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ABSTRACT

This paper presents M&M, a passive measurement toolkit
suitable for large-scale studies of Internet path characteristics.
The multiQ tool uses equally-spaced mode gaps in TCP flows’
packet interarrival time distributions to detect multiple bottle-
neck capacities and their relative order. Unlike other passive
tools, multiQ can discover up to three bottlenecks from the
trace of a single flow, and can work with acknowledgment as
well as data interarrivals. M&M also contains mystery, a TCP
loss and RTT analyzer designed to work in concert with multiQ.
The M&M toolkit can measure path characteristics and corre-
late different types of measurements of the same path, produc-
ing new results. Since M&M is passive, it can also use publicly-
available traces to track the evolution of measurement results
over time.

We validate our tools in depth using the RON overlay net-
work, which provides more than 400 heterogeneous, well-un-
derstood Internet paths. We compare multiQ with Nettimer
and Pathrate, two other capacity measurement tools, in the first
large-scale wide-area evaluation of capacity measurement tech-
niques. Our results show that multiQ is highly accurate, and
though passive, achieves the same accuracy as Pathrate, which
is active.

We also use our toolkit to perform several measurement stud-
ies using a large reservoir of traced packets collected by NLANR
on backbone links over the last two years. Among the results are
that bottleneck capacity on these links has grown by around an
order of magnitude from 2002 to 2004. In contrast to expec-
tations, however, fair bandwidth share does not increase much
with increased bottleneck capacity.

1 INTRODUCTION

Researching the Internet—building simulation and emula-
tion scenarios—depends on a mental model of how the network
really behaves. For example, we might assume that flows tra-
verse a single congested link, that the level of statistical multi-
plexing on bottleneck links is low, that there is no congestion
on the reverse path, that the fair bandwidth share increases with
increased bottleneck capacity, and so forth. These assumptions
must arise from a faithful representation of the current state of
the network, or how the network may be expected to behave
in the future. Research based on unrealistic representations has
little to say about how the actual network should evolve [17].

How, then, to create a faithful representation of the current
Internet? The best answer is to measure those properties im-

portant for a given research question, in the widest range of
expected conditions, and extract relevant parameters from the
results. This kind of measurement is challenging. Active mea-
surements, used by many applications, become difficult on such
large scales because of probe overhead and the need to avoid
perturbing the characteristics being measured. Also, active mea-
surements often assume access to both the sender and receiver,
limiting their applicability to a few paths; and they cannot use
the large set of Internet traces collected over the years, making it
difficult to see how the Internet has evolved over time. A com-
prehensive set of accurate, passive, trace-based measurement
tools is therefore required.

This paper presents M&M, a toolkit for the passive measure-
ment of path characteristics. M&M centers on a novel passive
multi-bottleneck capacity measurement tool, multiQ. It also
contains a multi-function TCP analyzer, mystery, whose re-
sults are designed for correlation with the bottleneck capacities
measured by multiQ. Both tools analyze medium-to-long TCP
flows contained in trace files (although they could be used in ac-
tive applications). Because M&M expands the set of properties
that can accurately be measured with passive techniques, and
because it facilitates the correlation of basic measurements into
higher-level measurement results, we believe it represents an
important step towards our eventual goal: the creation of more
faithful representations of the Internet, and the evaluation of the
representations we already use.

multiQ uses packet interarrivals to investigate questions
about the link capacities along a path. Its novel insight is that
packet interarrival times, shown as a distribution, demonstrate
equally-spaced mode gaps caused by intervening cross traffic
packets on bottleneck links in the path. multiQ is both passive
and precise. Unlike earlier capacity-measurement work [36, 28,
12, 30, 5], it can passively discover capacities from sender-side
traces as well as receiver-side traces; uniquely for passive tools,
it can discover the capacities and relative order of up to three
bottleneck links along a path from a single TCP flow trace.

mystery reports TCP loss events, lost packets, and fine-
grained semi-RTT measurements throughout the duration of a
flow using techniques from previous work. Together with multiQ,
this allows us to correlate path characteristics—capacity, num-
ber of bottleneck links, the existence of reverse path bottle-
necks—with TCP performance. We validatemultiQ and mystery
using nearly 10,000 experiments over the RON overlay, which
provides more than 400 heterogeneous paths with detailed in-
formation about their characteristics.

We use M&M to measure a few transport-centric path prop-
erties; correlate different types of measurement of the same path,
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producing new kinds of results; and track the evolution of the
measurements over multiple years. Using a large (375-million-
packet) reservoir of 258 diverse NLANR traces collected in
the backbone over the last two years, we address the following
questions: How has the distribution of Internet bottleneck ca-
pacity changed over time? Does the TCP fair bandwidth share
increase with increased bottleneck capacity? Does the drop rate
seen by a TCP depend on the capacity of the link where it is
bottlenecked?

1.1 Contributions

This paper has the following contributions.

• We introduce EMG (Equally-spaced Mode Gaps), a new
passive technique for inferring link capacities from packet
inter-arrival times. Prior work has inferred link capacity from
the location of the modes in the packet inter-arrival distribu-
tion [28, 23, 15, 35]. In contrast, EMG uses the distance
between consecutive modes. We show that the EMG tech-
nique is more robust to error caused by cross traffic and can
discover the capacity of multiple congested links and their
relative order along the path, from a tcpdump trace of a
single flow.
• We correlate path capacity with transport-centric behavior.

Our analysis of a large trace library collected by NLANR
on backbone links shows that significant flows (see Table 1)
have experienced a dramatic increase in bottleneck capac-
ity between 2002 and 2004, but the higher capacity bottle-
necks did not result in a larger per significant flow band-
width share. Further, the drop rates experienced by signifi-
cant flows on low capacity paths are considerably similar to
the drop rates seen on high capacity paths.
• This paper presents the first wide-scale Internet evaluation

of recent advancements in capacity measurement. Using over
10,000 experiments on 400 heterogeneous Internet paths with
known likely capacities, we evaluate multiQ’s accuracy
and compare it with Nettimer [28], another passive capac-
ity measurement tool, and Pathrate [15], an active tool. Our
results confirm that link capacity measurement tools are ma-
ture and accurate, with more than 85% of their measure-
ments within 10% of their correct value. multiQ has the
same accuracy as Pathrate, which is an active tool. Com-
pared to Nettimer, multiQ is more accurate when both
tools have access only to receiver-side traces. Nettimer can
be as accurate as multiQ only when it is given access to
both ends of the measured path.
• multiQ is the first tool that can effectively extract capacity

information solely from sender-side traces (i.e., ack traces).1

• We reveal subtle differences between active and passive ca-
pacity estimation tools, showing that they may disagree on
the capacity of a particular path and yet both be correct. For
example, when traversing a path with a leaky bucket limiter,
Pathrate measured the bucket’s token rate while Nettimer
and multiQ measured the actual capacity of the link.

1Nettimer can theoretically work on sender-side traces but its accuracy is ex-
tremely low; less than 10% of the measurements are within 20% of their correct
values.

(a) Compression (b) Inflation
Figure 1—Cross traffic impact on packet pair measurements. (a) Cross traf-
fic (dark) compresses the interarrival times of probe packets; (b) cross traffic
intervenes between consecutive probe packets, inflating their interarrival time.

• We uncover the distribution of cross-traffic bursts, which in-
tervene between consecutive packets in a medium to mod-
erate size TCP flow, and discuss the implications of this dis-
tribution for passive measurements.
• We have implemented our toolkit, M&M, as a software pack-

age which we intend to make publicly available under an
open source license by final publication.2

Table 1 defines several important terms used throughout the
paper. Particularly, we define a bottleneck as a link at which
traffic faces persistent queuing.

2 CAPACITY ESTIMATION WITH EMG

We begin by explaining the operation of our capacity-es-
timation tool, multiQ, and its underlying basis: the equally-
spaced mode gaps (EMGs) induced by cross traffic on packet
interarrival time distributions.

2.1 Cross Traffic: Noise or Data?

The packet pair technique has traditionally been used to in-
fer the minimum capacity along a path. A sender emits probe
packets back-to-back; assuming cross traffic does not intervene,
the probes arrive spaced by the transmission time on the bottle-
neck link. The capacity of the bottleneck is computed as

C =
S
T

, (1)

where S is the size of the second probe and T is the time dif-
ference between the arrivals of the two packets at the receiver
(their interarrival time).

Cross traffic can cause substantial errors in packet pair-based
capacity estimates [15] by changing the interarrival time be-
tween probes. Compression errors happen when the first packet
of a probe packet pair gets delayed more than the second packet
due to getting queued up behind cross traffic at a downstream
congested link. (Figure 1a); inflation errors occur when cross-
traffic packets intervene between the probe packets upstream
from the bottleneck link (Figure 1b). To eliminate these cross-
traffic effects, prior work sends trains of packets (packet bunch
mode) [39] or a variety of packet sizes [14]; uses the global
2Unlike multiQ, the algorithms under-lying mystery rely heavily on prior
work and do not constitute a contribution. We implemented mystery to cor-
relate the output of multiQ with TCP performance. We wrote our own tool
because existing tools either had no source code available, or produced less
fine-grained results than we wanted to use.
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Term Definition

Significant flow A TCP flow that achieves an average packet rate > 10 pps (≈ 1 pkt/RTT), contains at least 50 packets,
and has an MTU of 1500 bytes. (The vast majority of medium-to-long data flows have this MTU.)

Cross-traffic burst Traffic intervening between two consecutive packets of a traced flow
Bottleneck Link where traffic faces queuing
Capacity The maximum rate at which packets can be transmitted by a link
Narrow link The link with the smallest capacity along a path
Tight link The link with minimum available or unused capacity along a path
Path capacity Capacity of the narrowest link on that path
Statistical Multiplexing No. of flows sharing a bottleneck link
Semi-RTT Latency between the sending of a data packet and the reception of the ack corresponding to that

packet as they appear in the trace
Table 1—Definitions of the terms used in this paper.
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Figure 2—(a) Distribution of cross traffic between consecutive packets in a
significant flow has equal mode gaps of 1500 bytes. (b) The CDF of packet size
reveals frequencies of 40- and 1500-byte packets.

mode in the interarrival histograms [28]; and so forth. Yet, as the
bottleneck becomes more congested, eliminating the effect of
cross traffic becomes more challenging, particularly with pas-
sive measurements, where one cannot control the rate and send-
ing times of the analyzed TCP flow.

Given this, is it possible that cross-traffic effects contain any
useful information, rather than just being noise? We demon-
strate that cross traffic, with proper interpretation, actually helps
detect not only the minimum capacity along the path, but also
the capacities of other congested links.

We define a cross-traffic burst to be the traffic that intervenes
between two consecutive packets of a flow. We seek to under-
stand the probability distribution of different cross-traffic burst
sizes: that is, the chance that a given amount of traffic will inter-
vene between consecutive packets of a flow, at a congested link.
We have studied 375 million packets in 258 NLANR traces,
collected at 21 backbone locations, with a total of about 50,000
significant flows.3 The diversity and size of this data set makes
it a plausible sample of the Internet. We have identified all sig-
nificant flows in these traces. For each significant flow, we have
considered the rest of the traffic in the trace as cross-traffic. For
each pair of packets in a significant flow, we have computed

3Section 6 describes this dataset further.

Figure 3—The experiment that generated the graphs in Figure 4.

the intervening cross-traffic burst at the link where the trace is
taken. This was repeated for each significant flow in the trace
and the resulting samples for cross-traffic bursts were collected.
Figure 2a shows the distribution of the sizes of these bursts.

Note the surprising regularity: sharp modes separated by
equal gaps of 1500 bytes. This structure is caused by the dis-
tribution of Internet packet sizes. Figure 2b shows a cumula-
tive distribution function (CDF) of packet sizes in these traces,
which replicates previously reported results [44]. The dominant
sizes are 40 and 1500 bytes; many other sizes are represented,
but none are as highly pronounced. Thus, we would expect that
the modes in the burst distribution will stem from 40- and 1500-
byte packets; and since 1500-byte packets are so much larger
than 40-byte packets, their size should dominate the modes in
Figure 2a. The 40-byte packets broaden the 1500-byte modes,
and less common sizes create the bed of probability under the
modes.

How will these modes be reflected in passive measurements
that might not see the physical cross traffic? Once the mea-
sured flow reaches a point of congestion, i.e., a queue, the idle
intervals squeeze out, and the packets (of both our flow and
cross traffic) compress nearer in time. Thus, provided subse-
quent links are uncongested, the interarrival times observed at
the receiver are proportional to the sizes of cross-traffic bursts
on the congested link. Since the PDF of cross-traffic burst size
contains modes separated by 1500 bytes, we expect the PDF
of interarrival times in a flow to have modes separated by the
transmission time of 1500 bytes at some bottleneck link.

The rest of this section expands this insight into a practical
measurement technique.

2.2 Examining an Interarrival PDF

We motivate our work by describing the outcome of a simple
experiment. We examine the path connecting two machines: one
at CMU with a 10 Mb/s access link, and one at CCICOM with a
100 Mb/s access link (Figure 3). The path between the two ma-
chines traverses 18 Internet hops. We first download a large file
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Figure 4—Interarrival PDFs for CCICOM–CMU path in both directions.

Link capacity Transmission time

380 Kb/s (DSL) 32 ms
1 Mb/s 12 ms

1.5 Mb/s (T1) 8 ms
10 Mb/s 1.2 ms
45 Mb/s 0.267 ms

100 Mb/s 0.12 ms
155 Mb/s 0.08 ms
622 Mb/s 0.018 ms

Table 2—Transmission times of 1500-byte packets on various capacity links.

from CCICOM to CMU while collecting a tcpdump trace at
CMU. Figure 4a shows the interarrival PDF for this significant
flow. The distribution shows a single spike at 1.2 ms, which is
the transmission time of a 1500-byte packet on a 10 Mb/s link.
There is nothing special about this PDF; 10 Mb/s is the min-
imum capacity link along the path, and the spike in the PDF
shows that most packets were queued back-to-back. Normal
packet-pair techniques would have worked well on this trace.

Next, we repeat the experiment along the reverse path: we
download a large file from CMU to CCICOM and plot the in-
terarrival distribution as seen by tcpdump at CCICOM. The
result, shown in Figure 4b, has an interesting structure. The
envelope of the distribution is again centered near 1.2 ms, be-
cause of the upstream 10 Mb/s link; but it is modulated with
sharp spikes separated by equally-spaced mode gaps (EMGs) of
0.12 ms, which is the transmission time of a 1500-byte packet
on a 100 Mb/s link.

To understand this PDF, consider what happens to packets
as they go from CMU to CCICOM. As packets traverse the
10 Mb/s CMU access link (which is also the narrow link along
the path), they become spaced by 1.2 ms, the transmission time
of one packet on that link. In this case, the Internet backbone is
not congested (most queuing happens at access links to stub do-
mains [18]), so the interarrivals remain relatively unperturbed
until they reach the 100 Mb/s CCICOM access link, where the
flow faces congestion again. There, the spacing of two consecu-

1 2
1 2

1.2 ms

1.2 ms
a) Neither packet queued→ initial spacing maintained

1 2
1 2

random random
b) Cross traffic, but queue empties between packets→ random spacing

1 2
1 2

6× 1500B + δ
c) Queue does not empty between packets→ spacing has modes at multiples of 1500B

Figure 5—Various cases of packet spacing on CCICOM’s access link. Above
the line represents arrivals; below the line represents departures. Light packets
are from the traced flow and dark packets are cross traffic. Cross traffic arrivals
are not shown.

tive packets in our flow changes in one of three ways, as follows.

(a) Neither packet is queued (Figure 5a). The time between
the trailing edges of the two packets—their interarrival—remains
1.2 ms.

(b) Either packet is queued and the queue empties between
the departure time of the two packets. Figure 5b shows an ex-
ample where the first packet arrives while a cross-traffic packet
is in the process of being transmitted. The packet has to wait
for that transmission to finish, plus any remaining cross-traffic
packets in the queue. This waiting time takes values spread over
a wide range, depending on the total number of bytes that must
be transmitted before our packet. Since the initial cross-traffic
packet was partially through transmission, this number of bytes
will show no pronounced modes. If one assumes the second
packet is not queued, then the interarrival time becomes 1.2 ms
minus the delay of the first packet. Interarrival samples of this
type are spread over a wide range with no pronounced values or
modes, and contribute to the bed of probability under the spikes
in Figure 4. A similar argument applies if the second packet
is queued and the first is not, or even if the two packets are
both queued, as along as the packets belong to different queu-
ing epochs (the queue empties between their departures).

(c) Either packet is queued and the queue does not empty
between the departure times of the two packets (Figure 5c). The
resulting interarrival is the transmission time of the intervening
cross-traffic burst plus the second packet in the pair. As we have
seen, cross-traffic bursts have modes at multiples of 1500 bytes,
so interarrival samples of this type will show modes spaced by
0.12 ms (the transmission time of 1500 bytes on 100 Mb/s).
The input interarrival of 1.2 ms is a factor of 10 higher than this
mode spacing, so these modes will be centered around 1.2 ms
unless the queuing is extremely bursty.

Figure 4b also shows some symmetry in the modes around
1.2 ms. We have argued that modes are caused by interarrivals
of type (c), where a cross-traffic burst is queued between our
packets with no idle period. Our traced packets arrive at the
CCICOM queue equally spaced by 1.2 ms. If cross-traffic ef-
fects stretch a pair of packets in the traced flow, the resulting
interarrival sample will lie to the right of the 1.2 ms mode. If
cross-traffic effects squeeze the pair, the interarrival sample lies
to the left of the 1.2 ms mode. On this link, it seems that the
probability of squeezing and stretching were close.
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Figure 6—Example interarrival PDFs. All show equally spaced mode gaps (EMG).

This simple experiment teaches us two lessons: (1) Equally-
spaced mode gaps in a flow’s interarrival PDF correspond to
the transmission times of 1500-byte packets on some bottle-
neck along the path. (2) The envelope of the PDF describes the
minimum-capacity congested link along the path, whose output
gets modulated by downstream congested links.

2.3 Interarrival PDF Variations

Inspection of interarrival PDFs for over 400 different Inter-
net paths from the RON testbed (see Section 5 for a descrip-
tion) shows that most PDFs exhibit equally-spaced mode gaps
separated by the transmission time of a 1500-byte packet on a
well-known link capacity—see Table 2 for a list. For lack of
space we show only a few PDFs, chosen to expose the various
possible shapes.

Figure 6a shows an interarrival PDF for a flow going from
a 100 Mb/s access link to a T1. (We know the access link ca-
pacities of all nodes in the RON testbed.) The downstream low-
capacity T1 link creates EMGs of 8 ms and erases the spacing
produced by the upstream bottleneck. In most cases, we are only
able to see secondary bottlenecks downstream of the minimum-
capacity link, since the minimum-capacity link destroys any up-
stream spacing. The large number of modes shows that the bot-
tleneck link had a high degree of queuing/congestion. Lower
capacity bottlenecks usually obscure upstream higher capacity
bottlenecks. To discover these bottlenecks, one needs to exam-
ine the ack inter-arrival PDF. Fortunately, the EMG technique
works on ack traces, though less accurately.4

4It is incorrect to assume that Ack packets traverse the same data path in the
opposite direction. However, in many cases the capacities of the bottlenecks on
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Figure 6b shows an interarrival PDF for a flow going from a
10 Mb/s access link to a 100 Mb/s link, similar to Figure 4b. The
EMGs of 0.12 ms continue along a long tail, indicating that the
downstream high-capacity 100 Mb/s link is highly congested.

Like Figure 6b, Figure 6c demonstrates a flow going from a
lower-capacity bottleneck to a higher-capacity bottleneck, ex-
cept this time the upstream bottleneck (a T1) is highly con-
gested. This generates primary EMGs of 8 ms, modulated by
smaller EMGs of 0.12 ms corresponding to the 100 Mb/s link.

Figure 6d demonstrates a rare case where the PDF contains
evidence of a congested link upstream of the minimum-capacity
link. The flow traverses an upstream highly congested 100 Mb/s
bottleneck and then a downstream 10 Mb/s bottleneck. The down-
stream bottleneck erases the first few spikes, piling up their
probability at 1.2 ms, but the tail of 0.12 ms EMGs from the
highly-congested 100 Mb/s link is long enough that a second
spike remains.

Figure 6e shows an interesting structure which reveals three
bottlenecks. The minimum-capacity bottleneck is a 380 Kb/s
link, which is apparent from the envelope’s peak. The envelope
is modulated by EMGs of around 1.2 ms, revealing a 10 Mb/s
link. If we then look closely around one of these modes, we see
smaller modes equally spaced at intervals of 0.08 ms, revealing
a downstream 155 Mb/s link.

As more bottlenecks leave their fingerprints on the flow’s
interarrivals, it becomes harder to disentangle their marks. It
is relatively easy to identify two bottlenecks from an interar-
rival PDF, but we have never seen more than 3 bottlenecks. We
do not know whether there were any cases in which our ttcp
flow traversed 4 or more congested links, but we expect this to
be unlikely. We cannot confidently tell the maximum number of
detectable bottlenecks in a single PDF, but we believe that, with-
out additional information, it will be difficult to identify more
than 3 bottlenecks.

2.4 Ack Interarrivals

Thus far, we have created PDFs from data packet interar-
rivals, using traces collected downstream of any bottlenecks.
This kind of analysis is useful when we have control of the re-
ceiver or some observation point close to the receiver. When the
trace is taken at the sender-side, data packet interarrivals are not
interesting because the packets are spaced by the sender’s link;
the ack stream holds whatever information can be recovered.
When the observation point is in the middle of the network,
both data and ack interarrivals should be studied to discover
bottlenecks upstream and downstream of the observation point.
In general, ack interarrival PDFs contain more information than
data interarrival PDFs, but they also have a higher level of noise.
The major differences between the two PDFs are:

• Forward- and reverse-path bottlenecks. If every data
packet generated an ack, and ack spacing was undisturbed by
the network, then sender-side ack interarrivals would exactly
equal the receiver-side data packet interarrivals. Of course, the
world is more complicated than this. Acks also traverse the net-
work, where their interarrival times pick up a record of any bot-
tlenecks on the reverse path. This record is superimposed on
the reverse path match the capacities of the bottlenecks on the forward path.
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the record of forward-path bottlenecks generated by the data
packets. We cannot tell whether a specific bottleneck is on the
forward or reverse path unless we examine the data interarrivals
as well.

To demonstrate this, Figure 8 shows an ack PDF with infor-
mation about both forward- and reverse-path bottlenecks. The
receiver is at the RON node “speakeasy”, which has 1.5 Mb/s
downstream capacity and 100 Mb/s upstream capacity. The PDF’s
envelope peaks at 8 ms, corresponding to the 1.5 Mb/s forward-
path bottleneck. This envelope is modulated by 0.12 ms EMGs
corresponding to the upstream 100 Mb/s link. If we plot the
data-packet PDF for a flow that traverses the reverse path, we
see only the 100 Mb/s link.

• Noise. Ack PDFs are significantly noisier than data-packet
PDFs. Data packets are mostly 1500 bytes. When they arrive
back-to-back they are spaced by the transmission time of a 1500
bytes packet on the bottleneck, and thus enforce the mode struc-
ture created by cross traffic bursts. Acks, on the other hand, are
only 40 bytes long. Back-to-back acks do not enforce the mode
structure created by cross traffic bursts.

• Delayed acks. The 1.2 ms EMGs in Figure 7, a sender-
side ack interarrival PDF, clearly reveal that the flow has crossed
a 10 Mb/s bottleneck; but the biggest spike is at 2.4 ms, twice
the expected value. This is caused by delayed acks: the receiver
generates most acks at half the rate of the minimum-capacity
bottleneck. Thus, when working with ack interarrival, one should
take into account that the first mode may be missing.

The examination of many ack PDFs shows EMG can be
applied to ack interarrivals, but with lower accuracy than data
packet interarrivals. Section 5.4 quantifies the difference.
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Figure 9—The data from Figure 4b at two different resolutions.

3 MULTIQ: AUTOMATING EMG

The multiQ passive bottleneck detection tool automates
the EMG capacity detection technique. It takes as input a tcpdump
trace, and automatically discovers and estimates the capacity of
the bottlenecks traversed by certain flows specified by the user.

Automating multiple bottleneck discovery is tricky because
it requires interpreting the visual image of the interarrival PDF
to extract the relevant information and ignore the noise. To do
this, multiQ analyzes the interarrival PDF at a progression
of resolutions corresponding to a known set of common link
speeds. To demonstrate this, Figure 9 plots the CMU-to-CCICOM
data from Figure 4b at two different resolutions. At the lower
resolution, we see one large mode in the distribution, which
corresponds to the upstream lower-capacity bottleneck. As we
increase the resolution, the large mode becomes fractured into
smaller spikes corresponding to the higher-capacity bottleneck.
The envelope traced by the peaks of the smaller spikes follows
the original broader mode.

The procedure works as follows. At each resolution, starting
with the highest resolution, multiQ constructs a kernel den-
sity estimate of the PDF and scans it for statistically-significant
modes.5 The gaps between these modes are computed. Then,
multiQ finds the probability distribution of the gaps them-
selves. A mode in the gap’s PDF corresponds to a highly re-
peated gap length—the hallmark of a congested link. If multiQ
finds a significantly dominant mode in the gap distribution at the
current resolution, it decides that mode represents the transmis-
sion time of 1500 bytes on some bottleneck, and outputs that
bottleneck’s capacity. If there is no dominant gap at the current
resolution, multiQ decreases the resolution by increasing the
kernel width, and repeats the procedure. 6 Figure 10 shows this

5Kernel density estimation is a standard method for constructing an estimate of
a PDF from measurements of the random variable. We use the quartic kernel
density function [43].
6The width of the kernel function is similar to to the bin width of a histogram.

1. Compute flow interarrivals from trace file
2. Set scale := 10 µs
3. While scale < 10,000µs:
4. Compute kernel PDF estimate with width = scale
5. Find the modes
6. If there’s only one mode, at M:
7. Output a capacity of (1500*8/M) Mb/s
8. Exit
9. Compute the mode gaps

10. Compute the PDF of the gaps
11. Set G := the tallest mode in the gap PDF
12. If the probability in G > 0.5:
13. Output a capacity of (1500*8/G) Mb/s
14. Increment scale

Figure 10—Pseudocode for multiQ.

procedure in pseudocode.
A few details are worth discussing. First, since we are look-

ing at the interarrival PDF at different resolutions, we need to
use a kernel PDF estimator to detect the modes—the flat bins
of a histogram would prevent precise mode estimation at low
resolutions. Second, modes are identified as local maxima in
the density estimate that have statistically significant dips.7 Fi-
nally, when multiQ analyzes ack inter-arrival PDFs, it uses
a slightly different procedure to deal with the first mode in the
PDF: a large spike close to zero is a sign of compressed acks and
should be ignored, whereas a spike located at twice as much as
the repeated gap in the PDF is a sign of delayed acks and corre-
sponds to the transmission time of 3000 bytes on the bottleneck
link.

3.1 Miscellaneous

1. EMG estimation is more robust on data-packet traces than
ack traces. When run on ack traces, the current version of multiQ
does not try to discover bottlenecks whose capacity is higher
than 155 Mb/s.

2. The EMG technique relies on the cross-traffic burst struc-
ture, which depends on the packet size distribution. If 1500 bytes
stops being the dominant large-packet mode, this technique will
fail. Fortunately, this distribution appears to be changing to-
wards further emphasis of the 40-byte and 1500-byte modes;
for instance, compare the 1998 and 2001 packet size distribu-
tions in Claffy’s papers [13, 44].

3. multiQ estimates the capacity of bottlenecks upstream
from the observation point. To estimate bottleneck capacities
downstream of the observation point, multiQ needs access to
ack traces.

4. If the traced flow traverses a high capacity bottleneck fol-
lowed by a lower capacity bottleneck, it is unlikely there will
be signs of the first bottleneck in the data interarrival PDF col-
lected at the receiver-side (Figure 6d is a rare case). However,

7A significant dip [43] is defined as one in which the dips on either side of a
local maximum drop by more than the standard deviation of the kernel density
estimate at the local maximum. The standard deviation is given by

StdDev(g(x)) =
p

g(x) × R(K)/nh, (2)

where g(x) is the estimate at point x, R(K) is the roughness of the kernel func-
tion, n is the number of points, and h is the kernel’s width.
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if multiQ has access to both sender- and receiver-side traces,
then it is likely to detect both bottleneck capacities. Essentially,
the ack stream would be traversing the lower capacity bottle-
neck first then the higher capacity one. If the bottlenecks on the
forward path are also bottlenecks on the reverse path (usually
true when they are access links), and have the same capacity in
both direction (usually true except for DSL and cable modem
links), then the capacities detected in the ack interarrival PDF
match the capacities of the two bottlenecks on the forward path.

4 MYSTERY

The M&M toolkit can also correlate multiQ’s bottleneck
capacity information with other passively-measured path char-
acteristics. To demonstrate this approach, we implemented the
mystery tools, which measure loss event rates, packet loss
rates, and RTT variability from TCP traces. These kinds of char-
acteristics are well studied in the literature [37, 49, 6, 22, 10, 29,
4, 21]; mystery uses similar techniques to this prior work. We
wrote our own tool because existing tools either had no source
code available, or produced less fine-grained results than we
wanted to use (a count of lost packets rather than the identi-
ties of particular lost packets, for example). For future work,
we plan on integrating other tools into M&M as they become
available.

The three tools that make up mystery are as follows:

• A loss event detector detects loss events by watching for
retransmissions, a standard technique. A new loss event is
detected every time mystery sees a reordered or retrans-
mitted packet whose original transmission was not part of a
previous loss event. True loss events can sometimes be dif-
ferentiated from spurious retransmissions using timing in-
formation.

• A lost packet detector detects individual lost packets using
algorithms somewhat like those of Allman et al. [6], but
more dependent on timing information than duplicate ack
counting.

• An ack correspondence detector measures semi-RTTs: the
latencies between data packets and the acks sent in response,
as seen by the trace collection point. Its algorithms follow
those of Jaiswal et al. [21] and Aikat et al. [4].

The loss event detector works at either the sender or re-
ceiver side, and only requires access to the data packets. The
lost packet detector and the ack correspondence detector are de-
signed for the sender side, and require access to both data and
acks.

mystery operates on tcpdump, NLANR, or other for-
mat traces containing one or more TCP flows. Its output is in
XML format. More information about mystery can be found
in [45]. Section 5.7 presents a validation.

5 VALIDATION

We evaluate the accuracy of multiQ using 10,000 exper-
iments over 400 diverse Internet paths from the RON overlay
network, and compare it both with known topology information
and with two other capacity measurement tools, Pathrate and
Nettimer. Our results show the following:

• When measuring minimum-capacity bottlenecks, multiQ
is as accurate as Pathrate, an active measurement tool; 85%
of its measurements are within 10% of the true value. Net-
timer is equally accurate if operated with both sender and
receiver traces, but its accuracy goes down to 74% with only
receiver side traces, and becomes negligeable (about 10%)
with only sender side traces.

• On sender side traces, which consist mainly of acks, 70%
of multiQ’s measurements are within 20% of their correct
value.

• As for tight links (i.e. non-minimum capacity links), multiQ
automatically detects 64% of them, misses 21%, (though a
human could detect them visually on an interarrival PDF us-
ing our EMG technique), and mislabels 15%.

• The average error of both multiQ and Nettimer is highly
independent of flow size for flows larger than 50 packets.

• We also validate mystery using 155 diverse paths from
RON. When run at the sender side (the hard case), its er-
ror rate for lost packets is under 1% for more than 80% of
the paths we tested, and under 10% for all paths. Ack corre-
spondence is slightly less reliable.

5.1 Experimental Methodology

Ideally, we would like to have information about all the ca-
pacities and loss rates along a large number of heterogeneous
paths that form a representative cross section of the network.
This is inherently difficult on the Internet, of course, but we
have tried to evaluate our tools on as representative a network
as possible. We use the RON overlay network [2], whose 22
geographically-distributed nodes have a diverse set of access
links, ranging from DSL to 100 Mb/s connections,8 and ISPs
on both the commercial Internet and Internet2. RON has 462
heterogeneous paths, 25% of which use Internet2. We therefore
have good reason to believe that these paths’ characteristics are
representative of what we would encounter on the Internet.

We compare the capacity tools’ estimates for each RON path
against that path’s “true” bottleneck capacity. A fair amount of
legwork was required to determine these values. We contacted
each node’s hosting site and obtained a list of all their access
links and the capacities of the local networks to which the nodes
are connected. For multi-homed nodes, we learned the access
capacities of each upstream ISP. RON nodes not on Internet2
have low-speed access links ranging from DSL to 10 Mb/s;
paths terminating at one of these nodes are unlikely to encounter
a lower-capacity link on the Internet backbone. For RON nodes
in Internet2, we additionally obtained information about all In-
ternet2 links on the relevant paths. On top of this, we used a
wealth of information obtained from the RON overlay operator
about path characteristics over the last 3 years.

To verify the consistency of these “true” capacities, we ran
all three capacity measurement tools and a number of ttcp
and UDP flows of varying rates on each path. If a path’s re-
sults pointed out an inconsistency—for example, if ttcp or
UDP obtained more bandwidth than the “true” capacity—then
89 nodes have 100 Mb/s uplinks, 6 have 10 Mb/s, 3 have T1, and 4 have DSL.
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Capacity estimate (Mb/s)
Source Destination multiQ Nettimer Pathrate

jfk1-gblx cybermesa 10.519 11.89 .998
nyu 10.563 10.514 .9985
cornell 8.134 8.1 .997
gr 8.134 8.139 .9985
cmu 8.13 8.121 .996

Table 3—Estimate differences between Pathrate and the other tools (see § 5.3).

we eliminated the path from our experiments. Only 57 out of a
total of 462 paths needed to be eliminated.

5.2 Timestamp Errors

An important source of possible error is the timestamps we
get from tcpdump. Our tools work on single passive traces,
so we don’t need to worry about calibrating timestamps from
multiple sites [38]; only errors in time differences are relevant.
These errors may arise from fluctuations in the time it takes to
go from an on-the-wire packet delivery to the network interrupt
handler, which timestamps the packet on tcpdump’s behalf.

We analyzed a data set that contains both DAG hardware
timestamps and tcpdump timestamps collected at RIPE [48].
Although tcpdump timestamps can differ from DAG hardware
timestamps by 20 µs, the errors in the timestamps of consecu-
tive packets are highly correlated. Hence, compared to inter-
arrival times calculated from the DAG timestamps, the errors
in interarrivals of successive packets computed from tcpdump
timestamps are only a few µs. Such small errors should not af-
fect our results.

5.3 Minimum Capacity Estimation

We now turn to an evaluation of multiQ’s minimum ca-
pacity estimation. We compute the relative error of multiQ’s
estimates compared with the “true” minimum capacities, and
compare that relative error with two other capacity measure-
ment tools—Pathrate, which is active, and Nettimer, which is
passive. We find that multiQ is very precise.

We tried to ensure that the three tools encountered the same
path characteristics, such as loss rate and delay, by running the
tools immediately after one another on each path. We first con-
duct a 2 minute run of ttcp and collect traces at both end-
points. These traces serve as data sets for multiQ and Net-
timer. Immediately thereafter, we run Pathrate on the same path
and compute its estimate; we use the average of Pathrate’s high
and low estimates. This procedure is repeated five times, and
we report the average of those 5 trials. Finally, the same set of
experiments is run both at day and night, to compensate for any
traffic fluctuations due to the time of the day. In total, we per-
formed more than 10000 experiments.

We plot the relative error ξ for each capacity estimate Ce,
which is defined as

ξ =
Ce − Ct

Ct
, (3)

where Ct is the path’s “true” capacity.
Figure 11 shows the cumulative distribution function (CDF)

of the relative errors of multiQ, Nettimer, and Pathrate esti-
mates on RON’s 405 paths. Nettimer has two lines: Nettimer-SR
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Figure 11—Comparison of the accuracy of MultiQ, Nettimer and Pathrate.
Graphs show the CDF of the relative error. MultiQ and Nettimer-R require only
receiver-side traces, while Nettimer-SR requires both receiver- and sender- side
traces.

requires both sender- and receiver-side traces, while Nettimer-
R requires only receiver-side traces. multiQ also requires only
receiver-side traces. Ideally, the CDF should be a step function
at “0”, meaning that all experiments reported the “true” capac-
ity. A negative relative error means that the tool has underesti-
mated the capacity, whereas a positive relative error means that
the tool has overestimated it.

Our results show that minimum capacity measurements are
relatively accurate. On 85% of the paths, multiQ, Pathrate,
and Nettimer-SR all report estimates within 10% of the “true”
value. When Nettimer is given only the receiver-side trace, how-
ever, only 74% of its estimates are within 10% of the actual val-
ues. All three methods are biased towards underestimating the
capacity.

Next, we look more closely at the errors exhibited by each
tool. multiQ errors are caused mainly by over-smoothing in
the iterative procedure for discovering mode gaps, which flat-
tens the modes and prevents accurate computation of the gaps.
Pathrate’s logs indicate that its errors happen when the inter-
arrival’s distribution exhibits many modes. Though the correct
bottleneck capacity is usually one of the modes discovered by
Pathrate, the tool picks a different mode as the bottleneck capac-
ity. When Nettimer made errors, we found that often the path
has low RTT (< 16 ms). The tool mistakes the RTT mode in
the inter-arrival PDF for the transmission time over the bottle-
neck. The effect is most pronounced when Nettimer is operating
with only traces at the receiver side; when it has both traces, we
theorize that it can estimate the RTT and eliminate the corre-
sponding mode.

Our experiments show that different tools can disagree on
the capacity of a particular path, but can all be correct. We no-
ticed that, on some paths, the Pathrate estimate differs substan-
tially from the Nettimer and multiQ estimates. In particular,
Pathrate repeatedly reports capacities of 1 Mb/s for paths going
to cybermesa, while Nettimer and multiQ estimate them as
10 Mb/s (Table 3). Further investigation revealed that the differ-
ences are due to the flows being rate limited. The cybermesa ac-
cess link capacity of 10 Mb/s is correctly estimated by Nettimer
and multiQ. Pathrate’s relatively long trains of back-to-back
packets, however, trigger cybermesa’s leaky bucket rate limit;
they exceed the maximum burst size of the leaky bucket and be-
come limited by the token rate, which is 1 Mb/s. TCP windows
stay smaller than the bucket size, and so its packets are spaced
by the actual link. This information has been confirmed by the
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Figure 13—The relative error of MultiQ and Nettimer as a function of the
traced flow size. Both average error and deviation are lower in the case of Mul-
tiQ.

site’s owner.

5.4 Minimum Capacity Estimation Using Acks

Unlike existing tools, multiQ can obtain a reasonable ca-
pacity estimate exclusively using a sender-side trace, using the
interarrival times of ack packets. Figure 12 shows the relative
error of multiQ’s sender-side ack estimation, compared with
its receiver-side data-packet estimation; the data comes from the
experiments described in § 5.1. Since acks contain information
about both forward and reverse links, we define the true capac-
ity Ct for sender-side multiQ measurements as the minimum
of the forward and reverse paths’ capacities. Sender-side ack in-
terarrivals produce lower-quality results than receiver-side data
packet interarrivals, but still, 70% of the measurements are within
20% of the “true” value. Unlike receiver-side multiQ, the er-
rors on sender-side multiQ tend towards overestimation.

5.5 Relative Error and Flow Size

We would expect capacity estimate error to be dependent on
the amount of data available: more data should mean a better
estimate. In this section, we quantify this effect.

Figure 13 plots the absolute value of the relative error of
Nettimer-SR and multiQ’s estimates, as a function of the num-
ber of packets in the traced flow. We use the traces generated for
§ 5.1, truncated to various lengths; the relative errors are aver-
aged over the whole set of RON paths. The bars show one stan-
dard deviation away from the average error. multiQ’s error is
lower than Nettimer’s for smaller numbers of packets. In fact,
multiQ’s average error does not depend much on the number
of packets, but the error variance decreases substantially as the
number of traced packets increases. This means that there are
particular flows in the data set that were hard to analyze and re-
quired a large number of packets for correct estimation. Also,
the average error and error variance converge to nonzero values

Result Fraction

Correct 64%
Incorrect 15%
Not estimated 21%

Table 4—multiQ tight link estimates

Avg. Relative Error Std. Deviation in Error
0.156 0.077

Table 5—Average relative error and standard deviation in the correctly esti-
mated tight links.

as the number of packets increases. This means that there are
certain very noisy paths which neither multiQ nor Nettimer
can correctly analyze, regardless of the number of traced pack-
ets.

Pathrate, on the other hand, is active. On our tests, it uses
an average of 1317 probe packets, with a standard deviation of
1888 packets; but since it uses probes of varying sizes, a better
metric is the amount of traffic it sends: 1.75 MB on average,
with a standard deviation of 2.56 MB. The large standard devi-
ation indicates that Pathrate uses far more traffic on paths that
are hard to estimate.

5.6 Tight Links

This section evaluates multiQ’s ability to discover non-
minimum-capacity bottlenecks, or tight links; as discussed above,
multiQ can report up to three bottleneck capacities per flow.
Unfortunately, we usually cannot say with confidence what the
true tight links along a path could be, and we can’t correlate
any results with other tools. To deal with this issue, we limit
this test to Internet2 paths. Internet2 has a very low utilization
(MRTG plots a maximum utilization < 10% [3]), so any ob-
served queuing should be at the edges. Thus, for these paths we
are reasonably confident that congestion happens at one or both
access links, whose capacities we know. Also, because down-
stream narrow links tend to erase the effect of upstream bottle-
necks (see § 2.2 and § 3.1) from data packet interarrivals, we
limit this test to paths in which the downstream bottleneck ca-
pacity is larger than the upstream bottleneck capacity.

We run ttcp over each of these paths and log the packet
arrival times at the receiver using tcpdump. The experiment
is repeated multiple times during both peak and off-peak hours.
We run multiQ on the resulting traces and record the various
link capacities which are output. Each of these estimates could
be a link on the path. We say that a tight link on a path is cor-
rectly estimated if one of the non-minimum-capacity estimates
from multiQ is within 20% of the actual tight link capacity.
All other estimates for that path are considered to be incorrect.
If only the minimum capacity is found for a path, the answer
for that path is logged as ”not estimated”. Tables 4 and 5 sum-
marize the results: 64% of the experiments reported a tight link
present on the path, 15% reported an invalid tight link (a bot-
tleneck that differed from the correct value by more than 20%),
and the remainder only reported the minimum bottleneck. The
experiments that correctly found a tight link had an average rel-
ative error of 0.156.
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Figure 14—Error rates for mystery’s lost-packet and ack-correspondence de-
tectors. On the left: error rate CDF; on the right: loss rate vs. error rate.

5.7 Lost Packets and Ack Correspondence

To validate mystery, we used 155 pairs of traces from
the RON testbed, similar to those described in § 5.3. We run
mystery on the sender-side trace (the hard case) and collect its
main results—a set of lost data packets, and an ack correspon-
dence mapping AC, which associates an ack with the data packet
that triggers it. These results can contain four kinds of mistakes:
“lost” packets that were actually received; “delivered” pack-
ets that were actually lost; incorrect ack correspondences; and
missing ack correspondences. All of these results are easy to
check given the receiver-side trace. If we assume that all drops
happen inside the network, then packets are delivered iff they
show up in the receiver-side trace;9 and ack correspondences is
easy to determine at the receiver side, where acks show up in a
few milliseconds rather than an RTT.

Figure 14 shows the results. Each graph has error rate as its
X axis, where the error rate is the number of mistakes divided
by the total number of events (data or ack packets sent). The
lost packet detector is quite reliable, achieving 99% accuracy on
80% of the 155 paths; the ack correspondence detector is also
reliable, but less so. Both error rates rise with the loss rate (right-
hand graph), but the lost packet detector still achieves 90% ac-
curacy on all paths. We investigated particular traces with high
error rates, and found that many of the errors are impossible
to fix without DSACK information or other explicit feedback.
In particular, reverse-path losses cause problems for the tool.
When the network drops the single ack sent in response to a
packet, mystery cannot hope to detect that the packet was de-
livered.

6 MEASUREMENT STUDIES

We now present several M&M-based measurement studies
of Internet path characteristics, as examples of results that are
relatively easy to find using our measurement methodology and
toolkit. These studies are not intended to provide precise values
but rather to show trends and loose estimates.

• Evolution of bottleneck capacity. We use multiQ to de-
termine the path capacity distribution in two large sets of
NLANR traces [33], taken in 2002 and 2004.

• Statistical multiplexing. We estimate the level of statistical
multiplexing on the NLANR traces’ bottleneck links using
multiQ (to measure capacity) and mystery (to measure
throughput and RTT).

9We do account for the very few packets that are dropped after the receiver trace
point.
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Figure 15—The empirical cumulative distribution of path minimum capacity
in the 2002 and 2004 NLANR datasets. Graphs show a substantial increase in
path capacity over a relatively short period.

• Loss and bottleneck capacity.mystery calculates the loss
event rate for packets in the NLANR traces; we plot this
against bottleneck capacity calculated by multiQ.

In addition to providing realistic parameter values for re-
searchers to use in their simulations or models, our study re-
veals some interesting characteristics of Internet paths and their
evolution. It shows that significant flows (see Table 1) have ex-
perienced a dramatic increase in bottleneck capacity between
2002 and 2004, but the higher capacity bottlenecks did not re-
sult in a larger per significant flow bandwidth share. Further,
the drop rates experienced by significant flows on low capac-
ity paths are considerably similar to the drop rates seen on high
capacity paths.

The NLANR [33] traces, used in this study, contain more
than 375 million packets in 258 traces, collected on one OC-
48, five OC-12, and fifteen OC-3 links. There are two sets of
traces, one collected in 2002 and one in 2004. The traces con-
tained over 50,000 significant flows. Although this data is not
representative of all Internet traffic—for example, it all comes
from within the US—it is large and diverse, and was collected
at major connection points to the backbone.

6.1 Bottleneck Capacity Distribution

We analyzed both the 2002 and 2004 NLANR trace sets us-
ing multiQ, extracting the bottleneck capacities experienced
by every significant flow. Figure 15 shows the shift in path ca-
pacity (i.e., minimum capacity along a path) that occurred be-
tween the sets. In 2002, less than 20% of the significant flows
were bottlenecked at a 100 Mb/s or higher capacity link. This
number increased to 60% in 2004, showing a substantial and
rapid growth in the capacity of bottleneck links. The highest
bottleneck capacity that we identified in the 2002 data set is an
OC-3 link. In contrast, the highest bottleneck capacity in the
2004 data set is an OC-12 link. Although this increase in bot-
tleneck capacity is not uniformly distributed across all traces, it
is impressive that the average bottleneck capacity has grown so
much in a short period.

6.2 Statistical Multiplexing

Many published simulation scenarios assume low levels of
statistical multiplexing on bottleneck links [17]. With multiQ
and mystery, we can check this assumption.

We took the same NLANR traces from January, 2002 and
2004, and computed the level of statistical multiplexing for the

11



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  10  100  1000  10000

C
D

F

Number of flows

2002
2004

(a) 10 Mb/s paths

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  10  100  1000  10000

C
D

F

Number of flows

2002
2004

(b) 100 Mb/s paths
Figure 16—Distribution of statistical multiplexing on 10 and 100 Mb/s links
in the 2002 and 2004 datasets. Graphs indicate that the average number of sig-
nificant flows on 100 Mb/s bottlenecks is much larger than that on 10 Mb/s
bottlenecks, causing the average per significant flow fair bandwidth share to be
lower on 100Mb/s links than on 10 Mb/s links.

two prevalent bottlenecks, the 10 Mb/s and the 100 Mb/s links.
multiQ tells us the minimum-capacity bottleneck link; because
this link is likely congested, we assume, as a first approxima-
tion, that the bottleneck capacity is distributed fairly among
flows on that link. We then estimate the number of flows on a
bottleneck as the ratio of the bottleneck’s capacity to the through-
put of the flow. Because TCP flows share a link in inverse pro-
portion to their respective RTTs, we first normalize each flow’s
throughput with respect to the average RTT across all flows
traversing the same bottleneck capacity. We used multiQ to
determine the bottleneck capacity of each flow and mystery
to compute its RTT. We did not calculate statistical multiplexing
for traces with incomplete TCP header information.

Figure 16 shows CDFs of the level of statistical multiplex-
ing on these paths. For the 10 Mb/s links, the median degree
in the 2002 traces was 30, whereas it is 60 in the 2004 traces,
corresponding to a fair share changing from 330 to 160 Kb/s.
For the 100 Mb/s links, the median degree in 2002 was 450,
and in 2004 was 650. The fair share bandwidth for these paths
was somewhat lower than the 10 Mb/s links, decreasing from
220 Kb/s to 150 Kb/s.10 Contrary to conventional wisdom, the
per significant flow fair bandwidth share does not increase with
increased bottleneck link capacity.

6.3 Loss Rate and Bottleneck Bandwidth

Finally, Figure 17 shows a CCDF of loss event rates for
groups of flows with different bottleneck capacities. We used
multiQ to determine the bottleneck capacities of 15,000 sig-
nificant flows from 2004 NLANR traces, and mystery to de-
termine the loss event rate for each. We use TFRC’s definition

10Some of these flows might be receive-window or application-limited, but the
fair share bandwidth seems too low for this to be a major effect.
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Figure 17—Complementary CDF of loss event rates for 13,627 significant
flows from 2004 NLANR traces, divided into 4 bins by bottleneck capacity.
Graphs show that TCP loss event rate does not decrease much with increased
bottleneck capacity.

for loss event rate, namely the inverse of the average number of
packets between loss events [16]; this is easily extracted from
mystery’s output, a list of true loss events in the trace.

Loss events occur at all bottleneck capacities. Somewhat
unexpectedly, the range of loss rates on 100 Mb/s-bottleneck
flows is the same as for 10 Mb/s-bottleneck flows. Flows with
600 Mb/s bottleneck links still experience losses, but less so
than flows with smaller bottlenecks.

7 POTENTIAL APPLICATIONS OF M&M

Building Models of the Internet: In Section 6, we have only
scratched the surface of the Internet path properties M&M can
measure. In the future, we would like to use M&M to address
questions including: How many bottlenecks is a flow likely to
encounter? When multiple queuing points exist, can one tell
which among them is dropping the packets? Do published TCP
equations accurately estimate the throughput obtained by real
TCP flows? Additionally, by running multiQ on both sender
and receiver traces of the same flow, we would like to inves-
tigate whether bottlenecks on the reverse path are the same as
those on the forward path.

Overlay Management & Path Optimization: Overlays such
as RON [2] or Planetlab [1] have multiple paths between any
two nodes. Not all overlays provide routing functionality. Those
that do, such as RON, use ping probes to discover loss rate and
path characteristics. The resulting probe traffic make it hard to
scale to a large number of nodes [8, 32]. The M&M tools can
extract a path’s characteristics from recent TCP flows travers-
ing it, providing a cheap and scalable mechanism for route op-
timization in overlays.

M&M can help the operator do a better job even when the
overlay does not offer routing functionality. Overlay nodes gen-
erally reside at distant hosting sites that do not fall under the
control of the overlay operator. Analyzing the traffic using M&M
can alert the operator to major changes in path characteristics in
the overlay, such as changes in site access capacity, loss rate,
or connectivity. Using active measurement to track these prop-
erties is usually considered unfriendly toward the hosting sites.
Our work on M&M has helped in managing the RON network.

Network Tomography: One potential application is to use trace-
route or equivalent [46] to discover the topology of a network,
then use M&M to annotate the topology graph (or some seg-
ments of it) with link loss rates and capacities. Prior work has
shown that TCP loss information, similar to that provided by
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mystery, can be used to identify the lossy links inside the
network from end-to-end traces [34]. It would be interesting to
see whether capacity information can be used in a similar way.
In particular, it may be possible to run multiQ on multiple
paths, discover the capacity of the bottlenecks along each path,
then correlate the common capacity values with shared path seg-
ments. Once a shared path segment is suspected to contain a
bottleneck link with a certain capacity, a shared bottleneck de-
tection technique [24, 26] is run to check whether the paths with
the shared segment do actually share a bottleneck.

8 RELATED WORK

Internet measurements can be divided into two classes, ac-
tive and passive. Active measurements send probe traffic along
a studied path to induce a network reaction that reflects the state
of the path, where passive measurements extract information
from packet traces or data flows that have already traversed the
studied path. Active measurements are usually more powerful
because the investigator can control the timing and the sending
rate of the probes, but the extra load generated by probes can
be undesirable, and active measurements cannot be executed on
paths not controlled or accessible to the measurement tool.

Our work on multiQ is particularly related to prior work
on capacity measurements and tight link discovery. Capacity
measurement is already a mature field with many relatively ac-
curate tools. Currently, Nettimer [28] is the main passive tool
for discovering path capacity. Our work builds on the insight
gained from Nettimer, but achieves higher accuracy and can dis-
cover multiple bottleneck capacities. Further, our tool can dis-
cover bottleneck capacities from sender side traces or receiver
side traces, whereas Nettimer requires the receiver side trace to
achieve any accuracy. Jiang and Dovrolis [23] describe a pas-
sive method of capacity estimation based on histogram modes.

There are many active tools for measuring path capacity.
Some of these tools try to find the capacities of all links along
the path [36, 30]. Others, such as Pathrate, focus on the mini-
mum capacity of a path [14]. The accuracy and the amount of
generated traffic vary considerably from one tool to another. Be-
ing passive, our tool differs from active tools in its methodology
and characteristics.

Prior work that detects tight links—non-minimum-capacity
bottlenecks—has all been active to our knowledge [5, 30]. There
are also tools for discovering the available bandwidth along a
path [20, 31, 47, 41, 42, 19], which all actively probe the net-
work.

Shifting focus from tools to the underlying techniques, much
prior work used packet inter-arrival times to estimate link ca-
pacities. Keshav proposed the concept of “Packet Pair” for use
with Fair Queuing [25]. This refers to sending two back-to-back
packets and computing the bottleneck capacity as the packet
size divided by the pair dispersion at the receiver side. Packet
pair is at the heart of many capacity and available bandwidth
estimation methods, including ours.

Cross traffic can cause errors in packet pair-based capacity
estimates. In particular, Paxson observed that the distribution
of packet-pair capacity measurements is multi-modal [40], and
Dovrolis et al [15] show that the true capacity is a local mode

of the distribution, often different from its global mode. Many
researchers have noted that some of the modes in the inter-
arrival distribution may be created by secondary bottlenecks or
post-narrow links [15, 27, 35]. Various mechanisms to filter out
the cross traffic effects were proposed, such as using the min-
imum dispersion in a bunch of packet pairs, using the global
mode in the dispersion distribution [28, 23], and using variable
size packet pairs [15]. This paper complements the above prior
work, but takes the opposite tactic—rather than filtering out the
impact of cross traffic, we leverage the useful structure in the
packet dispersion distribution created by cross-traffic to detect
the capacities of multiple bottlenecks. Using all the modes in
this distribution allows us to infer novel information from inter-
arrivals PDFs missed by prior techniques. Specifically, we can
infer the capacity and relative location of multiple bottlenecks
along a path and also reverse path link capacities from TCP
acks.

mystery’s tools for measuring TCP losses, loss events,
and semi-RTTs are based on prior work, in particular Allman
et al. for losses [6] and Jaiswal et al. [21] and Aikat et al. [4] for
semi-RTTs. The literature on passive TCP measurement is ex-
tensive ([37, 22, 10, 9, 7, 29, 49] and many more), and we hope
to integrate several other tools into M&M for future work. The
T-RAT tool [49] would be a natural fit for M&M; it analyzes
passive traces to classify TCP flows based on the main factors
limiting their rates.

Finally, our work greatly benefits from CAIDA and NLANR’s
efforts to collect traces and analyze Internet traffic [11, 33].

9 CONCLUSIONS

We have presented the M&M passive toolkit for large-scale
measurement and analysis of Internet path properties. M&M is
centered around a multi-capacity bottleneck estimator,multiQ,
which introduces the novel insight that equally-spaced mode
gaps (EMGs) in the packet interrarrival PDF correspond to the
transmission time of 1500-byte packets on some congested link
along the path. Uniquely to passive measurement tools, multiQ
can discover the capacity of up to three bottlenecks and their
relative location from a tcpdump trace of a single flow. M&M
also contains, mystery, a TCP analyzer whose results can be
combined with multiQ to correlate path properties with TCP
performance. We have calibrated these tools using extensive
tests on 400 heterogeneous Internet paths.

We have used M&M to analyze a huge trace library col-
lected by NLANR on backbone links. Our analysis shows that
Internet TCP flows (or more accurately those traced by NLANR)
have experienced a dramatic increase in bottleneck capacity be-
tween 2002 and 2004, but the higher capacity bottlenecks did
not result in a larger per flow bandwidth share. Further, the drop
rates experienced by these flows on low capacity paths are con-
siderably similar to the drop rates seen on high capacity paths.
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