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Abstract - There is a growing interest in discovering Internet
path characteristics using end-to-end measurements.
However, the current mechanisms for performing this task
either send probe traffic, or require the sender to cooperate by
time stamping the packets or sending them back-to-back.
Furthermore, most of these techniques require the packets to
carry sequence numbers to detect losses, and a few of them
assume the existence of multicast.

This paper introduces a completely passive approach for
learning Internet path characteristics. In particular, we show
that by noting the time difference between consecutive
packets, a passive observer can cluster the flows into groups,
such that all the flows in one group share the same bottleneck.
Our approach relies on the observation that the correct
clustering minimizes the entropy of the inter-packet spacing
seen by the observer. It does not inject any probe traffic into
the network, does not require any cooperation from the
senders, and works with any type of traffic whether it is TCP,
UDP, or even multicast.

1 Introduction
The Internet literature contains a large body of research that
addresses the problem of learning Internet path characteristics
using end-to-end measurements. The vast majority of this
research requires the end system conducting the
measurements to send probe traffic along the path whose
characteristics it wants to learn [3,4,10,19,21]. The few
previous mechanisms that do not generate probe traffic are
not completely passive because they require the sender to
cooperate by time stamping the packets [10,22] or sending
them back-to-back [12,23]. Furthermore, most of the
proposals for inferring path characteristics from end-to-end
measurements are not applicable to standard UDP traffic
because they assume a packet loss is detectable [12,19,22,23],
and some of them work only with multicast traffic [19].

This paper examines the amount of information a completely
passive observer can learn about the characteristics of the
upstream paths. We use the term “passive observer”  to refer
to a receiver or an intermediate node that attempts to learn the
characteristics of the upstream paths without sending any
probe traffic and without requiring any cooperation from the
senders.  A passive observer makes no assumptions about the
content of the packets or the protocol the end systems use. In
particular, a passive observer should not assume that the
packets carry sequence numbers, and consequently it cannot
rely on losses being detectable. Also, a passive observer
should not assume that the upstream routers use a particular
queuing discipline such as Drop-Tail or RED (Random Early
Detection [6]). It should work with any queuing discipline
and any transport protocol.

In this paper, we show that such a completely passive
observer can cluster the flows into groups that share the
bottleneck, and consequently, can learn substantial
information about the topology and the congestion-state of the
upstream network. Detecting shared bottlenecks using end-to-
end measurements is useful for sharing congestion
information [22,23], constructing the topology [12], and
monitoring and debugging the network. The importance of
studying the problem of passive detection of shared
bottlenecks is twofold. First, a passive approach to detecting
shared bottlenecks is highly desirable because it is resource
efficient (i.e., it does not generate probe traffic) and it is
extremely general (i.e., it makes no assumptions about the
transport protocols or the queuing discipline). As such, it is
beneficial to examine the accuracy of this approach and the
situations in which it is applicable.  Second, studying the
capabilities of a completely passive observer helps
discovering potential covert channels that allow a malicious
downstream observer to collect substantial information about
the topology and the congestion-state of the upstream
network. Since a passive observer is hard to detect, the best
way to throttle an attack by such an observer is to understand
the capabilities of the passive observer and take preventive
measures.

This paper introduces a class of techniques that allow a
passive observer to use only the time difference between
consecutive packets to cluster the flows into groups that share
the bottleneck. Our approach relies on the observation that the
correct clustering minimizes the entropy of the inter-packet
spacing seen by the observer. It does not generate any probe
traffic, works with TCP UDP and multicast flows, and does
not assume any particular queuing discipline. Our simulations
show that passive detection of shared bottlenecks using
entropy-minimization is highly accurate when the observer is
strategically located so that a sizeable fraction of the output
traffic of the bottlenecks eventually traverses the monitored
link. However, the passive approach becomes inaccurate
when only a small fraction of the bottlenecked traffic
traverses the monitored link, which makes it impractical as a
means for an end receiver to discover flows crossing a
common bottleneck and share their congestion information.

Also, by studying the capabilities of the passive observer, this
paper reveals the existence of covert channels that a malicious
strategically located observer can use to learn sensitive
information about the topology of a private network. As an
example, consider an army base located far from the main
office and possibly on a foreign land. To contact its main
office using the Internet, the base encrypts its packets
including the TCP header and inserts random delays and
dummy packets in each flow. This paper shows that these
counter measures, though sufficient to throttle previous
proposals for detecting shared bottlenecks [22,23], do not
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prevent a spying agent at the ISP from constructing useful
information about the topology and the congestion state of the
network at the base.

The paper is organized as follows. The next section provides
some useful definitions. Section 3 describes our methodology.
Section 4 presents our entropy-minimization techniques for
clustering flows into groups that share the bottleneck.
Performance is discussed in Sections 5. Section 6 discusses
related work and Section 7 presents our conclusion.

2 Definitions
We start by providing the following useful definitions.

Entropy: The concept of entropy is used as a measure of the
uncertainty in a random variable. The entropy H(x) of a
discrete random variable x, which has a probability mass
function p(x), is defined by the following expression.

As a result of the definition, the flatter the probability
distribution of the random variable, the higher its entropy will
be. For example, the distribution in Figure 1-a has higher
entropy than the distribution in Figure 1-b because there is
more uncertainty in the value of the random variable. Said
differently, by looking at the distribution in 1-a, one cannot
make a good guess of the value of the random variable since
it is equally likely to take any value in the interval [a,b].
However, by looking at the distribution in Figure 1-b, one can
say with high confidence that the random variable is either i
or j.  Similarly, the distribution in 1-c has higher entropy than
the distribution in 1-d.

Observer: For the purpose of this paper the terms: “observer” ,
“ receiver” , and “ intermediate receiver”  are equivalent.

Flow: We define a flow as the set of packets from the same
source.1 We assume that all packets in a flow follow the same
upstream route and consequently share the same bottleneck.
This is a reasonable assumption given that the time scale over
which Internet routes change is significantly larger than the
lifetime of a flow [10].

Cluster: We define a cluster as a set of flows. For example,
the cluster { Si, Sj}  contains the packets sent by sources i and j
ordered according to their arrival time at the observer. We use
the term “correct cluster”  for a set of flows that share the
same bottleneck, and the term “ incorrect cluster”  for any set
of flows that is not a correct cluster.

Inter-packet spacing: If one orders all the packets in a cluster
according to their arrival time at the observer, then the inter-
packet spacing is the time difference between the arrivals of
two consecutive packets divided by the size of the first packet
in the pair. Note that inter-packet spacing is defined per
cluster; thus, it does not matter whether the two packets
belong to the same flow or not, as long as they belong to the
same cluster. Our technique uses inter-packet spacing as the
random variable whose entropy should be minimized.

Bottleneck:  We say that a link is a bottleneck over the
interval T, if its input traffic is continuously larger than its
capacity except for short intervals compared to the size of the
interval T.  Sometimes we use the word “bottleneck”  for the
router attached to the bottleneck link or for the output queue
of the bottleneck link.

3 Approach
Given that the input traffic at a bottleneck is larger than its
capacity, the bottleneck link is busy processing packets most
of the time. Consequently, packets leave the bottleneck
equally spaced and the inter-packet spacing between two

                                                                                      

1 It is possible to define a flow as the set of packets that have the
same source-destination pair. However, such a definition ignores that
flows sharing the sender and observed by the same observer
necessarily share the upstream path.
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Figure 1: The entropy increases with the flatness of the
probability distribution function. The continuous random
variable whose PDF is shown in 1-a has higher entropy than
the continuous random variable whose PDF is shown in  1-b.
Similarly, the discrete random variable whose PMF is shown
in 1-c has higher entropy than the discrete random variable
whose PMF is shown in 1-d.

Figure 2: A simple clustering example; the observer is
collocated with the receiver. It receives all flows over the same
link, but it wants to cluster S1 and S2 together, and S3 and S4
together.
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consecutive packets is the inverse of the bottleneck
bandwidth.2 Subsequent non-bottleneck routers, which
frequently have empty queues, preserve some of this spacing.
Before the packets reach the observer, they get mixed with
traffic that did not cross the same bottleneck, which destroys
the constant spacing. The observer sees random spacing and
cannot tell which packets crossed the same bottleneck. Thus,
to discover the flows that share the bottleneck, the observer
has to recover the constant inter-packet spacing from the
noisy random spacing it observes. Assuming the observer
knows an upper bound on the number of bottlenecks, we
present a mechanism that finds the correct clustering by
minimizing the entropy of the inter-packet spacing of the
clusters.

We describe the intuition behind our approach using the
simple network in Figure 2.  In this scenario, four sources
send to the same receiver. S1 and S2 are behind the same
bottleneck B1, and their total sending rate is larger than the
capacity of B1.  S3 and S4 share the bottleneck B2 and their
total rate exceeds its capacity. In this experiment, the receiver
plays the role of the passive observer. It receives packets form
all four sources on the same link yet wants to group the
sources that share the same bottleneck together.

Figure 3 shows the inter-packet spacing at different points in
our simple topology. Figures 3-a and 3-b show the inter-
packet spacing at the output of B1 and B2 respectively. In
addition, they represent the inter-packet spacing of the correct
                                                                                      

2 Recall that the inter-packet spacing is the time difference between
consecutive packets normalized by the size of the first packet in the
pair.

clusters ({ S1,S2}  and { S3,S4} ). Figure 3-c shows the inter-
packet spacing at the receiver, which is the overlay of the
output of B1 and B2. Note that 3-c does not show the nice
constant spacing observed in 3-a and 3-b. If the receiver
succeeds in clustering the flows that share the bottleneck it
ends up with two clusters whose inter-packet spacing is
constant. If the receiver mistakenly groups flows S2 and S3
together, the resultant cluster { S2,S3}  exhibits the random
inter-packet spacing illustrated in 3-d.

Figure 4 compares the probability mass function (PMF) of the
inter-packet spacing of the correct cluster in 3-a (i.e., {S1,
S2} ) to the PMF of the incorrect cluster in 3-d (i.e., { S2,
S3} ).3 Because the correct cluster is similar to the output of
the bottleneck B1, it shows a constant spacing. Consequently,
its PMF, illustrated in 4-a, shows one long spike at the inter-
packet spacing that corresponds to the inverse of the
bottleneck capacity. On the other hand, clustering S2 and S3
together results in a random inter-packet spacing whose PMF,
illustrated in 4-b, shows many small spikes at random
locations. Definitely, the PMF in Figure 4-b has higher
entropy than the one in 4-a. Thus, one can find the correct
clusters by looking for the clustering that has the minimum
entropy.

The simple scenario in Figure 3 is useful for explaining the
intuition behind our entropy minimization approach but it
does not reveal the full complexity of the problem. Passive

                                                                                      

3 The graphs in Figure 4 are a simplified version of the graphs that we
would have obtained if we simulated the scenario in Figure 2 and
plotted the simulated data. The simplification approximates the
distribution and does not change the characteristics of the graphs.

Figure 3: The Inter-packet spacing of various clusters of the flows in Figure 2.  The thick lines represent packets, they are numbered
according to the sender. The dotted lines emphasize the alignment in time (normalized time). The x-axis is time.  (a) and (b) are the
outputs of B1 and B2, and  the correct clusters. (c) is the inter-packet spacing at the observer, which corresponds to putting all sources
in the same cluster. (d) is an example of an incorrect cluster. (Plots are simplified by assuming the queue at router R1 is empty.)

Time/bits

Inter-packet spacing is constant  = 1 /BW of B1
packets

1 22111221 4 34234343

1 22111221
   (a)

4 34334343
(b)

(c)

3233 2222 3 (d)

(a) inter-packet spacing at the out put of B1 (similar to a correct cluster spacing)

(b) inter-packet spacing at the out put of B2 (similar to a correct cluster spacing)

(c) inter-packet spacing at the receiver

(d) An example of the inter-packet spacing of an incorrect cluster

Time/bits

Time/bits

Time/bits



4

detection of shared bottlenecks is a significantly difficult
problem for the following reasons. First, the dynamics of TCP
and the occasional queuing at routers downstream a
bottleneck both add randomness to the inter-packet spacing of
the correct clusters. For example, when a relatively small
number of TCPs share a Drop-Tail bottleneck, the bottleneck
link might cycle between periods of severe congestion
followed by a huge number of drops followed by periods of
underutilization. During the periods of underutilization, the
bottleneck does not clock the packets and the inter-packet
spacing at its output is not constant. However, these periods
of underutilization are unlikely when the number of flows is
large. Furthermore, their duration at a bottleneck is relatively
short compared to the duration of the periods in which the
bottleneck clocks the packets. Similarly, routers downstream
from a bottleneck occasionally build queues without being
bottlenecks. Hence they might re-space the packets (i.e., clock
them according to their capacity). If the queue at such a
downstream router is almost never empty then the entropy-
based mechanism will identify the router as a shared
bottleneck. (In fact, identifying this router as a bottleneck is
consistent with our definition of a bottleneck but it might not
be relevant for sharing congestion information given that
there is an upstream bottleneck that is dropping the packets).
However, if the queues between the bottleneck and the
observer are occasionally empty, then the entropy
minimization techniques can potentially find the correct
clustering. For example, in Figure 2, if router R1 continuously
has a non-empty queue then the entropy is minimized by
clustering S1, S2, S3, and S4 together. However, if the queue
at router R1 is occasionally empty then the cluster
{ S1,S2,S3,S4}  will show one big spike that corresponds to
the inter-packet spacing of R1, and a number of random
spikes.4 On the other hand, the cluster { S1,S2}  (and similarly
the cluster { S3,S4} ) will show only two spikes: one that
corresponds to the inter-packet spacing of B1; and one that
corresponds to the inter-packet spacing of R1. Thus, if the
queue at R1 is sometimes empty then the entropy is
minimized by splitting { S1,S2,S3,S4}  into two clusters
{ S1,S2}  and { S3, S4} .

                                                                                      

4 The reader should not confuse this situation with that in Figure 3-c.
Figure 3-c assumes that R1 has always an empty queue.

Another issue that complicates the passive detection of shared
bottlenecks is that, in most cases, only a small fraction of the
bottleneck output traffic ends up traversing the link monitored
by the observer. For example, in Figure 2, if the packets sent
by S1 do not cross the link monitored by the observer then the
correct clustering is { { S2} , { S3 S4} } . In this case, though the
cluster { S2}  does not exhibit a constant inter-packet spacing,
the observer is likely to figure out the correct clustering. In
particular, although the cluster { S2}  has high entropy, any
attempt to put S2 in the same cluster with S3 or S4 (or to put
S3 and S4 in different clusters) is likely to further increase the
entropy (i.e., the randomness) of the clustering. In Section
5.3, we plot the accuracy of the entropy-minimization
techniques as a function of the fraction of traffic that traverses
the link monitored by the observer.

The third difficulty in clustering flows that share the
bottleneck arises for the fact that the clustering problem
scales badly with size of its input. (It is an NP-complete
problem [24].) This is a characteristic of the clustering
problem even when clustering is done based on loss or delay
correlation as in previous non-passive approaches [22,23].
For example, in the simple topology of Figure 2, finding the
clustering that minimizes the entropy can be done by
examining all the possible clusters and choosing the solution
that minimizes the total entropy. Such a brute force approach
grows exponentially with the size of the problem, which
makes it infeasible for large number of sources or complex
topologies. In Section 4, we develop practical and efficient
techniques for finding the clustering that minimizes the
entropy.

Finally, we note that the approach described in this section
does not make any assumptions about the bandwidth of the
bottlenecks nor about their queuing disciplines. Thus, it works
with Drop-Tail, RED, and other queuing discipline.5 Also,
this approach works when the different bottlenecks have
exactly the same capacity. This is because the entropy does
not depend on the exact values the random variable takes,
which can be easily noticed from Equation 1, where the
computation of H(x) does not involve the value of x. Thus, the
entropy of the inter-packet spacing is independent of the
value of the inter-packet spacing. Hence, it is independent of
the capacity of the bottleneck links.

4 Passive Techniques for Clustering
Flows that Share the Bottleneck

To develop a clustering technique based on entropy-
minimization, two design issues need to be resolved.  The
first issue is the computational complexity of the clustering
problem. More specifically, the brute force approach, which
looks at all possible clustering of the flows to find the
clustering that minimizes the entropy, is exponential in the
number of flows and bottlenecks and does not scale to a
reasonable number of flows or complex topologies. To reduce
the computational complexity we use iterative procedures,
which start with an initial random clustering and iterate by
                                                                                      

5 It works with all work conserving queuing disciplines.

Figure 4: A comparison between the PMF of the inter-
packet spacing of a correct cluster { S2, S1}  (shown in 3-a)
and that of an incorrect cluster { S2, S3}  (shown in 3-d).
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moving a source from one cluster to another to obtain an
incremental reduction in the entropy.

The second issue is choosing the function that should be
minimized. Equation 1 shows how to compute the entropy of
the inter-packet spacing of a cluster. However, it does not
indicate how to combine the entropies of the various clusters
into a quantity that we can minimize. We call the quantity we
want to minimize the ‘cost function’ . Different choices of the
cost function exhibit different levels of accuracy, as it is
shown in Section 5.3.

4.1 Iterative Clustering Techniques
Below, we describe a set of iterative techniques that minimize
different entropy-based cost functions to cluster flows
according to their common bottleneck. In all of these
techniques we assume that the observer knows an upper
bound on the number of bottlenecks. If the real number of
bottlenecks is smaller than the upper bound the clustering
technique generates some empty clusters.

4.1.1 Iterative Pair-wise Entropy-Based Clustering

This technique starts by guessing a random clustering. Every
iteration, it picks a random flow and computes the entropy of
the inter-packet spacing resulting from combing the packets
of this flow with the packets of another flow according to
their arrival time at the observer.  We call this entropy “ the
pair-wise entropy.”  The clustering procedure then averages
the pair-wise entropy over all the flows in each possible
cluster and assigns the flow to the cluster with which it shares
the lowest average pair-wise entropy.

The following pseudo code details the technique:

       1. Pick a random clustering for initialization
       2. On each iteration:
       3.      Pick a source Si  (Either at random or round-robin)
       4.     For each source Sj different from Si:

5. Find the pair-wise entropy Hij of {Si, Sj} resulting  from
combining  the packets of the  two sources together

6. For each Cluster Ck compute the average Hij over all
Sj ∈ Ck

7. Move Si to the cluster Ck with the minimum average
pair-wise entropy.

8. Repeat until no source changes its cluster

4.1.2 Iterative Entropy-Based KMeans Clustering

In contrast to the pair-wise technique, which considers in each
step two flows, the clustering techniques described in this
section compare a flow and an entire cluster. Since this
concept is similar to that used by the well-known KMeans
clustering technique,6 we call the set of procedures described
                                                                                      

6 KMeans is a well-known clustering technique [2] that works as
follows. Let’  s assume that we have a set of points in a plane and we
want to cluster them in K classes. We begin by assigning the points at
random to K sets and computing the x and y coordinates of the mean
point in each set. We iterate by assigning each point to the class
whose mean is nearest to the point under consideration and re-
computing the mean vectors. The procedure is repeated until no point
changes its class. Although, “entropy”  does not have all of the
properties of a distance measure (does not satisfy the triangle’s

in this section the Entropy-Based KMeans clustering
techniques.

Each of these techniques starts by guessing some initial
clustering. Every iteration, the clustering procedure picks a
random flow, changes its cluster, and computes the entropy of
the resulting clusters. Then it evaluates a cost function that is
a weighted average of the entropy of the clusters. If the new
assignment has reduced the cost function, the flow is kept in
the assigned cluster. Otherwise, it is returned to its previous
cluster.

The different techniques in this section differ by the weight
they assign to the entropy of a particular cluster. The
following example illustrates the reasons why the cost
function should be a weighted average rather than the average
entropy of the clusters. Assume that the maximum number of
bottlenecks is 3. It is possible that the correct clustering
results in 3 clusters (3 bottlenecks) whose entropies are 2, 2,
and 3, and that putting all of the flows in one cluster results in
a cluster whose entropy is 6 and two empty clusters with zero
entropy. Thus, although the incorrect cluster has higher
entropy than any of the correct clusters the average entropy
might be minimized by generating many empty clusters. We
can counter this effect by weighing the entropy of each cluster
by a factor that reflects the number of sources or the number
of packets in the cluster. We define the following cost
functions.

The Cluster-Weighted KMeans Technique: The cost function
is a weighted average of the entropies of the clusters, where
the weighing factor is the number of sources in the cluster.

                                                                                                                                      

inequality) the similarity between our technique and the KMeans
approach suggests the naming.
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Figure 5: 2-bottlenecks, 14 TCP sources, and 2 CBR sources.
All sources are sending to the receiver (the observer). The
capacities of the bottlenecks are in Table 1.
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Nc  is the  number of sources in cluster c, Hc is the entropy of
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The Sample-Weighted KMeans Technique: The cost function
is a weighted average of the entropies of the clusters, where
the weighing factor is the number of packets (i.e., samples) in
the cluster.
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Pc is the number of packets in cluster c, Hc is the entropy of
cluster c, N is the number of clusters.

The KMeans clustering procedure (regardless of which of the
cost functions is used) can be best described with the
following pseudo code:

      1. Pick a random clustering for initialization
      2. On each iteration:
      3.         Pick a source Si  (randomly or in round-robin)
      4.        Remove Si  from its cluster

5. For each cluster Cj

6. Add Si to Cj and compute the cost of the clustering
7. Move Si  to the cluster that results in a minimum cost
8. Repeat until no source changes its cluster

4.2 Temporal Dependency
The above techniques ignore any temporal dependency that
might exist between two consecutive data points. One can
improve the techniques by taking into consideration that when
a packet is queued at a bottleneck the next packet traversing
the same bottleneck is likely to be queued too. Modifying the
techniques to incorporate this temporal dependency is fairly
easy. Instead of computing the entropy of the PMF of the
random variable representing the inter-packet spacing, we
compute the entropy of the PMF of a random vector whose
first component is the current inter-packet spacing and the
second component is the previous inter-packet spacing. Since
the space of the data (i.e., the random vector) becomes 2-
dimensional, we call this approach the 2D-KMeans technique.

5 Performance
We evaluate the above clustering techniques using simulation.
We generate packet traces using the VINT-ns-2 network
simulator, which has extensive capabilities to simulate
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different network topologies and different traffic patterns. We
evaluate the clustering techniques by running them on the
packet traces resulting from the simulations. For convenience,
the clustering techniques are implemented in MATLAB,
which provides some mathematical functions useful for this
task.

5.1 Simulated Environments
We evaluate our method using the following simulation
environments.

2-bottlenecks, 16 sources, no cross traffic: The network is
illustrated in Figure 5. It has 2 bottlenecks B1 and B2, 14
TCP sources with different round trip times and 2 CBRs
(Constant Bit Rate source). We generate multiple data sets by
changing the start times of the various sources and the
capacity of the bottlenecks.  Every run, we choose a different
permutation of the sources’  start times. As a result, the packet
arrival times and the interleaving of the packets from different
flows differ from one trace to another. Since these are the
only characteristics we use in our techniques, the traces
generated, as described, result in different data points. Other
characteristics of the environment are given in Table 1.

3-bottlenecks, 22 sources, with cross-traffic: We also test our
method on the topology in Figure 6. We experiment with both
Drop-Tail and RED queues. Also, we simulate scenarios in
which the observer monitors only a small fraction of the
output traffic of the bottleneck. Thus, in these simulations,
there is cross traffic that traverses the bottlenecks but does not
traverse the link monitored by the observer. Our cross-traffic
generator is a combination of 20 on-off sources with the on
and off periods are taken from a Pareto distribution with an
average burst time randomly chosen from the interval
[30msec, 1sec]. The other characteristics of the simulation
environment are similar to those stated in Table 1.

5.2 Convergence Characteristics of Iterative
Techniques

In this section, we examine how successful the iterative
techniques are in reducing the computational complexity of
the clustering problem.

Figure 7 illustrates the convergence characteristics of the
iterative pair-wise entropy-based technique. It shows a typical
run on the 2-bottleneck topology in Figure 5. The x-axis is the
number of iterations whereas the y-axis is the entropy. The
figure shows that although the space of possible solutions is
of the order of 216 (the topology has 16 sources and 2

bottlenecks), the pair-wise algorithm takes only 14 iterations
to stabilize.

Figure 8 illustrates the convergence characteristics of the
iterative cluster-weighted KMeans technique. It shows a
typical run of the algorithm on the 3-bottleneck topology in
Figure 6.  The x-axis is the number of iterations while the y-
axis is the entropy. The figure shows that the technique
stabilizes in 30 iterations; though, the space of the possible
solutions is of the order of 322 (the topology has 22 sources
and 3 bottlenecks). The sample-based KMeans technique has
similar convergence time.

5.3 Accuracy of the Iterative Techniques
Applied to the scenario in Figure 5 (2 bottlenecks, 16 sources,
and no cross-traffic), the iterative clustering techniques

B1 output-bandwidth 1 Mb, 1.5Mb

B2 output bandwidth 0.5 Mb, 1 Mb, 1.5 Mb

CBR rate 20 Kb

TCP rate Has always data to send

Queue Type RED, Drop Tail

Table 1: Characteristics of the simulation environment.
Different values in the same row are used in different runs.

Iterations

Figure 7: Convergence characteristics of the iterative pair-
wise entropy-based technique. A typical run of the technique
on the topology in Figure 5. The x-axis is the number of
iterations and the y-axis is the entropy.

Iterations

Figure 8: Convergence characteristics of the iterative KMeans
entropy-based techniques. A typical run of the cluster-weighted
technique on the topology in Figure 6. The x-axis is the number
of iterations and the y-axis is the entropy. The sample-based
technique exhibits similar convergence properties.
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showed a perfect accuracy. For example, the 2D-KMeans
clustering technique showed 100% accuracy over all of the 15
random runs that we conducted. Thus, in this section we
report only the results of running the algorithms on the
scenario in Figure 6, which contains 3 bottlenecks, 22
sources, and cross-traffic. We control the fraction of the
bottlenecked traffic that traverses the monitored link by
changing the average rate of the cross-traffic generators. For
each different cross-traffic rate, we generate 5 data sets by
changing the sources’  start times, the bandwidth of the
bottlenecks, or the queuing discipline.

We measure the performance by counting the number of
correctly classified flows. For example let the correct clusters
be C1={ S1, S2, S3, S4, S5, S6, S7, S8, S9} , C2={ S10, S11,
S12, S13, S14, S15, S16} , and C3={ S17, S18, S19, S20, S21,
S22, S23, S24} . If the hypothesis we get from a clustering
technique is C1={ S10, S2, S3, S4, S5, S6, S7, S8, S9} ,
C2={ S1, S11, S12, S13, S14, S15, S16} , and C3={ S17, S18,
S19, S20, S21, S22, S23, S24}  then the performance is 91.7%
(22 correct out of 24).

Table 2 shows the accuracy of the four techniques described
in Section 4 as a function of the fraction of bottlenecked
traffic that traverses the monitored link. Figure 9 shows a
graphical representation of the data in Table 2.

The key observation is that the accuracy is significantly high
(90% to 99%) when a large fraction of the bottlenecked traffic
traverses the monitored link. Yet, it degrades significantly as
the fraction of the bottleneck traffic that traverses the
monitored link becomes less than 15%. This happens because
the cross-traffic plays the role of noise for our purpose. As
more of the bottleneck output traffic becomes cross-traffic,

the observed data become increasingly immersed in noise.
This observation means that passive detection of shared
bottleneck using these techniques is not practical when the
observer is an end receiver in the Internet. However, it is
highly accurate when the passive observer is monitoring a
major link that is traversed by a high fraction of the
bottlenecked traffic.

Another important observation is that the 2D-KMeans
technique outperforms the others. This means that the
correlation between the current inter-packet spacing and the
previous one holds useful information for the purpose of
separating flows sharing the bottleneck. It also indicates that
using a 3 dimensional or a 4 dimensional feature to capture
more of the temporal dependency might increase the accuracy
further and render the techniques more robust against heavy
cross-traffic.

We also note that the clustering techniques require a
relatively small number of packets.  When there is no cross
traffic and the topology is not highly complex, around 20
packets per flow are enough for correct clustering. As the
cross traffic becomes heavy more packets per flow are
needed. Yet, The KMeans techniques always use a relatively
small number of packets (around 100 packets). The small
number of packets is a consequence of the fact that the
KMeans techniques do not compare only the packets of two
flows, they rather compare the packets of one flow against all
the packets in a cluster.

Figure 9: Accuracy of the clustering techniques as a function of the fraction of traffic
monitored by the passive observer. Notations: PairWise: Iterative Pair-wise; CW: Cluster-
Weighted KMeans; SW: Sample-Weighted KMeans, 2D KM: 2 Dimensional Cluster-
Weighted KMeans.

Fraction of bottleneck traffic that traverses the link monitored by the observer
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6 Related Work
The traditional approach for learning Internet path
characteristics relies on sending probe traffic. For example,
pathchar and cprobe are useful tools for discovering the
bandwidth available along a path. However, they consume a
large amount of network resources. In particular, pathchar
generates at least 10 Kbytes of probe traffic per hop and
cprobe generates 5 Kbytes of probe traffic per hop [14]. The
accuracy of these tools is acceptable for low bandwidth links
(less than 10Mb/s), yet it becomes significantly low for high
bandwidth links [21].

The Packet Bunch Mode (PBM) estimates the raw bottleneck
bandwidth of a connection by looking for modalities in the
timing structures of groups of back-to-back packets. Although
more robust than pathchar, it requires information from both
the sender and receiver sides  [10].

Traceroute is a widely used tool for learning the intermediate
routers and the latency along a path. It requires the
intermediate routers to reply to ICMP echo messages, a
feature that might not be available [16].

The authors in [19] propose the use of multicast loss-
correlation to infer the loss rates over individual links along a
path. Their simulation shows that the estimator tracks the
changes in the loss rate. However, the proposed approach
sends probe packets into the network and requires the
existence of a multicast service.

The authors of [12] use loss correlation among the receivers
in a multicast group to infer the logical shape of a multicast
tree. Their approach does not inject probe traffic in the
network; however, its reliance on loss information limits its
use to significantly long multicast sessions.

Recently, there were two proposals for detecting whether a
pair of flows shares the same bottleneck [22, 23]. Both
proposals are non-passive as they generate probe traffic,
require sender cooperation, and assume a particular queuing
discipline. However, they are more robust against a heavy
cross-traffic than the entropy-minimization approach.  Also,
these proposals do not generalize their techniques to more
than two flows. Thus, the clustering problem that we address
in this paper is intrinsically harder than the problem addressed
by these proposals.

7 Conclusion
This paper shows that a strategically located passive observer
can learn sensitive information about the congestion-state and
the topology of the upstream networks. In particular, we
present a set of entropy-minimization techniques that allow a
completely passive observer to cluster flows into groups that
share the bottleneck. The observer can perform this task
without generating any probe traffic and without any
cooperation from the senders. Moreover, the passive observer
can cluster TCP, UDP, and multicast flows, and can perform
its task regardless of the queuing discipline. The paper shows
that the passive observer performs its task fairly accurately if
it is strategically located so that a reasonable fraction of the
traffic processed by each bottleneck eventually traverses the
link monitored by the observer. However, the accuracy of
such completely passive observer decreases when it observes
only a little fraction of the bottlenecked traffic.

Passive techniques for discovering the characteristics of a
network based on measurements conducted at its edges are
highly desirable because they are extremely general and
resource efficient. The techniques presented in this paper are
a step toward a better understanding of the capabilities of a
passive observer of the traffic.
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