that introduces an additive noise in the range +0.1. If a value of 2.5 is trans-
mitted directly over this channel, (e.g., as the I or Q of a digital sample), it results
in a received value in the range [2.4 — 2.6]. However, if the transmitter scales the
value by 10z, the received signal varies between 24.9 and 25.1, and hence when scaled
down to the original range, the received value is in the range [2.51 —2.49], and its best
approximation given one decimal point is 2.5, which is the correct value. However,
since the hardware has a fixed power budget, scaling up and therefore expending more
power on some signal samples translates to expending less power on other samples.
SoftCast’s optimization finds the optimal scaling factors that balance this tension.
Again, we operate over chunks, i.e., instead of finding a different scaling factor
for each DCT component, we find a single optimal scaling factor for all the DCT
components in each chunk. To do so, we model the values z;[j] within each chunk 4
as random variables from some distribution D;. We remove the mean from each chunk
to get zero-mean distributions and send the means as metadata. Given the mean,
the amount of information in each chunk is captured by its variance. We compute
the variance of each chunk, )\;, and define an optimization problem that finds the
per-chunk scaling factors such that GoP reconstruction error is minimized. In the

appendix, we show:

Lemma 3.3.1. Let z;[j],j = 1... N, be random variables drawn from a distribution
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D; with zero mean, and variance \;. Given a number of such distributions, i =1...C,
a total transmission power P, and an additive white Gaussian noise channel, the linear

encoder that minimizes the mean square reconstruction error is:

wlj] = gizj], where

VY Y
9i Ai ( Zi\/A_i)'

Note that there is only one scaling factor g; for every distribution D;, i.e., one
scaling factor per chunk. The output of the encoder is a series of coded values, u;[j],
as defined above. Further, the encoder is linear since DCT is linear and our error

protection code .performs linear scaling.

3.3.3 Resilience to Packet Loss

Next, we assign the coded DCT values to packets. However, as we do so, we want
to maximize SoftCast’s resilience to packet loss. Current video design is fragile to
packet loss because it employs differential encoding and motion compensation. These
schemes create dependence between packets, and hence the loss of one packet can
cause subsequent correctly received packets to become undecodable. In contrast,
SoftCast’s approach ensures that all packets equally important. Hence, there are no
special packets whose loss causes disproportionate video distortion.

A naive approach to packetization would assign chunks to packets. The problem,
however, is that chunks are not equal. Chunks differ widely in their energy (which is
the sum of the squares of the DCT components in the chunk). Chunks with higher
energy are more important for video reconstruction, as evident from equation 3.1.
Hence, assigning chunks directly to packets causes some packets to be more important
than others.

SoftCast addresses this issue by transforming the chunks into equal-energy slices.

Each SoftCast slice is a linear combination of all chunks. SoftCast produces these
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slices by multiplying the chunks with the Hadamard matrix, which is typically used
in communication systems to redistribute energy [6,84]. The Hadamard matrix is an
orthogonal transform composed entirely of +1s and -1s. Multiplying by this matrix
creates a new representation where the energy of each chunk is smeared across all
slices.!

We can now assign slices to packets. Note that, a slice has the same size as a
chunk, and depending on the chosen chunk size, a slice might fit within a packet,
or require multiple packets. Regardless, the resulting packets will have equal energy,
and hence offer better packet loss protection.

The packets are delivered directly to the PHY (via a raw socket), which interprets
their data directly as the digital signal samples to be sent on the medium, as described

in §3.5.

3.3.4 Metadata

In addition to the video data above, the encoder sends a small amount of metadata
to assist the decoder in inverting the received signal. Specifically, the encoder sends
the mean and the variance of each chunk, and a bitmap that indicates the discarded
chunks. The decoder can compute the scaling factors, i.e., g;’s, from this information.
As for the Hadamard and DCT matrices, they are well known and do not need to
be transmitted. The bitmap of chunks is compressed using run length encoding as
described in §3.3.1, and all metadata is further compressed using Huffman coding.
The total metadata in our implementation after adding a Reed-Solomon code is 0.014
bits/pixel, i.e., its overhead is insignificant.

The metadata has to be delivered correctly to all receivers. To protect the meta-
data from channel errors, we send it using BPSK modulation and half rate convo-
lutional code, which are the modulation and FEC code corresponding to the lowest
802.11 bit rate. To ensure that the probability of losing metadata because of packet

loss is very low, we spread the metadata across all packets in a GoP. Thus, each of

!Hadamard multiplication has an additional benefit which is to whiten the signal reducing the
peak to average power ratio (PAPR).
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SoftCast’s packets starts with a standard 802.11 header followed by the metadata
then the coded video data. (Note that different OFDM symbols in a packet can use
different modulation and FEC code. Hence, we can send the metadata and the Soft-
Cast video data in the same packet.) To further protect the metadata we encode it
with a Reed-Solomon code that can tolerate a loss rate up to 50%. The code uses a
symbol size of one byte, a block size of 1024, and a redundancy factor of 50%. Thus,
even with 50% packet erasure, we can still recover the metadata fully correctly. This
is a high redundancy code but since the metadata is very small, we can afford a code

that doubles its size.

3.3.5 The Encoder: A Matrix View

We can compactly represent the encoding process of a GoP as matrix operations.
- Specifically, we represent the DCT components in a GoP as a matrix X where each
row is a chunk. We can also represent the final output of the encoder as a matrix Y

where each row is a slice. The encoding process can then be represented as

Y = HGX (3.2)
= CX (3.3)

where G is a diagonal matrix with the scaling factors, g;, as the entries along the

diagonal, H is the Hadamard matrix, and C' = HG is simply the encoding matrix.

3.4 Decoder

At the receiver, and as will be described in §3.5, for each received packet, the PHY
returns the list of coded DCT values in that packet (and the metadata). The end
result is that for each value y;[j] that we sent, we receive a value 4;[j] = w;[j] + ni],
where n;[j] is random noise from the channel. It is common to assume the noise is
additive, white and Gaussian. While this is not exact, it works reasonably well in

practice.
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The goal of the SoftCast receiver is to decode the received GoP in a manner that

minimizes the reconstruction errors. We can write the received GoP values as

Y = CX+N,

where Y is the matrix of received values, C is the encoding matrix from Eq. 3.2,
X is the matrix of DCT components, and N is a matrix where each entry is white
Gaussian channel noise.

Without loss of generality, we can assume that the slice size is small enough that
a slice fits within a packet, and hence each row in Y is contained in a single packet. If
the slice size is larger than the packet size, then each slice consists of more than one
packet, say, K packets. The decoder simply needs to repeat its algorithm K times. In
the " iteration (i = 1...K), the decoder constructs a new Y where the rows consist
of the " packet from each slice.? For the rest of our exposition, therefore, we will
assume that each packet contains a full slice.

The receiver knows the received values, Y, and can construct the encoding matrix
C from the metadata. It then needs to compute its best estimate of the original
DCT components, X. The linear solution to this problem is widely known as the
Linear Least Square Estimator (LLSE) [57]. The LLSE provides a high-quality esti-
mate of the DCT components by leveraging knowledge of the statistics of the DCT

components, as well as the statistics of the channel noise as follows:
Xirse = A CT(CACT +2)71Y, (3.4)

where:
e X;;sg refers to the LLSE estimate of the DCT components.
e CT is the transpose of the encoder matrix C.

e Y is a diagonal matrix where the 5" diagonal element is set to the channel noise

2Since matrix multiplication occurs column by column, we can decompose our matrix Y into
strips which we operate on independently.
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power experienced by the packet carrying the it" row of Y. The PHY has an

estimate of the noise power in each packet, and can expose it to the higher layer.

e A, is a diagonal matrix whose diagonal elements are the variances, );, of the
individual chunks. Note that the );’s are transmitted as metadata by the en-

coder.

Consider how the LLSE estimator changes with SNR. At high SNR (i.e., small

noise, the entries in ¥ approach 0), Eq. 3.4 becomes:
Xipse = C7Y (3.5)

Thus, at high SNR, the LLSE estimator simply inverts the encoder computation.
This is because at high SNR we can trust the measurements and do not need to
leverage the statistics, A, of the DCT components. In contrast, at low SNR, when
the noise power is high, one cannot fully trust the measurements and hence it is
better to re-adjust the estimate according to the statistics of the DCT components

in a chunk.

Once the decoder has obtained the DCT components in a GoP, it can reconstruct

the original frames by taking the inverse of the 3D DCT.

3.4.1 Decoding in the Presence of Packet Loss

We note that, in contrast to conventional 802.11, where a packet is lost if it has
any bit errors, SoftCast accepts all packets. Thus, packet loss occurs only when the

hardware fails to detect the presence of a packet, e.g., in a hidden terminal scenario.

Still, what if a receiver experiences packet loss? When a packet is lost, SoftCast
can match it to a slice using the sequence numbers of received packets. Hence the loss
of a packet corresponds to the absence of a row in Y. Define Y,; as Y after removing

the i*" row, and similarly C,; and N,; as the encoder matrix and the noise vector after
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Figure 3-3: Mapping coded video to I/Q components of transmitted signal.
For example, to transmit the bit sequence 1010, the traditional PHY maps it to
the complex number corresponding to the point labeled 1010. In contrast, SoftCast’s
PHY treats pairs of coded values as the real and imaginary parts of a complex number.

removing the i*® row. Effectively:
Yii = CuX + N.;. (3.6)
The LLSE decoder becomes:
Xirse = ACL(CoileCh + Suiniy) ™ Vi (3.7)

Note that we remove a row and a column from ¥. Eq. 3.7 gives the best approximation
of Y when a single packet is lost. The same approach extends to any number of lost
packets. Thus, SoftCast’s approximation degrades gradually as receivers lose more

packets, and, unlike MPEG, there are no special packets whose loss prevents decoding.

3.5 Interfacing with the PHY Layer

Traditionally, the PHY layer takes a stream of bits and codes them for error pro-
tection. It then modulates the bits to produce real-valued digital samples that are
transmitted on the channel. For example, 16-QAM modulation takes sequences of 4
bits and maps each such sequence to a complex number as shown in Fig. 3-3a. The

real and imaginary parts of these complex numbers produce the real-valued I and Q
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components of the transmitted signal.

In contrast to existing wireless design, SoftCast’s codec outputs real values that
are already coded for error protection. Although SoftCast’s codewords are protected
from additive noise, a wireless channel introduces a plethora of non-additive effects
such as inter-symbol interference, frequency-selective attenuation, timing, sampling,
phase, and frequency offsets. In today’s systems, the PHY layer deals with those
phenomena by estimating and cancelling their effect on the received signal. Rather
than reimplementing this functionality in SoftCast, the current PHY can be reor-
ganized to create RawPHY which accepts real-valued inputs while protecting from
the non-additive effects. In a simplified view, RawPHY can be created by bypassing
the components of PHY that operate on bits: forward error correction and digital
modulation (mapping). Thus, we can directly map pairs of SoftCast coded values
to the I and Q digital signal components, as shown in Fig. 3-3b.3> The next chapter
discusses the design and implementation of RawPHY in depth.

3An alternative way to think about SoftCast is that it is fairly similar to the modulation in 802.11
which uses 4QAM, 16QAM, or 64QAM, except that SoftCast uses a very dense 64K QAM.

92



Chapter 4

RawPHY: Interface to a Practical
Wireless Channel

Although SoftCast takes care of mapping of the pixels to real-valued channel samples,
those samples are not suitable for direct transmission over the wireless channel. In
this chapter, I discuss the design of RawPHY which provides SoftCast with a suitable
waveform interface to the wireless channel while protecting its codewords from non-
additive effects of the channel. RawPHY also allows integration of SoftCast alongside

traditional digital data transmission.

4.1 Channel Coding in Practice

Shannon’s source-channel separation principle promotes a layered system design. The
physical layer, or PHY, deals with the specifics of the channel to the extent that the
higher layers do not need to handle bit errors. Conversely, the application layer deals
with the domain-specific issues, such as video compression and streaming formats
keeping the lower layers oblivious to the transferred payload. Thus, the communi-
cation system design today shields the designers of the application protocols from
issues specific to the physical medium such as how the bits are represented on the
channel, how the packets are detected at the receiver, or how the channel noise affects

the signal. Such separation of concerns greatly reduces the complexity of the overall

93



system design.

In reality, the setting of Shannon’s result is idealized: it assumes that the channel
conditions and source distribution does not change and permits the source and channel
coders to operate on unbounded spans of source and channel signals. In practice, the
PHY can only deal with channel signals of limited length. Hence it does not guarantee
error-free stream but instead delivers packets free from bit errors, although some of
the packets can be lost. The link and medium access control (MAC) layers above it
typically mask some of the packet erasures, although ultimately the typical best effort
system design does not guarantee packet delivery even at the network layer, leaving
the issue of reliability up to the communication end-points. Such design is embodied

in the Internet and local-area computer networks (LAN).

There are several reasons for leaving end-to-end reliability to the end points. The
end-to-end argument [80] dictates that the network could only resort to improve
reliability for the sake of performance but cannot effectively hide all failures from
the application. In the context of streaming, reliability becomes secondary to the
primary goal of on-time delivery of content. For example, when streaming a video,
it is better to skip a frame than stall until the data reliably arrives. To support
streaming applications, the current architecture allows the application to express a
“wish” that its data should be delivered with minimum delay but higher chance of
loss. For example, a 802.11 PHY supporting Wireless Media Extensions (WME)

would use smaller retransmission count for data tagged as video.

Different applications have distinct preferences in the reliability vs. latency trade-
off, so this contract is widely supported in the modern wireless architecture. However,
the current abstraction still imposes an all-or-nothing contract on application data
packets. Even if this contract is relaxed to that of a noisy bit-pipe (e.g., by ignoring the
CRC check on the received packets), such design is merely a workaround and requires
the application end-points to apply their own FEC. Although the application can
create layers of bit-pipes of varying importance with an extended contract — “pass
as many correct bits as possible, according to priority” — this not only no longer

isolates the application and PHY design, but as I show in the next chapter, can also
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be outperformed by a simpler design, as in SoftCast, in which the application has
control over channel representation of its data.

The new PHY must grant the higher layers (i.e., the application) full control not
only on the rate of the channel code, but also the specific allocation of codewords
within the signal space. Thus let us replace the bit-pipe abstraction with a waveform
interface. However, removing the PHY layer completely would unnecessarily expose
the designers of the application to the heterogeneity of the transceiver hardware and
inevitably increase complexity. Instead I pose the question: Once binary coding and
digital modulation are removed from the PHY, what core functionality should the
remaining RawPHY have? My proposal is that RawPHY should deal with as many
effects of the channel as possible without sacrificing the potential gains of the redefined
contract. For this purpose I introduce the notion of universality of particular channel
coding functionality with respect to any channel coding applied in the application. In
many cases, such universality comes at the price of efficiency. I discuss this trade-off
for three such aspects of the PHY: masking frequency-selective fading, reduction of
peak-to-average-power ratio (PAPR), and space-time block coding.

In the second part of this chapter, I describe a prototype design and implementa-
tion of RawOFDM, an OFDM-based RawPHY layer, within the GNURadio software

radio framework.

4.2 Design

In this section, I consider the requirements for a practical design of a PHY layer
that would provide a waveform interface. In attempt to specify the minimum and
maximum functionality of a RawPHY layer, I consider the functional specification
of a PHY layer in the current organization of communication systems and discuss
which aspects of this specification can still be provided by a RawPHY layer. This
discussion is structured around the concept of layering of channel coding techniques
within the PHY layer. In a trivial design, one could simply "peel off” some of those

layers until the effective channel has waveform behavior. Later, I show that some core
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PHY functionality can be preserved within RawPHY thus reducing the complexity

burden of the applications.

4.2.1 A Stack of Layered Channels

The key observation leading to our design of RawPHY is that the modern PHY is
internally layered [9]. That is, we can organize the pipeline of processing blocks
of the transmitter and receiver chains into layers by matching the complementary
transmitter and receiver blocks. Each layer defines an end-to-end channel which
takes the input of the transmitter block, performs some transformation, and delivers
output at the corresponding receiver block. The layer is in essence a channel code
applied to the channel provided by the lower layer. In principle, the channel code
masks the effects of the lower channel but possibly introduces new effects to the upper
channel. For instance, digital modulation wraps a waveform channel with additive
noise into a new binary channel. This new layer has its own characteristics, such as
correlation in the bit error distribution. This, in turn, can be masked via interleaving,
yielding a channel which can be modeled as memoryless BSC, and so on. Thus, in
a typical PHY layer, the effective channel code is composed of several concatenated
codes. This approach promotes component-based development which benefits both
the theoretical analysis and hardware implementation.

Consider the conceptual organization of an idealized wireless PHY illustrated in
Fig. 4-1. The processing blocks on the right convert the lower channel type to the
upper channel type. We focus on the characterization of the channels in between the

layers.

Linear Time Invariant (LTI): The baseband signal is an unstructured stream of
digital samples. It has an unknown impulse response and there is no synchro-
nization between the transmitter and receiver. However, with high accuracy, if
we ignore frequency offset in carrier or sampling, the channel can be modelled

as linear-time invariant.

LTT Symbols: The transmitter adds preambles which are known symbols and allow
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Figure 4-1: Layered PHY. Conceptual organization of a typical coherent wireless
PHY layer into sub-layers and the corresponding effective channels. The processing
blocks on the right convert the lower channel type to the upper channel type. This
separation of processing into layers is idealized and in most practical realizations there
are loopy interactions between processing blocks.
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the receiver to identify the beginning of the frame. Moreover, the receiver
can also establish timing, i.e., symbol boundaries. However, the symbols are
not quite independent. This is because the channel is band-limited and so an

impulse is spread over many samples possibly leaking into the adjacent symbols.

Orthogonal Symbols: Inter-symbol interference (ISI) can be addressed at the trans-
mitter or the receiver. The transmitter can apply pulse shaping or insert guard
intervals (with cyclic prefix) between symbols to ensure that the channel re-
sponse of one symbol does not spread into the next. The receiver can also
neutralize ISI to some extent by canceling (subtracting) the estimated channel

response.

Orthogonal Samples: Since the samples within a symbol are still spread by the
channel throughout the symbol, the transmitted signal codewords need to be
discernible. Orthogonal frequency division multiplexing (OFDM) simplifies this
task by applying the digital Fourier transform (DFT) to the channel. Specifi-
cally, the transmitter treats the samples in the input symbol as the frequency
domain and applies IDFT to determine the time-domain signal to be transmit-
ted on the channel. The receiver applies DFT to retrieve the original samples in
frequency domain. The end-to-end channel above this layer guarantees that the
complex samples in each symbol can be treated independently. To guarantee
this property in practical OFDM systems, the receiver must detect and correct

any offset in carrier frequency.

Coherent Complex Samples: Although orthogonal, the stream of complex num-
bers is subject to, possibly non-flat, frequency response of the underlying LTI
channel. In the frequency domain, this manifests as a multiplicative complex
factor applied to each frequency bin. If the channel is truly time invariant, this
factor is the same across the same bin in different symbols. The decoder must

unambiguously estimate and invert this factor to allow coherent reception.!

'Notably, a number of communication systems employ differential encoding and do not depend
on coherent reception, since an LTI channel preserves relative phase [91].
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This is again accomplished by training, i.e., the known preamble inserted by
the transmitter is used at the receiver to estimate the factor for each frequency
bin. In practice, the channel could be slowly fading and so the channel response
could change from symbol to symbol. In particular, residual frequency offset
would result in the phase of all factor changing from one symbol to the next.

This phase can be tracked by fine-grained training using injected pilot tones.

Additive Noise Channel: After proper equalization, the waveform channel above
this layer resembles AWGN in that the noise is additive.? However, the noise
is not white as the frequency bins experiencing stronger attenuation will show
higher noise variance after equalization. If fading is slow enough, this channel
state information (CSI) can be communicated to the upper layer which can then
adjust the code rate to the SNR of individual bins. If such CSI is not available
on time, or if simplicity is preferred, this effect can be masked by interleaving,

i.e., decorrelation.

(Quasi) Binary Symmetric Channel: Digital modulation (e.g., QAM) wraps a
waveform channel with additive noise into a new, binary channel by reducing
the number of codewords in the codebook to a finite constellation. Closer
scrutiny reveals that the bit errors on the resulting channel are not independent
nor identically distributed. As each constellation point encodes multiple bits,
one symbol error (when noise vector is large enough to confuse one point with
another) can result in error in more than one of those bits. Thus errors in the
bits within one block are correlated. Furthermore, depending on the mapping
of specific bit sequences to the constellation points, some bits in a block can be
protected more than others. As before, interleaving and scrambling decorrelates

those errors and the result can be modeled a a binary symmetric channel (BSC).

Packet Erasure Channel: Forward error correcting (FEC) coding reduces the prob-
ability of bit error at the expense of bit rate. When the probability of an error

in a frame is very low, the PHY can mask bit errors completely by adding an

2 Although if the equalization is inaccurate, the channel distortion is multiplicative.
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error detection code such as CRC-32. If the receiver detects a bit error, it drops

the frame. Thus, the channel above this layer is a packet erasure channel.

Lossless Bit-pipe: Although packet erasure is the standard contract on the network
layer, the end-to-end performance can be improved by masking some of the
erasures from the application. Modern WLAN employs link-layer retransmission
(i.e., automatic repeat request, ARQ) to greatly reduce the number of erasures
observed by the applications. The rationale behind this design is that if the
packet loss is due to channel fading, as opposed to congestion, then the erasure
should be masked from the transport layer to avoid back-off. Instead, the link
layer can adjust the code rate and exploit temporal diversity to improve packet

delivery. In an idealized model, the channel above this layer is a lossless bit-pipe.

4.2.2 Interactions and Universality of Channel Codes

Notably, this separation of processing into layers is idealized and in most practi-
cal realizations there are loopy interactions between processing blocks. Generally,
a maximum likelihood (ML) decoder of a channel code aims to identify the most
likely transmitted codeword given the received signal. Thus, if the decoder knows
the probability distribution of all the codewords in the codebook px, and it knows
the distribution of the channel py|x, then given channel output y the ML-decoded

output Z is computed as:
# = argmax Pr(aly) = arg max py|x (y|z)px (x)

However, the decoders knowledge of px is limited by isolation from any outer channel
code. Specifically, X is the output of some functional transformation of the encoder’s
input M, ie. f: M — X. If the distribution py; is known to the decoder, then
it can also determine px(z) = pa(f~'(z)). However, an error-correcting code must
necessarily make the blocks or sequences of M that correspond to valid code-words
more likely than non-codeword blocks in order to introduce some distance between

the valid codewords. For practical simplicity, the decoder of X is often designed under
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the assumption that py; is uniform (or otherwise simply modeled without complete

knowledge of the codebook of M).
A decoder that makes a final decision regarding X (and thus M = f~(X))

without knowledge of pys, is called hard-decision and is generally characterized by
a significant performance loss when compared to the channel capacity. Soft-decision
decoding operates without knowledge of pys but defers the final decision regarding X.
The output of a soft-output decoder is a measure of confidence in the proposed (“most
likely”) X. The outer code can then essentially correct codewords of low confidence.
Hence soft-decision decoding alleviates this performance loss while preserving most of
the isolation and thus keeping the complexity of the system low. In result, although
the current boundary between binary and waveform interfaccs is nominally defined
by the digital modulation as shown in Fig. 4-1, soft-decision decoding requires soft-
value output from the digital modulation decoder, and hence the BSC is effectively
replaced with a soft-value channel. Both the Viterbi and BCJR algorithms for trellis

codes have soft-input soft-output variants.

However, in many cases such decomposition proves difficult. For instance, reduc-
ing inter-symbol interference (ISI) via a decision-feedback equalizer (DFE) (which
is essentially interference cancellation) requires the involvement of the higher layers
(i.e., outer code such as digital modulation) to re-encode the samples in the previous
symbol so that they can be subtracted from the received samples in the current sym-
bol. Similarly, frequency equalization for orthogonal samples (after OFDM) could
take into account the output from the constellation demapper which operates in a
higher layer. If the phase noise is low, the constellation demapper can yield highly
accurate estimate of current phase offset. As the last example, decoding of the digital
superposition code described in Section 5.3.1 requires successive layer cancellation
and thus for optimal performance must involve all of outer channel coding.

The layered PHY is essentially a series of concatenated channel codes, and for the
purpose of this discussion, an inner channel code is considered universal with respect
to the outer code if both its encoder and decoder can operate in a manner oblivious

to any outer code. In contrast, if a channel code is not universal, then joint decoding
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or encoding is necessary for optimal performance. As illustrated above, such univer-
sality is generally unattainable for error-correcting codes. However, there is a number
of components that are universal in practice. Examples of universal blocks include:
preamble detection, symbol and sample orthogonalization at the transmitter, scram-
bling and interleaving, preamble- and pilot-based channel estimation, and orthogonal

space-time codes (which are typically applied above orthogonal samples).

4.2.3 A Waveform PHY

Although prior work proposed to expose non-binary confidence information at the
receiver [48,52,98,101], to reap full benefits of joint source-channel coding, RawPHY
must present a waveform interface at the transmitter. To expose a waveform interface
to the channel, the processing blocks which operate on bits need to be removed from
the PHY layer. In doing so, the remaining blocks must remain oblivious to any
channel codes that could be applied above the newly exposed waveform interface.
Naturally, by above definition, any universal blocks are suited to remain within the
PHY thus reducing the complexity burden of the higher layers. However, to serve
its purpose, RawPHY must exclude the channel coding blocks that are subject to
adaptation to channel conditions, i.e., digital modulation, error-correcting codes, etc.
Notably, other aspects of the PHY, such as baseband channel width (i.e., sampling
frequency), symbol length, anti-ISI guard interval, number of preambles or pilots, can
also be adjusted depending on channel conditions, such as multi-path delay spread.
However, exploiting this adaptivity in a broadcast setting, where receivers observe
potentially diverse channel conditions, is rather difficult and beyond the scope of this
thesis.

The proposed waveform PHY is to provide a channel of coherent orthogonal real
samples. Consider that the binary interface is simple: the conventional PHY accepts
a packet of bits. In contrast, RawPHY accepts a packet of real (fix-point or floating-
point) numbers. The typical complex samples are treated as pairs of reals for the
sake of design simplicity of the channel codes employed by the higher layers. More

precisely, non-orthogonal effects such as phase noise should be masked from the higher
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layers.

Thus RawPHY is comprised of the channel coding blocks necessary to create
such channel: detection, synchronization, orthogonalization, equalization, etc. Given
the universality requirement, those blocks must not depend on any channel coding
applied on top of the waveform interface. In particular, RawPHY cannot assume
any structure in the signal generated by the higher layer. However, some additional

specification is needed.

Signal power: Since the real field is not finite, the distribution over the field be-
comes of importance. Specifically, if the real samples were directly converted to
baseband, the power of the distribution, F[X?], will determine the power output of
the transmitter. On one hand, the EM power is subject to government regulation.
On the other hand, the hardware cannot support unbounded signal and will intro-
duce non-linearities in the form of clipping. RawPHY could enforce the power limit
internally, along the lines of bit-stuffing or character escaping in conventional link
layers. Alternatively, RawPHY would simply assume that the input power is nor-
malized since the negative side-effects of non-conformance provide an incentive to the
higher layer to respect this requirement. Similar reasoning suggests that the higher
layer would ensure that the input signal has zero-mean (since the mean does not carry

much information but substantially increases total power).

Signal distribution: Overall signal power is not the only relevant statistic. In
particular, the PHY might have to clip values of high magnitudes due to fixed preci-
sion of baseband digital processing, or limited range of the D/A and A/D converters.
However, requiring a strict conformance with a particular distribution is excessive.
Instead, RawPHY performs internal whitening of the signal in a manner similar to the
conventional pseudo-random scrambling of the bit-stream before the digital FEC. In
the next section, I discuss the details of this procedure and its effect on such properties

of the signal as peak-to-average power ratio (PAPR) and channel noise profile.
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4.2.4 Additional Facilities for the Application

In addition to the bare waveform interface, it is worthwhile to consider other infor-

mation that the PHY could provide to the application.

Channel state information: Some higher layer components can leverage the cur-
rent measured statistics of the channel such as the signal-to-noise ratio (SNR). This
is usually done by using known symbols such as preambles or pilot tones but can
also be done by using known structure in the signal, such as the QAM constellation.
Although the application can implement this, if the PHY is already performing chan-
nel estimation for equalization, it can determine the resulting statistic of interest and

make it available to application requests.

Signal identification: To determine the adaptive parameters of the channel cod-
ing (i.e., constellation, FEC code rate, etc.), the conventional PHY internally encodes
a SIGNAL field using a fixed channel code. This field instructs the receiver how to
decode the payload of the packet. In RawPHY, there is no essential need for such
information as the application can take care of this issue. However, since there could
be multiple applications sharing the wireless device, providing some signal identi-
fication facilities in RawPHY could allow demultiplexing the different applications.
Such signal identifier would correspond to the TYPE field in the Ethernet protocol.
Another way to accomplish this demultiplexing without a reliably encoded SIGNAL
field is to allow the applications (recall, this term includes any higher layer users of
the PHY, e.g., the MAC layer) to register a signature with RawPHY. This signature,
if sufficiently uncorrelated from signatures of other applications could allow quick
rejection of signals that are not relevant to the application. In fact, a known pseudo-
random preamble is commonly employed in conventional PHY to detect frames of
interest from other users of the shared RF spectrum. Consider for example, 802.11,

Bluetooth, Zigbee, and other users of the ISM 2.4GHz band.
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Protocol Encapsulation: Finally, although beyond the scope of this thesis, con-
sider the case when the waveform payload is decoded at a destination beyond the
wireless receiver. A hybrid packet could be encoded partially using the conventional
digital channel codes and partially determined by the end-application. This corre-
sponds to protocol encapsulation in the common network protocol stack with the
difference that the digital channel codes are only applied to a part of the payload.
Alternatively, digital coding can be provided in suite with RawPHY The application
(i.e., using a socket abstraction) can then decide whether to use a standard digital

channel, or to have its data transmitted without FEC and digital modulation.

4.3 RawOFDM

In this section, I describe a practical implementation of RawPHY which uses OFDM
to create an effective channel of coherent real signal samples which forms the basis of
the waveform interface. This approach leverages the sub-layering in the modern PHY
discussed in the previous section which makes RawOFDM, in essence, a small modifi-
cation of the current OFDM-based design. In fact, when combined with conventional
digital channel codes, RawOFDM is equivalent (modulo specific parameters) to the

modern PHY as embodied in 802.11a/g/n, 802.16 or DVB-T/T2/H.

4.3.1 Overview

In principle, RawOFDM starts with the conventional OFDM system as illustrated in
the simplified schematic in Fig. 4-2a. Each OFDM symbol is converted into frequency
domain via IDFT and divided into a number of frequency bins. Each bin in each
symbol carries one complex signal sample, i.e., a pair of in-phase and quadrature
components (I/Q).

The typical OFDM system uses QAM to map chunks of bits to complex con-
stellation symbols. Before that, the bits are interleaved and encoded using FEC.2

In comparison, RawOFDM bypasses FEC and modulation, presenting a waveform

3For more details about those concepts see Sections 2.2.2 and 2.2.4.
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Figure 4-2: RawOFDM in essence. Adapting typical OFDM-based PHY to Raw-
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Figure 4-3: Mapping raw input to the I/Q components of transmitted signal.
RawOFDM treats pairs of coded values as the real and imaginary parts of a complex
number.

channel interface to higher layers, as shown in the schematic in Fig. 4-2b. The sig-
nificant overlap between RawOFDM and the standard OFDM makes it feasible to
support a flexible interface offering both the bit-pipe and raw options to the applica-
tion. Streaming media applications can choose the raw option if they want to prevent
the cliff effect, while traditional file transfer applications can rely on the standard
PHY and link layers to provide core reliability.

In the raw mode, the PHY does not know whether a packet contains video, audio,
or other source signals. From the perspective of the PHY, it receives a stream of
values that it needs to put on the raw OFDM channel. It assigns a pair of values
to each data bin, mapping one to the in-phase, and the other to the quadrature
component, of the signal. This is illustrated in Fig. 4-3. As before, these signals are
then input to an IFFT module to generate a time-domain signal which is transmitted
across the channel. At the receiver, the time signal is sent to an FF'T to retrieve the
values in each of the OFDM bins. These values are equalized using standard OFDM
processing. At this point, the traditional OFDM pipeline of demodulation and FEC
is bypassed, and the raw values are transmitted to the receive socket. Note that these
values are not subjected to the usual checksum test, since it is acceptable for the
received signal to deviate from the transmitted signal.

Note that RawOFDM leverages standard OFDM’s use of a preamble and pilot bins

separate from data bins [36] to perform the traditional functions of synchronization,
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carrier frequency offset (CFO) estimation, channel estimation, and phase tracking.

4.3.2 Whitening

One disadvantage of the simple design described above is that the distribution of the
input signal determines the spectral power distribution of the transmitted signal. Any
requirements imposed on the distribution put a significant burden on the application
designer. Furthermore, the RawOFDM user must pay close attention the range of

allowed values to avoid clipping distortion.

RawOFDM reduces this burden by applying whitening to the input signal. Whiten-
ing is similar to the conventional pseudo-random scrambling and interleaving of the
bit-stream, but operates on the real input samples. The aim of whitening is to
transform the input signal so that the transformed signal has the distribution of a
memory-less Gaussian random variable. RawOFDM takes a packet of signal samples
from the application and performs a series of pseudo-random decorrelating transfor-
mations: reordering (permutations), sign scrambling and Hadamard matrix multipli-
cation. These transformations are data-independent and orthogonal thus can easily

be inverted at the receiver.

The whitening procedure assumes that the packet contains a round number of
OFDM symbols. If not, the packet is padded with zero samples. After padding, the
input samples can be arranged into an m x n matrix X of m frequency bins in n

OFDM symbols. Then, let us define three operations:

PermuteColumns(X)[i, j] = X[i, B[j]]
ScrambleSign(X)[i, j] = X[i, 7] S[i, 7]
Spread(X) = HX

where P is a pseudo-random permutation of n items (m such permutations), S is a

pseudo-random m X n matrix of 1 and —1 and H is an m x n Hadamard matrix. The
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whitened signal X* is computed as:

X' = ScrambleSign(PermuteColumns(.X)) (4.1)
X" = Spread(X') (4.2)
X* = ScrambleSign(PermuteColumns(X")) (4.3)

The first step decorrelates the rows of the input signal. This ensures that the
second step distributes the energy in the signal evenly between the rows of the matrix,
i.e. different frequency bins. This is because all entries in the Hadamard matrix are
either 1 or —1. If the covariance matrix of the rows of X is A, then the covariance
matrix after the multiplication is HTAH. If X is decorrelated and A is diagonal
with diagonal entries );, then each element of the diagonal after multiplication is
> Ai. With scaling adjusted to m, the Hadamard matrix evenly distributes the
energy across the rows (i.e., frequency bins). However, it also introduces correlation
between the rows. Hence, the last step decorrelates the rows of the resulting signal.
Also by the central limit theorem, the statistical distribution of the output signal
approaches Gaussian, as the Hadamard matrix multiplication step performs addition
of independent signals.

Whitening brings three benefits to RawOFDM. First, it ensures a flat power spec-
trum of the baseband signal regardless of the input distribution. This frees the appli-
cation designer from the concerns regarding the spectrum shape. Second, it reduces
the peak-to-average power ratio (PAPR) to that of a Gaussian noise. This is a mi-
nor benefit as PAPR can be further reduced using tone reservation or partial tone
mapping techniques which qualify as universal, since they do not involve the outer
channel coder in the process [108]. Finally, it masks frequency-selective fading and
can improve performance beyond simple interleaving. I will explain the latter effect

in more detail.

Frequency-selective fading: In a wide-band OFDM system, the gain of individual

subcarriers depends on the multi-path propagation through the environment. Thus,
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Figure 4-4: Masking frequency-selective fading by whitening. Performance
of the convolutional 1/2-rate code (133, 171) interleaved and coupled with 4-QAM
and 16-QAM as in 802.11a/g bit-rates 12Mb/s and 24 Mb/s (top to bottom) over
a channel with simulated frequency fading (slow on left, fast on right). Whitening
consistently improves performance in all tested scenarios.

depending on the environment, two bins which frequencies are farther apart than the
coherence frequency of the channel will observe independent levels of attenuation.
After equalization, the gain is normalized, but the noise variance is no longer uniform.

(See Section 2.2.3 for more background on the topic.)

Figure 4-4 shows the performance of the digital code in 802.11a/g standard com-
prised of the convolutional 1/2-rate code with polynomial (133, 171) interleaved and
coupled with 4-QAM and 16-QAM. In this experiment, 1Mbit of data is encoded
into 200-symbol packets, where each OFDM symbol carries data in 48 complex sub-
carriers. Each packet is subjected to Rayleigh frequency-selective fading, and the
resulting bit-error rate (BER) is recorded. The figure presents the measured BER for
the overall channel SNR. In the figure, the series “fading” shows to the performance

using frequency interleaving only, while “whitened” shows to the performance using
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RawOFDM whitening. Whitening consistently improves performance in all tested

scenarios. For set BER of 107 the improvement ranged up to 2dB.

4.3.3 Software Radio Implementation

RawOFDM is implemented in the GNURadio software radio framework [33]. At the
time of writing, GNURadio includes an OFDM implementation contributed by the
project leadership. However, that implementation uses non-universal phase tracking
and equalization. In RawOFDM, phase tracking uses pilot tones only and thus is
independent of the outer channel code.

Figure 4-5 shows the block diagram of the implementation. Each block corre-
sponds to a GNURadio signal processing block, although the Synchronization block
is hierarchically composed of more basic blocks. Note slight differences from the dia-
gram of an abstract OFDM in Fig. 2-8. Here preambles are defined in the {requency
domain. The subcarrier mapping and demapping blocks correspond to the concept
shown in Fig. 4-2.

At the receiver, synchronization is performed using the Schmidl-Cox method [83]
which uses the pseudo-random preamble symbol to detect the beginning of a frame
and also yields a fine estimate of the carrier frequency offset (in the range [~ f./2, f./2)
if f. is the subcarrier frequency width). Symbol sampler removes the cyclic prefix by
sampling an OFDM symbol at a time offset indicated by the synchronizer. The Ac-
quisition block correlates the preamble to determine and correct the coarse frequency
offset (an integer multiply of f.) but also to reject false positives from the synchro-

nizer. The known preamble symbols are used to estimate and equalize the channel.
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Chapter 5

Performance Evaluation and

Analysis

In this chapter, I present results of an experimental evaluation of SoftCast in a phys-

ical testbed as well as information-theoretic analysis of SoftCast’s linear code.

5.1 Evaluation Environment

I use the GNURadio codebase [33] to build a prototype of SoftCast and an evaluation

infrastructure to compare it against two baselines:
e MPEG4 (i.e., H.264) over an 802.11 PHY.

e Layered video where the video is coded using the scalable video extension (SVC)
of H.264/AVC [50] and is transmitted over hierarchical modulation [23]. This
approach has been proposed in [49] to extend Digital TV to mobile handheld

devices.

The Physical Layer. Since both baselines and SoftCast use OFDM, I built Ra-
wOFDM, which can be used as a shared physical layer that allows the execution
to branch depending on the evaluated video scheme. For MPEG and SVC, I also

developed software modules that perform 802.11 interleaving, convolutional coding,
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and Viterbi decoding using the Spiral project [90]. When combined with those dig-
ital channel codes, RawOFDM is equivalent to the modern PHY as embodied in
802.11a/g, and similar (modulo specific parameters) to 802.11n, 802.16 or DVB-
T/T2/H.

Fig. 5-1 shows a block diagram of the implemented PHY layer. On the transmit
side, the PHY passes SoftCast’s packets directly to OFDM, whereas MPEG4 and
SVC-encoded packets are subject to convolutional coding and interleaving, where the
code rate depends on the chosen bit rate. MPEG4 packets are then passed to the QAM
modulator while SVC-HM packets are passed to the hierarchical modulation module.
The last step involves OFDM transmission using RawOFDM and is common to all
schemes. On the receive side, the signal is passed to the RawOFDM module which
performs carrier frequency offset (CFO) estimation and correction, channel estimation
and correction, and phase tracking. The receiver then inverts the execution branches

at the transmitter.

Video Coding. Iimplemented SoftCast in Python (with SciPy). For the baselines,

I used reference implementation available online. Specifically, I generate MPEG-4
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streams using the H.264/AVC [41,78] codec provided in open source FFmpeg software
and the x264 codec library [24,103]. We generate the SVC stream using the JSVM
implementation [50], which allows us to control the number of layers. Also for MPEG4
and SVC-HM, I add an outer Reed-Solomon code for error protection with the same
parameters as used for digital TV [23]. All the schemes: MPEG4, SVC-HM, and
SoftCast use a GoP of 16 frames.

Testbed: We run our experiments in the 20-node GNURadio testbed shown in
Fig. 5-2. Each node is a laptop connected to a USRP2 radio board [94]. We use the
RFX2400 daughterboards which operate in the 2.4 GHz range.

Modulation. The conventional design represented by MPEG4 over 802.11 uses the
standard modulation and FEC, i.e., BPSK, QPSK, 16QAM, 64QAM and 1/2, 2/3,
and 3/4 FEC code rates. The hierarchical modulation scheme uses QPSK for the base
layer and 16QAM for the enhancement layer as recommended in [56]. It is allowed
to control how to divide transmission power between the layers to achieve the best
performance [56]. The three layer video uses QPSK at each level of the QAM hierarchy
and also controls power allocation between layers. SoftCast is transmitted directly

over OFDM. The OFDM parameters are selected to match those of 802.11a/g.

The Wireless Environment. The carrier frequency is 2.4 GHz which is the same
as that of 802.11b/g. The channel bandwidth after decimation is 1.25 MHz. Since
the USRP radios operate in the same frequency band as 802.11 WLANS, there is
unavoidable interference. To limit the impact of interference, I run the experiments
at night. Each experiment is repeated five times and interleave rﬁns of the three

compared schemes.

Metric: The schemes are compared using the Peak Signal-to-Noise Ratio (PSNR).
It is a standard metric for video quality [79] and is defined as a function of the mean

squared error (MSE) between all pixels of the decoded video and the original as
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Figure 5-2: Testbed. Dots refer to nodes; the line shows the path of the receiver in
the mobility experiment when the blue dot was the transmitter.

follows:

2k -1
PSNR =10 ].Ogm m [dB],

where L is the number of bits used to encode pixel luminance, typically 8 bits. A
PSNR below 20 dB refers to bad video quality, and differences of 1 dB or higher are
visible [79).

Test Videos: We use standard reference videos in the SIF format (352 x 240 pixels,
30 fps) from the Xiph [105] collection. Since codec performance varies from one video
to another, we create one monochrome 480-frame test video by splicing 1 second from
each of 16 popular reference videos: akiyo, bus, coastguard, crew, flower, football,

foreman, harbour, husky, ice, news, soccer, stefan, tempete, tennis, waterfall.

Other Parameters: The packet length is 14 OFDM symbols or 250 bytes when
using 16QAM with 1/2 FEC rate. The transmission power is 100mW. The chan-
nel bandwidth is 1.25 MHz. Note that all experiments in this work use the same

transmission power and the same channel bandwidth. Thus, the compared schemes
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are given the same channel capacity’ and differences in their throughput and their

streaming quality are due only to how effectively they use that capacity.

5.2 Results

I empirically evaluate SoftCast and compare it against: 1) the conventional design,
which uses MPEG4 over 802.11 and 2) SVC-HM, a state of the art layered video design
that employs the scalable video extension of H.264 and a hierarchical modulation PHY
layer [56,85].

5.2.1 Benchmark Results

Let us first revisit the result in §1.2.1, which is reproduced in Fig. 5-3 for convenience.

Method: In this experiment, I pick a node randomly in the testbed, and make
it broadcast the video using the conventional design, SoftCast, and SVC-HM. I run
MPEG4 over 802.11 for all 802.11 choices of modulation and FEC code rates. I also
run SVC-HM for the case of 2-layer and 3-layer video. During the video broadcast,
all nodes other than the sender act as receivers. 2 For each receiver, I compute the
average SNR of its channel and the PSNR of its received video. To plot the video
PSNR as a function of channel SNR, I divide the SNR range into bins of 0.5 dB each,
and take the average PSNR across all receivers whose channel SNR falls in the same
bin. This produces one point in Fig. 5-3. I use this procedure to produce points for
all lines in the figure. I repeat the experiment by randomly picking the video source

from the nodes in the testbed.

Results: Fig. 5-3 shows that for any choice of 802.11 modulation and FEC code

rate, there exists a critical SNR below which the conventional design degrades sharply,

1Shannon capacity is C = Wlog(l + %) where W is the bandwidth, P is the power, H is the
channel function, and N is the noise power per Hz.

21 decode the received video packets offline because the GNUradio Viterbi decoder can not keep
up with packet reception rate.
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Figure 5-3: Basic benchmark. The figure shows average video quality as a function
of channel quality. The bars show differences between the maximum and minimum
quality, which are large around cliff points. The top graph compares SoftCast (black
line) against the conventional design of MPEG4 over 802.11 (dashed lines) for different
choices of 802.11 modulation and FEC code rate. The bottom graph compares layered
video (red and blue lines) against the conventional design.

and above it the video quality does not improve with channel quality. In contrast,
SoftCast’s PSNR scales smoothly with the channel SNR. Further, SoftCast’s PSNR

matches the envelope of the conventional design curves at each SNR. The combina-
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tion of these two observations means that SoftCast can significantly improve video
performance for mobile and multicast receivers while maintaining the efficiency of the
existing design for the case of a single static receiver.

It is worth noting that this does not imply that SoftCast outperforms MPEG4.
MPEGH4 is a compression scheme that compresses video effectively, whereas SoftCast
is a wireless video transmission architecture. The inefficacy of the MPEG4-over-
802.11 lines in Fig. 5-3a stems from the fact that the conventional design separates
video coding from channel coding. The video codec (MPEG and its variants) as-
sumes an error-free lossless channel with a specific transmission bit rate, and given
these assumptions, it effectively compresses the video. However, the problem is that
in scenarios with multiple or mobile receivers, the wireless PHY cannot present an
error-free lossless channel to all receivers and at all times without reducing every-
one to a conservative choice of modulation and FEC and hence a low bit rate and a
corresponding low video quality.

Fig. 5-3b shows that a layered approach based on SVC-HM exhibits milder cliffs
than the conventional design and can provide quality differentiation. However, lay-
ering reduces the overall performance in comparison with conventional single layer
MPEG4. Layering incurs overhead both at the PHY and the video codec. At any
fixed PSNR in Fig. 5-3b, layered video needs a higher SNR than the single layer ap-
proach to achieve the same PSNR. This is because in hierarchical modulation, every
higher layer is noise for the lower layers. Similarly, at any fixed SNR, the quality
of the layered video is lower than the quality of the single layer video at that SNR.
This is because layering imposes additional constraints on the codec and reduces its

compression efficiency [100].

5.2.2 Multicast

Method. We pick a single sender and three multicast receivers from the set of nodes
in our testbed. The receivers’ SNRs are 11 dB, 17 dB, and 22 dB. In the conventional
design, the source uses the modulation scheme and FEC that correspond to 12 Mb /s
802.11 bit rate (i.e., QPSK with 1/2 FEC code rate) as this is the highest bit rate
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Figure 5-4: Multicast to three receivers. The figure shows that layering provides
service differentiation between receivers as opposed to single layer MPEG4. But lay-
ering incurs overhead at the PHY and the codec, and hence extra layers reduce the
maximum achievable video quality. In contrast, SoftCast provides service differenti-
ation while achieving a higher overall video quality.

supported by all three multicast receivers. In 2-layer SVC-HM, the source transmits
the base layer using QPSK and the enhancement layer using 16 QAM, and protects
both with a half rate FEC code. In 3-layer SVC-HM, the source transmits each layer
using QPSK, and uses a half rate FEC code.

Results: Fig. 5-4 shows the PSNR of the three multicast receivers. The figure
shows that, in the conventional design, the video PSNR for all receivers is limited by
the receiver with the worse channel. In contrast, 2-layer and 3-layer SVC-HM provide
different performance to the receivers. However, layered video has to make a trade-off:
The more the layers the more performance differentiation but the higher the overhead
and the worse the overall video PSNR. SoftCast does not incur a layering overhead
and hence can provide each receiver with a video quality that scales with its channel

quality, while maintaining a higher overall PSNR.

Method: Next, let us focus on how the diversity of channel SNR in a multicast
group affects video quality. I create 40 different multicast groups by picking a random
sender and different subsets of receivers in the testbed. Each multicast group is
parametrized by its SNR span, i.e., the range of its receivers’” SNRs. I keep the
average SNR of all multicast groups at 15 (£1) dB. I vary the range of the SNRs in
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Figure 5-5: Serving a multicast group with diverse receivers. The figure plots
the average PSNR across receivers in a multicast group as a function of the SNR range
in the group. The figure shows that the conventional design and SVC-HM provide
a significantly lower average video quality than SoftCast for multicast group with a
large SNR span.

the group from 0-20 dB by picking the nodes in the multicast group. Each multicast
group has up to 15 receivers, with multicast groups with zero SNR range having
only one receiver. For each group, I run each of the three compared schemes. The
transmission parameters for each scheme (i.e., modulation and FEC rate) is such that
provides the highest bit rate and average video quality without starving any receiver
in the group. Finally, SVC-HM is allowed to pick for each group whether to use one

layer, two layers, or three layers.

Results. Fig. 5-5 plots the average PSNR in a multicast group as a function of the
range of its receiver SNRs. It shows that SoftCast delivers a PSNR gain of up to
5.5 dB over both the conventional design and SVC-HM. One may be surprised that
the PSNR improvement from layering is small. Looking back, Fig. 5-4b shows that
layered video does not necessarily improve the average PSNR in a multicast group.
Rather, it changes the set of realizable PSNRs from the case of a single layer where
all receivers obtain the same PSNR to a more diverse PSNR set, where receivers with

better channels can obtain higher video PSNRs.
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Figure 5-6: Performance under mobility. The figure compares the video quality
of the conventional design and SoftCast under mobility. The conventional design is
allowed to adapt its bitrate and video code rate. The top graph shows the SNR of
the received packets, the middle graph shows the transmission bit rate chosen by
SoftRate and used in the conventional design. The bottom graph plots the per frame
PSNR. The figure shows that even with rate adaptation, a mobile receiver still suffers
significant glitches with the conventional design. In contrast, SoftCast can eliminate

these glitches.

5.2.3 Mobility

Next, I study video glitches experienced by a single mobile receiver. Since a video
PSNR below 20 dB is not watchable [65], T identify glitches as frames whose PSNR
is below 20 dB.

Method: Performance under mobility is sensitive to the exact movement patterns.
Since it is not possible to repeat the exact movements across experiments with differ-
ent schemes, I follow a trace-driven approach like the one used in [98]. Specifically, I
perform the mobility experiment with non-video packets. I then subtract the received

soft values from the transmitted soft values to extract the noise pattern on the chan-
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nel. This noise pattern contains all necessary information to describe the distortion
that occurred on the channel including fading, interference, the effect of movement,
etc. 1 then apply the same mnoise pattern to each of the three video transmission
schemes to emulate its transmission on the channel. This allows us to compare the
performance of the three schemes under the same conditions. Fig. 5-2 shows the path
followed during the mobility experiments.

The conventional design is allowed to adapt its transmission bit rate and video
code rate. To adapt the bit rate it uses SoftRate [98], which is particularly designed
for mobile channels. To adapt the video code rate, MPEG4 is allowed to switch the
video coding rate at GoP boundaries to match the transmission bit rate used by
SoftRate. Adapting the video faster than every GoP is difficult because frames in a
GoP are coded with respect to each other. The conventional design is also allowed
to retransmit lost packets with the maximum retransmission count set to 11. This
scheme does not adapt the bit rate or video code rate of layered video. This is because
a layered approach should naturally work without adaptation. Specifically, when the
channel is bad, the hierarchical modulation at the PHY should still decode the lower
layer, and the video codec should also continue to decode the base layer. Finally,
SoftCast is not allowed to adapt its bit rate or its video code rate nor is it allowed to

retransmit lost packets.

Results: Fig. 5-6 shows the results of our experiment. The top graph shows the
SNR in the individual packets in the mobility trace. Fig 5-6b shows the transmission
bit rates picked by SoftRate and used in the conventional design. Fig 5-6¢ shows the
per-frame PSNR for the conventional design and SoftCast. The results for SVC-HM
are not plotted because SVC-HM failed to decode almost all frames (80% of GoP
were not decodable). This is because layering alone, and particularly hierarchical
modulation at the PHY, could not handle the high variability of the mobile channel.
Recall that in hierarchical modulation, the enhancement layers are effectively noise
during the decoding of the base layer, making the base layer highly fragile to SNR
dips. As a result, the PHY is not able to protect the base layer from losses. In
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Figure 5-7: Resilience to packet loss. The figure shows that both SVC-HM and
the conventional MPEG-based design suffer dramatically at a packet loss rate as low
as 0.5%. In contrast, SoftCast’s is only mildly affected even when the loss rate is
as high as 10%. For reference, the figure shows the performance of SoftCast if it
did not use the Hadamard matrix to ensure that all packets carry equal amount of
information.

contrast single layer video reacted better to SNR variability because its PHY can
adapt to use BPSK which is the most robust among the various modulation schemes.

Fig 5-6¢ shows that, with mobility, the conventional wireless design based on
MPEG-4 experiences significant glitches in video quality. These glitches happen when
a drop in the transmission bit rate causes significant packet losses such that even if the
packets are recovered with retransmissions, they might still prevent timely decoding
of the video frames. In comparison, SoftCast’s performance is stable even in the
presence of mobility. This is mainly due to SoftCast being highly robust to packet
loss due to that it avoids Huffman and differential encoding and it spreads the video
information across all packets. The results in Fig 5-6¢ show that, in this mobile
experiment, 14% of the frames transmitted using the conventional design suffer from

glitches. SoftCast however has eliminated all such glitches.

5.2.4 Resilience to Packet Loss

Method: I pick a random pair of nodes from the testbed and transmit video be-
tween them. I generate packet loss by making an interferer transmit at constant

intervals. By controlling the interferer’s transmission rate I can control the packet
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loss rate. I compare four schemes: the conventional design based on MPEG4, 2-layer
SVC-HM, full-fledged SoftCast, and SoftCast after disabling the Hadamard multipli-

cation. I repeat the experiment for different transmission rates of the interferer.

Results: Fig. 5-7 reports the video PSNR at the receiver across all compared
schemes as a function of the packet loss rate. The figure has a log scale. It shows
that in both baselines the quality of video drops sharply even when the packet loss
rate is less than 0.5%. This is because both the MPEG4 and SVC codecs introduce
dependencies between packets due to Huffman encoding, differential encoding and
motion compensation, as a result of which the loss of a single packet within a GoP
can render the entire GoP undecodable. In contrast, SoftCast’s performance degrades
only gradually as packet loss increases, and is only mildly affected even at a loss rate
as high as 10%. The figure also shows that Hadamard multiplication significantly
improves SoftCast’s resilience to packet loss. Interestingly, SoftCast is more resilient

than MPEG4 even in the absence of Hadamard multiplication.

SoftCast’s resilience to packet loss comes from:

e The use of a 3D DCT ensures that all SoftCast packets include information
about all pixels in a GoP, hence the loss of a single packet does not create

patches in a frame, but rather distributes errors smoothly across the entire

GoP.

e SoftCast packets are not coded relative to each other as is the case for differential
encoding or motion compensation. Hence the loss of one packet does not prevent

the decoding of other received packets.

e All SoftCast packets have equal energy as a result of Hadamard multiplication,
and hence the decoding quality degrades gracefully as packet losses increasec.
The LLSE decoder, in particular, leverages this property to decode the GoP

even in the presence of packet loss.
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Figure 5-8: Impact of available wireless bandwidth. The figure plots the per-
formance of SoftCast and MPEG4 for a single receiver with 10 dB SNR as a function
of the ratio of wireless bandwidth to video bandwidth (i.e., pixels/s). SoftCast is
suitable for environments where it is desirable to send a large video over a relatively
low bandwidth channel.

5.2.5 Impact of Available Wireless Bandwidth

Next, let us explore SoftCast’s limitations. SoftCast is designed for environments
where the wireless bandwidth is the bottleneck, i.e., the video source is too big to
fit within the available channel bandwidth. (Note, if a 20MHz channel is shared by
10 users, then the available bandwidth per user is 2MHz.) The source bandwidth
is typically defined as the number of dimensions/sec, which in the case of a video
source refers to the number of pixel values per second [16]. If the available wireless
bandwidth is less than the video source bandwidth, SoftCast compresses the video by
dropping low energy 3D DCT frequencies. However, SoftCast’s existing design has
no particular approach to deal with environments where the source’s bandwidth may
be higher than the wireless bandwidth. The conventional design can leverage such
scenarios to make a wideband low SNR channel perform as if it were a high SNR
narrow bandwidth channel, using an approach called bandwidth expansion [16,88].
However, I am unaware of good linear codes for bandwidth expansion. A straight-
forward linear code would simply repeat the same signal; however repetition is not

efficient. Below, I show empirical results from scenarios with bandwidth expansion.
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Figure 5-9: SoftCast microbenchmark The figure plots the contributions of Soft-
Cast’s components to its video quality. The figure shows that the use of LLSE is
particularly important at low SNRs where as error protection via power scaling is
important at high SNRs.

Method: I pick a single sender-receiver pair with 10 dB SNR. I vary the available
wireless bandwidth by changing the packet rate on the USRP2, and transmit the same
video with both with SoftCast and MPEG4. For scenarios that require bandwidth
expansion SoftCast simply repeats the signal. As for MPEG4, the 802.11-like PHY

naturally performs bandwidth expansion.

Results: Fig. 5-8 shows that SoftCast remains competitive in a wide range of sce-
narios where the wireless bandwidth is smaller than the source bandwidth. In scenar-
ios where wireless bandwidth is significantly larger, SoftCast is unable to efficiently
utilize the bandwidth. This is a limitation of SoftCast’s linear design which given sur-
plus bandwidth can only apply repetition coding. However, the wireless bandwidth
is a shared scarce resource. Hence, I believe, most practical scenarios are limited by

the wireless bandwidth, and can benefit from SoftCast’s design.

5.2.6 Microbenchmark

I examine the contribution of SoftCast’s components to its performance.

Method: I pick a sender receiver pair at random. I vary the SNR by varying the

transmission power at the sender. For each SNR, I make the sender transmit the
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video with SoftCast, SoftCast with linear scaling disabled, and SoftCast with both
linear scaling and LLSE disabled. I repeat the experiments multiple times and report

the average performance for each SNR value.

Results: The figure shows that SoftCast’s approach to error protection based on
linear scaling and LLSE decoding contributes significantly to its resilience. Specifi-
cally, linear scaling is important at high SNRs since it amplifies fine image details and
protects them from being lost to noise. In contrast, the LLSE decoder is important
at low SNRs when receiver measurements are noisy and cannot be trusted, because it

allows the decoder to leverage its knowledge of the statistics of the DCT components.

5.3 Theoretical Analysis

The results of the experimental evaluation indicate that SoftCast not only provides
desired graceful degradation. but also remains competitive with single-layer video
on stationary channels while outperforming multi-layer video on broadcast channels.
In order to provide more insight into these results, in this section, I analyze the
performance of the linear code employed by SoftCast and compare it to the theoretical
upper bound on the performance of the separate codec-PHY design. However, to
do so analytically, I simplify the model of the source signal to that of a correlated
multivariate Gaussian. The channel is modeled as multidimensional with additive
white Gaussian noise (AWGN). Throughout this section, I refer to the linear code as

analog, while the separate design is correspondingly named digital.

5.3.1 Preliminaries

I present the problem model and review basic results for communications, both digital
and analog, of Gaussian sources over Gaussian channels. For this section, I limit the
exposition to the major concepts rather than the formal definition and proofs. Details

and excellent textbook treatment for the digital results can be found in [16].
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Figure 5-10: A system model for communications. The input S € R is encoded
and then transmitted through M parallel AWGN channels. The decoder outputs a
reproduction S with performance determined by the MSE. A side channel may exist
between the encoder and decoder to transmit a small amount of metadata to aid
signal reconstruction.

Problem Statement

Consider the system depicted in Figure 5-10. At each time step, the encoder accepts
an input vector S € RY and transmits an output vector X € RMover a set of parallel
channels perturbed by an additive white Gaussian noise (AWGN) vector Z. The
decoder receives the noisy transmission Y = X + Z and produces a reproduction S of
the transmitted signal. The goal of the system is to minimize the distortion between
S and S, measured as the mean-squared error (MSE), i.e., D = E [21(5”1 - Si)Q].

The constraint is on the the average power of the encoder, meaning

E <P

Lo

For this chapter, we assume that the source S is the class of memoryless multi-
variate Gaussian vectors with diagonal covariance matrices. Hence, each component
or subband S; of the source is an independent zero-mean Gaussian variable with
variance )\;. Assume a natural order of subbands according to variances such that
A; > -+ > Ay. Moreover, assume the noise elements Z; are iid with variance 0. The
channel can also be characterized using a signal-to-noise ratio SNR = P/g?.

Section 5.3.3 discusses a two-user broadcast channel, which is shown in Figure 5-
11. For this system, each user may have different channel statistics. We define
the noise variances as o? and o (with corresponding SNR; and SNR;) and assume
o1 < 09.

Although practical sources are often correlated both in time and across subbands,
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Figure 5-11: The two-user broadcast channel model. The transmission X is
desired by both users but is corrupted by noise.

an added step of decorrelation or subband decomposition can prepare the source for
such a system setup. For example, transform coding (DCT) is the typical first step of
video communications [41,99]. Similarly, techniques in channel coding can effectively
hide the correlation in the channel behind the AWGN model. For example, OFDM
systems employ FF'T, guard intervals and pilots to mask frequency fading, ISI and
frequency offset [36].

The average power constraint can easily be changed to a per-component power

constraint

E[X} <P Vi

by applying a Hadamard matrix to X before transmitting. The Hadamard matrix is
an orthogonal transform with entries +1 and —1 only that is commonly used to to

redistribute energy in a signal [84].

Digital Communications

The separation theorem dictates that the optimal solution for the point-to-point
source-channel problem can be obtained by first applying an optimal source coding
and then using an optimal channel code to transmit this bit-stream. The capacity
C(SNR) of the channel defines the maximum rate of the bit-stream that can be de-
coded without error for a given channel SNR. Meanwhile, the rate-distortion function
of the source, R(D) defines the minimum achievable rate R that yields distortion
D. Hence R(Dop) = C(SNR). This is also known as OPTA (Optimum Performance
Theoretically Attainable). Note that achieving an end-to-end distortion of Dqpy could
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require infinite block length in both source and channel coders.

For a set of M AWGN channels with a particular SNR, the capacity is
M
C(SNR) = 5 log(1 + SNR). (5.1)

For a multi-variate Gaussian S, the rate-distortion function is given by the reverse

water-filling solution:
N
1 .
R(D) = Z 5 log, = (5.2)
where D; = min(7, \;) and v is chosen to satisfy > . D; = D.

By reverse waterfilling, some source subbands may not be transmitted when the
channel is noisy. As the channel gets worse, the best choice of v increases and leads to
more subbands being suppressed. For a given source S and channel SNR, we can find
the optimal choice of v and subsequently K, the number of subbands transmitted.

The resulting optimal end-to-end distortion is

moa 7 &
Dgig(SNR) = K (__(1 +1S_1iIRl)M-> + Z Ai (5.3)
1=K+1

We also survey results related to the Gaussian broadcast channel model of Fig-
ure 5-11, where the capacity is known since the channel is stochastically degraded,
i.e., can be modeled as Y, = X + Z, = Y; + Zj, where 0 = 05 — o} [17]. The
achievable rate region can be obtained by superposition coding, where the encoder
splits the bit-stream into low-priority enhancement at rate R; and high-priority base
at rate Ry, channel-codes them, and adds them up before transmitting. Both users
can decode the base and the stronger receiver can also decode the enhancement. The

achievable rate region is given by [16]

M
R1 = ? 10g2(1 + WSNRl), (54)
. M (1 — w)SNRg
Ry = = log (1 + m) : (5.5)
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where w € [0,1] is a parameter that determines the fraction of total power devoted
to transmitting the enhancement. Superposition coding in QAM is also known as
hierarchical modulation.

The matching source coder needs to encode the source into two bit-streams. For
example, the high-priority base is result of a coarse quantization, and the low-priority
enhancement is a finer quantization of the residual error from the coarse quantization.
Gaussian sources are successively refinable without loss, and therefore the two users
can achieve, respectively, distortions D; = D(R; + R;) and Dy = D(Ry), i.e., the
minimum distortion achievable at the total received rate. Note that for two users, a

two-layer digital scheme is maximal, i.e. cannot be improved by adding layers.

Analog Communications

For a single-dimensional Gaussian source and channel, we find that the minimum

distortion

A

Do = X270 = = .
Pt 1+ SNR (5.6)
is achieved by a very simple uncoded (unit block length) system:
X = g5, (5.7)
~ gA
S = ——Y. 5.8
g°A + o2 (5:8)

The encoder applies a scaling factor g = \/m to match available power, and the de-
coder performs linear least squares (LLS) estimation given the known noise variance.
We assume that the statistic A is communicated to the decoder via a side channel.
Such encoder is often referred to in literature as Pulse Amplitude Modulation (PAM).

In this chapter, we consider a generalization of this analog system with the re-
striction that encoding and decoding are linear and allow for a side channel that
communicates the subband variances as side information to the decoder. The en-

coder transmits X = GS where G is an M x N matrix. Given a constraint on
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average power (or per-component power by using the Hadamard) and the fact that
we consider only the regime M < N, the optimal gain matrix G is diagonal (for
M < N, the N — M subbands with smallest variances are suppressed). Since the
LLS decoder, optimal for linear decoders, depends on noise variance, the encoder can
optimize the gain matrix expecting a specific channel SNR. Denoting the diagonal
elements of G to be g; and the normalized gain d; = g2/ P, the distortion of the analog

system can be written as

N

\
D(SNR) = e 9.9
(SNR) ; d;\iSNR + 1 (5.9)
subject to Y, d;\; = M and d; > 0. This yields a water-filling result [58]:
(Ca V% | 5
Diona(SNR) = ~=2=L 22 Ais 5.10
(SNR) = SrNR+ K T 2 (510)

1=K+1

where the number of subbands to be transmitted, K, is dependent on the channel
SNR, much like in the digital case. The choice of K can be determined by solving a
Lagrangian and increases monotonically with SNR up to M.

We briefly comment on the robustness of this analog scheme. Because the system
is linear, a mismatch between design and actual SNR does not necessarily induce
complete performance loss like in the digital case when coding near capacity. In fact,
for reasonable mismatches, the performance may still be near optimal for the actual

SNR. A rigorous analysis of robustness for the single-component case is given in [95].

5.3.2 Point-to-point Communication

We compare the end-to-end distortion performance between the proposed analog
system and a digital system operating at capacity using the model in Section 5.3.1.
We define the compression ratio to be 3 = M/N and the performance ratio to be
p(SNR, As) = Dadig/Dana, Where Ag is the covariance matrix of the source and Dgig
and D,,, are the solutions to (5.3) and (5.10) for a target channel SNR. Note that

in this setting, the digital system achieves optimal performance and therefore p < 1.
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However, we are interested in how close does analog perform to this optimum.

A simple example is first presented to provide some intuition about how p may
vary with SNR and Ag. A more general analysis of p for 3 < 1 is then discussed. We
do not consider the case of 3 > 1 because it has been well-studied that linear analog
encoding performs poorly compared to nonlinear coding such as space-filling [15] in

this regime.

A Two-dimensional Source

Consider a system with N = M = 2, meaning that two source subbands are commu-
nicated with two channel uses per unit time. Assume the source covariance matrix is

given by
10
0 €

Ag =

For low SNR, the smaller source symbol is suppressed by both schemes, yielding

distortions

D, = m + €.
In the limit of very low SNR, p approaches 1 regardless of ¢, making the schemes
comparable.
As SNR increases, the analog and digital systems transmit both source subbands
when € exceeds 1/(1 + 2SNR)? and 1/(1 + SNR)? respectively. In this regime, the

distortions become

Do 2V _ 2/e
4~ 171 SNR ~ SNR’

(L++€)?  (1++/e)?
2SNR+2~  2SNR

Dana =

For SNR large, the performance ratio approaches the constant

4/e

p___.—_

1+ Ve
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Figure 5-12: Performance in point-to-point communication of a 2-
dimensional source. Plot of performance ratio p in terms of € and SNR in point-to-
point communication. The solid and dashed black lines correspond to the threshold
for which two sources subbands are transmitted for the analog and digital cases re-
spectively.

When ¢ = 1, the ratio is also 1, which corresponds to the case of analog being
optimal for the encoding of an iid Gaussian source. However, for general €, the analog
performance degrades monotonically with SNR and the loss can be very significant

for small €. Figure 5-12 demonstrates these trends.

Now consider the case when M = 1 meaning the channel has only one dimension.
This means that the encoder must produce only one channel value for every N = 2
source values. In this case the analog coder must discard the weaker subband while
the digital coder splits the available bit-rate between the two subbands. However,
as € decreases to 0, the effective source dimension becomes 1 and thus the analog
system becomes optimal. This is illustrated in Figure 5-13. The green line on this
plot corresponds to a cut at 10dB SNR. of Figure 5-12, while the blue line shows the
corresponding performance when M = 1. We observe that while analog is predictably
optimal in the cases of (e =1, M = 2) and (¢ = 0, M = 1), it is also competitive in a

wide regime, in particular, admitting compression if the source is compressible.
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Figure 5-13: Performance regimes in point-to-point communication. Plot
of performance ratio p = —gai::i— in terms of € in point-to-point communication over
a channel with 10dB SNR. The blue line corresponds to bandwidth compression at
M = 1 while the green shows the case of bandwidth match at M = 2. When € = 0,
the effective source dimension is 1 and thus analog is optimal.

A More General Case

We now consider the case when N and M are arbitrary but M < N holds. Since the
parameter space can be arbitrarily large, we restrict the source to a first-order Gauss-
Markov (or AR(1)) process that is decorrelated using the Karhunen-Loéve Transform
(KLT) to form the vector S. We emphasize that the qualitative results hold more
generally and this model is a tool to reduce the parameter space. Moreover, this
model has strong ties to image and video compression due to the fact that the KLT

and DCT are asymptotically equivalent [74].

We assume a source Sqy(t) € RY is independent in time but its components at a

given instant form a stationary Gaussian process with a covariance matrix
(AGM)ij = Oflz_'?l, Z,j = 1,2,N

The KLT of Agu is a diagonal matrix Ag with entries corresponding to the eigenvalues

of Agn. They can be expressed as
B 1-¢a?
1 -2acosh; +a?’

Ai

(5.11)
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Figure 5-14: Variance profile of the modelled source. Plot of normalized sub-
band variance \; for selected values of source correlation parameter o. The higher
the correlation in the AR(1) process, the more compacted is the energy of the source
signal in a small fraction of subbands.

where the 6;s are the positive roots of

~ (1—a?%)sind
cos® — 2a + a?cosf’

tan(N@) = (5.12)

These eigenvalues can be seen as taking non-uniform samples from the monotonically

decreasing function
1-a?

f(9;0) = 1 — 2accos(f) + a?

in the range [0,7) [75]. Hence, the input to the encoder is S, a multi-variate mem-
oryless Gaussian vector with decaying variances assumed in earlier sections. For

reference, Fig. 5-14 shows how « affects the decay of A.

When M = N, the performance results are well known. In the degenerate case
of & = 0, the system has no memory and this problem simplifies to that of an iid
Gaussian source through AWGN channel with p = 1. For general o and high SNR,

the ratio approaches the constant

N 1/N
N2 (JL;2s M)
(i, vA)?
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which is the Arithmetic Mean-Geometric Mean performance gap discussed in [54].

It is also well-known that p =~ 1 for very low SNR in general. As seen in the
2 x 2 case, both analog and digital schemes will only try to communicate the most
significant components when the channel is very noisy. Since SNR and capacity are
linearly related in this regime, analog communication performs as well as digital.

It may be tempting to say that for 4 < 1, these same trends hold. However, we
show this is not the case and p does not necessarily behave in a monotonic fashion
with respect to SNR. At one extreme, using the distortion results (5.3) and (5.10),
we see that for high SNR, p decays as (1+ SNR)? and hence the performance loss is
dramatic. This is because a digital scheme can successfully compress N source sym-
bols into M channel uses but an analog design must discard the N — M components
with smallest variances, which is inefficient. Meanwhile, for moderate SNR, we note
that both analog and digital transmission may not transmit all source components
possible. When the analog and digital transmit both communicate approximately M
components, p can be close to 1. In this case, the analog scheme remains efficient
because it is transmitting as many components as it can support with M channel
uses while the digital is forced to suppress some subbands due to the noisiness of the
channel, thereby reducing its asymptotic advantage.

This is demonstrated in Figure 5-15, which looks at several choices of M for
N = 64. We can note that for smaller § and moderate SNR, the analog design
performs much better than asymptotic analysis may suggest. These results show that
an analog design is reasonable beyond just the iid Gaussian case and the Arithmetic
Mean-Geometric Mean performance gap does not hold except for 8 = 1. A designer
may tolerate this amount of performance loss in favor of the simplicity and robustness
of the analog system.

To better characterize the regime in which the analog system is competitive we
fix the channel SNR at 10dB and show how the performance varies with o and 3 in
Figure 5-16. In particular we can identify three regimes where the ratio p is close to

1:
1. When 8 =1 and a = 0, the source is white and the system is matched, hence
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performance is defined in terms of the distortions observed by each of the users and
depends on channel SNR of each user. To comparatively evaluate the two systems,
we use total distortion, i.e., sum of distortions of individual users. In general, one
could use other metrics, e.g., the weighted sum. This overall distortion metric is a
function of each user’s channel SNR. For simplicity, we consider a scenario with only

two users, and focus on three operational SNR regimes:
1. high SNR: SNR; = 17dB and SNR, = 10dB
2. low SNR: SNR; = 10dB and SNR, = 3dB
3. wide SNR: SNR; = 17dB and SNR, = 3dB

As in the case of point-to-point, one parameter in the evaluation is compression
ratio, 8 = M/N. However, we also consider the case of bandwidth expansion, i.e.,
B > 1. Although the linear analog scheme cannot compete in this regime for point-
to-point channels except for very low SNR, the broadcast setting gives it advantages
over the digital system.

Thus the computed performance ratio is p(SNR12,As) = Dagig/Dana, Where Ag
is the covariance matrix of the source and Dgi; and Dy, are the minimum total
distortions achievable in either scheme when optimized over its tunable parameters
according to Section 5.3.1. That is, in both cases the encoder decides how many
source subbands to suppress and the digital superposition encoder optimizes the power

distribution between the two bit-streams.

A Two-dimensional Source

Once again, we use a simple example to provide some intuition about how p may vary
with the source covariance matrix. Consider the case of N =2 and M = 1,2,3. As
before, we assume A\ = 1, Ay = €.

Figure 5-17 plots the performance ratio p in terms of € and the channel bandwidth
M. We observe that how p changes with € depends on the compression ratio. In

the regime of bandwidth compression, when M = 1, the analog system delivers a
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performance gain for low €, but a significant loss for white sources. In contrast, in the
case of matched bandwidth M = 2, the gain of the analog system peaks at e = 1, as
it converges to the optimal distortion bound. In the regime of bandwidth expansion,
M = 3, the analog system, limited by its linearity, loses its broadcast advantage. The
lower the e, the worse performance it exhibits.

This points at the underlying determining factor of analog performance. When
the source and channel are matched, it performs nearly optimally, but fails compet-
itively to expand or compress the bandwidth. As € tends to 0, the source can be
approximated as single-dimensional by ignoring the low-variance subband. Thus, for
M =1 the system becomes matched. The performance gap (both loss and benefit)

is more pronounced in the high SNR regime.

A More General Case

We now move to larger source dimensions, specifically N = 64. Using the same
Gauss-Markov model as in Section 5.3.2, we evaluate the performance ratio p under
varying source correlation a and channel bandwidth M. Once again, we look at a
wide spectrum from bandwidth compression of 1/64, to bandwidth expansion of 2.

Figure 5-18 shows the performance ratio in the three considered SNR scenarios.
We find that analog dominance is most pronounced in the area of matched bandwidth
(8 = 1) for low source correlation. Indeed, when the source is white (o = 0), we expect
the matched analog system to perform optimally, as discussed previously. However,
we also find that analog remains dominant in the area of moderate compression and
source correlation (top left in the plot). This aligns with our previous observations:
if the source is correlated it can be “easily” compressed into the available channel
bandwidth. The more correlated the source is, the lower the matching compression
ratio. \

We find that, although the analog system shows the greatest maximum benefit in
the high SNR regime, its performance gain decays abruptly with source-channel rate
mismatch. On the other hand, if the SNR of the weak user is low, the analog system

is superior in a larger domain. The modest difference between Fig. 5-18b and 5-18c
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suggests that the dominating factor is the lower SNR rather than the SNR range.
However, the overall benefit of the analog is generally diminished at higher SNR by
the asymptotic gap. These results show that an analog design might offer substantial
benefit in a broadcast scenario beyond the matched iid Gaussian case.

Observe that the layered digital design is not limited by the strict coder separation
concept considered by Shannon in which the source and channel coders agree only on
the rate of bits in the uniform lossless bit-pipe. Thus, although such design qualifies
as JSCC, it is fundamentally limited by the bit-pipe. Gastpar et al. showed in [29]
that if there is a match between the probability distribution of the source and the
channel, for instance if rate-matched and white in our consideration above, then the
simple analog, uncoded communication is optimal. However, as we have shown, even
if they are not matched, the analog design can be superior to any digital method in

particular operational regimes.

5.4 Discussion

Our results indicate a linear analog system might not necessarily perform as poorly as
indicated by the asymptotic gap, even when compared to the optimal digital bound.
Specifically, we found that when the available channel bandwidth is low and the en-
coder needs to compress, the analog system can retain its broadcast advantage if the
source is correlated and thus compressible. In this section, we explore practical ap-
plication scenarios to determine their operational regime. We also discuss additional
benefits of the analog system when restricted by other constraints: computational

complexity and latency.

5.4.1 Practical Applications

First, to benefit from analog communication, the source must have a degradable char-
acter. Examples of degradable signals include video, audio and sensors measurements
such as environmental conditions (temperature, pressure, etc.).

Second, JSCC is naturally unsuitable if the channel coder is beyond our control,
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hidden behind the layering abstraction of the communication system. For instance,
the sheer diversity of the actual physical implementations of each link in a wide-area
network renders JSCC infeasible. That said, the increasingly commonplace cross-
layer or split design violates the layering and end-to-end principles on the wireless
last hop. Such a design is motivated by the fact that physical layer characteristics
of the wireless channel cannot be effectively concealed from the network. Examples
include Snoop, split TCP and HTTP proxy at the wireless access point [5]. Thus, it
is conceivable that an access point or base station would transcode a video stream
from the format most suitable for IP networks to a format more suitable for wireless
channel [31].

Furthermore, a JSCC approach does not necessarily discard the layering abstrac-
tion. A wireless PHY needs to deal with many practical issues specific to the device
hardware, such as gain control, preamble detection, channel estimation, phase and
amplitude equalization, carrier and sampling frequency offset compensation, or carrier
sensing. Rather than recreating this custom functionality in the JSCC, the existing
PHY could simply expose a more “raw” interface to the channel, as described in
Chapter 4.

We note that this concept aligns with the efforts to expose more PHY-level infor-
mation to the MAC layer in the form of per-subcarrier channel estimates or per-bit
soft values [48,73,98]. To benefit from analog or hybrid transmission, the PHY needs
to let the higher-layer (application-specific JSCC) perform constellation mapping.

Finally, all of our results are with respect to a particular distortion metric: MSE.
Specific applications may have more relevant application-specific distortion metrics,
yet MSE provide a general unifying approach to study all of these systems and the
results are typically relevant to other metrics. Notably, PSNR the de facto metric for
video content is MSE-based.

5.4.2 Operational Regime of Wireless Video Broadcast

Our results suggest that even purely linear schemes can be competitive in specific

regimes. For example, one could apply the analog linear scheme described in Sec-
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tion 5.3.1 to DCT frequencies (as source subbands) and treat the statistics as meta-
data. For reference, the ATSC standard defines SDTV video resolution between
704 x 480 and 720 x 576 at 24 or 30fps, corresponding to 8e¢6 and 12e6 luminance
values per second. An HDTV could bring the source bandwidth to 60e6 with 2Mpixel
screens.

In comparison, an 8MHz mobile TV (DVB-H) channel offers a net channel rate of
around 10° dimensions per second. This is split across up to 15 TV stations, yielding
700 x 10% dim/s per source. For interlaced SDTV this indicates a compression ratio
of 5:1 to 9:1. Similarly, 802.11a/g over the 20MHz channel sees net channel rate
of 24 x 10% dim/s, but in practice utilizes only 50%-70% depending on the packet
length. Streaming HDTV content over such channel would fall in the compression
regime. Practical operational SNR range is [—5, 30]dB for DVB-H and [3, 25]dB for
802.11a/g. Thus, the parameters of practical scenarios of wireless transmission of
video lie within the compression region where the linear analog scheme is competitive
with the optimal digital bound in point-to-point and can be superior in the broadcast
case. That is assuming significant correlation in the source, which is characteristic to

video content.

5.4.3 Other Benefits of Analog Coding

In this chapter, we have compared the linear analog scheme to the optimal digital
approach imposing only a bandwidth and signal power requirement. However, prac-
tical systems are limited in computational complexity and processing latency which
restricts the blocklength and reduces performance. Thus, the simplicity and very low
latency of the linear analog system could make it the preferred approach in power-
restricted applications, such as mobile or sensor networks. For instance, discarding
space-time coding, the convolutional FEC consumes nearly half of the digital circuit
power in 802.11n [42]. Similarly, in the source coder, an analog scheme might not

need to perform expensive motion search but can resort to one-pass vector arithmetic.
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Chapter 6

Related Work

Recent years have witnessed much interest in making video quality scale with chan-
nel quality [10,64,67,102]. The general approach so far has been to divide the video
stream into a base layer that is necessary for decoding the video, and an enhance-
ment layer that improves its quality [13,19,32,35,39,53,85]. Proposals in this area
differ mainly in how they generate the two layers and the code they use to protect
them. For example, some proposals consider the I frames as the base layer and the
P and B frames as the enhancement layer [107]. More recent approaches create a
base layer by quantizing the video to a coarse representation, which is refined by the
enhancement layers [32,85]. Given video layers of different importance, one has many
choices for protecting them unequally. Some proposals put more FEC coding on the
base layer than the enhancement layers [19,39]. Others employ embedded diversity
coding, where a high-rate code allows the enhancement layer to harness good chan-
nel realizations, while the embedded high-diversity code provides guarantees that at
least the base layer is received reliably [2,20,32]. Hierarchical modulation and super-
position coding are examples of this approach [16,56]. Motivated by this prior work,
SoftCast takes scalable video one step further; it disposes of the coarse granularity of
layers in favor of a continuously scalable design.

Related work also includes analog and digital TV. Analog television also linearly
transforms the luminance values for transmission. And, in fact, analog television also

shares the property that the quality of the transmitted video degrades smoothly as
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the channel quality degrades. A key advantage of our approach is that our encoding
scheme also leverages the powerful digital computation capabilities (which became
available subsequent to the development of analog television) to encode the video both
for compression and error protection. Hence, we can obtain transmission efficiency

comparable to standard digital video coding schemes such as MPEG.

Digital TV also deals with video multicast [76]. The focus in digital TV however
is on ensuring a minimum video quality to all receivers rather than on ensuring that
each receiver obtains the best video quality supported by its channel. Further, the
variability in channel quality is lower because there is neither mobility nor interfer-
ence. In fact, proposals for extending Digital TV to mobile handheld devices argue
for graceful degradation and propose to employs a 2-layer video with hierarchical

modulation [56].

There is a large body of work that allows a source to adapt its transmission bitrate
to a mobile receiver [11,37,51,98]. However, these schemes require fast feedback, and
are limited to a single receiver. Further, they need to be augmented with additional
mechanisms to adapt the video codec rate to fit within the available bitrate. In
contrast, SoftCast provides a unified design that eliminates the need to adapt bitrate
and video coding at the source, and instead allows the receiver to extract a video

quality that matches its instantaneous channel.

This work builds on past work in information theory on rate distortion and joint
source and channel coding (JSCC) [16]. This past work however mainly focuses on
theoretical bounds. The fact that white Gaussian sources transmitted uncoded over
white Gaussian channels can be optimal has been known for decades [7,34]. Other
combinations of sources and channels where uncoded transmission is optimal are also
explored [29]. The Gaussian match was generalized to linear encoding in the vector
case [58] and nonlinear encoding using space-filling curves when the number of source
components does not match the number of channel uses per unit time [15,38]. The
problem of bandwidth expansion and compression has also been addressed by hybrid
systems combining digital techniques with linear analog encoding [77,88], although

the scope of analysis was limited to a 2-dimensional white source. Correlation in the
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source was shown to aid the broadcast scenario in a hybrid scheme proposed in [72].

Of particular interest are investigations of analog or hybrid systems that transmit
media content over AWGN channels. In [54], wireless image transmission is made
more robust using an analog transmitter. In [55], a digital base layer is refined with
an analog enhancement layer. In [18], a nonlinear analog image encoder is designed
to achieve graceful degradation of quality with channel SNR. Unlike those schemes,
the design of SoftCast and RawOFDM covers all aspects of wireless transmission of
video thus allowing experimental evaluation in a physical testbed.

Finally, SoftCast leverages a rich literature in signal and image processing, includ-
ing decorrelation transforms such as 3D DCT [14,71], the least square estimator [57],
the Hadamard transform [6], and optimal linear transforms [58]. SoftCast uses these
tools in a novel PHY-video architecture to deliver a video quality that scales smoothly

with channel quality.
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Chapter 7

Conclusion

Although Shannon’s separation principle permeates the layered design of computer
communication systems, it is fundamentally limiting its performance in increasingly
common scenarios which invalidate its basic assumptions. In particular, the digital
mapping of source signal to bits and then back to a waveform signal on the channel is
inherently suboptimal when streaming degradable content such as video over a mobile
and broadcast wireless channel.

I designed SoftCast, a clean-slate design for wireless video. SoftCast enables a
video source to broadcast a single stream that each receiver decodes into a video qual-
ity commensurate with its instantaneous channel quality. Further, SoftCast requires
no receiver feedback, bit rate adaptation, or video code rate adaptation. SoftCast
adopts an integrated design for video and PHY layer coding, making the whole net-
work stack act as a linear transform. I showed that such a design improves the video
quality for multicast users, eliminates video glitches caused by mobility, and increases
robustness to interference and channel errors.

To integrate SoftCast in the network stack, I proposed RawPHY, a new archi-
tecture for the wireless PHY layer that exposes a waveform interface to the channel
while canceling most of non-additive effects of the channel. RawPHY not only allows
easy integration of SoftCast alongside traditional data applications, but also enables
flexible error protection by shifting the control over the throughput vs. robustness

trade-off from PHY to the application.
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To provide insight into the performance of SoftCast, I demonstrated through anal-
ysis that an analog-like scheme with linear encoding and decoding can be an efficient
way to communicate multivariate Gaussian sources in terms of distortion, latency,
robustness and computational complexity. Specifically, in the broadcast setting in
regimes of limited channel bandwidth and highly compressible source signals, the
analog scheme outperforms the digital design regardless of the computational effort
employed by the digital system.

In its current design, SoftCast has limitations. Specifically, SoftCast is unsuitable
for sources that can be efficiently fitted by nonlinear models. Consider for example a
white ball moving on a black background. A video codec that uses motion compensa-
tion, such as MPEG, can encode each frame by simply sending the shift of the ball’s
center, which is more efficient than using a linear transform like 3D DCT to compress
the video. Such videos however are atypical and if they arise they can be transmit-
ted using standard video coding. For videos of natural scenes, linear transforms like
DCT and Wavelets are highly effective in compressing the video information [71,104].
Furthermore, the gains of SoftCast arise mainly from its robustness to channel errors
and packet loss. In contrast, existing nonlinear video codecs are highly sensitive to
errors. [ believe that a better tradeoff can be reached if we can leverage the intrinsic
resilience of video signals to deal with errors on the channel. In general, the tradeoffs
between the gains from efficient but error-sensitive compression and the cost of error
correction codes and packet retransmission at the lower layers are important research

topics for the future of mobile and broadcast video.
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Appendix A

Proofs

A.1 Proof of Lemma 3.3.1

We want to determine the set of optimal linear scaling factors for each chunk that
minimizes the expected reconstruction error (computed as mean square error), while
within the total power constraint, as inspired by [58]. Note that, since the DCT
transform is orthogonal, the reconstruction error of chunk i (z;[1... N], where N is the
number of DCT components in a chunk) is directly proportional to the reconstruction

error in the video frame.

Let us model the channel as one with additive white noise. Thus, for each value
in chunk ¢, z;[j], we transmit y;[j] = g;z;[j], and the receiver receives g;[j] = yilj] +
n, where g; is the linear scaling factor for this chunk, and n is a random variable
with zero-mean and specific variance, o (the same for all chunks). Subsequently, the

receiver decodes
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Clearly, the best scaling factor would be infinite, if not for the power constraint. Let
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\; = E[z?] be the power of chunk i (z;[1... N]), u; = E[y?] be its power after applying
the scaling factor, and P the total power budget. We can drop N in the minimand

since it is merely a constant factor, and formally rewrite the problem as follows.

Ai
minerr = o?% — (A1)
T M
subject to: _S_ w; <P and u; >0

We can solve this optimization using the technique of Lagrange multipliers. The

Lagrangian is
Ai
L= ‘722;+7 (Zm—P>

Differentiating separately by u; and v and setting to 0, yields:

V7 o= Z vV io?/P
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The optimal scaling factor for each chunk is therefore such that the resulting power
of the row is proportional to the square root of its original power. Some readers
might find it more intuitive that the optimal solution should completely equalize the

resulting power, i.e. u; = P/k; but substituting this in (A.1) shows otherwise.
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