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ABSTRACT
Faults in an IP network have various causes such as the failure of
one or more routers at the IP layer, fiber-cuts, failure of physical
elements at the optical layer, or extraneous causes like power out-
ages. These faults are usually detected as failures of a set of de-
pendent logical entities–the IP links affected by the failed compo-
nents. We present Shrink, a tool for root cause analysis of network
faults which, given a set of failed IP links, identifies the underly-
ing cause of the faulty state. Shrink models the diagnosis problem
as a Bayesian network. It has two main contributions. First, it ef-
fectively accounts for noisy measurement and inaccurate mapping
between the IP and optical layers. Second, it has an efficient in-
ference algorithm that finds the most likely failure causes in poly-
nomial time and with bounded errors. We compare Shrink with
two prior approaches and show that it substantially improves the
performance.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network Opera-
tions

General Terms
Algorithms, Design, Management, Reliability, Performance

Keywords
Shrink, Fault Diagnosis, IP networks, Optical, SRLG, Bayesian

1. INTRODUCTION
This paper addresses the problem of failure diagnosis using in-

direct and potentially noisy measurements. Modern ISP networks
consist of thousands of routers, optical cross-connects, repeaters,
several tens-of-thousands kilometers of optical fiber, and a vari-
ety of software modules. Such complex systems fail often [3, 5,
11], e.g., fiber-cuts, optical cross-connect failures, power outages,
faulty amplifiers, bugs in the routing code. They also fail in com-
plex ways [4, 12], e.g., a faulty amplifier increases loss rate of a
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Figure 1: Problem Setup: IP links L1, L2, . . . L7 are realized using an
underlying optical mesh consisting of fibers F1, . . . F6 and optical cross-
connects R1, R2. An SRLG is associated with each fiber/cross-connect that
can fail independently, and consists of all the IP links affected by this fail-
ure. For example, if fiber F1 gets cut both IP-links L1 and L3 fail simul-
taneously and hence, the SRLG corresponding to F1 is S1 = {L1, L3}.

link, TCP throughput of flows using that link suffers, this causes
the BGP sessions traversing the link to timeout. A recent study at
a major ISP [6] shows that failures are a part of the ISP’s everyday
operation and last between several minutes to several days before
repair.

Faults in the IP and optical layers are correlated. When a phys-
ical object such as a fiber span, or a software module fails, it
causes the simultaneous failure of a group of logical entities at the
IP layer, e.g. all IP links that use this object. Shared Risk Link
Groups (SRLGs) [11] are an easy way to represent this correlation.
Formally, an SRLG is a group of logical entities that share risk due
to their common dependence on a physical object. A network fault
occurs when one or more SRLGs fail but is often detected as a fail-
ure of the set of dependent logical entities–the constituent IP links.

This paper presents Shrink, a network diagnosis system for fail-
ures in IP networks. Similarly to prior work [5, 10], Shrink adopts
a top-down approach to the problem, i.e., given observations of IP-
link status, Shrink pinpoints the SRLGs responsible for the fault.
The alternate approach of diagnosing such failures in a bottom-up
fashion is hard because precise status information for each entity
that can fail is often unavailable (e.g. passive amplifiers, bugs in
the routing code) [9]. Even if present, this information is spread
across different administrative domains (as in the case of leased
sub-networks), different logs (SONET logs, IP router logs) or dif-
ferent locations in the network [5]. Joining dynamic fault data from



Term Meaning
SRLG Description The set of IP links that belongs to an SRLG, as reported by a database of such mappings. Descriptions

may be erroneous i.e., contain IP links that are not in the SRLG or miss IP links that are actually in
the SRLG.

True SRLG The actual set of IP links present in the SRLG.
Marginal prob. of an
SRLG’s failure

The probability that the event represented by an SRLG, e.g. fiber cut, happens. Note, SRLGs capture
independent events.

Network Fault F State of the network when one or more SRLGs have failed. It is observed, however, as the failure of
a set of dependent IP links.

Diagnosis F d A list of SRLG failures that explains the network fault (explains the IP link failures).

Table 1: Terminology and variables used in the paper.

multiple sources is complicated because the network elements usu-
ally support different standards (e.g. SONET, MPLS etc.) [5, 11].
At the same time, if some physical elements can report their fail-
ure status, Shrink uses this information to reduce the size of the
problem and yield a more accurate diagnosis.

Identifying physical causes of failures from IP-link status is chal-
lenging for two reasons.

• Under-Determinedness: Mapping an IP link failure to an
underlying physical cause is not easy because the failure
could happen due to many causes, e.g. a particular link could
fail because the underlying fiber got cut, the attached router
port went down, or a cross-connect failed. Thus, fault lo-
calization of IP failures is an under-determined problem be-
cause the available information is insufficient for identifying
the failed SRLGs.

• Inaccurate Information: ISPs maintain a database describ-
ing the mapping between SRLGs and their constituent IP
links, but this is often inaccurate [5, 9]. The same IP-link
might be mapped onto different optical layer paths at dif-
ferent times due to network upgrades, traffic engineering, or
automatic recovery mechanisms such as SONET/MPLS Fast
Reroute. Whenever the IP-link gets re-routed, the mapping
needs to be updated and errors can creep in easily. As a re-
sult, the SRLG database often contains stale or incorrect de-
scriptions of the SRLGs [5, 9, 11] (e.g., fiber F1, in Fig. 1b,
carries the traffic of links L1 and L3, but the database may
say that F1 carries the traffic of L1 and L2). Furthermore,
when an IP link fails, the SNMP message reporting the fail-
ure may be dropped because of congestion or because the
network is disconnected [5, 10]. We refer to the available,
potentially inaccurate, SRLG-IP mapping as the SRLG de-
scription to distinguish it from the true SRLG.

A standard model of the fault diagnosis problem exists [5, 10].
Figs. 1a and 1b show an example IP network and its realization us-
ing an underlying optical mesh. Fig. 1c models the SRLG-IP map-
ping using a bipartite graph. For each SRLG and IP-link, there is a
corresponding vertex in the graph. Each SRLG vertex is connected
by directed edges to its constituent IP-link vertices. A failure in
an SRLG results in failure of all IP-links whose vertices are con-
nected to the SRLG vertex in the bipartite graph. Not all SRLGs are
equally likely to fail; e.g., cuts are more likely in long fibers than in
short fibers. Hence, each SRLG has an associated marginal prob-
ability of failure. Further, SRLGs correspond to physical entities
that fail independently, e.g., whether or not the New York-Boston
fiber got cut says nothing about the London-Paris fiber. Hence,
SRLG failures are assumed independent.

Prior work on cross IP and optical layers fault localization fol-
lows two approaches. The first is the MinSetCover technique [5].
Consider the SRLG-IP bipartite graph in Fig. 1c. Note that each

failed IP link has to be connected to some SRLG whose failure
can explain its fault. Any set of SRLGs whose failure produces
the faulty state forms a set-cover over the IP links that have failed.
As explained earlier, the problem is under-determined and usually
many SRLG sets can explain the IP failures. The MinSetCover
technique guesses that the smallest set-cover over the failed links is
likely to be the set of failed SRLGs. Since the minimum set cover
problem is NP-complete, the authors of [5] obtain a minimal set-
cover by greedily picking, at each step, the SRLG that explains the
largest number of failed IP-links until all IP-links are explained.
The MinSetCover technique has two limitations. First, it ignores
the fact that SRLGs have different probabilities of failure. Second,
though it tries to deal with inaccuracies in the SRLG description
and the reported link status, it does not provide a systematic ap-
proach to address the issue.

The second technique, BayesNet [10], models the SRLG-IP map-
ping as a Bayesian network.1 Failure diagnosis translates to the in-
ference problem in Bayesian networks–given observations of cer-
tain random variables (IP link status), infer the most likely assign-
ment of values for the remaining random variables (the SRLG sta-
tus). In contrast to the MinSetCover approach, the BayesNet tech-
nique acknowledges that different SRLGs have different probabil-
ities of failure. It uses these probabilities to address the under-
determinedness of the problem; from all possible SRLG sets whose
failure could have caused the observed IP links to fail, it returns
the SRLG set that is most likely. Despite its appeal, the BayesNet
approach has some significant practical limitations. First, it does
not deal with inaccurate SRLG descriptions. Second, the general
inference problem in Bayesian networks is NP hard [2]. Approxi-
mate polynomial-time belief propagation techniques exist for some
special cases [8], but these techniques are fairly inaccurate [10]
over realistic failure diagnosis models. Indeed, the designers of the
BayesNet technique acknowledge that the scheme scales only to
about 50 nodes [10], while practical networks consist of thousands
of network elements.

Contributions: Shrink modifies and extends the Bayesian network
technique in several ways to significantly improve diagnosis time
and accuracy. It has these key contributions:

(1) Shrink is the first IP fault diagnosis system that efficiently
and systematically accounts for inaccuracies in SRLG de-
scriptions. In our simulations, Shrink yields predictions with
fewer than 2% error even when SRLG descriptions are in-
correct or SNMP reports get dropped. In similar situations,
BayesNet has 40% error and MinSetCover has 20% error.

(2) In contrast to prior attempts to use Bayesian networks for
network fault diagnosis [10], Shrink solves the problem in

1Bayesian networks are graphical models that succinctly represent a joint probability
distribution over random variables using their independence information. The bipar-
tite graph representing SRLG-IP mapping in Fig. 1c can be extended to a Bayesian
network by annotating it with certain probabilities (See §2).
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Figure 2: Shrink System Setup

polynomial time ∼ O(n4), returns the correct answer with
high probability and bounded error, and scales to thousands
of network elements. In our simulations, Shrink takes fewer
than 4s, to diagnose a fault. In similar situations, BayesNet
takes an average of 600s and MinSetCover takes about .01s.

(3) We are the first to present preliminary comparisons with
the two main bodies of related work: MinSetCover [5] and
BayesNet [10].

Finally, we note that although this paper focuses on failure diag-
nosis across IP and optical layers, Shrink is a fairly general tool for
network fault diagnosis in environments with noisy measurements
and incomplete information.

2. SHRINK
Shrink is a failure diagnosis tool. Table 1 describes our termi-

nology and variables. Shrink takes as input (Fig. 2):

(1) A description of the SRLG-IP mapping. This is a potentially
inaccurate list of SRLGs and their constituent IP links (e.g.,
{S1 = {L1, L2}, S2 = {L3}}).

(2) If available, Shrink takes the marginal failure probability of
each SRLG. Otherwise, it assumes all SRLGs are equally
likely to fail.

(3) The status of IP links in the network; a subset may re-
port failure, some report liveness, and others have unknown
state (e.g., {L1, L2} are up, L3 is down, no report from L4).

Shrink outputs the most likely explanation for the network’s faulty
state–i.e., the collection of SRLGs whose failure is most likely
given the IP link status. It can also output the k-most likely col-
lections of SRLG failures, for integer k > 1.

Shrink has 3 main modules as shown in Fig. 2: (1) building the
Bayesian model; (2) augmenting the model with guess edges; (3)
inferring the most likely explanation (or k explanations). Below,
we explain each of these modules in detail.

2.1 Building the Bayesian Network
Our Bayesian network is a bipartite graph, an example of which

is shown in Fig. 3a. The graph consists of three parts. First, each
vertex in the graph represents a random variable; an SRLG ver-
tex Si gets the value 1 if the corresponding SRLG fails and 0
otherwise; an IP-link vertex Lj gets the value 1 if the IP-link re-
ports failure, and 0 if the link reports liveness. Second, the graph
is annotated with the marginal probabilities that each SRLG fails
P (Si = 1). An SRLG fails independently of other SRLGs and the
marginal probabilities may vary by several orders of magnitudes.
Third, the graph tries to capture with edges the dependencies be-
tween the random variables. An SRLG vertex is connected with
directed edges to each of the IP-links in its description denoting
that a failure of the SRLG would lead to failures of these IP-links.
An edge from SRLG Si to link Lj is weighted by the conditional
probability of link Lj failing given that SRLG Si has failed, i.e.,
P (Lj = 1|Si = 1). The larger this conditional probability, the
stronger the dependency between the SRLG and the IP-link failure.

S1
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S2

P(S1) P(S2)

P(L1|S1) P(L2|S1) P(L3|S2)
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(a) Initial Bayesian Network (b) With Guess Edges

Figure 3: Shrink’s Network Model: An SRLG Si is annotated with its
marginal probability of failure P (Si = 1) and the directed edge Si → Lj

is annotated with the conditional probability P (Lj = 1|Si = 1). Shrink
adds guess edges to deal with inaccuracies in SRLG descriptions.

When the conditional probability is not available, Shrink sets it to
1, i.e. assumes certainty.2

2.2 Augmenting the Model to Deal with
Inaccuracies

We augment the initial Bayesian network to deal with potential
inaccuracies in the SRLG database description and the possibil-
ity of dropped SNMP link status reports. Both inaccuracies have
the same effect; they add noise to the dependency between an ob-
servation (link failure) and its explanation (the failure of a parent
SRLG). We model this noise by modifying the initial Bayesian net-
work as follows: (1) to account for the possibility that a description
might be missing some links, we add low-probability guess edges
between an SRLG and links that are not part of its database de-
scription; (2) to deal with lost link status and potential incorrect
links in an SRLG description, we make the probability that the
parent SRLG’s failure leads to the IP link failure being reported
slightly smaller than 1. As a result of these modifications, the bi-
partite graph defined in §2.1 becomes a complete graph, with edge
weights, i.e., conditional probabilities3, as follows:

P (Lj = 1|Si = 1) =

j
1 − p, ∀Lj ∈ Si

p, otherwise,

where Lj ∈ Si means that the database description states that link
Lj is part of SRLG Si. Fig. 3b shows the augmented model of the
example Bayesian network in Fig. 3a.

The parameter p is a small noise probability whose default value
is p = 10−4. The system is insensitive to the exact value of p.
Introducing a small amount of uncertainty/noise allows us to search
over many more possible failure explanations, especially those with
inaccurate descriptions, that might otherwise have been infeasible.
On the other hand, the uncertainty is small enough that, in general,
a diagnosis that has one or more guess edges would have a lower
probability of happening than one that has all edges acknowledged
in the description. The cost we pay for this augmentation is that
solving the model becomes exponential, as explained in §2.3.

2.3 Inferring a Diagnosis
Given an observation of the state of the IP links (L1, L2, ..., Lm),

the inference algorithm finds the most likely assignment of values
to the SRLG random variables (S1, S2, ..., Sn), i.e.:

arg max
S1,...,Sn

P (S1, . . . , Sn|L1, . . . , Lm),

where Lj ∈ {0, 1} and Si ∈ {0, 1}.

2To the interested user, we note that a complete description of the Bayesian network
involves specifying the joint probability distribution of a node together with all of its
parents. Shrink uses the popular noisy-or distribution [10].
3Have to be appropriately normalized if P (Lj = 1|Si = 1) �= 1.



Although a few standard inference algorithms exist, they have
an exponential running time on our augmented graphs (see §2.2).
In particular, the exact junction-tree algorithm [8] typically used
for inference in Bayesian networks takes exponential time. Belief
propagation [8] and Loopy Belief Propagation either do not ap-
ply or have exponential running time on complete bipartite graphs,
such as our augmented graphs.

Shrink’s Inference Algorithm: We develop an approximation al-
gorithm that performs inference on our augmented graphs in small
polynomial time, and yields exact results with high probability. Our
algorithm is based on a simple observation. In realistic environ-
ments, the probability of an SRLG failure is significantly low; the
probability that a router fails in any given hour is about 10−6, the
prob. that a 1000Km-long fiber gets cut in any given hour is about
10−4 [11]. Hence it is very likely that a network fault is caused
by failures of a small number of SRLGs. In fact, if Eκ denotes the
event that at most κ SRLGs failed within any hour, there are exactly`

n
κ

´
possible SRLG assignments that satisfy Eκ, where n is the to-

tal number of SRLGs. Our algorithm hypothesizes that at most κ
SRLGs have failed. Given the observed link status, our algorithm
greedily picks the most likely SRLG assignment in Eκ; i.e., it picks
(S1, ..., Sn) ∈ {0, 1}n such that:

arg max
S1,...,Sn

P (S1, . . . , Sn|L1, . . . , Lm),

subject to

number of {Si = 1} ≤ κ.

Running Time: There are fewer than nκ value assignments in
Eκ, and for each assignment P (S1, . . . , Sn|L1, . . . , Lm) can be
computed in O(m + n) time, where m is the number of IP links
and n is the number of SRLGs. So, Shrink’s running time is
O(nκ∗(m+n)). We use κ = 3 in all our results, as a nice trade-off
between increasing the running time and lowering the probability
of errors as discussed next.

Bounding the Errors: Compare our greedy inference algorithm
described above with a brute force inference algorithm that com-
putes P (S1, . . . , Sn|L1, . . . , Lm) for all 2n SRLG assignments,
to find the most likely assignment given the link status. The brute
force algorithm provides optimal inference but has exponential
complexity. How worse are the errors in our greedy algorithm
in comparison to the brute force algorithm? Recall that our algo-
rithm hypothesizes that at most κ SRLGs have failed. Two cases
exist: (1) either our hypothesis is true–i.e., the link failures are
truly caused by κ or fewer SRLG failures; (2) or our hypothesis
is false–i.e., the link failures are caused by strictly more than κ
SRLG failures. If our hypothesis is true then our algorithm per-
forms at least as well as the brute force algorithm as it searches for
the most likely SRLG assignments in a space where it is guaranteed
to exist. If our hypothesis is false, then our algorithm performs
worse than the brute force algorithm. Thus, the probability that
our algorithm yields worse than optimal inference is bounded by
1− P (Hypothesis), i.e., the probability that more than κ SRLGs
fail. This probability decreases exponentially with κ. The default
value κ = 3 is valid for a wide-range of ISP network sizes and
SRLG failure probabilities. In particular, for typical ISPs with up
to 10, 000 SRLGs, and realistic SRLG failure probabilities of about
10−5 [11], the probability of Shrink being worse than the brute
force algorithm is always less than 10−4 and often less than 10−8.

3. EVALUATION
We evaluate Shrink in simulation and compare it with prior ap-

proaches, MinSetCover and BayesNet.

3.1 Experiment Setup
True SRLG-IP mapping: Similarly to prior work [5, 10],

we create an SRLG-IP database, by first generating two network
graphs with node degree distributions either Waxman or Albert-
Barabasi, using the BRITE [7] generator. One of the graphs serves
as the IP topology, with nodes representing IP routers joined by
IP links. The other graph represents the underlying optical mesh,
with “optical cross-connect” nodes joined by fiber. Second, we join
each IP node to the closest optical cross-connect and map an IP link
between two nodes in the IP graph onto the shortest path through
the optical graph between these IP nodes. Finally, we assign an
SRLG to each optical element (fiber/cross-connect), and associate
the SRLG with all IP links whose paths traverse this element. This
process is repeated multiple times to generate many graphs.

Assigning marginal probabilities to SRLGs: We use mean time
to failure (MTTF) statistics from real ISPs [11]. An optical
cross-connect has MTTF [105, 106]hrs, a 1000Km fiber has MTTF
[1200, 4800]hrs. We assume that the time until first failure is expo-
nentially distributed with λ = 1

MTTF
. We define the diagnosis in-

terval, T , as a window of time during which the ISP collects SNMP
link status. We approximate the probability that an SRLG fails in a
given diagnosis interval by λT . T has to be at least a few RTTs. On
the other hand, the larger T , the more likely multiple SRLGs fail in
T , and the harder the diagnosis problem becomes. Since Shrink di-
agnoses faults in less than 4s, the ISP can continuously run Shrink
with intervals T ≈ 4s. To stress Shrink, however, we evaluate it
over diagnosis intervals of about an hour.

Creating Network Faults: To generate a network fault, we allow
each True SRLG to independently fail with its marginal probabil-
ity causing all constituent IP links to fail. Our experiments report
averages over 1000 such faults for each graph.

SRLG descriptions: We create realistic SRLG descriptions by
probabilistically adding a few IP-links that are not in the true SRLG
and removing a few IP-links that are in the SRLG. The probabil-
ity of adding or removing i IP-links to an SRLG is qi. We use
q ∈ [.05, .5]. Note that our process of introducing description
errors is conservative. First, a significant fraction of SRLGs re-
main unchanged for small q. Second, if an SRLG description is
inaccurate, it is very likely to have only a few erroneous addi-
tions/deletions, as the probability decreases geometrically with the
number of errors.

Alternative Approaches: We compare with two main classes of
solutions for the failure diagnosis problem.

(a) MinSetCover: We implement the algorithm described in [5],
making sure that all configurable parameters are adjusted to their
default values.

(b) BayesNet: We implement the loopy belief propaga-
tion inference algorithm using the standard Bayesian Network
Toolkit (BNT) for Matlab [1].

3.2 Metrics
We define the success rate of an inference algorithm, as the per-

centage of network faults that are correctly diagnosed, i.e.:

Success Rate =
#Correct Diagnoses

#All Diagnoses
.

A combination of SRLG failures creates a faulty network state.
When the diagnosis is incorrect, there may be some SRLGs that



haven’t failed but are incorrectly diagnosed as failures, i.e., false-
positives, and some SRLGs that did fail but weren’t diagnosed as
failures, i.e., false-negatives. Let F be the set of SRLGs that did
fail, and F the set of SRLGs that did not fail. Also let F d be the
set of SRLGs that are diagnosed to have failed, and Fd the set of
SRLGs diagnosed as up. Then:

False-Positive Rate =
1

#Diagnoses

X

Diagnosis

|F d ∩ F |
|F | ,

False-Negative Rate =
1

#Diagnoses

X

Diagnosis

|F ∩ F d|
|F | .

3.3 Evaluation Results
(a) Diagnosis Accuracy for Realistic Models: Fig. 4 compares
the diagnosis accuracy of Shrink, MinSetCover and BayesNet as a
function of the inaccuracy in SRLG-IP mapping. The network has
1000 nodes and 1611 SRLGs. The faults are generated based on the
True SRLGs, but the algorithms use inaccurate SRLG descriptions.

First, note that Shrink outperforms both MinSetCover and
BayesNet, and the performance gap increases with increased in-
accuracy in the SRLG-IP mapping. Second, by comparing 4a
against 4b, note that allowing the diagnosis tool to give the two
most likely diagnoses increases the success rate substantially. This
is a practical option because, in most cases, the objective of au-
tomated diagnosis is to pin down the failed SRLGs to a small set
that can be checked and fixed manually. Third, the success rate
of Shrink makes it a practical tool; Fig. 4b shows that for small
inaccuracy probability ∼.1, Shrink diagnoses more than 99.5% of
the faults correctly. When half the SRLGs are inaccurate, Shrink
uses guess edges to diagnose up to 80% of the faults correctly.
Finally, note that even when presented with the correct SRLG-IP
mapping, BayesNet has about 30% error. This is because on sev-
eral instances, BayesNet takes a very long time to converge, but we
stop the runs at 2000s (∼30min) (see Fig. 7).

(b) Understanding Performance: Fig. 5 compares the false-
positive and false-negative rate for Shrink, MinSetCover, and
BayesNet. Several interesting points are worth noting. First,
BayesNet has a false-positive rate much larger than its false-
negative rate. This is expected because this scheme ignores in-
accuracies in the SRLG-IP mapping, and as a result, it prefers to
include in its diagnosis SRLGs that explain a small subset of the
failed IP links rather than leaving failed links un-explained. Sec-
ond, Shrink & MinSetCover have similar false-positive and false-
negative rates because they explicitly prefer answers with a small
number of SRLGs, thereby having a roughly even probability of
including SRLGs that failed and leaving out SRLGs that did fail.
Finally, Shrink’s false-positive and false-negative rates are 1-2 or-
ders of magnitude lower than the other schemes, showing that even
when Shrink makes an incorrect diagnosis, many SRLGs in the di-
agnosis are correctly diagnosed.

Shrink can provide multiple diagnoses, ordered by their likeli-
hood. Fig. 6 attempts to understand Shrink’s performance in this
situation. This figure shows that Shrink’s success rate improves
considerably by considering just one extra diagnosis. Further, suc-
cess rate quickly converges; considering more than the four most
likely diagnoses yields little improvement in success rate.

(c) Running Time: Fig. 7 shows the time to diagnose a fault, aver-
aged over several thousand failure instances, for topologies ranging
from a 100 link, 118SRLG graph to a 3000 link, 3877 SRLG graph,
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Figure 4: Diagnoses Accuracy. Figure compares how successful Shrink,
MinSetCover, and BayesNet are in finding the correct failure diagnosis.
Graphs are functions of increased inaccuracy in the SRLG-IP mapping. The
network has 1000 nodes and 1611 SRLGs. Note Shrink has a much higher
success rate than MinSetCover and BayesNet. Also, accuracy improves
when each scheme provides the 2 most-likely diagnoses.
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negative errors as functions of increased inaccuracy in SRLG-IP mapping.
The network has 1000 nodes and 1611 SRLGs. Shrink has 1-2 orders of
magnitude fewer false-positives and false-negatives than MinSetCover and
BayesNet.
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Figure 6: Multiple Diagnoses. Shrink provides multiple diagnoses ordered
by their likelihood. This figure shows that success rate improves signifi-
cantly by considering the two most likely diagnoses, and converges quickly
at 4-most-likely diagnoses.

on a 2GHz, 1GB RAM machine. (The probability of errors in the
SRLG descriptions is 0.2 but the exact value of this parameter has
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Figure 7: Time to diagnose a fault. Shrink is up to 3 orders of magnitude
faster than BayesNet. Though Shrink is considerably slower than MinSet-
Cover, Shrink diagnoses faults in < 4s on reasonably large ISP networks
and is much more accurate (Fig. 4).

no effect on the running time.) The graph shows that BayesNet
takes up to 15 minutes to create a diagnosis. Though Shrink is
slower than MinSetCover it diagnoses a fault in less than 4s even
in large networks, and is remarkably more accurate (Fig. 4).

Note that the running time of both Shrink and MinSetCover ap-
proach straight lines asymptotically, confirming our analysis that
their running times are polynomial in graph size. In general, the
running time of BayesNet is exponential in the number of IP links
that failed. However, we explicitly stop BayesNet, if it has been
running for more than 30min. and return the best guess till then.

4. CONCLUSION & FUTURE WORK
We have presented Shrink, a tool for network fault diagnosis

across the IP and optical layers, and showed that it has a better per-
formance than previous methods. We applied Shrink to a specific
problem, but Shrink is a general tool for fault diagnosis. Its main
strength arises from its ability to deal with noisy measurements and
inaccurate information. In the future, we would like to apply Shrink
to other problem domains such as using the failure/success status
of TCP connections to passively infer the failures status of vari-
ous physical elements in an intra-net (routers, DNS/DHCP servers,
etc.).
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