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Abstract—Streaming degradable content (such as video or
audio) over a wireless channel presents new challenges to modern
digital design, which was founded on the separation theorem of
Shannon theory. Joint source-channel coding (JSCC) has recently
received increasing interest to address the varying nature of
the wireless channel conditions (under mobility or multicast).
The conventional approach to JSCC which combines successive
refinement with superposition coding is still digital and separable.
However, for a white Gaussian source on a white Gaussian
channel, it is outperformed by uncoded, linear scaling, which
achieves Shannon’s distortion limit.

Practical degradable content sources are not white, but better
approximated by multivariate / non-white Gaussian models. We
investigate the performance of a linear, uncoded communication
scheme for such sources. We find that there exist regimes where
the uncoded scheme is near-optimal for point-to-point communi-
cation and provides significant gains over the conventional digital
design for broadcast.

I. INTRODUCTION

For point-to-point communication, it is well known that
digital encoding and decoding can provide the optimal end-
to-end performance with respect to a distortion metric. The
separation theorem, based on ideas from Shannon [1], states
that the designs of the source and channel codes can be
decoupled without loss of optimality. Further, recent advances
in coding theory have produced practical channel codes that
approach the channel capacity [2]. As a result, today the
general intuition is that digital transmission is superior to
analog (or uncoded) transmission.

However, digital transmission also has some drawbacks. In
particular, channel coding assumes that the channel statistics
are known to the source. When this assumption is violated,
i.e., mismatch exists between the target and actual channel
capacity, the performance of these codes degrades sharply,
showing a threshold effect. This threshold degradation is a
direct result from the separation of channel and source coding,
where errors at the channel decoder may render the output of
the source decoder completely random. The second drawback
is that the separation principle applies only to point-to-point
channels and could incur a severe penalty for other channel
types [3]. Last, digital communication usually requires long
blocklengths and high encoder/decoder complexity to achieve
near-optimal distortion.

The above limitations of digital transmission are particu-
larly important for wireless channels. Specifically, in mobile

scenarios the channel SNR may vary widely and unpre-
dictably [4], creating a mismatch between the instantaneous
channel capacity and the target capacity of the used channel
code. To prevent such a situation, a digital design may need
to be overly pessimistic in its choice of channel-code rate.
Broadcast channels are also problematic for digital design
because receivers may have diverse channel SNRs, invalidating
the assumptions of the separation theorem. Finally, in sensor
networks and mobile applications, latency and computational
complexity become important design decisions. As a result,
one may prefer a mild increase in distortion if it results in a
reduction in latency or computational complexity.

To address the deficiencies of the digital design in mobile
and broadcast scenarios, multiple recent papers have proposed
analog or hybrid transmission schemes within a joint source-
channel coding framework (JSCC) [5]–[8]. The advantages of
such designs is that performance degrades gracefully when
the channel statistics differ from their predicted values. Also,
by adopting a JSCC approach they need not pay a penalty
in scenarios where the separation theorem does not hold.
Furthermore, some of these designs, like SoftCast [7], are fully
linear and hence incur relatively low latency and computational
complexity. On the negative side, however, these designs do
not enjoy the aforementioned desirable properties of digital
transmissions systems such as their optimality for point-to-
point channels and effectiveness at compressing source data.
Given this tradeoff, there is a need to accurately characterize
and quantify the conditions under which an analog design may
be preferable or as efficient as a digital design.

In this paper, we consider the JSCC approach underlying
SoftCast, a wireless video broadcast system proposed in [7].
At the core of SoftCast lies a near-analog, uncoded linear
communication scheme, to which we subsequently refer as
analog. The goal of this work is to show that, for transmission
of degradable sources over Gaussian channels, this scheme can
achieve similar end-to-end distortion to more complex digital
methods while maintaining robustness to channel variations
and lowering computational complexity. In particular, we
demonstrate that the digital and analog systems are comparable
in performance for practical SNR regimes when the number of
source components per unit time exceed the number of channel
slots available. Moreover, we show the analog system intrinsi-
cally has distortion performance that degrades gracefully with
channel SNR, providing substantial net performance gain for
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broadcast channels or when the channel statistics are not well
estimated.

These results are a generalization of a well-known fact
that an iid Gaussian source transmitted uncoded through an
AWGN channel achieves optimal performance for any channel
SNR [9]. Essentially, we exploit the match between the source
and channel and leverage the ability to perform efficient analog
compression, both factors that do not hold in general.

II. RELATED WORK

This paper builds on results from the fields of joint source-
channel coding, wireless communications and video coding
which exploit the fact that Gaussian sources transmitted un-
coded over Gaussian channels can be optimal [9], [10]. Other
combinations of sources and channels where uncoded trans-
mission is optimal are also explored [11]. The Gaussian match
was generalized to linear encoding in the vector case [12]
and nonlinear encoding using space-filling curves when the
number of source components does not match the number
of channel uses per unit time [13], [14]. The problem of
bandwidth expansion and compression has also been addressed
by hybrid systems combining digital techniques with linear
analog encoding [15], [16], although the scope of analysis
was limited to a 2-dimensional white source. Correlation in
the source was shown to aid the broadcast scenario in a hybrid
scheme proposed in [17].

Of particular interest are investigations of analog or hybrid
systems that transmit media content over AWGN channels.
In [5], wireless image transmission is made more robust using
an analog transmitter. In [6], a nonlinear analog image encoder
is designed to achieve graceful degradation of quality with
channel SNR. In [7], a practical system called SoftCast uses
linear encoding to achieve robustness to channel variations for
video broadcast.

Also related to this work are predominantly digital schemes
that perform JSCC to alleviate some of issues with digital
communication discussed previously. In [18], multiresolution
coding with many refinement layers allows for degradation of
performance to vary with channel SNR like in analog coding.

There are also purely digital systems that try to address
robustness for wireless communications and broadcast of me-
dia. Proposals for scalable video communications in broadcast
wireless channels combine successive refinement in a layered
source coder, such as h.264/SVC [19] with hierarchical mod-
ulation [20]. Other proposals operate at a fine granularity by
employing unequal bit-error protection [21], [22].

III. PRELIMINARIES

We present our problem model and review basic results
for communication, both digital and analog, of Gaussian
sources over Gaussian channels. We also introduce the analog
transmission scheme used later in the paper. For this section,
we limit the exposition to the major concepts rather than the
formal definition and proofs which can be found in [23].

Fig. 1: A system model for communications. A side channel may
exist between the encoder and decoder to transmit a small amount of
metadata to aid signal reconstruction.

Fig. 2: The two-user broadcast channel model. The transmission X
is desired by both users but is corrupted by noise.

A. Problem Statement

Consider the system depicted in Figure 1. At each time
step, the encoder accepts a vector S ∈ RN and transmits a
vector X ∈ RM over a set of parallel channels perturbed
by an additive white Gaussian noise (AWGN) vector Z. The
decoder receives the noisy transmission Y = X + Z and
produces a reproduction Ŝ of the transmitted signal. The
goal of the system is to minimize the distortion between
S and Ŝ, measured as the mean-squared error (MSE), i.e.,
D = E

[∑
i(Ŝi − Si)

2
]
. The constraint is on the the average

power of the encoder, meaning

E

[
1

M

∑
i

X2
i

]
≤ P.

For this paper, we assume the source S is the class of memo-
ryless multi-variate Gaussian vectors with diagonal covariance
matrices. Hence, each component or subband Si of the source
is an independent zero-mean Gaussian variable with variance
λi. Assume a natural order of subbands according to variances
such that λ1 ≥ · · · ≥ λN . Moreover, assume the noise
components Zi are iid with variance σ2. The channel can also
be characterized using a signal-to-noise ratio SNR = P/σ2.

Section V discusses a two-user broadcast channel as shown
in Figure 2. For this system, each user may have different
channel statistics. We define the noise variances as σ2

1 and σ2
2

(corresponding to SNR1 and SNR2) and assume σ1 ≤ σ2.

B. Digital Communication

The capacity C(SNR) of the channel defines the maximum
rate of the bit-stream that can be decoded without error for
a given channel SNR. Meanwhile, the rate-distortion function
of the source, R(D) defines the minimum achievable rate R
that yields distortion D. Hence R(Dopt) = C(SNR). This
is also known as OPTA (Optimum Performance Theoretically
Attainable). Note that achieving an end-to-end distortion of
Dopt could require infinite block length in both source and
channel coders.
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For a set of M AWGN channels with a particular SNR, the
capacity is

C(SNR) =
M

2
log(1 + SNR). (1)

For a multi-variate Gaussian S, the rate-distortion function is
given by the reverse water-filling solution:

R(D) =

N∑
i=1

1

2
log2

λi

Di
(2)

where Di = min(γ, λi) and γ is chosen to satisfy
∑

i Di = D.
By reverse water-filling, some source subbands may not be

transmitted when the channel is noisy. For a given source
S and channel SNR, we can find the optimal choice of γ
and subsequently K, the number of subbands transmitted. The
resulting optimal end-to-end distortion is

Ddig(SNR) = K

( ∏K
i=1 λi

(1 + SNR)M

)1/K

+
N∑

i=K+1

λi. (3)

We also survey results related to the Gaussian broadcast
channel model of Figure 2, where the capacity is known since
the channel is stochastically degraded, i.e., can be modeled
as Y2 = X + Z2 = Y1 + Z ′

2, where σ′2
2 = σ2

2 − σ2
1 [24].

The achievable rate region can be obtained by superposition
coding, where the encoder splits the bit-stream into low-
priority enhancement at rate R1 and high-priority base at rate
R2, channel-codes them, and adds them up before transmitting.
Both users can decode the base and the stronger receiver can
also decode the enhancement. The achievable rate region is
given by

R1 =
M

2
log2(1 + ωSNR1), (4)

R2 =
M

2
log2

(
1 +

(1− ω)SNR2

ωSNR2 + 1

)
, (5)

where ω ∈ [0, 1] is a parameter that determines the frac-
tion of total power devoted to transmitting the enhancement.
Superposition coding in QAM is also known as hierarchical
modulation.

The matching source coder needs to encode the source into
two bit-streams. For example, the high-priority base is result
of a coarse quantization, and the low-priority enhancement is a
finer quantization of the residual error from the coarse quan-
tization. Gaussian sources are successively refinable without
loss, and therefore the two users can achieve, respectively,
distortions D1 = D(R1 + R2) and D2 = D(R2), i.e., the
minimum distortion achievable at the total received rate. Note
that for two users, a two-layer digital scheme is maximal, i.e.,
cannot be improved by adding layers.

C. Analog Communication

For a single-dimensional Gaussian source and channel, we
find that the minimum distortion

Dopt = λ2−2C =
λ

1 + SNR
(6)

is achieved by a very simple uncoded (unit block length)
system:

X = gS, (7)

Ŝ =
gλ

g2λ+ σ2
Y. (8)

The encoder applies a scaling factor g =
√
P/λ to match

available power, and the decoder performs linear least squares
(LLS) estimation given the known noise variance. We assume
that the statistic λ is communicated to the decoder via a side
channel. Such an encoder is often referred to in the literature
as Pulse Amplitude Modulation (PAM).

In this paper, we consider a generalization of this analog
system with the restriction that encoding and decoding are
linear and allow for a side channel that communicates the
subband variances as side information to the decoder. The
encoder transmits X = GS where G is an M × N matrix.
Given a constraint on average power and the fact that we
consider only the regime M ≤ N , the optimal gain matrix
G is diagonal (for M < N , the N − M subbands with
smallest variances are suppressed). Since the LLS decoder,
optimal for linear decoders, depends on noise variance, the
encoder can optimize the gain matrix expecting a specific
channel SNR. Denoting the diagonal elements of G to be gi
and the normalized gain di = g2i /P , the distortion of the
analog system can be written as

D(SNR) =
N∑
i=1

λi

diλiSNR + 1
(9)

subject to
∑

i diλi = M and di ≥ 0. This yields an analog
water-filling result [12]:

Dana(SNR) =
(
∑K

i=1

√
λi)

2

MSNR +K
+

N∑
i=K+1

λi, (10)

where the number of subbands to be transmitted, K, is
dependent on the channel SNR, much like in the digital case.
The choice of K can be determined by solving a Lagrangian
and increases monotonically with SNR up to M .

We briefly comment on the robustness of this analog
scheme. Because the system is linear, a mismatch between
design and actual SNR does not necessarily induce complete
performance loss like in the digital case when coding near
capacity. In fact, for reasonable mismatches, the performance
may still be near optimal for the actual SNR. A rigorous
analysis of robustness for the single-component case is given
in [25].

IV. POINT-TO-POINT COMMUNICATION

We compare the end-to-end distortion performance between
the proposed analog system and a digital system operating
at capacity using the model in Section III. We define the
compression ratio to be β = M/N and the performance ratio
to be ρ(SNR,ΛS) = Ddig/Dana, where ΛS is the covariance
matrix of the source and Ddig and Dana are the solutions to
(3) and (10) for a target channel SNR.
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Fig. 3: Plot of normalized subband variance λi for selected values of
source correlation parameter α.

We consider the case when N and M are arbitrary but M ≤
N holds. In this paper, we omit the case of β > 1 because
it has been well-studied that linear analog encoding performs
poorly compared to nonlinear coding such as space-filling [13]
in this regime.

Since the parameter space can be arbitrarily large, we
restrict the source to a first-order Gauss-Markov (or AR(1))
process that is decorrelated using the Karhunen–Loève Trans-
form (KLT) to form the vector S. We emphasize that the
qualitative results hold more generally and this model is a
tool to reduce the parameter space. Moreover, this model has
strong ties to media compression due to the fact that the KLT
and DCT are asymptotically equivalent [26].

We assume a source SGM(t) ∈ RN is independent in
time but its components at a given instant form a stationary
Gaussian process with a covariance matrix

(ΛGM)ij = α|i−j|, i, j = 1, 2, . . . N.

The KLT of ΛGM is a diagonal matrix ΛS with entries corre-
sponding to the eigenvalues of ΛGM. They can be expressed
as

λi =
1− α2

1− 2α cos θi + α2
, (11)

where the θis are the positive roots of

tan(Nθ) = − (1− α2) sin θ

cos θ − 2α+ α2 cos θ
. (12)

These eigenvalues can be seem as taking non-uniform samples
from the monotonically decreasing function

f(θ;α) =
1− α2

1− 2α cos(θ) + α2

in the range [0, π) [27]. Hence, the input to the encoder is
S, a multi-variate memoryless Gaussian vector with decaying
variances assumed in earlier sections. For reference, Figure 3
shows how α affects the decay of λ.

When M = N , the performance results are well known.
In the degenerate case of α = 0, the system has no memory
and this problem simplifies to that of an iid Gaussian source
through AWGN channel with ρ = 1. For general α and high
SNR, the ratio approaches the constant

ρ = N2 (
∏N

i=1 λi)
1/N

(
∑N

i=1

√
λi)2

,

which is the Arithmetic Mean-Geometric Mean performance
gap discussed in [5].

It is also well-known that ρ ≈ 1 for very low SNR in
general. It may be tempting to say that for β < 1, these
same trends hold. However, we show this is not the case
and ρ does not necessarily behave in a monotonic fashion
with respect to SNR. At one extreme, using the distortion
results (3) and (10), we see that for high SNR, ρ decays
as (1 + SNR)β and hence the performance loss is dramatic.
This is because a digital scheme can successfully compress
N source symbols into M channel uses but an analog design
must discard the N −M components with smallest variances,
which is inefficient. Meanwhile, for moderate SNR, we note
that both analog and digital transmission may not transmit
all source components possible. When the analog and digital
transmit both communicate approximately M components, ρ
can be close to 1. In this case, the analog scheme remains
efficient because it is transmitting as many components as it
can support with M channel uses while the digital is forced to
suppress some subbands due to the noisiness of the channel,
thereby reducing its asymptotic advantage.

This is demonstrated in Figure 4, which looks at several
choices of M for N = 64. We can note that for smaller β and
moderate SNR, the analog design performs much better than
asymptotic analysis may suggest. These results show that an
analog design is reasonable beyond just the iid Gaussian case
and the Arithmetic Mean-Geometric Mean performance gap
does not hold except for β = 1. A designer may tolerate such
performance loss in favor of the simplicity and robustness of
the analog system.

V. BROADCAST COMMUNICATION

We now consider the degraded broadcast case and compare
the ideal purely-digital system (which combines successive
refinement with superposition coding) and the analog lin-
ear system using the model in Section III. The end-to-end
distortion performance is defined in terms of the distortions
observed by each of the users and depends on channel SNR
of each user. To comparatively evaluate the two systems, we
use total distortion, i.e., sum of distortions of individual users.
In general, one could use other metrics, e.g., the weighted
sum. This overall distortion metric is a function of each user’s
channel SNR. For simplicity, we consider a scenario with only
two users, and focus on three operational SNR regimes:

1) high SNR: SNR1 = 17dB and SNR2 = 10dB
2) low SNR: SNR1 = 10dB and SNR2 = 3dB
3) wide SNR: SNR1 = 17dB and SNR2 = 3dB

As in the case of point-to-point, one parameter in the
evaluation is compression ratio, β = M/N . However, we
also consider the case of bandwidth expansion, i.e., β > 1.
Although the linear analog scheme cannot compete in this
regime for point-to-point channels except for very low SNR,
the broadcast setting gives it advantages over the digital
system.

Thus the computed performance ratio is ρ(SNR1,2,ΛS) =
Ddig/Dana, where ΛS is the covariance matrix of the source
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Fig. 4: Plot of performance ratio ρ for N = 64 in terms of α and SNR in point-to-point communication. The solid line corresponds to the
threshold for when the analog scheme transmits M subbands. The dashed and dotted lines correspond to the thresholds for when the digital
scheme transmits M and N source subbands respectively.
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Fig. 5: Broadcast performance ratio ρ for the 2-dimensional source
in terms of the smaller subband variance ϵ and channel bandwidth
M . The three lines correspond to the case of bandwidth compression,
match, and expansion.

and Ddig and Dana are the minimum total distortions achiev-
able in either scheme when optimized over its tunable pa-
rameters according to Section III. That is, in both cases
the encoder decides how many source subbands to suppress
and the digital superposition encoder optimizes the power
distribution between the two bit-streams.

A. A Two-dimensional Source

We first use a simple example to provide some intuition
about how ρ may vary with the source covariance matrix.
Consider the case of N = 2 and M = 1, 2, 3. As before,
we assume λ1 = 1, λ2 = ϵ.

Figure 5 plots the performance ratio ρ in terms of ϵ and
the channel bandwidth M . We observe that how ρ changes
with ϵ depends on the compression ratio. In the regime of
bandwidth compression, when M = 1, the analog system
delivers a performance gain for low ϵ, but a significant loss for
white sources. In contrast, in the case of matched bandwidth
M = 2, the gain of the analog system peaks at ϵ = 1, as it
converges to the optimal distortion bound. In the regime of
bandwidth expansion, M = 3, the analog system, limited by
its linearity, loses its broadcast advantage. The lower the ϵ, the

worse performance it exhibits.
This points at the underlying determining factor of analog

performance. When the source and channel are matched, it
performs nearly optimally, but fails competitively to expand
or compress the bandwidth. As ϵ tends to 0, the source can
be approximated as single-dimensional by ignoring the low-
variance subband. Thus, for M = 1 the system becomes
matched. The performance gap (both loss and benefit) is more
pronounced in the high SNR regime.

B. A More General Case

We now move to larger source dimensions, specifically
N = 64. Using the same Gauss-Markov model as in Sec-
tion IV, we evaluate the performance ratio ρ under varying
source correlation α and channel bandwidth M . Once again,
we look at a wide spectrum from bandwidth compression of
1/64, to bandwidth expansion of 2.

Figure 6 shows the performance ratio in the three con-
sidered SNR scenarios. We find that analog dominance is
most pronounced in the area of matched bandwidth for low
source correlation. Indeed, when the source is white (α = 0),
we expect the matched analog system to perform optimally,
as discussed previously. However, we also find that analog
remains dominant in the area of moderate compression and
source correlation (top left in the plot). This aligns with our
previous observations: if the source is correlated it can be
“easily” compressed into the available channel bandwidth.
The more correlated the source is, the lower the matching
compression ratio.

We find that, although the analog system shows the greatest
maximum benefit in the high SNR regime, its performance
gain decays abruptly with source-channel rate mismatch. On
the other hand, if the SNR of the weak user is low, the analog
system is superior in a larger domain. The modest difference
between Fig. 6b and 6c suggests that the dominating factor
is the lower SNR rather than the SNR range. However, the
overall benefit of the analog is generally diminished at higher
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Fig. 6: Broadcast performance ratio ρ for the three SNR regimes in terms of source correlation, α and compression ratio, β.

SNR by the asymptotic gap. These results show that an analog
design might offer substantial benefit in a broadcast scenario
beyond the matched iid Gaussian case.

VI. CONCLUDING REMARKS

In this work, we demonstrate that an analog scheme with
linear encoding and decoding can be an efficient way to
communicate Gaussian sources in terms of distortion, latency,
robustness and computational complexity. We show that the
distortion performance of an analog system is comparable to
that of its digital counterpart for many regimes of practical
interest in the point-to-point case and demonstrate additional
benefits in a broadcast setting. We also discuss how this can
be useful in a variety of applications where the content is
degradable and connect our findings to practical schemes that
are easily implementable in hardware. We believe that there
is still value to designing analog systems for certain source-
channel models and there is a significant amount of interesting
future work to be done in this area.
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